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Preliminars matematics

Si a,b,x € V3, posem d @ b € End(V3) per indicar 'endomorfisme de
V5 definit per la relacid

(dQ® b)(x) = (a-x)b
En una base ortonormal uy, u,, us;,

a;b; a;b; asb,
a®@ b= (albz a,b, a3b2> )
ajbs a;bs; asb;

jaque (@® b)(u;) = (a-uy)b = a;b = (a;by, a;b,, a;b3).
També definim

I,=a’ld—aQ® a,
és a dir,

I,(x) =a*x— (a-x)a.



En una base ortonormal u, u,, u;,

as+as —aja, —aias

_ 2 2
Ia — —a2a1 a1 + Cl3 _a2a3
—aza,; —asa, a®+a’

Remarca. També ens convé definir, més generalment,

Iop(x) = (a-b)x — (a-x)b.

Velocitat angular. Donat un solid en moviment, la seva velocitat angular,
que denotem w, és la velocitat angular d’una referencia [0, u,, u,, us| fi-
xa respecte del solid. Donat un punt P = O + x del solid, |la seva velocitat
relativa a 0, x, ve donada per

X=wXX.



Tensor d’inercia

El tensor d’inercia d’un solid respecte d’un punt O (possiblement mobil),
denotat I, es defineix per la relacié

Ip =Ximily,, x; =1; — 1.

En una base ortonormal uy, u,, us;,

2 2
Xip + Xi3  —Xi1Xi2  —Xi1Xi3
_ 2 2
Ip =) my| —xi2xi1 Xip T X3 —Xi2X3
2 2
—Xi3Xj1  —Xi3Xip X1t X

Remarca. En cas d’un cos continu K, amb densitat p(x),
Io = [, p(xX)(x°Id — X ® x )dx

x5+ x5 —xyx, —X{X3
_ 2 2
— pr(xl, X9, Xg) —X2X1 X1 + X3 —X2X3 dxldede .
2 2
—X3X1 —X3Xy  X{ T X5



Moment angular

Es defineix el moment angular del solid respecte del punt O (possible-
ment mobil), Ly, per I'expressio

Lo =2imi(r; — 1) X (I —Tp) = Xymx; X X; .
Teorema. Sigui O un punt del solid. Llavors L, = [ .
Prova. Com que m; és immobil respecte del solid, x; = w X x; i per tant
Lo = 2imix; X (@ X x;) .
Pero per la formula del producte mixt tenim que
x; X (0 X x;) = xjw — (x; - @)x; = L (w),
de manera que
Lo = Yimil () = (Zimly,) (@) = Ip(w) .

La prova és similar en el cas continu, canviant X; per fK.



Energia cinetica
Posem V =r,, P = mV, m la massa total del solid.

També posem I = I.

Teorema. T = %mV2 + %w Jow+ P (w X x5).

Diem que %w - [ow és 'energia cinética de rotacio respecte de O.
Corol-lari.Enelcas 0 =G, T = %mV2 + %w lw.

Diem que %w - Iw energia cinética de rotacio.

Corol-lari. Si O és un punt immobil del solid, T = %w .

Prova del teorema. Si r és el vector de posicio d’'un punt del solid, llavors
r =7y + X, on x és el vector de posicié del mateix punt respecte de O.
AiXiT=7T,+Xx =V + w X xiper tant



2 =V°+ (wXxx)*+2V-(w X x)
=V?+ w?x? — (w-x)?+2V-(w X x)
=V’+w- x°w—(x - w)x)+ 2V (w X x)
=V’+w-Lw+2V- (o Xx).

Posant r; en lloc de r (amb la qual cosa hem de posar x; en lloc de x),

. 1 : .
multiplicant per ST | sumant respecte de i, ens queda

T = Zi %mlrlz = %mVZ ~+ %(D : (Zimilxiw) +V- ((l) X z:in,lixi)

= %mV2 +%w c(Igw) +mV - (w X x¢)

1

=EmV2+%w-(10w)+P-(wxxG).

El cas continu es demostra canviant m; per p(x)dx i X; per fK :



Teorema (Steiner). Si G és el baricentre d’'un solid, iw = 0 — G, llavors
o =1; +ml,,
on m és la massa del solid.

