MMF 10 / 1. Mecanica

7. Petites oscil-lacions
S. Xambod

L'objecte d'aquesta seccid és analitzar el comportament d'un sistema
mecanic lagrangia natural (és a dir, que les lligadures no depenen del
temps) en l'entorn d'un punt d'equilibri estable.

El resultat fonamental és que aquest comportament és, per a petites
oscil-lacions en l'entorn d’un tal punt, com el d’'un multioscil-lador
harmonic.

B Punts d’equilibri
m Analisi de les petites oscil-lacions
m Calcul efectiu de les freqliencies i modes fonamentals



Punts d'equilibri

Un punt q de I'espai de configuracio és un punt d'equilibri si dgV = 0, és
a dir, si (dV/dq)(q) = 0. Notem que aix0 equival a dir que en el punt q
les forces (generalitzades) s'anul-len.

Canviant les coordenades si cal, podem suposar que q = 0, i, ates que V
esta definit llevat d'una constant no nul-la, també podem suposar que
V'(0) = 0. Fet aixi, el desenvolupament de Taylor en el punt d'equilibri 0
comenca amb termes quadratics i la suma d'aquests termes quadratics és

1 1
Vo = 2ij5kijqiq; = ECIKCIT,
kij — OZV/Oqlaq](O), K = (kl])

El punt d'equilibri es diu que és estable si K és definida positiva. Com que
K és simetrica, aix0 equival a dir que tots els seus valors propis son
nombres reals positius.
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Notem que en aquest cas les forces que actuen en I'entorn de g = 0 (o
sigui, —dV' /dq) son “restitutories” en qualsevol configuracio, és a dir,
tendeixen a moure la configuracio envers 0.

Analogament, els primers termes del desenvolupament de Taylor de
I'energia cinetica en I'entorn del punt (g, 0) de I'espai d'estats comenga
per termes quadratics, la suma dels quals és una expressio de la forma

1 . . 1. .
T, = Zi,jgmijCIiCIj =-qMq L
ml-j S ]R, M = (mu)

La matriu M també és simetrica i definida positiva. Notem que |'energia
cinetica és definida positiva i que si

1 A .
I'= Zi,jgaij(CI)CIiCIj ZECIA(CI)CI !
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amb a;;(q) = a;;(q), de manera que A(q) és simétrica i definida

positiva, llavors m;; = a;;(0).

L'estudi de les petites oscil-lacions en l'entorn d'una posicié d'equilibri
estable d'un sistema lagrangia natural és l'estudi de la dinamica del
sistema definit per la lagrangiana L, =T, — V5.

Exemple. L'energia potencial d'un pendol doble que efectua oscil-lacions
en un pla vertical és

V=-mglcosg —m'g(lcose + 1 cosq’).
El potencial V, per a les petites oscil-lacions al voltant de la posicio
d'equilibrigp = ¢’ = 0és

1 r 2, 1 4 o2 1 ~f((m+mHgl 0 ) 1
Gm+m)gle? +5mgle =20 (T ) ()



Analogament, |'energia cinetica és

T = %(mlchz +m'(129? + 12¢"? + 2UI'¢¢' cos(p — ¢")))
i I'expressid T, corresponent al problema de les petites oscil-lacions
és

T, =~ ((m+m)I2p? + 2m'll'p¢" +m'l'2¢'?).

1, N ((m4m)I? m’ll’) (‘P)

(9,9 ( m m'r2)\e

Analisi de les petites oscil-lacions

Les equacions d'Euler—Lagrange corresponents a la lagrangiana

1 1
L,==—4MqT —=qKq"
2 =54Mq" —-qKq

de les petites oscil-lacions son les seglients:

GM = —qK © § = —qA, A=KM™1L.
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Adonem-nos que dL,/0q = q M, que la derivada d'aquesta expressid
ésgMiquedlL,/0q = —¢qK.

Proposicid. Existeix una matriu C tal que CMC? =1, i CKC" és diagonal
positiva (és a dir, els elements de la diagonal de CKCT sén positius.

