
MMF 10 / 1. Mecànica  
7. Petites oscil∙lacions 
S. Xambó 
 
L'objecte  d'aquesta  secció  és  analitzar  el  comportament  d'un  sistema 
mecànic  lagrangià  natural  (és  a  dir,  que  les  lligadures  no  depenen  del 
temps) en  l'entorn d'un punt d'equilibri estable.  
El  resultat  fonamental  és  que  aquest  comportament  és,  per  a  petites 
oscil∙lacions  en  l’entorn  d’un  tal  punt,  com  el  d’un  multioscil∙lador 
harmònic.  

 Punts d’equilibri 
 Anàlisi de les petites oscil∙lacions 
 Càlcul efectiu de les freqüències i modes fonamentals 
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Punts d'equilibri 

Un punt ࢗഥ de l'espai de configuracio és un punt d'equilibri si ݀ࢗഥܸ ൌ 0, és 
a dir, si ሺ߲ܸ/߲ࢗሻሺࢗഥሻ ൌ 0. Notem que això equival a dir que en el punt ࢗഥ 
les forces (generalitzades) s'anul∙len. 
 

Canviant les coordenades si cal, podem suposar que ࢗഥ ൌ ૙, i, atès que ܸ 
està definit  llevat d'una  constant no nul∙la,  també podem  suposar que 
ܸሺ૙ሻ ൌ 0. Fet així, el desenvolupament de Taylor en el punt d'equilibri ૙ 
comença amb termes quadràtics i la suma d'aquests termes quadràtics és 

ଶܸ ൌ ∑ ଵ
ଶ
݇௜௝ݍ௜ݍ௝௜,௝ ൌ ଵ

ଶ
  ,்ࢗܭࢗ

݇௜௝ ൌ ߲ଶܸ/߲ݍ௜߲ݍ௝ሺ૙ሻ,  ܭ ൌ ൫݇௜௝൯. 

El punt d'equilibri es diu que és estable si ܭ és definida positiva. Com que 
 ܭ és  simètrica,  això  equival  a  dir  que  tots  els  seus  valors  propis  són 
nombres reals positius.  
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Notem que en aquest cas  les forces que actuen en  l'entorn de ࢗഥ ൌ ૙ (o 
sigui, െ߲ܸ/߲ࢗ)  són  “restitutòries”  en  qualsevol  configuració,  és  a  dir, 
tendeixen a moure la configuració envers ૙. 
 

Anàlogament,  els  primers    termes  del  desenvolupament  de  Taylor  de 
l'energia cinètica en  l'entorn del punt ሺࢗഥ, ૙ሻ de  l'espai d'estats comença 
per termes quadràtics, la suma dels quals és una expressió de la forma 

ଶܶ ൌ ∑ ଵ
ଶ
݉௜௝ݍሶ௜ݍሶ௝௜,௝ ൌ ଵ

ଶ
ሶ	ࢗ ሶ	ࢗܯ ்,  

݉௜௝ ∈ Թ,  ܯ ൌ ൫݉௜௝൯. 

La matriu ܯ també és simètrica  i definida positiva. Notem que  l'energia 
cinètica és definida positiva i que si 

ܶ ൌ ∑ ଵ
ଶ
ܽ௜௝ሺࢗሻݍሶ௜ݍሶ௝ ൌ௜,௝

ଵ
ଶ
ሶ	ࢗ ሶ	ࢗሻࢗሺܣ ்,  
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amb  ܽ௜௝ሺࢗሻ ൌ ௝ܽ௜ሺࢗሻ,  de  manera  que   ሻࢗሺܣ és  simètrica  i  definida 
positiva, llavors ݉௜௝ ൌ ܽ௜௝ሺ૙ሻ. 
 

L'estudi  de  les  petites  oscil∙lacions  en  l'entorn  d'una  posició  d'equilibri 
estable  d'un  sistema  lagrangià  natural  és  l'estudi  de  la  dinàmica  del 
sistema definit per la lagrangiana ܮଶ ൌ ଶܶ െ ଶܸ. 

 

Exemple. L'energia potencial d'un pèndol doble que efectua oscil∙lacions 
en un pla vertical és 

ܸ ൌ െ݈݉݃ cos߮	 െ ݉ᇱ݃ሺ݈ cos߮	 ൅ ݈ᇱ cos߮ᇱሻ. 

