MMF 10 / 1. Mecanica

6. Dinamica del solid rigid: equacions fonamentals
S. Xambd

Notacions

Equacio del moment lineal
Equacio del moment angular
Equacions d’Euler

Exemples

— Rotor, pendol fisic

— Esfera rodolant sobre un pla

— Esfera sobre plataforma horitzontal giratoria



Notacions
V=1, velocitat del centre de masses
P=Xm;r; =mr; =mV moment lineal del solid
F; forca que actua sobre m; (no inclou R;)
F =2X;F; resultant de les forces
My =Zmi(r; —ro) X (; — o) = Zymyx; X X;
=Xm;x; X (w X x;)
=lpw moment angular (respecte de O)
No =Zi(r;—ro) XF;

=2;x; X F; moment de les forces (respecte de O)
Equacié del moment lineal

Teorema. P = F
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Prova. P = X;m;a;, on a; és |'acceleracio de m;. Per la segona llei de
Newton, m;a; = F; + X;F;;, on F;; és la for¢a que la particula m; exerceix

sobre m; (amb la convencié F;; = 0). Per tant
P=7%F;+%;F;; =F,
jaque F;; = —Fj;, per la tercera llei de Newton, i aixi 2;;F;; = 0.
Equacio del moment angular
Teorema. M, = N, — x; X (m¥,) = Ny — x; X F.

En particular, My, = N, si O és un punt fix o si 0 = G (en aquest cas

escrivim M = N ).
Prova. En efecte,
Mo =Xmy(r; —ro) X (iF; — ¥p),

jaque (r; — 1) X (I, — 1) = 0.



Pero d'una banda

Simi(r; —ro) X ¥ = 2;(r; — 1) X (F; + ;F;;) = Ny,
ja que

Si(ri — 1) X (5iFij) =% ;7 X Fjj =19 X Z; jF;j = 0
(notem que r; X F;j+1; X F;; =(r; —1r;) X F;; =0 per a tot parell
d'indexs i, ], jaque F;; i (r; — r;) son proporcionals).
| d'altra banda és clar que

—Xm;(r; —1ry) Xig=—m(r; —rp) Xy =—mx; X ,.

Equacions d’Euler

Teorema (Euler). Si en el moviment d’un solid rigid hi ha un punt fix O,
aleshores Np = lpw + w X [yw

Independentment de si hi ha un punt fix o no, aquesta formula val per a
O=G,ésadirN=Iw+wXlw.
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Prova. Sigui O un punt fix del moviment o el centre de masses. Si posem

I =1, M =M,, sabem que es compleixen les relacions N = M (segona
equacioé fonamental) i M = Iw. Sabem, a més, que

M=M +wXxM.
Substituint I'expressio de M en la relacié anterior, obtenim que
M=((w) +wXlw.

Pero és clar que (Iw)' = Iw’, ja que | és invariable relativament al solid, i
sabem que W' = w, de manera que finalment obtenim N = Iw + w X [w,
gue és la relacio de I'enunciat.

Corol-lari (Equacions d'Euler). Si I;,1,,I3 son els moments principals
d’inercia respecte de O, on O és un punt fix o el centre de masses, i
(N1, N,,N3) i (w1, w5, w3) son les components de N i w respecte d’una
referencia principal d’inercia, aleshores son valides les equacions seglients:



Ny = (I3 — )w,ws + [{wq
N, = (I} — B)wzw, + Lw,

N3 = (I — ) wiw;y + 303

Corol-lari. T, = Ny - w.

Prova. Com T, = %w-lw, Toot =@ -1 = w-N (hem usat que I és

simétricique w - (w X Iw) = 0).

