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Introduccio

El principi de Hamilton equival a |'observacié que les equacions de
Lagrange es poden obtenir imposant que |'accio (definida al principi de |la
seccid que segueix) és estacionaria, és a dir, que la seva primera variacio
(en un sentit que precisem més avall) és nul-la.

Aquesta formulacié de les equacions de Lagrange resulta ser més
fonamental que les equacions de Newton, basicament pel fet que es pot
aplicar a situacions (com ara en electromagnetisme, relativitat, mecanica
quantica, teoria quantica de camps, ...) en les quals les equacions de
Newton no tenen sentit.



Integral d'accié

Si x:|ty, t;] » X és un cami diferenciable sobre I'espai de configuracio
d'un sistema lagrangia, es defineix l'accio del sistema al llarg de x com la
integral

S(x) = f;’: L(x,x,t)dt .

També es diu que S és el funcional d'accio.

Primera variacio de la integral d'accio

La nocio de diferencial en un punt d'una funcié real de variable vectorial
s'estén facilment a una nocio de “diferencial de S en x”. Vegem-ho.

Si h:[tg, t1] = EY és una aplicacié diferenciable arbitraria, es tracta
d'expressar la diferencia

S(x+ h)—S(x)
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com un funcional 2(h) lineal en h més infinitésims d'ordre superior (en
un sentit que precisarem tot seguit) i posar d,.S = . A tal fi notem que

. ] . 0L oL =
L(x+h,x+h,t) —L(x,x,t)+ah+ah_|_,,,

L 182
on -+ representa una expressid que és 0((|h|+|h|) ) Integrant

respecte de t, tindrem
_ ty (0L, | OLj
S(x+ h) =S(x) + fto (axh + axh) dt +
Ara la regla d'integracio per parts ens dona que

[ (Zh+Zh)dt = [ Ehde + [%h]z — [ (%) ha
0

to Ox to dt %

t%%_i%) [@]“
to \ox dtox hat + axhto'

Aix0 mostra que el funcional lineal € definit per la formula



o) = [ (55— 5% hae + [ ]

és l'objecte que generalitza per a Si x la nocio de diferencial d'una funcio

en un punt (S fa el paper de funcidé i x el de punt) dins |'espai vectorial de
totes les funcions h de [t,,t;] a Eév Si ens restringim a funcions h que
prenen valor O en els extrems t, i t{, aleshores el segon terme de la
variacio és nul i el funcional

_ (t1(0L  d oL
t(h) = fto (ax dt ax) hdt [+]

fa el paper de diferencial de S en x dins |'espai vectorial de les funcions h

de [to, t;] a EY que s'anul-len a ty i t;. Direm que £ (respectivament £) és
la primera variacio (primera variacio en un sentit ample) de S en x, i

posarem 8,.S (6,.S) per denotar-la.



Enunciat i demostracio del principi de Hamilton

Per analogia amb el cas de funcions reals de variable vectorial, direm que
X és un cami estacionari per a Ssi 6,5 = 0.

Teorema (Principi de Hamilton o de |’accid estacionaria). Un cami x és un
cami seguit per I'evolucio del sistema entre dos instants del temps t; i t4
Si i nomeés si x és estacionari per a S.

Prova. En efecte, si x és un cami seguit per l'evolucidé del sistema,

aleshores x compleix les equacions d’Euler—Lagrange i 6,5 = 0 per Ia
0L d 9L

formula [*]. Reciprocament, si 6,.S = 0, aleshores o 1o 0, ja que

altrament podriem trobar una funcio h nul-la per t, i t; tal que

t (aL d aL)
fto ox dtox hdt = 0,

i aiX0 seria una contradiccio.
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Remarques. 1) El principi de Hamilton sovint s'anomena principi de
minima accio. Aquesta denominacio, pero, no és adequada, ja que si bé
és cert que la primera variacido és nul-la quan un cami [*] fa minima
'accio, el reciproc no és cert en general.’

oL _ d oL
ox dtox

d’Euler—Lagrange corresponents a la condicio que la primera variacio de

2) Les equacions =0 es coneixen com les equacions

I’accio (amb extrems fixos), 4,.S, sigui nul-la. Observem, com ja hem fet

anteriorment, que si la funcid L no depen de x explicitament, aleshores
. , : . oL . ,
les equacions d’Euler—Lagrange equivalen a dir que 52 o depen de t (és

una quantitat conservada).