Prova. Si posem x per denotar el vector de posi-
cio d’'un punt del solid respecte de O, llavors
y = x + w és el vector de posicié del mateix punt
respecte de G. Aixi x> = y* + w? — 2w -y,

XQQx=YQRQy+wRQw-wRy—yQQw,don

xld—x2Q@Qx=Wld—yQ®y)+ W ld —w Qw) + L(y), on L és
una funcid lineal de y. Ara el resultat s’obté multiplicant per m; en el cas
discret (per p(x)dx en el cas continu), sumant respecte de i (integrant en
el cas continu), i tenint en compte que ) m;y; = 0 (ja que el vector de
posicid de G respecte de G és nul).



Moments d’inercia

Sigui O un punt del solid i u un vector unitari. Si imprimim una velocitat
angular @ = wu al voltant de I'eix O + (u), '’energia cinéetica de rotacio

/4

és
1 1 1 )
T = S low = E(a)u) o (wu) = E(u o) w”.
Direm que
Hou =U-lou
és el moment d’inércia respecte de I'eix O + (u).
Exemple. La component [;; de la matriu del tensor d’inercia I, en base

ortonormal, és el moment d’inércia respecte de I'eix i-esim de coordena-
des, ja que u; - Iou; és la component i-esima de Ipu;.



10

Remarca. El moment d’inercia es pot calcular també per la férmula
= ¥.m;d?
Hou — «iM;a; ,

on la suma s’estén a totes les particules del solid i on d; és la distancia de
la particula i-ésima a I’eix O + (u).

En efecte, Ipu = Z;m;l, (u) = Z;m; (xl?u — (x; u)xi). Per tant,

u - IOu = Zimi(xl-z — (xl- : U)Z) = Zlmldlz .

Remarca (Teorema d’Steiner per al moment d’inercia). El teorema
d’Steiner ens diu que Ip = I; + ml,, (W = O — G). Per tant

tou=u-lpu=u-lgu+mu-lL,u= pg, +md?
on d és la distancia de O a G + (u), ja que

u-lyu=u-wWu—(w-uw)=w?—(w-u)? =d-
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Moments i eixos principals d’inercia

El tensor d’inercia diagonalitza en una base ortonormal u{, u,, us,

I, 0 0
IO — (O 12 O)
0 0 I

I1,1,,13 moments principals d’inéercia

O + (u;) eixos principals d’inércia
Si I, = I,, diem que el solid és un giroscopi respecte de I'eix O + (u3).
Tenim:

M = (lLwy, Lwsy, Zws),

M?Z2  MZ  MZ 4
1 _I_ 2 + 3 '
21;  2I, 2I

1
Trot = 5(110)% + Izw% + 130)?2,) =

De I'el-lipsoide Iy w% + I,w5 + Izw3 = 1 en diem el-lipsoide d’inércia.
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Proposicié. (1) El vector perpendicular a un pla de simetria” que passa per
O és un eix principal d’inercia.
(2) El vector director d’'un eix de simetria axial és un eix principal
d’inercia.
(3) Si existeix un eix de simetria d’ordre n > 2, el solid és un giroscopi

respecte d’aquest eix.

Prova. Sigui u4 un vector unitari perpendicular al pla de la simetria en el
primer cas i paral-lel a I'eix de la simetria axial en el segon. Escollim u, i
u; de manera que formin una base ortonormal de u;s. Fixem-nos ara en
la component [, de |la matriu de I, respecte de la base u,, u,, us;, és a

dir, en I'expressio — X;m;x;1x;,. Com que la simetria respecte del pla és
(i1, Xiz, X3) P (—Xi1, Xi2, Xi3),

i la simetria respecte de I'eix és (x;1, Xj2, X;3) = (Xi1, —Xi2, —Xi3),
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és clar que el sumand m;x;;x;, i el que li correspon per qualsevol de les
dues simetries son iguals, pero de signes contraris. Aix0 prova que
I;, = 0. Analogament es prova que I;3 = 0, i aixi és clar que u; és un
vector propi de I,.