El  potencial  ଶܸ  per  a  les  petites  oscil∙lacions  al  voltant  de  la  posició 
d'equilibri ߮ ൌ ߮′	 ൌ 0 és 

ଵ
ଶ
ሺ݉ ൅݉ᇱሻ݈݃߮ଶ ൅ ଵ

ଶ
݉ᇱ݈݃ᇱ߮ᇱଶ ൌ ଵ

ଶ
ሺ߮, ߮′ሻ ൬ሺ݉ ൅݉′ሻ݈݃ 0

0 ݉′݈݃′൰ ቀ
߮
߮′ቁ. 
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Anàlogament, l'energia cinètica és 

      ܶ ൌ ଵ
ଶ
൫݈݉ଶ ሶ߮ ଶ ൅ ݉′ሺ݈ଶ ሶ߮ ଶ ൅ ݈ᇱଶ ሶ߮ ᇱଶ ൅ 2݈݈ᇱ ሶ߮ ሶ߮ ᇱ cosሺ߮ െ ߮′ሻሻ൯ 

i l'expressió  ଶܶ corresponent al problema de les petites oscil∙lacions 

és   

  ଶܶ ൌ
ଵ
ଶ
൫ሺ݉ ൅݉′ሻ݈ଶ ሶ߮ ଶ ൅ 2݉′݈݈ᇱ ሶ߮ ሶ߮ ᇱ ൅ ݉ᇱ݈ᇱଶ ሶ߮ ᇱଶ൯.  

        ൌ ଵ
ଶ
ሺ ሶ߮ , ሶ߮ ′ሻ ൬ሺ݉ ൅݉ᇱሻ݈ଶ ݉′݈݈′

݉′݈݈′ ݉ᇱ݈ᇱଶ
൰ ൬

ሶ߮
ሶ߮ ′൰  

Anàlisi de les petites oscil∙lacions 

Les equacions d'EulerെLagrange corresponents a la lagrangiana 

ଶܮ ൌ
1
	ࢗ2

ሶ ሶ	ࢗܯ ் െ
1
ࢗܭࢗ2

் 

de les petites oscil∙lacions són les següents: 

    ሷ	ࢗ ܯ ൌ െܭࢗ ⇔ ሷ	ࢗ ൌ െܣࢗ, ܣ  ൌ  .ଵିܯܭ
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Adonem‐nos que ߲ܮଶ/߲ࢗሶ ൌ ሶࢗ  que ,ܯ la  derivada  d'aquesta  expressió 
és ࢗ	ሷ ଶܮ߲ i que ܯ ⁄߲ࢗ ൌ െܭࢗ. 
 

Proposició. Existeix una matriu ܥ tal que ்ܥܯܥ ൌ  és diagonal ்ܥܭܥ ௡ iܫ
positiva (és a dir, els elements de la diagonal de ்ܥܭܥ són positius. 

Prova. Atès que ܯ és simètrica, existeix una matriu ortogonal ܥଵ tal que 
ܦ ൌ  és definida positiva, els elements de ܯ ଵ் és diagonal. Com queܥܯଵܥ

la diagonal de ܦ són positius. Si ara posem ܥଶ ൌ  ଵ, llavors és clarܥଵିܦ√
que ܥଶܥܯଶ் ൌ   .௡ܫ

Considerem ara la matriu ܭᇱ ൌ  ଶ். Aquesta matriu és simètrica i, perܥܭଶܥ
tant, existeix una matriu ortogonal ܥଷ tal que ܥଷܭᇱܥଷ் és diagonal (notem 
que els elements diagonals d'aquesta matriu són positius, atès que ܭ′ és 
definida positiva com a conseqüència del fet que ܭ és definida positiva). 
Si finalment posem ܥ ൌ  satisfà ܥ ଶ, aleshores és clar queܥଷܥ la condició 
enunciada. 



7 
 

Corol∙lari. La matriu ܣ és diagonalitzable amb tots els seus valors propis 
positius. 