Prova. Ates que M és simetrica, existeix una matriu ortogonal C; tal que
D = C;MC{ és diagonal. Com que M és definida positiva, els elements de

la diagonal de D sén positius. Si ara posem C, = VD~1(y, llavors és clar
que C,MCI =1,.

Considerem ara la matriu K’ = C,KC!. Aquesta matriu és simétrica i, per
tant, existeix una matriu ortogonal C5 tal que C3K’C3T és diagonal (notem
que els elements diagonals d'aquesta matriu son positius, atés que K' és
definida positiva com a consequéencia del fet que K és definida positiva).
Si finalment posem C = (C3C,, aleshores és clar que C satisfa la condicio
enunciada.
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Corol-lari. La matriu A és diagonalitzable amb tots els seus valors propis
positius.

Prova. Amb les notacions de la prova anterior,
CAC'=CKM~c ' =cKcT(c")*mM~1c?
= (CKCchH(cMchH~t =CKCT,

gue és una matriu diagonal positiva.

Corol-lari. La dinamica de la lagrangiana L, equival a la dinamica d'un
multioscil-lador harmonic.

Prova. Sabem que les equacions que corresponen a la lagrangiana L, son
q = —qA. Fent el canvi g = éC (usem les notacions de la prova de la

proposicié) obtenim § C = —&CA, és a dir, § = —§CAC™. Perd com que
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CAC~! és diagonal, cadascuna de les variables &; evoluciona com un
oscil-lador harmonic amb freqliencia angular w; = .,/p;, on p; és el

corresponent valor propi de A.

Les variables &; i les frequencies w; s'anomenen modes i freqiiencies
fonamentals, o caracteristics, del sistema mecanic inicial.

Calcul efectiu de les frequiencies i modes fonamentals

Les frequencies caracteristiques s'obtenen resolent ['equacid
caracteristica de A:

det(pl,, — A) = 0.
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Com que pl, — A = (pM — K)M ™1, també podem obtenir les p resolent
I'equacié det(pM — K) = 0. D'aquesta manera ens estalviem de calcular

M~1. Per a cada p, la corresponent freqiiéncia caracteristica és \/E
Els modes fonamentals s'obtenen a partir dels valors propis de A:
Si A és un vector propi de valor propi p de A4, aleshores
§=qA"

és el corresponent mode fonamental:

§=¢AT = —qAAT = —q(pAT) = —pé.

Alternativament, si u és un element del nucli de pM — K, aleshores

&=qMp"

és el corresponent mode caracteristic:

¢ =gMu" = —qAMuT = —qKu" = —pgMu’ = —pé.
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y Exemple (cf. M.S. Longair: Theoretical concepts in
physics (CUP, 1984), pag. 93-98). Tenim un cilindre
circular recte horitzontal de radi 2u suspes pels
extrems d'una generatriu amb dos fils inextensibles
paral-lels, de massa negligible i longitud 3u (a la

figura hem representat una de les cares laterals del

* cilindre i el corresponent fil).

Anem a trobar les oscil-lacions caracteristiques d'aquest sistema
suposant que el cilindre és homogeni de massa m i que roman
perpendicular al pla xy, de manera que podem prendre els angles a i
com a coordenades generalitzades. En el sistema {x, y} tenim que O té
coordenades

x = 3usin(a) + 2usin(f),y = 5u — 3u cos(a) — 2u cos(f).

L'energia potencial de és



V=mgQBu(l—-cosa)+ 2u(l —cosp)) = mgu(%az + B2) + -

i prenun minimquana = = 0. Tenim, doncs,

a
V, = mgu(3a® + p?) = mgu(a, B) (3 O) ( )
2 0 B
Com hem vist en el primer tema del solid rigid, I'energia cinetica és la
suma de la de rotacio i la de traslacio de O. Ates que
% = 3ud cos(a) + 2upf cos(B),y = 3ua sin(a) + 2up sin(B),
I"aproximacio per a les petites oscil-lacions de I'energia de translacio és
£\ 2