3) Notem també gue una analisi similar a la que hem fet per al hamiltonia
ens diu que si L no depen de t, aleshores

JoL

k=L—x- 5z NO depen de t (és una quantitat conservada).



Remarques sobre el calcul de variacions

Les idees que han entrat en joc per a la definicidé de la primera variacio
constitueixen de fet una introduccio al calcul de variacions i es poden
usar en general per estudiar problemes en els quals s'han de determinar
valors que fan estacionari el valor d'un funcional.

Exemple (La corba més curta entre dos punts és la linia recta). Siguin A4 i
B dos punts de I'espai euclidia E, i x:|a,b] = E,, una corba tal que
x(a) =A i x(b) =B. La longitud d’aqueta corba ve donada per la
integral

6 = [ g(x@w), xw) " du,

on g és la metrica euclidiana. Com que l'integrant d’aquesta integral
(com a funcié de x, x) no depen de x, les equacions d’Euler—Lagrange
correponents a la condicié 6,£ = 0 equivalent a



% g(jC(u),jc(u))l/z = v (v un vector constant).

Com que g és una funcio quadratica simetrica, aquesta condicio equival a
x/|x| = v, v un vector constant. Pero x/|x| = dx/ds, on s és el
parametre arc de la corba, i per tant x és estacionari pel funcional € si i
només si x(s) = A + sv, cosa que equival a dir que la corba ha de ser
una parametritzacio del segment de recta que uneix els dos punts

(naturalment, B=A+ Av, on A és la longitud de la corba, d’on
v=(B—-A)/A).
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Exemple (Principi de Fermat). Aquest principi estipula que el cami
x = x(t) seguit per la llum per anar d’un punt A = x(a) a un punt
B = x(b) d’un medi isotrop és el que fa que el temps sigui estacionari, és

. , . : b ,
a dir, ha de ser un cami que satisfaci 6,7 =0, on 7(x) = fa dt és el

temps que tardaria la llum si seguis el cami x. Ara bé, en un interval de
temps infinitesimal dt, la distancia recorreguda sobre x és |x|dt i el
temps que tarda la llum en recorrer-lo és

_xlat 1
dt = c/n(x) T c

n(x)|x|dt,

on ¢ és la velocitat de la llum en el buit i n = n(x) és I'index de refraccié’
del medi en el punt x. Com que ¢ és una constant, el problema de
determinar els camins x que satisfan 6,7 = 0 és equivalent al problema
de determinar els que satisfan 6,4 = 0, on A(x), anomenada longitud
optica del cami x, es defineix per la formula

Ax) = f; n(x(e)|x(b)lde.
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Proposicio. Les equacions d’Euler—Lagrange corresponents al problema
variacional 6,4 = 0 equivalen a I'equacio vectorial

d
on = — (nt),

on t = x/|x| és el vector unitari tangent a x i s és el parametre arc de la
corba x.

Prova. Les equacions d’Euler—Lagrange corresponents a l'integrant

F(x,x) = n(x)|x|
oF d OF oF 0

, . _ 0 .y _ 0 |
sOn —— — ——— = 0. En aquest cas, Foialiew (n(x)|x]) = - (n(x))lxl =
. . OF d . 0 . C .
|x|on, i = % (n(x)|x|) = n(x)a(lxl) = n(x)t. Per tant, el principi

de Fermant equival a les equacions
: d
|x|on = = (n(x)t).

D’aqui la proposicio en resulta immediatament tenint en compte que



12

d _dsd
dt  dtds

.. d
= |X|£

Corol-lari. Si n és constant, aleshores el principi de Fermat equival a dir
qgue la llum segueix la linia recta (a la mateixa conclusié s’arriba aplicant
I’exemple de la pag. 8).

