MMF 10 / 1. Mecanica

4. Lleis de conservacio. Equacions de Hamilton.
S. Xambo

Petit glossari

Observable. Funcié f(q, q,t) de I'espai d’estats. Si f no depen de g, diem
que és un observable de configuracio.

Integral primera o quantitat conservada: observable f que és constant en

el decurs de I’evolucio temporal del sistema, és a dir, tal que f = 0.

En un sistema lagrangia definit per la lagrangiana L, de l'observable

JoL . :
Dy = ﬁ en diem moment conjugat de q-
k

: L :
Notem que en coordenades cartesianes rectangulars > = MyT = Py
k

Una coordenada g, es diu que és ignorable (o ciclica) si L no depéen de gy,.
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Exemple. L = %m(fz + r2p?) — V(r) és la lagrangiana d’una particula

de massa m sotmesa a un potencial central V(r). Com que aquesta L no
depen de @, ¢ ésignorable.

Proposicio. Si en un sistema lagrangia la coordenada g, és ignorable,
llavors el seu moment conjugat p, és una quantitat conservada.

Prova. p, = =L = 9L
'pk_dtac'Ik_aqk_'

Exemple. El moment conjugat corresponent a la coordenada ciclica ¢ de

la lagrangiana L =%m(7'"2+r2<p2) — V(r) d’una particula en un
oL

potencial central és p,, = %0 mr2¢ .

Com que ¢ és ignorable, p,, €s una quantitat conservada.



En ser r¢ la velocitat transversal de m,
mr?¢ = r(mrg) = h

és el moment angular de m respecte de

I"origen. Aixi, doncs, h és una quantitat

conservada.
Per altra banda,
2dA = r(rde) = r4do,
on A és I'area escombrada pel radi r, amb la qual cosa veiem que
A=—r%p=h/2m
és una constant.

Aquest fet és la segona llei de Kepler (per una massa puntual movent-se
en un potencial central), que se son enunciar dient que la velocitat

areolar (és a dir, A) és una constant.



Variacio de I’energia i condicions per a la seva conservacié

Considerem un sistema de N particules amb lligadures holonomes. Sigui
I/ un potencial per a les forces conservatives que actuen sobre les
particules del sistema i T I'energia cinetica. Recordem que

T=T,+T; +T,,
on T; és homogeni de grau i en les gy. Sigui E =T + V (direm que és
I'energia mecanica del sistema) i L =T —V (direm que és la funcio
lagrangiana).

Posarem Q4, ..., Q,, per indicar Ies forces generalitzades de les forces no
conservatives F; (aixi, doncs, F; — 6V/6r = F;, la forga total que actua
sobre m;). També posarem W’ = Yr=1 Q4 i direm que és la poténcia
(generalitzada) de les forces no conservatives.

Lema (Euler). Si f = f(xq, ..., X,) és una funcio homogenia de grau m en

: of
les variables x4, ..., xp,, llavors Y7t x; — Pyl = mf.
[
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Prova. Basta derivar la relacié f(txq, ..., tx,) = t™f(xq, ..., X;;) respecte
detiposart = 1.

Corol-lari. Zk%qk = 2T, + T;.

Teorema. E = W' — a—i + % (T, + 2T)).

aT .. oT
Prova. T = Zk CIk"‘@CIk +E

_Zi(aT ) Z(@T daT). ar
— “kge\ag, k\oq, dtag, A +

= QL +T) + Tk (5 — Q) i + 5

: v v , , OT
_ZT_E(T1+2T0)+dt_at_W +at

. . 9L . d
=T+ E+2 W' == (T; +2Ty),

d’on I’enunciat en resulta immediatament.
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Corol-lari. Si les lligadures no depenen del temps, E = = + W',

Si a més V no depeéen del temps, F = W',

Finalment, 'energia mecanica es conserva per a sistemes conservatius
amb lligadures i potencial independents del temps.

Remarca. Les forces no conservatives per a les quals W' < 0 es diuen
dissipatives, i si W' = 0, giroscopiques (les forces de Coriolis ho sén, ja
gue son perpendiculars a les velocitats).



Equacions de Hamilton
L'observable H = ), v, 4, — L s"anomena hamiltonia (o hamiltoniana).
Transformacio de Legendre:

(9.9.t) » (q,p,t), p=0L/0q.

Si la transformacio de Legendre és un difeomorfisme, diem que el
sistema mecanic és un sistema hamiltonia.

Exemple. Un multioscil-lador harmonic és un sistema hamiltonia, ja que si
) n
L= Zl 12 idi — Li= 12 lql'

llavors (pli ---;pn) — (ml(:hi "'rmn('?n)-
Proposicio. H =T, — Ty +V = E — (Ty + 2T,).

