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Sistemes mecànics 

  ݉ଵ,… ,݉ே masses puntuals (nombres reals positius). 

  ࢘ଵ,… , ࢘ே posicions de les masses (vectors) 

  ࢜௜ ൌ
ௗ࢘࢏
ௗ௧
ൌ ሶ࢘ ௜ velocitat de ݉௜ 

  ௜࢖ ൌ ݉௜࢜௜ moment (lineal) de ݉௜ 

  …,ଵࡲ ,   ே forces (vectors)ࡲ

  ௗ࢏࢖
ௗ௧

ൌ ௜ࡲ  ቀ2a	llei	de	Newton:	࢖ሶ ௜ 		ൌ 	݉௜
ௗ࢜࢏
ௗ௧

ൌ ݉௜ ሷ࢘ ௜ ൌ ݉௜ࢇ௜ ൌ   ௜ቁࡲ  

       ఈ݂ሺ࢘ଵ, . . . , ࢘ே, ሻݐ ൌ 0, ߙ ൌ 1,… ,݉,݉ ൒ 0  lligadures1  

ܺ௧  espai de configuració en l’instant t  

   ܺ௧ ൌ ሼሺ࢘ଵ, … , ࢘ேሻ ∈ |ଷேܧ ఈ݂ሺ࢘ଵ, . . . , ࢘ே, ሻݐ ൌ 0, ߙ ൌ 1,… ,݉ሽ 

(si no depèn de ݐ, el denotarem simplement ܺ) 
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  ࢘௜ ൌ ࢘௜	ሺݍଵ, . . . , ,௡ݍ  ‐ሻ  expressió de les posicions en funció de paràmeݐ
             tres ݍଵ, . . . ,  ௡ݍ i ݐ. Suposem que aquestes expressions parametrit‐ 
             zen (localment) ܺ௧, fet que expressem dient que les lligadures són  
            holònomes i que ݍଵ, … ,  .ே són coordenades generalitzadesݍ

Oscil∙lador harmònic  

ܰ ൌ 1, i no hi lligadures; ܺ ൌ Թ; ݍ ൌ ‐és una coor ݔ
denada  generalitzada; ܨ ൌ െ݇ݔ  (usualment ݔ és  la 
diferència  entre  una  elongació  ݈,  posem  per  cas 
d’una molla  com  la de  la  figura,  i una  elongació  ݈଴ 
d’equilibri). En  lloc de ܺ ൌ Թ, és més  realista pren‐
dre ܺ ൌ ሺ݈଴ െ ܽ, ݈଴ ൅ ܽሻ, on ܽ ∈ Թ, ܽ ൐ 0.  

   

x	

݈଴		

m
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݈ሺݐሻ

߮

ߠ

mg	

O

m	x

y	

Pèndol simple oscil∙lant en un pla vertical 

ܰ ൌ ࡲ ,1 ൌ   ;ࢍ݉
Una lligadura independent del temps: 
        ࢘ଶ െ ݈ଶ ൌ 0  
(origen en el punt de suspensió); 

ܺ ൌ ܵଵሺܱ, ݈ሻ, circumferència de radi ݈ i centre ܱ; 

ݍ ൌ ߮; 

࢘ሺ߮ሻ ≡ ሺ݈ sinሺ߮ሻ, െ݈ cosሺ߮ሻሻ   

Pèndol simple esfèric de longitud variable 

ܰ ൌ ࡲ ,1 ൌ  ;ࢍ݉
Una lligadura dependent del temps: 
        ݂ሺ࢘, ሻݐ ൌ ࢘ଶ െ ݈ሺݐሻଶ ൌ 0  

      (origen en el punt de suspensió, ݈ሺݐሻ funció donada); 

l߮

y

mg	

O
x	

m
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ܺ௧ ൌ ܵଶሺܱ, ݈ሺݐሻሻ, esfera de centre ܱ i radi ݈ሺݐሻ; 

ሺݍଵ, ଶሻݍ ൌ ሺ߮,  ;ሻߠ

࢘ሺ߮, ሻߠ ≡ ሺ݈ሺݐሻ sinሺߠሻ cosሺ߮ሻ , ݈ሺݐሻ sinሺߠሻ sinሺ߮ሻ , െ݈ሺݐሻ cosሺߠሻሻ; 

Boleta que llisca sobre una corba 

ܰ ൌ ࡲ ,1 ൌ  ;ࢍ݉
Dues lligadures (equacions locals de ܥ௧):   
         ଵ݂ሺ࢘, ሻݐ ൌ 0, ଶ݂ሺ࢘, ሻݐ ൌ 0;  
ݍ ൌ ࢘ ;(௧ܥ distància sobre) ݏ ൌ ࢘ሺݏ,  .ሻݐ

