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Forma de Lorentz i metrica de Minkowski
Les transformacions de Lorentz deixen invariant la forma quadratica
c’t? — (x* +y* +z7),

N1 ’ . . .
anomenada forma de Lorentz.” En resulta que també deixen invariant el
producte escalar

_ .2
(%1, ¥1, 21, t1], [x2, V2, 22, 82 ]) = ctty — (1 + y1Y2 + 2123),

anomenat metrica de Minkowski.

Relativament a les coordenades x, x4, X5, X3, la forma de Lorentz s'escriu

xg — (x% + x5 + x3) = x§ — x°.

Separacio entre esdeveniments

La separacié (quadratica) entre dos esdeveniments [xq,Vq,Zq,t1] |
|x5, V5,75, t,] es defineix com

o = c?At? — (Ax? + Ay? + Az?),
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onAt=t, —t;,Ax =xy, —x1,Ay =y, —y,iAz = z, — z,. La separacid
és un invariant Lorentz.

Si o0 > 0, diem que la separacio dels esdeveniments és de tipus temps o
temporal. Per exemple, per a dos esdeveniments que tenen lloc en un ma-
teix punt en temps diferents es compleix que o = c?At? > 0, on At és el
temps transcorregut entre els dos esdeveniments. L’afirmacio reciproca és
certa en una referencia apropiada (Exercici: R.3.1).

Si 0 < 0, diem que la separacid dels esdeveniments és (de tipus) espacial.
Per exemple, per a dos esdeveniments que tenen lloc en un mateix instant
en punts diferents es compleix que ¢ = —(Ax? + Ay* + Az?) < 0.
L’afirmaciod reciproca és certa en una referencia apropiada (Exercici: R.3.2).

Si 0 = 0, diem que la separacio dels esdeveniments és nul-la, o de tipus
llum, o isotropa. Per exemple, si un fotd emeés en un punt [x4, y1,2;] en un
instant t; arriba al punt [x,, V5, 2,] en l'instant t,, aleshores la separacio
dels esdeveniments [x1, V1, 21, t1] i [x2, V2, Z5, t5] és nul-la.



Quadrivectors

Un quadrivector, o simplement 4-vector, és una correspondéencia v que as-
signa un vector v¢ € R* per a cada sistema inercial S de manera que

Vsr = Ng sVs
qualssevol que siguin els sistemes inercials S i S’, on A¢ ¢ és la transforma-

cid de Lorentzde S a S’.

Per exemple, la posicio i el temps d'un esdeveniment donat respecte d'u-
na referéncia inercial S, diguem [x, y, z, t]s, és un 4-vector, per definicio de
les transformacions de Lorentz.



S x = £(s) Diagrames de Minkowski

En la figura hem representat I'eix x d’un sistema
inercial S i, perpendicularment, un eix per a
- s = ct."* En aquest pla podem representar els
[ esdeveniments que tenen lloc en un punt de |'eix

>
v

x en un cert instant del temps t = s/c. Si una

particula es mou sobre |'eix de les x segons la
funcio x = f(s), llavors els esdeveniments (f(s),s) formen la linia
d’univers de la particula. Es la grafica de f, perd amb I'eix s com a eix
d’abscisses i I'eix x com a eix d’ordenades. Per exemple, x = k, k constant,
és la linia d’univers d’una particula que esta en repos en el punt x = k.
Analogament, x = s és la linia d’univers d’un fotdé que es mou sobre |'eix
de les x i que passa per l'origen per a s = 0. Com que la velocitat de Ia
llum (¢ = 1 amb les notacions presents) és el limit superior de les veloci-
tats possibles, el pendent de la linia d’univers d’una particula respecte de
I’eix s ha de ser < 1 arreu. Per als fotons, aquest pendent és 1 arreu.
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4 Si en lloc de moviments sobre I'eix x consi-
derem moviments en el pla xy, llavors per

representar els esdeveniments sobre aquest
pla necessitem tres eixos: x,y,s. La linia
d’univers d’una particula que es mou en el

pla xy és una corba donada per equacions
parametriques s — (x(s),y(s)). El paper
que feia la recta x =s ara el fa el con
d’equacid x? + y? = s2, del qual en direm

con de llum. Les generatrius d’aquest con
son les linies d’univers dels fotons que passen per |'origen per a s = 0. Per
exemple, a fletxa vermella representa la trajectoria d’un foté en el pla xy i
la blava la corresponent linia d’univers.

