
1 
 

MMF 10 / 1. Mecànica  
4. Lleis de conservació. Equacions de Hamilton. 
S. Xambó 
 
Petit glossari 

Observable. Funció ݂ሺࢗ, ሶࢗ , ሶࢗ ሻ de l’espai d’estats. Si ݂ no depèn deݐ , diem 
que és un observable de configuració. 

Integral primera o quantitat conservada: observable ݂ que és constant en 
el decurs de l’evolució temporal del sistema, és a dir, tal que ݂ሶ ൌ 0. 
 

En  un  sistema  lagrangià  definit  per  la  lagrangiana   ,ܮ de  l’observable 

௞݌ ൌ
డ௅
డ௤ሶೖ

	 en diem moment conjugat de ݍ௞.  

Notem que en coordenades cartesianes rectangulars  డ௅
డ ሶ࢘ ೖ

ൌ ݉௞ ሶ࢘ ௞ ൌ    .௞࢖

Una coordenada ݍ௞ es diu que és ignorable (o cíclica) si L no depèn de ݍ௞. 
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Exemple. ܮ	 ൌ ଵ
ଶ
݉ሺݎሶ ଶ ൅ ଶݎ ሶ߮ ଶሻ െ ܸሺݎሻ és  la  lagrangiana d’una partícula 

de massa m sotmesa a un potencial central ܸሺݎሻ. Com que aquesta L no 
depèn de ߮, ߮ és ignorable. 
   

Proposició.  Si  en  un  sistema  lagrangià  la  coordenada   ௞ݍ és  ignorable, 
llavors el seu moment conjugat ݌௞ és una quantitat conservada. 

Prova.  ݌ሶ௞ ൌ
ௗ
ௗ௧

డ௅
డ௤ሶೖ

ൌ డ௅
డ௤ೖ

ൌ 0. 

 

Exemple. El moment conjugat corresponent a la coordenada cíclica ߮ de 
la  lagrangiana  	ܮ ൌ ଵ

ଶ
݉ሺݎሶ ଶ ൅ ଶݎ ሶ߮ ଶሻ 	െ 	ܸሺݎሻ  d’una  partícula  en  un 

potencial central és ݌ఝ ൌ
డ௅
డఝሶ

ൌ ଶݎ݉ ሶ߮ 	. 

Com que ߮ és ignorable, ݌ఝ és una quantitat conservada.  
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En  ser  ݎ ሶ߮   la  velocitat  transversal  de  m,                                                             
  ଶݎ݉        ሶ߮ ൌ ݎሺ݉ݎ ሶ߮ ሻ ൌ ݄ 
és  el moment  angular  de ݉  respecte  de 
l’origen.  Així,  doncs,  ݄  és  una  quantitat 
conservada.  

Per altra banda,  

    ܣ2݀ ൌ ሻ߮݀ݎሺݎ ൌ   ,ଶ݀߮ݎ

on A és l’àrea escombrada pel radi r, amb la qual cosa veiem que 

     ሶܣ  ൌ ଵ
ଶ
ଶݎ ሶ߮ ൌ ݄/2݉  

és una constant.  

Aquest fet és  la segona  llei de Kepler (per una massa puntual movent‐se 
en  un  potencial  central),  que  se  son  enunciar  dient  que  la  velocitat 
areolar (és a dir, ܣሶ) és una constant.  

ݎ ሶ߮

ܣ݀

߮݀ݎ ൌ ݎ ሶ߮ ݐ݀

݉
ݎ
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Variació de l’energia i condicions per a la seva conservació 

Considerem un sistema de ܰ partícules amb  lligadures holònomes. Sigui 
ܸ  un  potencial  per  a  les  forces  conservatives  que  actuen  sobre  les 
partícules del sistema i ܶ l'energia cinètica. Recordem que  

ܶ ൌ ଶܶ ൅ ଵܶ ൅ ଴ܶ, 
on  ௜ܶ és homogeni de  grau  i en  les ݍሶ௞.  Sigui ܧ ൌ ܶ ൅ ܸ  (direm que és 
l’energia  mecànica  del  sistema)  i  ܮ ൌ ܶ െ ܸ  (direm  que  és  la  funció 
lagrangiana).  