Pèndol doble oscil∙lant en un pla  

ܰ ൌ ࡲ ,2 ൌ ′ࡲ ,ࢍ݉ ൌ  ;ࢍ′݉
Dues lligadures: ࢘ଶ െ ݈ଶ ൌ 0, ሺ࢘′ െ ࢘ሻଶ െ ݈ᇱଶ ൌ 0; 
ܺ ൌ ܵଵሺ݈ሻ ൈ ܵଵሺ݈′ሻ;  ሺݍ, ሻ′ݍ ൌ ሺ߮, ߮′ሻ; 
࢘ሺ߮, ߮ᇱሻ ൌ ሺ݈ sinሺ߮ሻ , െ݈ cosሺ߮ሻሻ  
࢘′ሺ߮, ߮ᇱሻ ൌ ሺ݈ sinሺ߮ሻ ൅ ݈′ sinሺ߮ᇱሻ , െ݈ cosሺ߮ሻ െ ݈ᇱ cosሺ߮ᇱሻሻ  

mg

m

			௧ܥ

݈߮

O

݉	

߮′݈′

݉′
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Dues masses connectades per una molla que llisquen sobre una corba C 

ܰ ൌ 2; 

ࡲ ൌ ࢍ݉ ൅ ݇ሺ࢘ᇱ െ ࢘ሻ,  

′ࡲ ൌ ࢍ′݉ ൅ ݇ሺ࢘ െ ࢘′ሻ; 

 

Model newtonià de la gravitació  

ܰ arbitrari; 

௜ࡲ  ൌ ∑ ௝ஷ௜ܩ
௠೔௠ೕ

ห࢘ೕି࢘೔ห
య ൫ ௝࢘ െ ࢘௜൯, ܩ ൌ 6.67 ൈ 10ିଵଵN	mଶKgିଶ; 

No hi ha lligadures i com a coordenades podem usar les 3ܰ coordenades 
cartesianes dels punts. 

   

�

��



7 
 

Espai d’estats 

ܵ ⊆ ଷேܧ ൈ ଷேܧ ൈ Թ,  format  pels  punts  ሺ࢘ଵ, … , ࢘ே, ࢜ଵ, … , ࢜ே,  ሻݐ tals  que 
ሺ࢘ଵ, … , ࢘ே, ሻݐ ∈ ܺ௧ i amb ሺ࢜ଵ, … , ࢜ேሻ velocitats possibles segons les lliga‐
dures. 

Notem que ሺ࢜ଵ, … , ࢜ேሻ han de complir les relacions 

       ∑ డ௙ഀ
డ࢘೔௜ ൉ ࢜௜ ൅

డ௙ഀ
డ௧

ൌ ߙ			,0 ൌ 1,… ,݉. 

Per altra banda, 

࢜௜ ൌ ሶ࢘ ௜ ൌ ∑ డ࢘೔
డ௤ೖ

௡
௞ୀଵ ሶ௞ݍ ൅

డ࢘೔
డ௧
 .                    ሾ∗ሿ 

Coordenades de l’espai d’estats: ሺݍଵ, … , ,௡ݍ ,ሶଵݍ … , ,ሶ௡ݍ  .ሻݐ

Lema.  డ ሶ࢘ ೔
డ௤ሶೖ

ൌ డ࢘೔
డ௤ೖ

,   ௗ
ௗ௧

డ࢘೔
డ௤ೖ

ൌ డ ሶ࢘ ೔
డ௤ೖ

. 

Prova. La primera relació resulta de ሾ∗ሿ i la segona de la regla de la cade‐
na i el teorema d’Schwarz (sobre les segones derivades). 
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Equacions de Lagrange 
  

                ܶ ൌ ∑ భ
మ݉௜࢜௜ଶே

௜ୀଵ  (energia cinètica) 

      ൌ ∑ భ
మ݉௜ ቀ∑

డ࢘೔
డ௤ೖ௞ ሶ௞ݍ ൅

డ࢘೔
డ௧
ቁ
ଶே

௜ୀଵ  

       ௜ܶ ൌ  part de ܶ homogènia de grau i en les ݍሶ௞ 

            ଴ܶ ൌ ∑ భ
మ݉௜ ቀ

డ࢘೔
డ௧
ቁ
ଶே

௜ୀଵ  

            ଵܶ ൌ ∑ ݉௜ ቀ∑
డ࢘೔
డ௤ೖ௞ ሶ௞ቁݍ ൉

డ࢘೔
డ௧

ே
௜ୀଵ   

            ଶܶ ൌ ∑ భ
మ݉௜ ቀ∑

డ࢘೔
డ௤ೖ௞ ሶ௞ቁݍ

ଶே
௜ୀଵ  

ܶ ൌ ଶܶ si les lligadures no depenen del temps. 
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Teorema (Lagrange). L’evolució d’un sistema mecànic amb lligadures ho‐
lònomes es regeix per les equacions 

    ௗ
ௗ௧

డ்
డ௤ሶೖ

െ డ்
డ௤ೖ

ൌ ܳ௞  (݇ ൌ 1,… , ݊), 

on  ܳ௞ ൌ ∑ ௜ࡲ ൉
డ࢘೔
డ௤ೖ

ே
௜ୀଵ   (forces generalitzades).  