Prova. Amb les notacions de la prova anterior, 

   ଵିܥܣܥ ൌ ଵିܥଵିܯܭܥ ൌ   ଵିܥଵିܯሻିଵ்ܥሺ்ܥܭܥ

         ൌ ሺ்ܥܭܥሻሺ்ܥܯܥሻିଵ ൌ  ,்ܥܭܥ

que és una matriu diagonal positiva. 
 

Corol∙lari.  La  dinàmica  de  la  lagrangiana   ଶܮ equival  a  la  dinàmica  d'un 
multioscil∙lador harmònic. 

Prova. Sabem que les equacions que corresponen a la lagrangiana ܮଶ són 
ሷ	ࢗ ൌ െܣࢗ.  Fent  el  canvi ࢗ ൌ  ܥࣈ (usem  les  notacions de  la  prova  de  la 
proposició) obtenim ࣈ	ሷ ܥ ൌ െܣܥࣈ, és a dir, ࣈ	ሷ ൌ െିܥܣܥࣈଵ. Però com que 
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 ଵିܥܣܥ és  diagonal,  cadascuna  de  les  variables   ௜ߦ evoluciona  com  un 
oscil∙lador  harmònic  amb  freqüència  angular  ߱௜ ൌ ඥߩ௜,  on   ௜ߩ és  el 
corresponent valor propi de ܣ. 

 

Les  variables   ௜ߦ i  les  freqüències  ߱௜  s'anomenen modes  i  freqüències 
fonamentals, o característics, del sistema mecànic inicial. 

 

Càlcul efectiu de les freqüències i modes fonamentals 

Les  freqüències  característiques  s'obtenen  resolent  l'equació 
característica de ܣ:  

detሺܫߩ௡ െ ሻܣ ൌ 0. 
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Com que ܫߩ௡ െ ܣ ൌ ሺܯߩ െ  resolent ߩ ଵ, també podem obtenir lesିܯሻܭ
l'equació detሺܯߩ െ ሻܭ ൌ 0. D'aquesta manera ens estalviem de calcular 
 .ߩla corresponent freqüència característica és ඥ ,ߩ ଵ. Per a cadaିܯ

Els modes fonamentals s'obtenen a partir dels valors propis de ܣ:  

Si  ࣅ és un vector propi de valor propi ߩ de ܣ, aleshores 

ߦ ൌ  ்ࣅࢗ

és el corresponent mode fonamental:  

ሷߦ ൌ ሷ	ࢗ ்ࣅ ൌ െ்ࣅܣࢗ ൌ െࢗሺ்ࣅߩሻ ൌ െߦߩ. 
 

Alternativament, si ࣆ és un element del nucli de ܯߩ െ  aleshores ,ܭ

ߦ ൌ  ்ࣆܯࢗ

és el corresponent mode característic:  

  ሷߦ ൌ ்ࣆܯሷࢗ ൌ െ்ࣆܯܣࢗ ൌ െ்ࣆܭࢗ ൌ െ்ࣆܯࢗߩ ൌ െߦߩ. 
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Exemple  (cf. M.S.  Longair:  Theoretical  concepts  in 
physics (CUP, 1984), pàg. 93‐98). Tenim un cilindre 
circular  recte  horitzontal  de  radi   ݑ2 suspès  pels 
extrems d'una generatriu amb dos fils inextensibles 
paral∙lels,  de massa  negligible  i  longitud   ݑ3 (a  la 
figura hem representat una de les cares laterals del 
cilindre i el corresponent fil).  

Anem  a  trobar  les  oscil∙lacions  característiques  d'aquest  sistema 
suposant  que  el  cilindre  és  homogeni  de  massa  ݉  i  que  roman 
perpendicular al pla ݕݔ, de manera que podem prendre els angles ߙ  i ߚ 
com a coordenades generalitzades.   En el sistema ሼݔ,  ሽ tenim que ܱ téݕ
coordenades  

ݔ ൌ ݑ3 sinሺߙሻ ൅ ݑ2 sinሺߚሻ , ݕ ൌ ݑ5 െ ݑ3 cosሺߙሻ െ ݑ2 cosሺߚሻ. 