Posarem ܳଵᇱ , … , ܳ௡ᇱ  per  indicar  les forces generalitzades de  les forces no 
conservatives ࡲ௜ᇱ (així, doncs, ࡲ௜ᇱ െ ߲ܸ ⁄࢏߲࢘ ൌ  ௜, la força total que actuaࡲ
sobre ݉௜). També posarem ܹᇱ ൌ ∑ ܳ௞ᇱ ሶ௞௡ݍ

௞ୀଵ   i direm que és  la potència 
(generalitzada) de les forces no conservatives. 

Lema (Euler). Si ݂ ൌ ݂ሺݔଵ, … ,  ௡ሻ és una funció homogènia de grau ݉ enݔ

les variables ݔଵ,… , ∑ ௡, llavorsݔ ௜ݔ
డ௙
డ௫೔
	௡

௜ୀଵ ൌ ݂݉. 
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Prova. Basta derivar la relació  ݂ሺݔݐଵ, … , ௡ሻݔݐ ൌ ,ଵݔ௠݂ሺݐ … ,  ௡ሻ respecteݔ
de ݐ i posar ݐ ൌ 1.  

Corol∙lari.  ∑ డ்
డ௤ሶೖ	

ሶ௞௞ݍ ൌ 2 ଶܶ ൅ ଵܶ. 

Teorema. ܧሶ ൌ ܹᇱ െ డ௅
డ௧
൅ ௗ

ௗ௧
ሺ ଵܶ ൅ 2 ଴ܶሻ. 

Prova.  ሶܶ ൌ ∑ డ்
డ௤ೖ	

ሶ௞ݍ ൅
డ்
డ௤ሶೖ	

ሷ௞௞ݍ ൅ డ்
డ௧
 

                 ൌ ∑ ௗ
ௗ௧
ቀ డ்
డ௤ሶೖ	

ሶ௞ቁ௞ݍ ൅ ∑ ቀ డ்
డ௤ೖ

െ ௗ
ௗ௧

డ்
డ௤ሶೖ	

ቁ ሶ௞௞ݍ ൅ డ்
డ௧
 

    ൌ ௗ
ௗ௧
ሺ2 ଶܶ ൅ ଵܶሻ ൅ ∑ ቀ డ௏

డ௤ೖ
െ ܳ௞ᇱ ቁ ሶ௞௞ݍ ൅ డ்

డ௧
 

    ൌ 2 ሶܶ െ ௗ
ௗ௧
ሺ ଵܶ ൅ 2 ଴ܶሻ ൅

ௗ௏
ௗ௧
െ డ௏

డ௧
െܹᇱ ൅ డ்

డ௧
	 

        ൌ ሶܶ ൅ ሶܧ ൅ డ௅
డ௧
െܹᇱ െ ௗ

ௗ௧
ሺ ଵܶ ൅ 2 ଴ܶሻ, 

d’on l’enunciat en resulta immediatament. 
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Corol∙lari. Si les lligadures no depenen del temps, ܧሶ ൌ డ௏
డ௧
൅ܹ′.  

Si a més V no depèn del temps, ܧሶ ൌ ܹ′.  

Finalment,  l’energia mecànica  es  conserva  per  a  sistemes  conservatius 
amb lligadures i potencial independents del temps. 
 

Remarca.  Les  forces no  conservatives per a  les quals ܹᇱ ൏ 	0 es diuen 
dissipatives,  i  si ܹᇱ ൌ 0, giroscòpiques  (les  forces de Coriolis ho  són,  ja 
que són perpendiculars a les velocitats). 
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Equacions de Hamilton 

L’observable ܪ ൌ ∑ ሶ௞௞ݍ௞݌ െ  .s’anomena hamiltonià (o hamiltoniana) ܮ

Transformació de Legendre:  

ሺࢗ, ሶࢗ , ሻݐ ↦ ሺࢗ, ,࢖ ,ሻݐ ࢖ ൌ ሶ߲ࢗ/ܮ߲ 	. 

Si  la  transformació  de  Legendre  és  un  difeomorfisme,  diem  que  el 
sistema mecànic és un sistema hamiltonià.  

Exemple. Un multioscil∙lador harmònic és un sistema hamiltonià, ja que si  

           ܮ ൌ ∑ ଵ
ଶ
݉௜ݍሶ௜ଶ௡

௜ୀଵ െ ∑ ଵ
ଶ
݇௜ݍ௜ଶ௡

௜ୀଵ ,  

llavors ሺ݌ଵ, … , ௡ሻ݌ ൌ ሺ݉ଵݍሶଵ, … ,݉௡ݍሶ௡ሻ. 