Remarca. L’equacié anterior és analoga a la relacié Tyrqns = F - V, que s’obté

1

- _ 2
derivant Tipaps = EmV :

Exemples A
Exemple. Si no hi ha forces externes, w pot ser constant
només si I'eix de rotacid és un eix principal d’inercia (la

constancia de w i la no existencia de forces externes fan que
I"’equacid d’Euler quedi w X Iw = 0, és a dir, w ha de ser un  Estable
vector propi de I).
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Remarca. Aqui és oportu comentar que dels eixos principals, només els de
moment principal d’inercia maxim i minim sén estables (en el cas d’un
giroscopi, només ho és l'eix). En presencia d’alguna forma de dissipacid
d’energia, com sol ser el cas per als satel:lits artificials, només és estable
I’eix de maxim moment d’inercia (energia minima). En el cas d’un cilindre
circular recte homogeni, I'eix del cilindre és estable si no hi ha dissipacio

d’energia; altrament ho és sii només si h < /37.

Exemple (Rotor) w = (w,0,0)




(Ny, Ny, N;) = O (Lx, Ly Lz) + @2(0, =Lz, Ly

: Lxy 2 I 2

X
XX XX Y

Exemple (Pendol fisic)
N = —mglsin(@p),w = @
[ = —mglsin(p)

Exemple (esfera rodolant
sobre un pla)

Velocitat de G: (x4, x5, 0)

Velocitat de P com a punt material de
I’esfera:

(3.6'1, 562, 0) + ((1)1, W», 0)3) X (0,0, _T')
= (xl — 7"(1)2,32,'2 + raiq, 0)



La condicio de rodolar (sense lliscament) ens déna
X{ =TWy, Xy = —TwW1.
La resultant de les forces que actuen sobre I'esfera és
(F1,F,,0) = (mrw,, —mrw4,0),
i el corresponent moment és
(0,0,—1) X (mrw,, —mrw,,0) = (—mr?w,, —mr?w,, 0).

Si u és el moment d’inercia de I'esfera respecte d’un dels seus diametres,
les equacions d’Euler ens donen (v. Remarca)

,Ll(l.)l — —mTZ(i)l, ‘Ll(,()z — _mrzd)z, ,Ll(l)g = 0.
En resulta que (wq, w,, w3) és constant, que la
resultant de les forces és nul-la, i que G es mou
amb velocitat constant (rw,, —rwq,0). Notem

gue aquesta velocitat és perpendicular a
(w1, Wy, w3), pero que wy pot ser no nul-la.
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Remarca. Per un giroscopi esferic, les equacions d’Euler es redueixen a
N=uw,jaquel =pu-Idiwx w=0.Siamés el moment de les forces
és 0, llavors veiem que la velocitat angular és constant. Es a dir, el
moviment d’'una esfera no sotmesa a forces es composa d’'un moviment
rectilini uniforme del seu centre i una rotacio de velocitat angular constant
al voltant d’un eix fix (rotacid uniforme).

Exemple (Esfera sobre plataforma horitzontal giratoria)

La plataforma gira amb velocitat angular constant «. L’esfera té de radi r,
amb una distribuci®6 de massa amb simetria radial, i rodola sense
lliscament sobre |a superficie de |la plataforma. Com es mou?

Prenem coordenades (x4, X,, X3) respecte d’un sistema rectangular d’eixos
inercials, amb origen el centre de gir de la plataforma i essent x;x, el pla
horitzontal.

Si (w1, w,, w3) és la velocitat angular de l'esfera, i G el seu centre, la
velocitat del punt P(x¢, x,, Xx3) en que |'esfera toca la plataforma és
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Vet wX(P—G)=(x,%2,0) + (0, wy, w3) X (0,0,—71)
= (Xy —Trwy, Xy + 1rwq,0).
Com que la velocitat de P, considerat com a punt de la plataforma, és
(0,0, @) X (x1,%,,0) = (—ax,, axq,0),

la condicié que no hi hagi lliscament ens dona

X1 = —0aXy, +TWy, X = AX1 — TW.
Aixi, dons,
X1 = —QaXy +TWy, X, = aAX{ — TWq,
o bé,
rwy = aAX{ — Xy, TWy, = aAX, + Xq. [1]