Prova. Tenim que ), Pxqx = Zkaa—Lc'[k = 2T, + T; (hem usat el lema

d'Euler), de manera que



H=2T2+T1—(T2+T1+TO—V)=T2—T0+V

Finalment és clar que T, — Ty =T — (T; + 2T,) i d'aqui la segona
expressio en resulta immediatament.

Corol-lari. Si T = T, (la qual cosa passa si les lligadures sén independents
del temps), llavors H = E.

Teorema (Equacions de Hamilton). L’evolucié d’un sistema hamiltonia ve
regit per les equacions

A més, es compleixen les relacions
dH B 0H B oL
dt ot ot



Prova. D'una banda tenim que

dH = Z— +z d +—dt
dq dk I, Pk

Per 'altra, H = )., px gy — L, per definicio, i

dH = 2 d +2 dc ot 9L e 9Ly
qr APk Praqy — aqk Ak — aqk dx ot
| oL
= 2 qrdpy — 2 Drdqy — B_dt
K K

En el darrer pas hem usat la definicio p, = dL/dq; i el fet que, per les
equacions d'Euler—Lagrange, p, = dL/dq,. Ara les equacions de
Hamilton s'obtenen directament comparant les dues expressions de dH.
lgualant els coeficients de dt, obtenim 0H /dt = —dL / dt. Finalment

H =Y, (0H/3qy) qx + Xx (0H/0py)py + OH /¢,
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d'on dH/dt = dH/0dt, ja que les equacions de Hamilton ens donen

2k (OH/0qi)qy + 2k (OH /0pi) i = Xk DxGk — 2k QkPr = 0,
i aix0 acaba la prova.

Corol-lari. Si L no depen de t, H és una quantitat conservada.

Remarca. Les equacions de Hamilton formen un sistema de 2n equacions
diferencials ordinaries de primer ordre en les variables qq,...,q, i
D1, ---, P, Mentre que les de Lagrange formen un sistema de n equacions
diferencials ordinaries de segon ordre en els g. Aixi, doncs, les equacions
de Hamilton es poden pensar com un exemple de la transformacié d’un
sistema de n equacions diferencials ordinaries de segon ordre a un
d’equivalent de 2n equacions de primer ordre, prenent p4, ..., p,, cOm a
“variables auxiliars” (en lloc de ¢4, ..., q,,).
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Parentesi de Poisson

Es defineix el paréntesi de Poisson {f, g} de dos observables f i g per la
féormula

-5 235

k=1
Remarca. A I'exercici M.4.1 s’inclouen algunes de les seves propietats.

Teorema (Llei de Poisson). Per a tot observable f d'un sistema
hamiltonia,

fz{f'H}-l'atf'
En particular, f = {f, H} si f no depén del temps.

Prova. En efecte,

o z( +6 )+0f z(af oH Odf c’)H)_I_af
HCquk 5Pkpk ‘ 0qx Opx  Opk 0qx o
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Teorema de Noether

Sigui X I'espai de configuracié (I'espai de les q) d'un sistema lagrangia
amb lagrangiana L. Una simetria del sistema (X, L) és un difeomorfisme

p: X > X
tal que

L(<pq' d(p | iI» t) — L(CI; fI; t);

on dg és la diferencial ordinaria de ¢.

Exemple. En un sistema isolat de particules lliures, amb forces
d’interaccio donades per un potencial V que només depen de les
distancies entre aquestes particules, les translacions i les rotacions (o,
més en general, els desplacaments) son simetries del sistema.

Aix0 és aixi perque els desplacaments conserven les distancies (de
manera que deixen invariant V) i, a més, perque si ¢ és un desplacament,
aleshores dg = @ (la transformacié lineal associada, que és una
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isometria), amb la qual cosa (do)() = @(7) i, com a conseqliéncia,
I'energia cinetica també és invariant per l'accié de ¢.

Una familia de simetries (uniparametrica) del sistema (X,L) és un
conjunt @.:X - X (s € (—a,a), a € R") de simetries del sistema tal
que @, = Id i de manera que l'aplicacio

(—(1, CK) XX - X, (S, q) = QDS(q)
és diferenciable.

Si a més es compleix que @ o @s = @, 7 sempre que s,s', s+ 5’ €
(—a, ), es diu que la familia és un grup uniparametric de simetries.

Exemple. Per al sistema X de I'exemple de la pagina anterior, si a és un
vector i posem @, = tg, (la translacié de vector sa, s € RR), aleshores ¢
€s una grup uniparametric de simetries de X.
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Analogament, si posem @, = p., (S € R) per denotar la rotacid d'eix (a) i
amplitud sa = s|a|, aleshores @ és un grup uniparametric de simetries
de X.