Proposició. ܪ ൌ ଶܶ െ ଴ܶ ൅ ܸ ൌ ܧ െ ሺ ଵܶ ൅ 2 ଴ܶሻ. 

Prova.    Tenim  que ∑ ሶ௞௞ݍ௞݌ ൌ ∑ డ௅
డ௤ሶೖ

ሶ௞௞ݍ ൌ 2 ଶܶ ൅ ଵܶ  (hem  usat  el  lema 

d'Euler), de manera que 
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ܪ ൌ 2 ଶܶ ൅ ଵܶ െ ሺ ଶܶ ൅ ଵܶ ൅ ଴ܶ െ ܸሻ ൌ ଶܶ െ ଴ܶ ൅ ܸ . 

Finalment  és  clar  que  ଶܶ െ ଴ܶ ൌ ܶ െ ሺ ଵܶ ൅ 2 ଴ܶሻ  i  d'aquí  la  segona 
expressió en resulta immediatament. 

Corol∙lari. Si ܶ ൌ ଶܶ (la qual cosa passa si les lligadures són independents 
del temps), llavors ܪ ൌ  .ܧ
 

Teorema (Equacions de Hamilton). L’evolució d’un sistema hamiltonià ve 
regit per les equacions 

ሶࢗ ൌ
ܪ߲
࢖߲ ࢖			,

ሶ ൌ െ
ܪ߲
 .	߲ࢗ

A més, es compleixen les relacions 

ܪ݀
ݐ݀ ൌ

ܪ߲
ݐ߲ ൌ െ

ܮ߲
 .	ݐ߲
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Prova. D'una banda tenim que 

ܪ݀ ൌ෍
ܪ߲
௞ݍ߲

௞ݍ݀
௞

൅෍
ܪ߲
௞݌߲

௞݌݀
௞

൅
ܪ߲
ݐ߲  .	ݐ݀

Per l'altra, ܪ ൌ ∑ ሶ௞௞ݍ௞݌ െ  per definició, i ,ܮ

ܪ݀ ൌ෍ݍሶ௞݀݌௞
௞

൅෍݌௞݀ݍሶ௞
௞

െ෍
ܮ߲
௞ݍ߲

௞ݍ݀
௞

െ෍
ܮ߲
ሶ௞ݍ߲

ሶ௞ݍ݀
௞

െ
ܮ߲
ݐ߲  ݐ݀

ൌ෍ݍሶ௞݀݌௞
௞

െ෍݌ሶ௞݀ݍ௞
௞

െ
ܮ߲
ݐ߲  .	ݐ݀

En el darrer pas hem usat  la definició  ௞݌  ൌ ܮ߲ ⁄ሶ௞ݍ߲   i el fet que, per  les 
equacions  d'EulerെLagrange,  ሶ௞݌ ൌ ܮ߲ ⁄௞ݍ߲ .  Ara  les  equacions  de 
Hamilton s'obtenen directament comparant les dues expressions de ݀ܪ. 
Igualant els coeficients de ݀ݐ, obtenim ߲ݐ߲/ܪ ൌ െ߲ܮ ോ  Finalment .ݐ߲

ሶܪ ൌ ∑ ሺ߲ܪ ⁄௞ሻݍ߲ ሶ௞௞ݍ ൅ ∑ ሺ߲ܪ ⁄௞݌߲ ሻ݌ሶ௞௞ ൅ ܪ߲ ⁄ݐ߲ ,  
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d'on ݀ݐ݀/ܪ ൌ   ja que les equacions de Hamilton ens donen ,ݐ߲/ܪ߲  
    ∑ ሺ߲ܪ ⁄௞ݍ߲ ሻݍሶ௞௞ ൅ ∑ ሺ߲ܪ ⁄௞݌߲ ሻ݌ሶ௞௞ ൌ ∑ ሶ௞௞ݍሶ௞݌ െ ∑ ሶ௞௞݌ሶ௞ݍ ൌ 0,  
i això acaba la prova. 

Corol∙lari. Si L no depèn de t, H és una quantitat conservada. 