Prova. Si en  l’interval dt el vector ࢘௜ varia ݀࢘௜, el treball W   produït per 
les forces en aquest interval és 

  ܹ	 ൌ ∑ ௜ࡲ ൉ ݀࢘௜௜ ൌ ∑ ௜ࡲ ൉ ቀ∑
డ࢘೔
డ௤ೖ

௞௞ݍ݀ ൅ డ࢘೔
డ௧
ቁ௜ݐ݀  

          ൌ ∑ ቀ∑ ௜ࡲ ൉
డ࢘೔
డ௤ೖ௜ ቁ ௞௞ݍ݀ ൅ ቀ∑ ௜ࡲ ൉

డ࢘೔
డ௧௜ ቁ  ݐ݀

      ൌ ∑ ܳ௞݀ݍ௞௞ ൅ ܳ௧݀ݐ 

on hem posat ܳ௧ ൌ ∑ ௜ࡲ ൉
డ࢘೔
డ௧௜ . 
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Com que per la segona llei de Newton tenim 

    ௜ࡲ ൌ ݉௜ ሷ࢘ ௜, 

també podem escriure: 

  ܹ	 ൌ ∑ ݉௜ ሷ࢘ ௜ ൉ ݀࢘௜௜  

    ൌ ∑ ݉௜ ሷ࢘ ௜ ൉ ቀ∑
డ࢘೔
డ௤ೖ

௞௞ݍ݀ ൅ డ࢘೔
డ௧
ቁ௜ݐ݀  

    ൌ ∑ ݉௜ ቀ
ௗ
ௗ௧
ቀ ሶ࢘ ௜ ൉

డ࢘೔
డ௤ೖ

ቁ െ ሶ࢘ ௜ ൉
ௗ
ௗ௧

డ࢘೔
డ௤ೖ

ቁ ௞௜,௞ݍ݀ ൅ ܳ௧݀ݐ 

    ൌ ∑ ݉௜ ቀ
ௗ
ௗ௧
ቀ ሶ࢘ ௜ ൉

డ ሶ࢘ ೔
డ௤ሶೖ

ቁ െ ሶ࢘ ௜ ൉
ௗ
ௗ௧

డ࢘೔
డ௤ೖ

ቁ ௞௜,௞ݍ݀ ൅ ܳ௧݀ݐ   

    ൌ ∑ ቆௗ
ௗ௧

డ
డ௤ሶೖ

ቀଵ
ଶ
݉௜ ሶ࢘ ௜ଶቁ െ

డ
డ௤ೖ

ቀଵ
ଶ
݉௜ ሶ࢘ ௜ଶቁቇ ௞௜,௞ݍ݀ ൅ ܳ௧݀ݐ  

    ൌ ∑ ቀௗ
ௗ௧

డ்
డ௤ሶೖ

െ డ்
డ௤ೖ

ቁ ௞௞ݍ݀ ൅ ܳ௧݀ݐ, 
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on en el tercer pas hem usat la relació  డ ሶ࢘ ೔
డ௤ሶೖ

ൌ డ࢘೔
డ௤ೖ

 (primera igualtat del le‐

ma) i en el quart la relació  ௗ
ௗ௧

డ࢘೔
డ௤ೖ

ൌ డ ሶ࢘ ೔
డ௤ೖ

 (segona igualtat del lema). Ara les 

equacions de  l’enunciat  resulten de comparar els coeficients de ݀ݍ௞ en 
les dues expressions de W. 
 

Remarca. Si no hi ha lligadures, i usem les coordenades cartesianes origi‐
nals, les equacions de Lagrange equivalen a les equacions de Newton. 
 

Exemple  (Expressió del moviment d’una partícula en un pla usant coor‐

denades polars). Tenim ܶ ൌ ଵ
ଶ
݉ሺݔሶ ଶ ൅ ሶݕ ଶሻ. Per expressar ܶ en  les coor‐

denades polars ݎ i ߮, derivem respecte de ݐ les relacions 

    ݔ ൌ ݎ cos߮,  ݕ ൌ ݎ sin߮ : 

    ሶݔ ൌ ሶݎ cos߮ െ ݎ ሶ߮ sin߮, ݕሶ ൌ ሶݎ sin ߮ ൅ ݎ ሶ߮ cos߮. 

Substituint en l’expressió de ܶ, resulta  
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    ܶ ൌ ଵ
ଶ
݉ሺݎሶ ଶ ൅ ሺݎ ሶ߮ ሻଶሻ. 

Calculem ara les forces generalitzades ܳ௥ i ܳఝ: 

    ܳ௥ ൌ ࡲ ൉ డ࢘
డ௥
ൌ ࡲ ൉ ሺcos߮ , sin߮ሻ ൌ ࡲ ൉ ො࢘ ൌ  ,௥ܨ

    ܳఝ ൌ ࡲ ൉ డ࢘
డఝ

ൌ ࡲ	 ൉ ሺെݎ sin߮ , ݎ cos߮ሻ ൌ ࡲ ൉ ࢘ୄ ൌ  ,ఝܨݎ

on ܨ௥ i ܨఝ són les projeccions ortogonals de ࡲ 
sobre  la direcció ࢘  i sobre  la perpendicular a 
aquesta direcció. 