Si s és una familia de simetries, li podem
associar el camp vectorial x sobre X definit
per la relacio

d
Xq = E ((PS(CI))

s=0

En altres termes, x, és el vector tangent en

el punt g ala corbas = @.(q).

Exemple. Amb les notacions de I'exemple de la pagina anterior, i posant
q=(ry..,ry), el camp vectorial x associat al grup uniparametric de
translacions {t;,} ve donat per la relacié

Xq = (a,..,a).
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Exemple. Amb les notacions de I'exemple de la pagina anterior, el camp
vectorial x associat al grup uniparametric de rotacions {p5,} ve donat per
la formula

Xg=(@Xry..,aXry).

En efecte, prenent coordenades rectangulars apropiades, podem suposar
que a = (0,0,a), amb a = |a| > 0. D'aquesta manera la matriu de pg,
és igual a

sin(sa) cos(sa) O
0 0 1

El resultat d'aplicar-la a un vector r = (x, y, z), seguit de la seva derivada

(cos(sa) —sin(sa) O)

respecte de s per s = 0, ens dona el vector (—ay, ax, 0), que és igual al
producte vectorial a X r, i d'aqui resulta immediatament I'afirmacio.
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Teorema (E. Noether). Si @, és una familia de simetries d'un sistema

mecanic lagrangia i x és el camp vectorial associat, llavors
[=p-x

és una quantitat conservada, on p = dL/04q.

Prova. Per definicid de simetria tenim que

L(psq, 9sq,t) = L(q,q,t)

és independent de s, de manera que

d .
0 =£L((P5q, ®sq, — ((psq' Psd, )5_0
=iL(q-|—Sx-|—,q+Sx+;t)
ds s=0
oL .
(L(q,q,t)‘l's(a_q Xt o x)+ ) 0
S=
aL i oL oL . d
~ aq +_q __(aq) x+a—q-x—5(p'x)-
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Remarca. Useu el teorema de Noether per obtenir de nou, d'una altra manera,

el fet que el moment conjugat d'una variable ciclica és una quantitat
conservada.

Exemple (Conservacid del moment lineal). Considerem un sistema
mecanic X. Considerem un vector unitari a i suposem que les translacions
t.q SON simetries de X. Sabem que el moment conjugat de q; = r; és
p; = m;v;, de manera que p = (P4, ..., Py )- Per altra banda sabem que
el camp vectorial x associat a aquest grup uniparametric és Xq =
(a,...,a). Per tant, 'observable I que s'obté aplicant el teorema de
Noether és

=YL pi-a= (Zliv=1pi)‘a:

qgue és la component del moment lineal P = Z’ivzlpi de X en la direccid
a. En particular resulta que P és una quantitat conservada si les
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translacions son simetries de X (com és el cas per al sistema de I'exemple
de la pagina 13).

Exemple. El centre de masses R d'un sistema mecanic format per masses m;
situades en els punts r; es defineix per la formula R =) m;r;/m, on
m = ), m; (equivalentment, mR = ), m;r;). Per un sistema mecanic com el de
I'exemple de la pagina 14, R es mou amb velocitat constant. Més generalment,
es compleix

mR = F,
on F =), F; (esdiuque F és la resultant de totes les forces aplicades).

Conservacio del moment angular

Considerem un sistema mecanic X i usem les notacions de I'exemple de la
pagina 17. Considerem un vector unitari a i suposem que les rotacions
Psq SON simetries de X. Sabem que el camp vectorial x associat a aquest
grup uniparametric és
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Xq=(@XTy,..,aXry).

Tenint en compte que el moment conjugat de q = (qq,...,qy) €S
p = (p1,...,Pn), veiem que I'observable I que s'obté aplicant el teorema
de Noether és

=Yl p-(axr)=a- (Zliv=17"i X Pi)
(hem aplicat la férmula del producte mixt), que és la component del
moment angular (o cinétic) L = YN ,r; X p; de T en la direccié a. En
particular resulta que L es conserva per a un sistema com el de I'exemple
de la pagina 13.
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M.4.1. El paréntesi de Poisson és bilineal, antisimetric i que satisfa la relacio
{f,gh} ={f, gth + g{f h}

i I'anomenada identitat de Jacobi:

{f.l9. 13} +{g. (3} +{n{f. g3} = 0.

M.4.2 (Una generalitzacié del teorema de Noether). Es diu que una Lagrangiana
L = L(q,q,t) és invariant gauge per un grup uniparametric de transformacions
@ de 'espai de configuracio X si existeix una funcié f(q, t, s) tal que

L((psq: (qui t) — L(q; q; t) + df(q; t; S)/dt '

Demostreu que si x és el camp vectorial associat a ¢ i p = dL/dq, aleshores
I =p-x—0f/0s|s=p és una quantitat conservada.