Remarca. Les equacions de Hamilton formen un sistema de 2݊ equacions 
diferencials  ordinàries  de  primer  ordre  en  les  variables  ,ଵݍ … ,  ௡ݍ i 
,ଵ݌ … ,  ௡, mentre que les de  Lagrange formen un sistema de ݊ equacions݌
diferencials ordinàries de segon ordre en els ݍ௞. Així, doncs, les equacions 
de Hamilton es poden pensar com un exemple de  la transformació d’un 
sistema  de  ݊  equacions  diferencials  ordinàries  de  segon  ordre  a  un 
d’equivalent de 2݊ equacions de primer ordre, prenent ݌ଵ, … ,  ௡ com a݌
“variables auxiliars” (en lloc de ݍሶଵ, … ,  .(ሶ௡ݍ
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Parèntesi de Poisson 

Es defineix el parèntesi de Poisson ሼ݂, ݃ሽ de dos observables ݂ i ݃ per la 
fórmula  

ሼ݂, ݃ሽ ൌ ෍൬
߲݂
௞ݍ߲

߲݃
௞݌߲

െ
߲݂
௞݌߲

߲݃
௞ݍ߲

൰
௡

௞ୀଵ

 

Remarca. A l’exercici M.4.1 s’inclouen algunes de les seves propietats. 

Teorema  (Llei  de  Poisson).  Per  a  tot  observable  ݂  d'un  sistema 
hamiltonià, 

݂ሶ ൌ ሼ݂, ሽܪ ൅ ߲௧݂	. 

En particular, ݂ሶ ൌ ሼ݂,  .ሽ si ݂ no depèn del tempsܪ

Prova. En efecte,  

݂ሶ ൌ ෍൬
߲݂
௞ݍ߲

ሶ௞ݍ ൅
߲݂
௞݌߲

ሶ௞൰݌
௞

൅ ߲௧݂ ൌ෍൬
߲݂
௞ݍ߲

ܪ߲
௞݌߲

െ
߲݂
௞݌߲

ܪ߲
௞ݍ߲

൰
௞

൅ ߲௧݂. 
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Teorema de Noether 

Sigui ܺ  l’espai de  configuració  (l’espai de  les ࢗ) d'un  sistema  lagrangià 
amb lagrangiana ܮ. Una simetria del sistema ሺܺ,  ሻ és un difeomorfismeܮ

߮:ܺ → ܺ 

tal que 

,ࢗሺ߮ܮ ݀߮ ൉ ሶࢗ , ሻݐ ൌ ,ࢗሺܮ ሶࢗ ,  ,ሻݐ

on ݀߮ és la diferencial ordinària de ߮. 

Exemple.  En  un  sistema  isolat  de  partícules  lliures,  amb  forces 
d’interacció  donades  per  un  potencial  ܸ  que  només  depèn  de  les 
distàncies  entre  aquestes  partícules,  les  translacions  i  les  rotacions  (o, 
més en general, els desplaçaments) són simetries del sistema.  

Això  és  així  perquè  els  desplaçaments  conserven  les  distàncies  (de 
manera que deixen invariant ܸ) i, a més, perquè si ߮ és un desplaçament, 
aleshores  ݀߮ ൌ ෤߮   (la  transformació  lineal  associada,  que  és  una 
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isometria),  amb  la  qual  cosa  ሺ݀߮ሻሺ ሶ࢘ ሻ ൌ ෤߮ሺ ሶ࢘ ሻ  i,  com  a  conseqüència, 
l'energia cinètica també és invariant per l'acció de ߮. 

Una  família  de  simetries  (uniparamètrica)  del  sistema  ሺܺ,  ሻܮ és  un 
conjunt   ߮௦: ܺ → ܺ	ሺݏ ∈ ሺെߙ, ,ሻߙ ߙ ∈ Թାሻ  de  simetries  del  sistema  tal 
que ߮଴ ൌ  i de manera que l'aplicació ݀ܫ

ሺെߙ, ሻߙ ൈ ܺ → ܺ, ሺݏ, ሻࢗ ↦ ߮௦ሺࢗሻ 

és diferenciable.  