L'energia potencial de és 

ߙ

ߚ

ݑ3

  ݑ2

ݕ

ܱ  

  ݑ5

ݔ
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      ܸ ൌ ݉݃ሺ3ݑሺ1 െ cos ሻߙ ൅ ሺ1ݑ2 െ cos ሻሻߚ ൌ ߙ൫యమݑ݃݉
ଶ ൅ ଶ൯ߚ ൅ ⋯  

i pren un mínim quan ߙ	 ൌ ߚ ൌ 	0. Tenim, doncs,  

ଶܸ ൌ ߙ൫యమݑ݃݉
ଶ ൅ ଶ൯ߚ ൌ ଵ

ଶ
,ߙሺݑ݃݉ ሻߚ ቀ3 0

0 2ቁ ቀ
ߙ
  .ቁߚ

Com hem  vist en el primer  tema del  sòlid  rígid,  l'energia  cinètica és  la 
suma de la de rotació i la de traslació de ܱ. Atès que  

ሶݔ ൌ ሶߙݑ3 cosሺߙሻ ൅ ሶߚݑ2 cosሺߚሻ , ሶݕ ൌ ሶߙݑ3 sinሺߙሻ ൅ ሶߚݑ2 sinሺߚሻ, 

l’aproximació per a les petites oscil∙lacions de l’energia de translació és 

ଵ
ଶ
ሶߙଶ൫3ݑ݉ ൅ ሶ൯ߚ2

ଶ
. Si  ܫ ൌ ଵ

ଶ
݉ሺ2ݑሻଶ ൌ  ଶ és el moment d’inèrcia delݑ2݉

cilindre  respecte  del  seu  eix,  l’energia  cinètica  de  rotació  és  ଵ
ଶ
ሶଶߚܫ ൌ

 ,ሶଶߚଶݑ݉ d’on  resulta  que  l’aproximació  de  l’energia  cinètica  per  a  les 
petites oscil∙lacions és 
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ଶܶ ൌ
1
ݑ2݉

ଶ൫3ߙሶ ൅ ሶ൯ߚ2
ଶ
൅ ሶଶߚଶݑ݉ ൌ

1
ݑ2݉

ଶ൫9ߙሶ ଶ ൅ ሶߚሶߙ12 ൅ ሶଶ൯ߚ6 ൌ 

          ൌ ଵ
ଶ
ሶߙଶሺݑ݉ , ሶሻߚ ቀ9 6

6 9ቁ ൬
ሶߙ
 .ሶ൰ߚ

Les freqüències característiques són les arrels de  detሺܯߩ െ ሻܭ ൌ 0, on 

ܯ ൌ ݑ ቀ9 6
6 9ቁ , ܭ ൌ ݃ ቀ3 0

0 2ቁ 

(hem omès el factor constant ݉ݑ comú a les dues matrius, ja que això no 
canvia les solucions). L’equació resultant és 

ଶߩଶݑ3 െ ߩݑ6݃ ൅ ݃ଶ ൌ 0 

(hem omès un  factor 6). Com que el discriminant d’aquesta equació és 
24݃ଶݑଶ, les seves solucions són 
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ߩ ൌ
ݑ6݃ േ ݑ6݃√2

2 ൉ ଶݑ3 ൌ
3݃ േ √6݃

ݑ3 ൌ ቆ1 േ
√6
3 ቇ

݃
 	ݑ

Substituint aquestes solucions a ܯߩ െ   és fàcil veure que ܭ

ࣅ ൌ ൫2 ൅ √6,െሺ3 ൅ √6ሻ൯, ′ࣅ ൌ ൫2 െ √6,െሺ3 െ √6ሻ൯ 

generen el nucli per ߩ ൌ ቀ1 ൅ √଺
ଷ
ቁ ௚
௨
 i ߩ′ ൌ ቀ1 െ √଺

ଷ
ቁ ௚
௨
, respectivament. En 

resulta, doncs, que  

   ߦ    ൌ ൫2 ൅ √6൯ߙ െ ൫3 ൅ √6൯ߚ i ߦ′ ൌ ൫2 െ √6൯ߙ െ ൫3 െ √6൯ߚ 

són  els  modes  característics,  és  a  dir,  que  aquests  observables 
evolucionen  independentment,  per  a  qualsevol  evolució  de   ߙ i   ߚ   en 
petites oscil∙lacions, com oscil∙ladors harmònics de freqüències ߱ ൌ ඥߩ i 
߱ᇱ ൌ √߱ᇱ. Fent ߦᇱ ൌ 0, que equival a ߚ ൌ మష√ల