Finalment,  a  partir  de  l’expressió  de  ܶ  en 
termes de ݎ  i ߮ és  immediat calcular  les ex‐

pressions  ௗ
ௗ௧

డ்
డ௥ሶ
െ డ்

డ௥
  ,    ௗ

ௗ௧
డ்
డఝሶ

െ డ்
డఝ

  ,  i obtenim 

que, en aquest exemple, les equacions de Lagrange són 

    ሷݎ݉ െ ݎ݉ ሶ߮ ଶ ൌ ଶݎ݉  ,௥ܨ ሷ߮ ൅ ݎ2݉ ሶ߮ ሶݎ ൌ  .ఝܨݎ

ݎ
߮

ෝ࣐

ܱ
ො࢘

	௥ܨ

ఝܨ
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Lligadures ideals 

Considerem un sistema mecànic amb lligadures holònomes 

    ఈ݂ሺ࢘ଵ, … , ࢘ே, ሻݐ ൌ ߙ)  0 ൌ 1,… ,݉). 

Direm que aquestes  lligadures són  ideals si per a qualsevol configuració 
existeixen ߣఈ ∈ Թ tals que 

௜ࡾ ൌ ∑ ఈߣ
డ௙ഀ
డ࢘೔ఈ    (en notació compacta: ܀ ൌ ∑ ఈఈߣ ૒ ఈ݂) 

on ࡾ௜ és  la resultant de  les forces de  lligadura sobre  la ݅‐èsima partícula 
(observem que les ߣఈ generalment depenen de les ࢘௜ en el seu conjunt, i 
possiblement  de ݐ, però que no depenen de ݅). 
 

La utilitat del concepte de lligadura ideal prové, d'una banda, del fet que 
es compleix en moltes circumstàncies (almenys en primera aproximació) 
i, de l'altra, que la contribució de les forces de lligadura en el càlcul de les 
forces generalitzades és 0 per a lligadures ideals. 
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Exemple. La  lligadura d'un pèndol simple és  ideal. En efecte,  la  lligadura 
té la forma 

    ݂ሺ࢘ሻ ൌ ࢘ଶ െ ݈ଶ ൌ 0, 

on ݈ és la longitud del pèndol i ࢘ el vector de posició de la massa del pèn‐
dol respecte del punt de suspensió. Per altra banda, la força de lligadura 
ࡾ ,és paral∙lela al pèndol, és a dir ࡾ ൌ ߤ per algun ࢘ߤ ∈ Թ. Ara només cal 
observar que  

    డ௙
డ࢘
ൌ 2࢘ , 

de manera que 

    ࡾ ൌ ߣ డ௙
డ࢘
ߣ  ,  ൌ  .2/ߤ
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Exemple. Les lligadures d'un pèndol doble són ideals. 

En efecte, si ܱ és el punt de suspensió del primer pèndol  i ࢘  i ࢘′ són els 
vectors de posició  respecte de ܱ de  les  corresponents masses ݉  i ݉’, 
aleshores les forces de lligadura ࡾ i ࡾ′ tenen la forma següent: 

    ࡾ ൌ ࢘ߤ ൅ ሺ࢘′ߤ െ ࢘′ሻ,  ࡾ′ ൌ ′ሺ࢘′ߤ െ ࢘ሻ , 

on ߤ ,ߤ′ són nombres reals (hem usat la tercera llei de Newton, segons la 
qual la força que ݉ exerceix sobre ݉′ és igual, però de signe contrari, a la 
que ݉’ exerceix sobre ݉). Per altra banda les lligadures són 

    ݂ ൌ ࢘ଶ െ ݈ଶ ൌ 0,  ݂ᇱ ൌ ሺ࢘ᇱ െ ࢘ሻଶ െ ݈ᇱଶ ൌ 0, 

de manera que 

  డ௙
డ࢘
ൌ 2࢘,  డ௙

డ࢘ᇲ
ൌ 0;   

  డ௙ᇲ

డ࢘
ൌ 2ሺ࢘െ࢘ᇱሻ,  డ௙

ᇲ

డ࢘ᇲ
ൌ 2ሺ࢘ᇱ െ ࢘ሻ , 

d’on resulta que 

  ߲࢘ ߲࢘ᇲ
૒݂  2࢘ 0
૒݂′ 2ሺ࢘െ࢘ᇱሻ 2ሺ࢘ᇱ െ ࢘ሻ
  ܀  ࢘ߤ ൅ ሺ࢘′ߤ െ ࢘′ሻ ′ሺ࢘′ߤ െ ࢘ሻ 
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    ࡾ ൌ ߣ డ௙
డ࢘
൅ ′ߣ డ௙