Si  a més  es  compleix  que  ߮௦ᇲ ∘ ߮௦ ൌ ߮௦ା௦ᇲ   sempre  que  ,ݏ ,ᇱݏ ݏ ൅ ᇱݏ ∈
ሺെߙ,  .ሻ, es diu que la família és un grup uniparamètric de simetriesߙ
 

Exemple. Per al sistema Σ de  l'exemple de  la pàgina anterior, si ࢇ és un 
vector i posem ߮௦ ൌ ݏ ,ࢇݏ la translació de vector) ࢇ௦ݐ ∈ Թ), aleshores ߮௦ 
és una grup uniparamètric de simetries de Σ.  
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Anàlogament, si posem ߮௦ ൌ ݏ) ࢇ௦ߩ ∈ Թ) per denotar la rotació d'eix 〈ࢇ〉 i 
amplitud ܽݏ ൌ  aleshores ߮௦ és un grup uniparamètric de simetries ,|ࢇ|ݏ
de Σ. 

Si ߮௦  és  una  família  de  simetries,  li  podem 
associar el  camp  vectorial ࢞  sobre ܺ definit 
per la relació 

ࢗ࢞															 ൌ
݀
ݏ݀ ൫߮௦

ሺࢗሻ൯ฬ
௦ୀ଴

. 

En altres  termes, ࢞ࢗ és el vector  tangent en 
el punt ࢗ a la corba ݏ ↦ ߮௦ሺࢗሻ. 

Exemple.  Amb  les  notacions  de  l’exemple  de  la  pàgina  anterior,  i  posant 
ࢗ ൌ ሺ࢘ଵ, … , ࢘ேሻ,  el  camp  vectorial  ࢞  associat  al  grup  uniparamètric  de 
translacions ሼݐ௦ࢇሽ ve donat per la relació   

ࢗ࢞                                                        ൌ ሺࢇ,… ,  .ሻࢇ

߮௦ሺࢗሻ

 ࢗ

ࢗ࢞  

ሶࢗ  
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Exemple. Amb  les notacions de  l'exemple de  la pàgina anterior, el camp 
vectorial ࢞ associat al grup uniparamètric de rotacions ሼߩ௦ࢇሽ ve donat per 
la fórmula 

ࢗ࢞ ൌ ሺࢇ ൈ ࢘ଵ, … , ࢇ ൈ ࢘ேሻ. 

En efecte, prenent coordenades rectangulars apropiades, podem suposar 
que ࢇ ൌ ሺ0,0, ܽሻ, amb ܽ ൌ |ࢇ| ൐ 0. D'aquesta manera  la matriu de ߩ௦ࢇ 
és igual a  

൭
cosሺܽݏሻ െ sinሺܽݏሻ 0
sinሺܽݏሻ 			cosሺܽݏሻ 0

0 0 1
൱ 

El resultat d'aplicar‐la a un vector ࢘ ൌ ሺݔ, ,ݕ  ሻ, seguit de la seva derivadaݖ
respecte de ݏ per ݏ ൌ 0, ens dóna el vector ሺെܽݕ, ,ݔܽ 0ሻ, que és igual al 
producte vectorial ࢇ ൈ ࢘, i d'aquí resulta immediatament l'afirmació. 
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Teorema  (E.  Noether).  Si  ߮௦  és  una  família  de  simetries  d'un  sistema 
mecànic lagrangià i ࢞ és el camp vectorial associat, llavors 

ܫ ൌ ࢖ ൉ ࢞ 

és una quantitat conservada, on ࢖ ൌ ሶ߲ࢗ/ܮ߲ . 