Pel que fa a la tercera part, de la mateixa definicio de I, resulta que si el
solid té un eix de simetria d'ordre n, aleshores el seu el-lipsoide d'inercia
també té un eix de simetria d'ordre n. Si n > 2, I'el-lipsoide d'inercia ha
de ser de revolucid, amb eix de revolucio l'eix de simetria, ja que un
el-lipsoide de tres eixos distints nomeés té eixos de simetria d'ordre 2.

Exemples (Solids homogenis) . Els eixos d'un ortoedre (és a dir, les tres
rectes pel centre perpendiculars a les tres parelles de cares paral-leles)
son eixos principals d'inercia (els corresponents moments principals d'i-
nercia s'han consignat a I'exemple de la pagina 16).

El mateix passa amb els eixos d'un el-lipsoide.
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Els eixos principals d'inercia d'un cilindre el-liptic recte son I'eix del cilin-
dre (la recta que uneix els centres de les dues cares laterals) i els eixos
principals de la seccio del cilindre pel pla perpendicular a I'eix que passa
pel centre.

L'eix d'un con el-liptic recte és un eix principal d'inercia.

Un prisma regular recte és un giroscopi, i |'eix del giroscopi coincideix
amb [|'eix del prisma. El mateix passa amb una piramide regular recte.

Els poliedres regulars son giroscopis esferics. La diagonal d'un cub és un
eix principal d'inercia respecte de qualsevol dels vertexs d'aquesta diago-
nal, ja que la diagonal d'un cub és un eix de simetria d'ordre 3.



Moments d’inercia d’alguns solids homogenis
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Solid Eix Formula
. . L 1
Barra prima de longitud / | Mediatriu Eml2
. 1
Placa rectangular Perpendicular pel centre Em(a2 + b?)
1
Paral-lela al costat b pel centre Ema2
. . 1
Disc Diametre Zmr2
Anella Perpendicular pel centre mr?
N 1 2
Diametre Smr
N . . N 1
Cilindre circular recte Eix del cilindre Emrz
. . 1
Perpendicular a I'eix per G —m(h® + 3r?%)
. 2
Esfera Diametre Emrz
7
Tangent Emrz
: . 2  R>-r®
Esfera buida Diametre -
5 R3-713
7R°+5R?r3-2r>
Tangent

5(R3—13)
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El-lipsoide Eix Oz %‘m(a2 + b?)
Con circular recte Eix del con 1%7717”2
Perpendicular a I'eix per G %m(h2 + 372)

Exemple. (a) Si G és el baricentre d’un ortoedre homogeni de massa m i de
costats a, b, ¢, llavors, en la referéencia d’origen G i eixos paral-lels als costats,

m(b?+c?) 0 0 A
12
2 2
I = m(c?+a?)
G 0 12 0 ¢
0 0 m(a?+b?) 19 A g
12
a
. . . a b cy .
Si O desigha el vertex (_E’_E’_E)’ i prenem els

eixos paral-lels als anteriors, llavors podem aplicar el teorema d’Steiner per ob-
tenir




m(b?+c?) mab
3 4
- mab m(c?+a?)
Iy = —
4 3
__mac . mbc
4 4

mac

mbc

m(a?+b?)
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(b) LUenergia cinetica de I'ortoedre quan gira al voltant d’una de les seves dia-

gonals amb velocitat angular w és

m(b2+c?) __mab __mac
3 4 4
w? mab  m(c?+a?) mbc
a2+b2+c2 (a,b,c)| - 4 3 4
__mac __mbc m(a?+b?)
4 4 3
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Resum de les relacions cinematiques per al solid rigid

Velocitat. La velocitat v (respecte del sistema fix)
d’'un punt r d’un solid en moviment ve donada
per la relacio v = vy + w X x, on v, és la veloci-
tat de O, w la velocitat angular, x =r —r,.Sir

es mou respecte del solid, v=v, + w X x + X/,

x' la velocitat de r respecte del solid.

Acceleracio
a=ap)+wX(wxXx)+wXx,

on a, és |'acceleracio de O. Si r es mou respecte del solid,
a=ap+twX(wWXx)+owXxXx+x"+2wxx.