ᇲ

డ࢘
′ࡾ  ,  ൌ ߣ డ௙

డ࢘ᇲ
൅ ′ߣ డ௙

ᇲ

డ࢘ᇲ
 

amb ߣ ൌ ᇱߣ i 2/ߤ ൌ  .ᇱ/2, i això estableix l’afirmacióߤ
 

Exemple. Considerem una partícula que es mou sense  fricció sobre una 
superfície variable ݂ሺ࢘, ሻݐ ൌ 0 (en aquest cas,  l'espai de configuració és, 
per a cada ݐ, la superfície ܺ௧ ൌ ሼ࢘ ∈ ,ଷ|݂ሺ࢘ܧ ሻݐ ൌ 0ሽ). Donat que no hi ha 
fricció, la força de lligadura és perpendicular a ܺ௧, ja que en cada instant 
la superfície no pot exercir cap força tangencial sobre la partícula. Per al‐

tra banda, sabem que el gradient డ௙
డ࢘
 és un vector perpendicular a ܺ௧, de 

manera que la força de lligadura ࡾ i el gradient డ௙
డ࢘
 són paral∙lels. Per tant, 

existeix ߣ ∈ Թ tal que ࡾ ൌ ߣ డ௙
డ࢘
, i això prova que la lligadura és ideal. 
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Exemple. Un sòlid rígid es pot pensar com un conjunt de partícules pun‐
tuals de masses ݉௜ (݅ ൌ 1,… ,ܰ) sotmeses a les lligadures 

    ௜݂௝ ൌ ൫࢘௜ െ ௝࢘൯
ଶ െ ݀௜௝ଶ ൌ 0 , 

on ݀௜௝  són constants. Si posem ࡾ௜௝ per denotar la força de lligadura que 

௝݉  exerceix sobre ݉௜, llavors 

    ௜௝ࡾ ൌ ௜௝ሺ࢘௜ߤ െ ௝࢘ሻ,   

on ߤ௜௝ ∈ Թ i ߤ௜௝ ൌ  .௝௜, per la tercera llei de Newtonߤ

Si definim ߣ௜௝ ൌ  ௜௝/4, llavorsߤ

    ∑ ௜௝௜௝ߣ
డ௙೔ೕ	
డ࢘ೖ

ൌ ∑ ௞௝௝ߣ2 ൫࢘௞ െ ௝࢘൯ െ ∑ ௜௞௜ߣ2 ሺ࢘௜ െ ࢘௞ሻ 

           ൌ ∑ ௞௝௝ߤ ൫࢘௞ െ ௝࢘൯ 

           ൌ	∑ ௞௝௝ࡾ ൌ  ௞ࡾ

i això estableix que les lligadures d'un sòlid rígid són ideals. 
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Exemple. Considerem una partícula que es mou sense  fricció sobre una 
corba ܺ௧ (possiblement variable). La força de lligadura ࡾ és perpendicular 
a  la corba,  ja que  la no existència de fricció ens diu que  la corba no pot 
exercir forces tangencials sobre ݉. Si la corba ve donada per  les equaci‐
ons ݂ሺ࢘, ሻݐ ൌ 0, ݃ሺ࢘, ሻݐ ൌ 0 (això sempre és possible localment), alesho‐
res ߲݂ ߲࢘⁄   i ߲݃ ߲࢘⁄   formen  una  base  del  pla  perpendicular  a ܺ௧  i, per 
tant, existeixen ߣ, ߤ ∈ Թ tals que 

    ࡾ ൌ ߣ డ௙
డ࢘
൅ ߤ డ௚

డ࢘
 , 

i això prova que les lligadures ݂ i ݃ són ideals. 
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Teorema.  En  un  sistema mecànic  amb  lligadures  holònomes  ideals,  la 
contribució  de  les  forces  de  lligadura  en  les  forces  generalitzades  és 
nul∙la. 

Prova. La part de la força generalitzada ܳ௞ ൌ ∑ ௜ࡲ ൉
డ࢘೔
డ௤ೖ௜  que correspon a 

les forces de lligadura ࡾ௜ és ∑ ௜ࡾ ൉
డ࢘೔
డ௤ೖ௜ . Si les lligadures  ఈ݂ són ideals, sa‐

bem que existeixen funcions ߣఈ tals que ࡾ௜ ൌ ∑ ఈߣ
డ௙ഀ
డ࢘೔ఈ , de manera que 

෍ࡾ௜ ൉
߲࢘௜
௞௜ݍ߲

ൌ෍ߣఈ
߲ ఈ݂
߲࢘௜

൉
߲࢘௜
௞௜,ఈݍ߲

ൌ෍ߣఈ
߲ ఈ݂
௞ఈݍ߲

ൌ 0	, 

ja que  ఈ݂ és idènticament nul∙la com a funció de les ݍ௞. 
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Remarca. D'ara endavant, només considerarem sistemes amb  lligadures 
holònomes ideals i posarem ࡲ௜ per denotar la força neta (és a dir, la que 
resulta de descomptar  les forces de  lligadura) sobre  la partícula ݅‐èsima. 
Així, doncs, ࡲ௜ és la suma de les forces d'interacció amb les altres partícu‐
les  i de  les  forces  aplicades,  i per  al  càlcul de  les  forces  generalitzades 
només ens cal tenir en compte aquestes forces. 