Prova. Per definició de simetria tenim que 

,ࢗሺ߮௦ܮ ߮௦ࢗሶ , ሻݐ ൌ ,ࢗሺܮ ሶࢗ ,  ሻݐ

és independent de ݏ, de manera que 

             0 ൌ ௗ
ௗ௦
,ࢗሺ߮௦ܮ ߮௦ࢗሶ , ሻቚ௦ୀ଴ݐ

ൌ ௗ
ௗ௦
ܮ ቀ߮௦ࢗ,

ௗ
ௗ௧
߮௦ࢗ, ቁቚݐ

௦ୀ଴
 

    ൌ ௗ
ௗ௦
ࢗሺܮ ൅ ࢞ݏ ൅⋯ , ሶࢗ ൅ ݏ ሶ࢞ ൅ ⋯ , ሻቚݐ

௦ୀ଴
 

    ൌ ௗ
ௗ௦
ቀܮሺࢗ, ሶࢗ , ሻݐ ൅ ݏ ቀడ௅

డࢗ
൉ ࢞ ൅ డ௅

డࢗሶ
൉ ሶ࢞ ቁ ൅ ⋯ቁቚ

௦ୀ଴
 

    ൌ డ௅
డࢗ
൉ ࢞ ൅ డ௅

డࢗሶ
൉ ሶ࢞ ൌ ௗ

ௗ௧
ቀడ௅
డࢗሶ
ቁ ൉ ࢞ ൅ డ௅

డࢗሶ
൉ ሶ࢞ ൌ ௗ

ௗ௧
ሺ࢖ ൉ ࢞ሻ. 
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Remarca. Useu el teorema de Noether per obtenir de nou, d'una altra manera, 
el  fet  que  el  moment  conjugat  d'una  variable  cíclica  és  una  quantitat 
conservada. 
 

Exemple  (Conservació  del  moment  lineal).  Considerem  un  sistema 
mecànic Σ. Considerem un vector unitari ࢇ i suposem que les translacions 
 ࢇ௦ݐ són  simetries  de  Σ.  Sabem  que  el moment  conjugat  de ࢗ௜ ൌ ࢘௜  és 
௜࢖ ൌ ݉௜࢜௜, de manera que ܘ ൌ ሺ࢖ଵ,… ,  ேሻ. Per altra banda sabem que࢖
el  camp  vectorial  ࢞  associat  a  aquest  grup  uniparamètric  és  ܙ࢞ ൌ
ሺࢇ,… ,  .ሻࢇ Per  tant,  l’observable   ܫ que  s'obté  aplicant  el  teorema  de 
Noether és 

       ܫ ൌ ∑ ௜࢖ ൉ ேࢇ
௜ୀଵ ൌ ൫∑ ௜ே࢖

௜ୀଵ ൯ ൉   ,	ࢇ

que és  la component del moment  lineal ࡼ ൌ ∑ ௜ே࢖
௜ୀଵ  de Σ en  la direcció 

 .ࢇ En  particular  resulta  que   ࡼ és  una  quantitat  conservada  si  les 
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translacions són simetries de Σ (com és el cas per al sistema de l’exemple 
de la pàgina 13). 

Exemple. El centre de masses ࡾ d'un sistema mecànic  format per masses ݉௜ 
situades  en  els  punts  ࢘௜  es    defineix  per  la  fórmula  ࡾ ൌ ∑݉௜࢘௜ ݉⁄ ,  on 
݉ ൌ ∑݉௜ (equivalentment, ݉ࡾ ൌ ∑݉௜࢘௜). Per un sistema mecànic com el de 
l'exemple de la pàgina 14, ࡾ es mou amb velocitat constant. Més generalment, 
es compleix 

ሷ	ࡾ݉ ൌ  ,	ࡲ

on ࡲ ൌ  .(és la resultant de totes les forces aplicades ࡲ es diu que)  ௜ࡲ∑

Conservació del moment angular 

Considerem un sistema mecànic Σ i usem les notacions de l’exemple de la 
pàgina 17.   Considerem un vector unitari ࢇ  i suposem que  les rotacions 
 són simetries de Σ. Sabem que el camp vectorial ࢞ associat a aquest ࢇ௦ߩ
grup uniparamètric és  
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     ܙ࢞ ൌ ሺࢇ ൈ ࢘ଵ,… , ࢇ ൈ ࢘ேሻ.  

Tenint  en  compte  que  el  moment  conjugat  de  ܙ ൌ ሺࢗଵ, … ,  ேሻࢗ és 
ܘ ൌ ሺ࢖ଵ, … ,  ேሻ, veiem que l’observable I que s'obté aplicant el teorema࢖
de Noether és 

    ܫ ൌ ∑ ௜࢖ ൉ ሺࢇ ൈ ࢘௜ሻே
௜ୀଵ ൌ ࢇ ൉ ൫∑ ࢘௜ ൈ ௜ே࢖

௜ୀଵ ൯  

(hem  aplicat  la  fórmula  del  producte mixt),  que  és  la  component  del 
moment  angular  (o  cinètic)  ࡸ ൌ ∑ ࢘௜ ൈ ௜ே࢖

௜ୀଵ   de  Σ  en  la  direcció ࢇ.  En 
particular resulta que ࡸ es conserva per a un sistema com el de l’exemple 
de la pàgina 13. 
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M.4.1. El parèntesi de Poisson és bilineal, antisimètric  i que  satisfà  la  relació 
ሼ݂, ݄݃ሽ ൌ ሼ݂, ݃ሽ݄ ൅ ݃ሼ݂, ݄ሽ 

i l'anomenada identitat de Jacobi: 

൛݂, ሼ݃, ݄ሽൟ ൅ ൛݃, ሼ݄, ݂ሽൟ ൅ ൛݄, ሼ݂, ݃ሽൟ ൌ 0. 