%muz(Bd +26)°.Sil= %m(Zu)2 = 2mu? és el moment d’inércia del
cilindre respecte del seu eix, I'energia cinetica de rotacid és %I,Bz =

mu?B?, d’on resulta que I'aproximacié de I'energia cinética per a les
petites oscil-lacions és
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1 . L1 o
T, = -mu?(3c +26)" + muf? = -mu(9a? + 124 + 647) =

=tm2@p) (] 9) (g)

Les freqliencies caracteristiques son les arrels de det(pM — K) = 0, on

M=u(s o) k=9 o)

(hem omes el factor constant mu comu a les dues matrius, ja que aixo no
canvia les solucions). L’equacio resultant és

3u?p? —6gup + g> =0

(hem omes un factor 6). Com que el discriminant d’aquesta equacio és
24.g%u?, les seves solucions sén
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6gu +2V6gu 3g++6g 1+\/€ g
2-3u2  3u  \ 73
Substituint aquestes solucions a pM — K és facil veure que

A=(2+V6,-3+V6)), 2 =(2-V6-(3-6))

p:

- _ V6\g,; v — (1 Y64 -
generen el nucli per p = (1 + 5 )u ip = (1 3 )u, respectivament. En

resulta, doncs, que
=(2+V6)a—(3+V6)ié& =(2-vV6)a—(3-6)B

son els modes caracteristics, és a dir, que aquests observables
evolucionen independentment, per a qualsevol evolucié de ¢ i f en

petites oscil-lacions, com oscil-ladors harmonics de freqliencies w = /p i

w =+vVw'. Fent &' =0, que equival a f = \/_ —%a, llavors I'angle

a (i per tant també ) evoluciona harmonicament amb freqliencia w.
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Analogament, fent ¢ = 0, que equival a [ = :ﬁa = %a, llavors I'angle

a (i per tant també B) evoluciona harmonicament amb freqiiéncia w'. En
altres paraules, els modes fonamentals “purs” corresponen a [ = *ka,
on k =+/2/4/3, amb la frequéncia w’ per k i w per a -k (vegeu les
figures).

Modes fonamentals purs de freqguien-
cies w’ (esquerra) i w (dreta) i periodes
T =2n/w' it =2n/w.

!/ !/

u w T w T

1 1.34 | 4.68 | 4.22 | 1.49
0.1 4.24 1.48 | 13.35| 0.47
0.01 | 13.42 | 046 |42.21 | 0.15
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m M.5.1. Una molla sense massa, de constant recuperadora k i longitud
natural [,, esta unida a dues masses m i M (com en la figura). Suposeu
kK que el sistema esta inicialment penjat per 'extrem de massa m, en
equilibri, i que en l'instant t = 0 es deixa anar. Determineu l'evolucid

M del sistema perat > 0.

M.5.2. Algunes molecules triatomiques, com la del CO,, estan formades per
dues masses iguals m lligades a una tercera massa m'’ tal com indica la figura.
Calculeu les freguiencies i modes normals de vibracio suposant que les forces

@ W@ @

elastiques i que el moviment es realitza en la '
m m m

que les uneixen es poden aproximar per forces

direccio de I'’eix de la molecula.

M.5.3. Un disc de massa M i radi R esta sotmés a un camp
gravitatori i té adherida una massa m a una distancia a del
centre (v. la figura). El disc por rodar sense lliscar. Calculeu
la frequencia de les petites oscil-lacions en I'entorn del punt
d'equilibri.
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M.5.4. Dos pendols simples de longitud [ i massa m Lo
estan units amb una molla de constant recuperadora k.
La molla esta lligada a una distancia a dels punts de
suspensio (com a la figura). La longitud natural de Ia
molla coincideix amb la distancia [, entre els punts de

suspensio dels pendols. Calculeu les freqliencies i
modes normals per a les petites oscil-lacions al voltant de la configuracio
d’equilibri i efectuades en el pla que conté aquesta configuracio.

M.5.5. Mostreu que 'equacio det(pM — K) = 0 de les petites oscil-lacions per
al péndol doble amb masses m i m’, i longituds [ i I, té la forma

Cop® +cyptc, =0,
on ¢y = mm'l?l'?,

cio=—gm+m")m'(l+ 1),

c; = g*(m+mHm'll.