Corol∙lari.  L’evolució  d’un  sistema mecànic  amb  lligadures  holònomes 
ideals ve regit per les equacions de Lagrange  

݀
ݐ݀

߲ܶ
ሶ௞ݍ߲

െ
߲ܶ
௞ݍ߲

ൌ ܳ௞		ሺ݇ ൌ 1,… , ݊ሻ, 

on   ܳ௞ ൌ ∑ ௜ࡲ ൉
డ࢘೔
డ௤ೖ

ே
௜ୀଵ    són  les forces generalitzades corresponents a  les 

forces netes. 
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Remarca (Principi de d'Alembert). Podria semblar, quan considerem el teorema 
anterior, que  les forces de  les  lligadures  ideals no fan treball. Això, però, no és 
així, ja que per disposar de lligadures dependents del temps cal incorporar una 
potència externa (una certa motorització) per a realitzar‐les, i d'aquesta potèn‐
cia una part pot aparèixer com a potència de  les  forces de  lligadura. De  fet, si 
tenim lligadures holònomes ideals  ଵ݂, … , ௠݂ i, amb les notacions usades fins ara, 

௜ࡾ ൌ ∑ ఈߣ
డ௙ഀ
డ࢘೔ఈ , llavors la potència ܹ ൌ ∑ ௜ࡾ ൉ ሶ࢘ ௜௜  produïda per les forces ࡾ௜ és 

igual a െ∑ ఈߣ
డ௙ഀ
డ௧ఈ   (és una conseqüència  immediata de  la regla de  la cadena). 

En  particular  resulta  que ܹ ൌ 0  si  les  lligadures  ideals  són  independents  del 
temps (aquest fet, que equival a dir que les forces de lligadura de les lligadures 
ideals  independents  del  temps  no  fan  treball,  es  coneix  com  a  principi  de 
d’Alembert dels treballs virtuals). 

 

 

   



22 
 

Exemple (Problemes d'estàtica). El principi de d’Alembert es pot usar per 
resoldre problemes d'estàtica en els quals les lligadures són ideals. En un 
sistema mecànic estàtic, les forces totals (incloent‐hi les de lligadura) han 
de ser nul∙les. En particular, el treball d'aquestes forces en qualsevol vari‐
ació infinitesimal de la configuració del sistema ha de ser 0. Atès que les 
forces de lligadura, per a lligadures ideals, no fan treball, en resulta que  

el  corresponent  treball  de  les  forces  netes   ௜ࡲ (les  que  resulten 
d’ometre les forces de lligadura) també ha de ser 0.  

Per aplicar aquest  fet, cal descriure  la configuració del sistema en coor‐
denades generalitzades ݍ௜ i imposar que en una variació infinitesimal ݀ݍ௜ 
d'aquesta configuració el treball de les forces externes i d'interacció que 
actuen sobre el sistema és 0. Per a una  il∙lustració d'aquest mètode, ve‐
geu l’exercici M.3.1.  
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Equacions d’Euler‐Lagrange 
 

Si les forces ࡲ௜ tenen la forma    

௜ࡲ ൌ െ డ௏
డ࢘೔

ൌ െ࢏࢘܌܉ܚ܏ሺܸሻ,   ۴ ൌ െ૒ܸ en forma compacte,  

diem que són conservatives i que V és una funció potencial.  
 

Un  sistema mecànic  conservatiu  és  un  sistema mecànic  amb  lligadures 
holònomes ideals i forces netes conservatives. 
 

Potencial newtonià 

    ܸ ൌ ܩ ∑ ݉௜ ௝݉/ห࢘௜ െ ௝࢘ห௜ழ௝  .      

Notem que ࣔሺ1 ⁄ݎ ሻ ൌ െିݎଷ࢘, d’on ࣔ࢘೔
ଵ

ห࢘೔ି࢘ೕห
ൌ െ ଵ

ห࢘೔ି࢘ೕห
య ൫࢘௜ െ ௝࢘൯. 
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Remarca. Si tenim masses ݉௜ situades en punts ࢘௜, la força que aquestes 
masses  exerceixen  sobre  una  partícula  de massa  unitat  situada  en  un 
punt ࢘ és  

    ሺ࢘ሻࢍ ൌ ܩ ∑ ௠೔
|࢘೔ି࢘|య	௜ ሺ࢘௜ െ ࢘ሻ 

(té  dimensions  d'una  acceleració). Aquesta  força  és  igual  a  – డ௏
డ࢘
,  on ܸ, 

anomenat potencial gravitatori corresponent a les masses ݉௜, s'expressa 
per la fórmula 

    ܸሺ࢘ሻ ൌ ܩ ∑ ௠೔
ห࢘ି࢘ೕห	௜ . 

Per una distribució contínua de massa en una regió ܭ, la fórmula que dó‐
na el potencial creat per aquesta distribució en un punt ࢘ és  

    ܸሺ࢘ሻ ൌ ܩ ׬ ఘሺ࢞ሻௗ࢞
|࢘ି࢞|	௄ 	. 

on ߩሺ࢞ሻ és la densitat de massa en el punt ࢞. 