M.4.2 (Una generalització del teorema de Noether). Es diu que una Lagrangiana 
ܮ ൌ ,ࢗሺܮ ሶ,ࢗ  ሻ és invariant gauge per un grup uniparamètric de transformacionsݐ
߮௦ de l'espai de configuració ܺ si existeix una funció ݂ሺࢗ, ,ݐ  ሻ tal queݏ

,ࢗሺ߮௦ܮ ߮௦ࢗሶ , ሻݐ ൌ ,ࢗሺܮ ሶࢗ , ሻݐ ൅ ݂݀ሺࢗ, ,ݐ ሻݏ ⁄ݐ݀ 	. 

Demostreu que si ࢞ és el camp vectorial associat a ߮௦  i ࢖ ൌ ሶ	߲ࢗ/ܮ߲ , aleshores 
ܫ ൌ ࢖ ൉ ࢞ െ ߲݂ ⁄ݏ߲ |௦ୀ଴	és una quantitat conservada. 

M.4.3. Considerem la lagrangiana unidimensional  

ܮ ൌ
1
ሶݍ2݉

ଶ െ  .	ݍ݃݉

Proveu  que  ,ݍሺܮ ሶݍ ሻ  és  invariant  gauge  (v.  l'exercici  precedent)  pel  grup 
uniparamètric  ߮௦ሺݍሻ ൌ ݍ ൅  ݏ i  que  la  corresponent  quantitat  conservada  és 
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ܫ ൌ ሶݍ݉ െ  ݐ݃݉

(així ݒ଴ ൌ  és ݉/ܫ la  velocitat en  l'instant  inicial). Notem que  l'invariant   ens ܫ
permet obtenir, amb una única integració, l'equació d'evolució:  

ݍ                                                       ൌ ଴ݍ	 ൅ ݐ଴ݒ ൅
ଵ
ଶ
  .ଶݐ݃

M.4.4. Una partícula de massa ݉ es pot moure lliurement per l'espai ܧଷ sota un 
potencial que en coordenades cilíndriques ሺݎ, ߮,   ሻ té la formaݖ

ܸ ൌ ܸሺݎ, ݇߮ ൅  ,	ሻݖ

on ݇ és una constant. Comproveu que ሺݎ, ߮, ሻݖ ↦ ሺݎ, ߮ ൅ ,ݏ ݖ െ  ሻ és un grupݏ݇
uniparamètric  de  simetries  de   ܮ i  obtingueu  que  la  corresponent  quantitat 
conservada és  

ఝ݌ െ ௭݌݇ ൌ ଶݎ݉ ሶ߮ െ  .	ሶݖ݉݇

[També  podeu  resoldre  el  problema  usant  les  coordenades  ሺݎ, ߮,  ,ሻߦ amb 
ߦ ൌ ݇߮ ൅  .[i el fet que en aquestes coordenades ߮ és ignorable ,ݖ
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M.4.5.  Una  partícula  es mou  en  absència  de  gravetat  per  l’hèlix  ݔ ൌ cos߶, 
ݕ ൌ sin߶,  ݖ ൌ  ߶ߣ  ߣ) és  un  nombre  real  no  nul  donat).  Demostreu  que  la 
quantitat conservada associada a  la simetria helicoïdal és ߣ ௭ܲ ൅  ௭, onܯ ௭ܲ  i ܯ௭ 
són els moments lineal i angular en la direcció ݖ, respectivament. 