Naturalment, la representacio de Minkowski es 4-dimensional si tenim en
compte les tres coordenades d’espai x, y, z.
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Representacio dels eixos de S'. Conside-
rem el pla de Minkowski xs corresponent
a un sistema inercial S. Considerem un
sistema inercial S’ que es mou a velocitat
x' uniforme [ sobre I'eix x, i de manera que

»
>

x ~ els origens de S i S’ coincideixen per
s = s’ = 0. D’aquesta manera les trans-
formacions de Lorentz son

x' =y —pBs), s =y(s— Bx).

La linia d’univers en el pla xs de l'origen

de S ésx = fBs,o0bé x’ =0.Com que x' = 0 és I'eix s’ del pla x's’, la de-
notem per s’ (vegeu la figura). Notem que el seu pendent respecte de I’eix
s és . Analogament, a I'eix x’' de S’, que és s’ = 0, li correspon la recta
s = [x, que té pendent [ respecte de |'eix x.



8

A la figura anterior també s’indica la relacio entre un esdeveniment E i les
seves coordenades respecte de S i S’, perd observem que encara no sabem
com representar les unitats de x' i de s’.

) La determinacié d’unitats sobre x' i s/,

en termes del pla xs, és immediata a
\ | / partir de la igualtat

/ 12 2

X s’ —x'2 =52y

_ (invariancia Lorentz de la separacio

X « e

uadratica).
2_y2-_1 9 )
En efecte, la unitat sobre l'eix s’ és
’esdeveniment (x' =0,s' =1), amb

la qual cosa veiem que la unitat busca-

da (segment vermell de la figura) no és
més que la interseccié de I'eix s’ amb la branca de la hipérbola s? — x? =
1 corresponent a s > 0. La unitat sobre I'eix x’ (segment blau de la figura)
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es determina d’una manera similar: és la interseccié de I'eix x’ amb Ia
hipérbola s? —x? = —1 (& x? —s? = 1).

Retard dels rellotges. Amb el diagrama de
Minkoski, el retard dels rellotges queda vi-
sualitzat com a la figura: a la unitat sobre
'eix s' (x' = 0,s" = 1) (segment vermell),
li correspon un segment sobre I'eix s supe-

rior a la unitat d’aquest eix (segment verd).

Contraccio de longituds. El segment verd
de la figura representa la unitat sobre |'eix
x i el vermell sobre I'eix x'. Com que la li-
nia d’univers de la unitat de I'eix x és la
recta x = 1, veiem que S'li atribueix una
longitud inferior.
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Paradoxa dels bessons. Considerem la refe-
rencia inercial S d’'un dels bessons, de la
qual només dibuixem I'eix x i 'eix s = ct (en
anys-llum). Si l'altre germa bess6 S’
s’allunya a una velocitat v = gc al llarg de

Ox fins a l'instant s = 5, i després retorna a
I'origen a la mateixa velocitat (hi arribara
quan s = 10), quin temps marcara el rellot-
ge de S’ quan ddna la volta? | a I'arribada?
Estaran d’acord cada bessé en el temps
marcat pel rellotge de l'altre?

Ates que [ =4/5, tenim y =5/3. Aixo
comporta que 5 anys de S corresponen a 3
de S’, de manera que quan S’ ddna la volta,
el seu rellotge ha de marcar 3, i a I'arribada
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ha de marcar 6. Segons S, per al besso viatger només hauran d’haver pas-
sat 6 anys. Vegem com ho percep S'. En la primera part, S’ esta estacionari
en el seu sistema (x’ = 0) i deixa que passin 3 anys (s’ = 3). Durant aquest
lapse veu que el seu germa S s’allunya amb f = —4/5, i per tant interpre-
taque s =y(s'+ Bx') =ys' =5 és el temps que S atribueix al moment
d’iniciar el retorn. En aquest instant, el viatger canvia a un sistema inercial
S'" en el qual veu que S s’aproxima a f = 4/5. Segueix en repos a I'origen
de S (x"" = 0) durant 3 anys més (al final, s"" = 6, ja que a l'inici del re-
torn s’”" = s’ = 3). Segons els calculs del viatger, els rellotges de S han de
marcar