25 
 

Remarca (Interpretació del potencial). Si ࢘ i ࢘′ són dos punts, la diferèn‐
cia ܸሺ࢘ሻ െ ܸሺ࢘′ሻ  coincideix  amb  el  treball  fet per  la  força ࡲ ൌ െܸࣔ  al 
llarg de qualsevol camí ߛ amb origen ࢘ i fi a ࢘′, ja que 

    ׬ ࡲ ൉ ఊߛ݀ ൌ ׬ െܸࣔ ൉ ఊߛ݀ ൌ െሺܸሺ࢘ᇱሻ െ ܸሺ࢘ሻሻ ൌ ܸሺ࢘ሻ െ ܸሺ࢘′ሻ. 

Si ܸ s'anul∙la a l'infinit, com ara en el cas del potencial gravitatori, ܸሺ࢘ሻ és 
el treball fet pel camp de forces ࡲ al llarg de qualsevol camí amb origen ࢘ 
i  fi a  l'infinit, o bé el  treball  fet contra  les  forces del sistema all  llarg de 
qualsevol camí amb origen a l'infinit i fi en la configuració ࢘. 

Lema. Si ࡲ௜ ൌ െ డ௏
డ࢘೔

  i  les  lligadures són holònomes,  llavors ܳ௞ ൌ െ డ௏
డ௤ೖ

  . 

Prova. Regla de la cadena. 

Definició. La lagrangiana d’un sistema conservatiu és ܮ ൌ ܶ െ ܸ.  
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Exemples sense lligadures 

Multioscil∙lador harmònic  

Considerem el sistema lagrangià definit per la lagrangiana     

ܮ ൌ෍
1
2
݉௜ݍሶ௜ଶ

௡

௜ୀଵ

െ෍
1
2݇௜ݍ௜

ଶ
௡

௜ୀଵ

. 

Les equacions d'EulerെLagrange donen, com és immediat de comprovar, 
el sistema d'equacions     

݉௜ݍሷ௜ ൌ െ݇௜ݍ௜		ሺ݅ ൌ 1,… , ݊ሻ. 

Així, doncs, ݍ௜ evoluciona,  independentment de  les demés coordenades, 

com un oscil∙lador harmònic de freqüència angular ߱௜ ൌ ඥ݇௜/݉௜. 

Més endavant veurem que en  l’entorn d’una configuració d’equilibri es‐
table,  tot  sistema  conservatiu  es  pot  aproximar  per  un multioscil∙lador 
harmònic, tal com ja hem vist en el cas d’un grau de llibertat. 
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Partícula en un potencial central  

Una partícula es mou en un potencial central ܸ (és a dir, ܸ és una funció 
de la distància ݎ a un punt fix ܱ). Com que les superfícies equipotencials 
són esferes,  la força és paral∙lela a ࢘. En particular, el pla 〈 ሶ࢘ , ࢘〉 és cons‐
tant.  Podem,  doncs,  suposar  que  el moviment  té  lloc  en  un  pla.  Si  en 
aquest pla prenem coordenades polars ሺݎ, ߮ሻ, la lagrangiana és 

    ܮ ൌ ଵ
ଶ
݉ሺݎሶ ଶ ൅ ଶݎ ሶ߮ ଶሻ െ ܸሺݎሻ. 

Les dues equacions d'EulerെLagrange que se'n dedueixen són 

    ሷݎ݉ െ ݎ݉ ሶ߮ ଶ ൌ െܸ′,  ݀ሺ݉ݎଶ ሶ߮ ሻ ⁄ݐ݀ ൌ 0. 

La segona equació ens dóna que  ሶ߮ ൌ ‐ଶ, on ݄ és una constant. Subsݎ݉/݄
tituint a la primera equació, obtenim ݉ݎሷ െ ݄ଶ/݉ݎଷ ൌ െܸ′, que en prin‐
cipi  ens  permet  obtenir   ݎ com  a  funció  de   .ݐ Substituint  en  la  segona 
equació, podem obtenir ߮ com a funció de ݐ.  
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Remarca. La constant ݄ ൌ ଶݎ݉ ሶ߮ ൌ ݎ൫݉ሺݎ ሶ߮ ሻ൯ de  l'exemple anterior és el mo‐

ment angular de  la partícula  respecte de ܱ  i  ௛
ଶ௠

ൌ ଵ
ଶ
ݎሺݎ ሶ߮ ሻ  l'àrea escombrada 

pel radi vector ࢘ per unitat de temps (en particular resulta que aquesta àrea és 
constant, de manera que la «segona llei de Kepler» és vàlida per a qualsevol po‐
tencial central, incloent‐hi, és clar, el potencial newtonià produït per una massa 
situada en el punt ܱ). 