M.4.6 (Teorema de Noether per a sistemes hamiltonians). 1) Per analogia amb 
la  definició  de  simetria  d’un  sistema  lagrangià,  definim  una  simetria 
(infinitesimal)  d’un  sistema  hamiltonià  Σ,  amb  hamiltoniana  ܪ ൌ ,ࢗሺܪ  ሻ࢖
independent del temps, com un camp ܺ ൌ ܺሺࢗ,  ሻ definit a l’espai de fases tal࢖
que ܪሺ߮௦ሺࢗ, ሻሻ࢖ ൌ ,ࢗሺܪ  és el grup uniparamètric generat per ܺ (és a	ሻ, on ߮௦࢖
dir, ܺሺݍ, ሻ݌ ൌ ௗ

ௗ௦
൫߮௦ሺࢗ, ሻ൯ቚ௦ୀ଴࢖

). Demostreu  que ܺ  és  una  simetria  de Σ  si,  i 
només si, 
    ௗ

ௗ௦
,ࢗሺ߮௦ሺܪ ሻሻ࢖ ൌ 0.  

2) Sigui ܺ un camp de simetries de Σ i suposem que ܺ ൌ ሺ߲࢖߲/ܫ,െ߲߲ࢗ/ܫሻ per 
una certa funció ܫ ൌ ,ࢗሺܫ  .és una integral primera de Σ ܫ ሻ. Proveu que࢖
 

M.4.7.  En  relació  a  l’exemple  de  la  pàgina  35  del  capítol  3  (Formalisme 
lagrangià):  
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1) Comproveu que és un sistema hamiltonià i trobeu la seva hamiltoniana ܪ. 

2)  Investigueu  si   ܪ és  una  quantitat  conservada  o  no,  i  si  coincideix  amb 
l’energia. 

M.4.8. Una partícula de massa ݉ es mou sense  fricció sobre  la superfície del 
cilindre d’equació ݔଶ ൅ ଶݕ ൌ ܴଶ. Sobre ݉ actua una  força del  tipus ࡲ ൌ െ݇࢘, 
on ࢘ ൌ ሺݔ, ,ݕ  .ሻ és el vector de posició de la partícula i ݇ és una constantݖ

1) Comproveu que es tracta d’un sistema conservatiu i calculeu‐ne el potencial. 

2) Calculeu la lagrangiana en coordenades cilíndriques. 

3)  Comproveu  que  és  un  sistema  hamiltonià,  calculeu‐ne  la  hamiltoniana  i 
escriviu les corresponents equacions de Hamilton. 

4) Identifiqueu, si existeixen, quantitats conservades. 

5)  Comproveu  que,  verticalment,  el  moviment  de  la  partícula  és  harmònic 
simple de freqüència angular ߱ ൌ ݇/݉. 
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M.4.9. Una partícula de massa ݉ es mou en una dimensió ݔ sota l’acció d’una 
força del tipus 

,ݔሺܨ ሻݐ ൌ
݇
ଶݔ ݁

ି௧/ఛ	, 

on ݇ i ߬ són constants positives. 

1) Calculeu la lagrangiana i la hamiltoniana del sistema. 

2) Determineu  si  la hamiltoniana coincideix amb  l’energia  i  si  l’energia és una 
quantitat conservada. 

M.4.10. Una partícula de massa ݉ es mou sense fricció sobre  la superfície de 
revolució 

ଶݔ ൅ ଶݕ ൌ ቀܽ coshିଵ ቀ
ݖ
ܽቁቁ

ଶ
, ܽ ൐ 0. 

La  partícula  està  sotmesa  a  un  potencial  que  depèn  de  la  posició  segons  la 

fórmula ܸ ൌ ଵ
ଶ
 ,ଶݏ݇ on   ݏ és  la  distància  sobre  la  superfície  al  punt ܲሺ0,0, ܽሻ. 
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Considereu com a coordenades generalitzades la distància ߩ a l’eix de revolució 
i l’angle de rotació ߮ mesurat des de l’eix ܱݔ. 

1)  Trobeu la lagangiana en les coordenades ߩ, ߮. 
2)  Calculeu la força de lligadura que manté la partícula sobre la superfície. 
3)  Trobeu la hamiltoniana i determineu, si existeixen, quantitats conservades. 
4)  Si inicialment es col∙loca la partícula en un punt de la superfície a distància ߩ 
de  l’eix de  revolució  i amb velocitat nul∙la,  justifiqueu que  la partícula caurà 
recorrent el meridià corresponent  i arribant al punt ܲ. Calculeu  també amb 
quina velocitat arribarà en aquest punt. 
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