Remarca. Els vectors son objectes independents del sistema de referen-
cia. Donat un vector, el que depen del sistema de referencia son les seves
coordenades.
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Notes Q) 44

b)
., M M%  M? ( > 6 ,
1. Uexpressié Tror = — + —= + = < < O
211 212 213

mostra que T,,¢ és minima quan la velocitat angular és paral-lela a I'eix princi-

pal que té el maxim moment d’inercia, com en la figura b). Aquesta observacid
explica perque un cilindre circular llarg que gira al voltant del seu eix, com a la
figura a), i com de fet foren els primers satel-lits artificials, acaba girant, per pe-
tita que sigui la dissipacio d’energia, al voltant d’un eix com a la figura b). Aques-
o) ta situacio no es dona en cilindres com el de la figura c), ja que el
moment d’inercia respecte de I'eix del cilindre és superior al mo-
ment d’inercia respecte d’un eix perpendicular. De fet, segons la tau-
la de la pagina 15, el moment d’inercia d’un cilindre homogeni res-

., 1 : : : ,
pecte del seu eix és Emrz i respecte d’'un eix perpendicular pel seu centre és

1 , L .
Em(h2 + 3r%), de manera que aquest és el major si i només si h > V3r.

2. Per simetria cal entendre simetria geometrica amb la propietat addicional
qgue la massa situada en un punti la situada en el punt “simetric” son iguals.
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Exercicis M.5 (Tensor d’inércia)

M.5.1. Es defineix el radi de gir d’'un solid al voltant d’un eix com /u/m, on u és
el moment d’inercia del solid respecte de I'eix i m la seva massa. Proveu que el
radi de gir d’una barra rectilinia homogenia de longitud [ respecte d’una per-

pendicular per un dels seus extrems és [ /+/3.

M.5.2. Proveu que I’energia cinetica d’'una barra homogenia de massa m ve do-
1 : , :

nada per T = gm(u2 +u-v+7v?), on uivsén les velocitats dels seus ex-

trems.

M.5.3. Proveu que qualsevol moment principal d’inercia no pot ser superior a la
suma dels altres dos.

M.5.4. Suposem que un solid rigid té dos plans de simetria que passen per O i
gue aquests plans no son ortogonals. Mostreu que aleshores el solid és un gi-
roscopi i que l'eix d'aquest giroscopi és la recta interseccio dels dos plans.
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M.5.5. Trobeu el moment d’inercia d’'un cub homogeni respecte d’'una de les
seves diagonals.

M.5.6. 1) Proveu que |'estat d’un solid rigid en un instant t esta totalment de-
terminat per les velocitats en aquest instant de tres punts no alineats A4, B,C
qualssevol del solid.

2) Sivy, vg, V- sON les velocitats d’aquests tres punts, proveu que es compleix
(ra—rg)  Wa—vp)=pg—1c) (Wg—ve) =@y —1c) (W4g—vc) =0,
on Ty, rg, ¢ SOn els vectors de posicio dels tres punts 4, B, C, respectivament.

M.5.7. Considereu un solid rigid i suposem que el seu moviment és pla (és a dir,
gue cada punt del solid es manté en un pla paral-lel a un pla de referencia).

1) Proveu que en aquest cas I'estat del solid en un instant de temps donat esta
totalment determinat per les velocitats en aquest instant de dos qualssevol dels
seus punts, llevat quan aquests punts estan situats sobre una mateixa perpendi-
cular al pla de referéncia (com en el cas general, pero, les velocitats dels dos
punts no poden ser arbitraries).
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2) Proveu que si w # 0, en tot moment existeix almenys un punt (no necessari-
ament del solid) amb velocitat instantania nul-la (en aguest cas, de la recta per
aquest punt perpendicular al pla de referencia també en diem eix instantani de
rotacio del solid; el context sol ser suficient per discernir, quan emprem aquesta
locucid, si ens referim a aquest concepte o a la definicié general, és a dir, a |'eix
pel centre de masses amb vector director w). Es aixd cert en el cas d’un movi-
ment arbitrari del solid?

M.5.8. Una placa rigida es mou sobre el pla xy. Si en un cert instant les veloci-
tats dels punts A(0,4) i B(3,2) son v, = (6,6) i vg = (2,0), respectivament,
quina és la velocitat en aquest instant del punt C(2,4)? Com és el moviment de
la placa en aquest instant?