Aplicacio (Llei d’Snell de la refraccid). Considerem la
situacid indicada a la figura: la linia vertical (eix Ovy)
separa dos medis amb indexs de refraccié n (semipla
esquerre, x < 0) i n' (semipla dret, x > 0). Considerem

una corba y = y(x) que passi pels punts A(a,b) del
medi esquerre i A'(a’, b") del medi dret. La longitud optica d’aquest cami

ésA(y,y') = faa n(x)\/l + y'?dx. Com que l'integrant n(x)\/l + y'? no

4 (n(x)\/l + y’z) és una funcid constant (de

dy’

depen de y, resulta que
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n(x)y’ . !
Wy _ k, una constant. Pero 4
1+y'2 1+y’

és I'angle que forma la tangent a la corba amb I'horitzontal. Tenim,
doncs, que n(x)sin(a) = k. En particular tenim que en els semiplans

x). En resulta que = = sin(a), on «

x < 0ix >0 el camies redueix a segments rectilinis i que els angles «a i
a' que aquests segments formen amb Ox compleixen

nsin(a) = n' sin(a’).
M.8.1. Com que l'integrant F(x, x) = n(x)|x| del funcional

) = [ n(x(@)1x(0)lde

qgue dona la longitud optica del cami x no depen explicitament de ¢,

: . OF
k—F(x,x)—x~a

és una integral primera (v. Remarca 3, pag. 7). Tanmateix aquesta integral

primera no ens déna cap informacio, ja que fent els calculs no és dificil veure
qgue és identicament nul-la.
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M.8.2. Per trobar les funcions y = y(x) que fan estacionaria la integral

b !/
| = fa F(y,y', x)dx,

amb la condicié que una altra integral

b
J=[, Gy x)dx
és constant, podem formar les equacions d’Euler—Lagrange per la integral

I+ 2] = ff(F + AG)dx, és a dir,

oF d ([ OF 0G d (0G
oy dx (63/’) +4 (63/ dx (ay’)> =0

i usar la constancia de J per eliminar A.

Com aplicacid, trobeu 'equacié d’una cadena de longitud 2L, penjada pels seus
extrems en els punts (—a,0) i (a,0), imposant que la seva energia potencial
sigui estacionaria.
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Resultat. y(x) = % (cosh (%) — cosh (%a)), on k és la solucio de I'equacio
sinh (%a) = pgL/k.

M.8.3 (Braquistocrona). Considerem els punts 4

: : : A(a,
A(a,b) i A'(a’,b"), amb a<a' i b>Db', i una (a,b)
corba com la de la figura que els uneix. Suposem
, : A’(a,, bl)
gue una particula de massa m sotmesa a la forca | .
de la gravetat (0, —mg) cau sense friccio seguint la of _
corba. Quina és la corba per a la qual el temps de a a

caiguda és minim?

(u—sin(uw)), y=>b + b_zb’

Remarguem que aquestes equacions son el resultat d’aplicar I’afinitat

a'-a

(Solucié: x =a +

- (cos(u) —1), 0<u<m.

x=a+Ax,y=b+uy (A=(@ —-a)/r,u=—-(b->")/2)

a la (semi)cicloide x' =u —sin(u), y' =1—cos(u), 0<u <m, generada
per la circumferencia de radi 1.
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Notes

1. Fins i tot en el cas d’una funcio real f d’una variable real, la condicio
d,f =0 f'(a) =0, necessaria per a l'existéncia d’'un minim (o un
maxim), no és suficient (hi pot haver una inflexié, com ara per f(x) = x3
ia=20.

2. Dir que el valor de I'index de refraccid d’'un medi és n significa que la
velocitat de la llum és c¢/n, on ¢ és la velocitat de la llum en el buit.
Alguns indexs de refraccié: vidres, de 1.5 a 2; aigua, 1.3335 a 0°C (baixa
una mica amb la temperatura: 1.3328 a 20°C i 1.3177 a 100°C); alcohol
etilic, 1.36; gel, 1.309; diamant, 2.417.