s=y("—Bx")Y+A=ys" + 4,

on A és una constant ('origen de S" no té perqué coincidir amb el de S).
Com que per s’ = 3 hade ser s = 5, veiem que A = 0. Aixi, doncs, el bes-
sO viatger pensa que a l'arribada els rellotges de S han de marcar
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gx 6 = 10. Pel que fa a la posicio que S atri-

bueix a I'origen de S”’, ha de ser de la forma
x=y(x" =Bs")+u=—-yBs" +u
= —%S” + u,

(1 una constant. Com que x = 4 per s’ = 3,
ha de ser u = 8. D’aquesta manera S"’ sap
que és a l'origende S (x = 0) pers’’ = 6.

Per acabar aquesta analisi, suposem que S
envia un senyal lluminds al final de cada any.
Com que el factor Doppler quan S’ s’allunya

,  |1- 1 . .

es F_ —, el senyal al final del primer any
148 3

és rebut al final del tercer any de S’, és a dir,

en el moment d’iniciar el retorn. En el viatge



13

, 1
de retorn el factor de Doppler és M _ 3, amb la qual cosa S"' rep tres

1-p
senyals en cadascun dels seus tres anys de S"'. Si S’ també envia senyals
cap a S al final de cadascun dels seus anys, els senyals enviats a 1/, 2" i 3’
es rebran al final dels anys 3, 6 i 9, mentre que els 3 senyals enviats en el
viatge de retorn es rebran tots durant el dese any de S.

Exercisis

R.3.1. Proveu que si la separacié entre dos esdeveniments és de tipus temporal,
aleshores hi ha un sistema de referéncia inercial S’ respecte del qual els esdeve-
niments tenen lloc en el mateix punt. En particular, la separacio entre aquests dos
esdeveniments es pot mesurar amb un rellotge estacionari respecte de S'.

R.3.2. Proveu que si la separacid entre dos esdeveniments és de tipus espacial,
llavors hi ha un sistema de referéncia inercial S’ respecte del qual sén simultanis.
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En particular, la separacio entre els esdeveniment es pot mesurar amb regles es-
tacionaris respecte de S'.

R.3.3. Segons un observador en un sistema de referencia inercial S, un esdeve-
niment A té lloc al punt de coordenades x, = 5m, y, = 3m, z; = Om i a l'instant
t, = 15m, mentre que un altre esdeveniment B té lloc al punt de coordenades
Xg = 10m, yg = 8m, zg = Om i a l'instant £ = 5m. Trobeu la separacié entre A
i B. Trobeu també una referéncia inercial S’ respecte de la qual els dos esdeveni-
ments son o bé simultanis o bé tenen lloc en el mateix punt.

R.3.4. Siguin S i S’ dues referéncies inercials d’eixos paral-lels i origens co-
incidents per t = t' = 0. Sigui v la velocitat de S’ respecte de S. Suposem
gue una particula es mou sobre I'eix x de S a velocitat uniforme u i consi-
derem 'esdeveniment (x = ut,t), amb t > 0 (ignorem les coordenades y
i z). Proveu que si (x',t") son les coordenades d’aquest esdeveniment
respecte de S’ llavors t' > 0 (useu que u < c¢). Proveu també que si fos
possible u > c, aleshores no existiria ordre de “causalitat”, ja que hi hauria
un sistema inercial S’ en el qual t’ < 0 (si en I'instant t de S la particula es
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desintegrés, posem per cas, aleshores tindriem que per S’ la desintegracié
passaria abans de comencar el trajecte de la particula!).

Notes

N1 (Pag. 2). De fet,

2 2
(ct)? —z2 =y2((ct) + Bz')” —y2(2z' + B(ct))
= y2(1 = B(ct)? —y2 (1~ fAz = (ct)? ~ 2",
N2 (Pag. 5). Les relacions metrigues euclidianes d’aquest pla xs, com ara el
fet de disposar I'eix s perpendicularment a I'eix x, no tenen cap significat
fisic.