M.4.3. Considerem la lagrangiana unidimensional

1
L=§mq2—mgq.

Proveu que L(q,q) és invariant gauge (v. l'exercici precedent) pel grup
uniparametric ¢,(q) = q + s i que la corresponent quantitat conservada és
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[ = mgqg —mgt

(aixi vy = I/m és la velocitat en l'instant inicial). Notem que l'invariant I ens
permet obtenir, amb una Unica integracio, I'equacio d'evolucio:

1
q = qo + vot +gt*.

M.4.4. Una particula de massa m es pot moure lliurement per I'espai E5 sota un
potencial que en coordenades cilindriques (7, @, z) té la forma

V=V(rkp+z),

on k és una constant. Comproveu que (r,,z) = (r,@ + s,z — ks) és un grup
uniparametric de simetries de L i obtingueu que la corresponent guantitat
conservada és

Py — kp, = mré¢ —kmz.

[També podeu resoldre el problema usant les coordenades (r,¢,¢), amb
¢ =k + z,i el fet que en aquestes coordenades ¢ és ignorable].
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M.4.5. Una particula es mou en absencia de gravetat per I'helix x = cos ¢,
y =sin¢g, z=A¢ (A és un nombre real no nul donat). Demostreu que la
quantitat conservada associada a la simetria helicoidal és AP, + M,, on P, i M,
son els moments lineal i angular en la direccio z, respectivament.

M.4.6 (Teorema de Noether per a sistemes hamiltonians). 1) Per analogia amb
la definicio de simetria d’'un sistema lagrangia, definim una simetria
(infinitesimal) d’un sistema hamiltonia X, amb hamiltoniana H = H(q, p)
independent del temps, com un camp X = X(q, p) definit a 'espai de fases tal
que H(p(q,p)) = H(q,p), on @, és el grup uniparametric generat per X (és a

dir, X(q,p) = %((pS(q'p))‘s:o)' Demostreu que X és una simetria de X si, i
nomes si,

= H(ps(q.p)) = 0.

2) Sigui X un camp de simetries de X i suposem que X = (dI/dp, —3dl/dq) per
una certa funcié I = I(q, p). Proveu que I és una integral primera de .

M.4.7. En relacid a I'exemple de la pagina 35 del capitol 3 (Formalisme
lagrangia):
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1) Comproveu gue és un sistema hamiltonia i trobeu la seva hamiltoniana H.

2) Investigueu si H és una quantitat conservada o no, i si coincideix amb
I’energia.

M.4.8. Una particula de massa m es mou sense friccid sobre la superficie del
cilindre d’equacié x% + y? = R%. Sobre m actua una forca del tipus F = —kr,
onr = (x,Y,z) és el vector de posicio de la particula i k és una constant.

1) Comproveu gue es tracta d’un sistema conservatiu i calculeu-ne el potencial.
2) Calculeu la lagrangiana en coordenades cilindriques.

3) Comproveu que és un sistema hamiltonia, calculeu-ne la hamiltoniana i
escriviu les corresponents equacions de Hamilton.

4) ldentifiqueu, si existeixen, quantitats conservades.

5) Comproveu que, verticalment, el moviment de la particula és harmonic
simple de freqliencia angular w = k/m.
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M.4.9. Una particula de massa m es mou en una dimensié x sota |'accié d’una
forca del tipus

k
F(x,t) = —ze_t/T ,
X
on k i T sén constants positives.

1) Calculeu la lagrangiana i la hamiltoniana del sistema.

2) Determineu si la hamiltoniana coincideix amb 'energia i si I'energia és una
qguantitat conservada.

M.4.10. Una particula de massa m es mou sense friccid sobre la superficie de
revolucio
2

x4+ y% = (a cosh™1 (2)) , a > 0.

La particula esta sotmesa a un potencial que depen de la posicid segons la

formula V = Eksz, on s és la distancia sobre la superficie al punt P(0,0,a).
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Considereu com a coordenades generalitzades la distancia p a I'eix de revolucio
i ’'angle de rotacio ¢ mesurat des de I'eix Ox.

1) Trobeu la lagangiana en les coordenades p, ¢.

2) Calculeu la forga de lligadura que manté la particula sobre la superficie.

3) Trobeu la hamiltoniana i determineu, si existeixen, quantitats conservades.

4) Si inicialment es col-loca la particula en un punt de la superficie a distancia p
de I'eix de revolucié i amb velocitat nul-la, justifiqueu que la particula caura
recorrent el meridia corresponent i arribant al punt P. Calculeu també amb
quina velocitat arribara en aquest punt.
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