యష√ల
ߙ	 ൌ െ√మ

√య
 ,ߙ llavors  l’angle 

 ߙ (i  per  tant  també   (ߚ evoluciona  harmònicament  amb  freqüència ߱. 
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Anàlogament, fent ߦ ൌ 0, que equival a ߚ ൌ మశ√ల
యశ√ల

ߙ ൌ √మ
√య
 ,ߙ llavors  l’angle 

 evoluciona harmònicament amb freqüència ߱′. En (ߚ i per tant també) ߙ
altres paraules, els modes  fonamentals “purs” corresponen a ߚ ൌ േ݇ߙ, 
on  ݇ ൌ √2/√3,  amb  la  freqüència ߱′  per  ݇  i ߱  per  a  – ݇  (vegeu  les 
figures).  

 

ߙ

ߙ݇

Modes  fonamentals purs de    freqüèn‐
cies ߱′ (esquerra) i ߱ (dreta) i períodes 
߬ᇱ ൌ ߬ i ′߱/ߨ2 ൌ  .߱/ߨ2
  

 ݑ ߱′ ߬′ ߱ ߬
1  1.34  4.68  4.22  1.49 
0.1  4.24  1.48  13.35 0.47 
0.01  13.42  0.46  42.21 0.15 

ߙ

െ݇ߙ
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M.5.1. Una molla sense massa, de constant recuperadora ݇  i  longitud 
natural ݈଴, està unida a dues masses ݉ i ܯ (com en la figura). Suposeu 
que  el  sistema  està  inicialment  penjat  per  l’extrem  de massa ݉,  en 
equilibri,  i que en  l’instant ݐ ൌ 0 es deixa anar. Determineu  l’evolució 
del sistema per a ݐ ൐ 0. 

M.5.2. Algunes molècules  triatòmiques,  com  la  del COଶ,  estan  formades  per 
dues masses  iguals ݉  lligades a una tercera massa ݉′ tal com  indica  la  figura. 
Calculeu  les  freqüències  i modes normals de  vibració  suposant que  les  forces 
que  les  uneixen  es  poden  aproximar  per  forces 
elàstiques  i  que  el  moviment  es  realitza  en  la 
direcció de l’eix de la molècula. 

M.5.3. Un disc de massa ܯ i radi ܴ està sotmès a un camp 
gravitatori i té adherida una massa ݉ a una distància ܽ del 
centre (v. la figura). El disc por rodar sense lliscar. Calculeu 
la freqüència de les petites oscil∙lacions en l’entorn del punt 
d'equilibri. 

݉

 ܯ

݇ 

ܯ

ܴ

݉ 
ܽ

݉ ݉ ݉′



16 
 

M.5.4.  Dos  pèndols  simples  de  longitud  ݈  i massa ݉ 
estan units amb una molla de constant recuperadora ݇. 
La molla  està  lligada  a  una  distància  ܽ  dels  punts  de 
suspensió  (com  a  la  figura).  La  longitud  natural  de  la 
molla coincideix amb  la distància  ݈଴ entre els punts de 
suspensió  dels  pèndols.  Calculeu  les  freqüències  i 
modes  normals  per  a  les  petites  oscil∙lacions  al  voltant  de  la  configuració 
d’equilibri i efectuades en el pla que conté aquesta configuració. 

M.5.5. Mostreu que l’equació detሺܯߩ െ ሻܭ ൌ 0 de les petites oscil∙lacions per 
al pèndol doble amb masses ݉ i ݉′, i longituds ݈ i ݈′, té la forma  

ܿ଴ߩଶ ൅ ܿଵߩ ൅ ܿଶ ൌ 0,  

on    ܿ଴ ൌ ݉݉ᇱ݈ଶ݈ᇱଶ, 

 ܿଵ ൌ െ݃ሺ݉ ൅݉ᇱሻ݉ᇱሺ݈ ൅ ݈ᇱሻ݈݈ᇱ, 

 ܿଶ ൌ ݃ଶሺ݉ ൅݉ᇱሻ݉ᇱ݈݈´. 

݈଴

ܽ

݉ ݉

݈
݈

ܽ