Les equacions d’Euler ens donen, en aquest cas,

u(wy, Wz, w3z) = (Ng, Ny, N3), [2]
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on u és el moment d’inercia de I'esfera respecte d’un dels seus diametres i
(N{,N,,N3) = (0,0, —7r) X (m¥,,mx,,0) = mr(¥,, —%;,0). [3]
Multiplicant [2] per ri fent les substitucions [1] i [3] obtenim
u(ax, — %,, ax, + %1,0) = mr4(¥,, —%,0) .
Posant k = u/mr?, resulten les equacions
(1+ k)i, = —kax,, (1+ k)X, = kax,,

qgue escriurem en la forma

X1 = —Fxy, X = fxq, B = i—ak (notem que § < a).
Derivant aquestes expressions, s’obté

X; = —B%%;, i=12. [5]
Per tant,

x; = Acos(Bt + @), x, = Asin(ft + ¢), [6]
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on A i ¢ sén constants dependents de les condicions inicials. Per tant
4
B

amb ¢y i ¢, constants d’integracio.

A

sin(ft+ ¢) + ¢y, x, = — 5

X; = cos(ft + @) + ¢y, [7]

Conclusio. G descriu una circumferencia de centre ¢ = (c¢q,c,) i radi A/p,
amb velocitat angular [ i en el mateix sentit que el de rotacid de la

(a4, a,) i de la velocitat inicial (v4,v,) de G és com segueix:

v, = Acos(¢p), v, = Asin(¢),

_ U1 _ V2
tan(¢p) = v, /v, A = o5(3) — cos(d) "

Per altra banda,

a1=ésin(¢)+cl=2+cl,a2=—écos(q§)+cz=—ﬁ+cz,
B B B B
don ¢4 =a _v_2’ C, =a, +—=.
1 17 2 27T
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Finalment,

rwy = ax; — Xy = a%sin(ﬁt + ¢) —Asin(ft+ ¢) + ac; = %sin(ﬁt + @) + acq

A

TWy = Xy + Xq cos(ft + ¢p) + Acos(ft + @) + ac, = —%cos(ﬁt + @) + ac,

La component w3 és constant, per I'equacié d’Euler, pero altrament pot
tenir un valor arbitrari.

------

de G és (a, 0) i que la velocitat és (v, v). Llavors

U 2 2 T
k=t =2 g=20.0=" A=+2v
mr2 5"8 7 ;P 4’ \/_
. =a 7V c __7v
1= 20’ 27 2a°

La velocitat angular inicial és

wy = (aa—v)/r, w, =v/T.
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Cas especial. Per tal que el centre de la circumferencia recorreguda per G
sigui el centre de gir de la plataforma és necessari i suficient que
(vll UZ) — :8(_('l2' al) ’

és a dir, que la velocitat inicial ha de ser perpendicular al vector (a4, a,)
qgue dona la posicio inicial de G, dirigida en el sentit de la rotacio de Ia

. \ . _ 2 2
plataforma, i amb un moduligual a fa, ona = \/a1 + a;.

Exercicis M.6 (Dinamica del solid: equacions fonamentals)

M.6.1. Considereu una escala doble els dos bracos de la qual s6n homogenis de
longitud [ i massa m. L’escala es manté en repos sobre un pla horitzontal, tal com
indica la figura, i formant un triangle equilater gracies a una corda de massa
negligible que uneix els dos bracos. En I'instant t = 0 es A

talla la corda i volem estudiar quina sera I'evolucio de

I’escala suposant que els seu peus llisquen sense friccio.

1. Raoneu que el sistema té un sol grau de llibertat.
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2. Usant com a coordenada generalitzada I'angle intern ¢ que els bragos formen
amb el pla horitzontal, calculeu la lagrangiana del sistema i trobeu I'equacio del
moviment.

3. Amb quina velocitat arribara a terra el punt A?

4. Proveu que el centre instantani de rotacidé del bra¢ AC és la interseccio de la
recta vertical per C i la recta horitzontal per A.

M.6.2. Un cub homogeni d’aresta a es troba inicialment en posicié d’equilibri
(inestable) amb una aresta en contacte amb un pla horitzontal. Una petita
pertorbacio fa que comenci a caure. Suposant que I'aresta no pot relliscar sobre
el pla, proveu que la velocitat angular del cub quan una de les cares arriba a terra

ésw=Jz—§(ﬁ—1).