 

Exemples amb lligadures 

Pèndol simple  

Podem  prendre  com  a  coordenada  generalitzada 
l'angle ߮ que  forma el pèndol amb  la vertical  (ori‐
entada en sentit ascendent). Si ݈ denota la longitud 
del pèndol i ݉ la seva massa, llavors ܶ ൌ ଵ

ଶ
݈݉ଶ ሶ߮ ଶ i 

ܸ ൌ ݕ݃݉ ൌ െ݈݉݃ cos߮. Per tant, 

l߮

y

mg

O
x	

m



30 
 

ܮ߲
߲߮ ൌ െ

߲ܸ
߲߮ ൌ െ݈݉݃ sin߮ ,

ܮ߲
߲ ሶ߮ ൌ

߲ܶ
߲ ሶ߮ ൌ ݈݉ଶ ሶ߮ ,  

i l'equació de Lagrange ens dóna que 

    ሷ߮ ൅ ݇ sin߮ ൌ 0,  ݇ ൌ ݃/݈, 

que  coincideix  amb  l’equació establerta  al  capítol  anterior per un  altre 
mètode. 
 

Màquina de Atwood 

Dues   masses ݉  i ݉′ estan  lligades als extrems 
d’una corda penjada d’una politja tal com indica 
la figura. Suposem les masses de la corda i de la 
politja són negligibles, i que el gir de la politja és 
sense fricció. Hi ha una única coordenada  inde‐
pendent, ja que si coneixem la posició d'un dels 
pesos  la  de  l'altre  queda  determinada  pel  fet 

ݔ

݉
݈ െ 	ݔ

݉′	
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que la longitud de la corda que els relliga és fixa. Amb les notacions de la 
figura,  

    ܶ ൌ ଵ
ଶ
ሺ݉ ൅݉′ሻݔሶ ଶ ,    ܸ ൌ െ݉݃ݔ െ݉ᇱ݃ሺ݈ െ  ,ሻݔ

de manera que  

    ܮ ൌ ଵ
ଶ
ሺ݉ ൅݉′ሻݔሶ ଶ ൅ ݔ݃݉ ൅݉ᇱ݃ሺ݈ െ  .ሻݔ

La corresponent equació del moviment és 

    ሷݔ ൌ ݃௠ି௠ᇲ

௠ା௠ᇲ 

amb la qual cosa veiem que es tracta d'un moviment uniformement acce‐

lerat amb acceleració ݃௠ି௠ᇲ

௠ା௠ᇲ .  
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Boleta lliscant sobre barnilla que gira 

En aquest exemple estudiarem el moviment d'un punt material de massa 
݉ que es desplaça sense  fricció sobre una barnilla  recta que gira horit‐
zontalment amb velocitat uniforme ߱ al voltant d'un punt ܱ de la barni‐
lla.  

Siguin ݎ  i ߮ coordenades polars del 
punt material  respecte del punt ܱ, 
tal com indica la figura. Tenim 

ܮ ൌ ܶ ൌ ଵ
ଶ݉ሺݎሶ

ଶ ൅ ଶݎ ሶ߮ ଶሻ ൌ ଵ
ଶ݉ሺݎሶ

ଶ ൅  .ଶ߱ଶሻݎ

Tenim  డ௅
డ௥ሶ
ൌ ሶݎ݉ ,  ௗ

ௗ௧
డ௅
డ௥ሶ
ൌ ሷݎ݉   i  డ௅

డ௥
ൌ ݉߱ଶݎ.  L'equació  d’EulerെLagrange 

equival, doncs, a 

ሷݎ ൌ ߱ଶݎ	. 

Aquesta equació s'integra fàcilment multiplicant per ݎሶ: obtenim la relació 

߱
݉

߮
ݎ
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ሶݎ ଶ ൌ ߱ଶݎଶ ൅ ܿ, 

on ܿ és una constant arbitrària. Per tant 

ሶݎ ൌ േඥ߱ଶݎଶ ൅ ܿ	. 

Posem ݎ଴ i ݎሶ଴ per denotar els valors de ݎ i ݎሶ  per a ݐ ൌ 0. Així  

ܿ ൌ ሶ଴ଶݎ െ ߱ଶݎ଴ଶ 

i, per tant, les condicions ܿ ൌ 0, ܿ ൐ 0 i ܿ ൏ 0 equivalen, respectivament, 
a |ݎሶ଴| ൌ |ሶ଴ݎ| ,଴ݎ߱ ൐ |ሶ଴ݎ| ଴ iݎ߱ ൏  .଴ݎ߱

El cas ܿ ൌ 0 es regeix per l'equació ݎሶ ൌ േ߱ݎ, de manera que 

ݎ ൌ  .଴݁േఠ௧ݎ

Suposem  ara  ܿ ൐ 0  i  definim  ܿ′ ൐ 0  per  la  relació  ଴ݎ ൌ
√௖
ఠ
sinhሺܿ′ሻ.  Si 

ሶ଴ݎ ൐ 0, llavors obtenim  

ݎ ൌ
√ܿ
߱ sinhሺ߱ݐ ൅ ܿᇱሻ. 
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Si, en canvi, ݎሶ଴ ൏ 0, el que s'obté és que 

ݎ ൌ
√ܿ
߱ sinhሺ|െ߱ݐ ൅ ܿᇱ|ሻ. 

Finalment, suposem que ܿ ൏ 0 i definim ܿ′ ൐ 0 per la relació 

଴ݎ  ൌ
√ି௖
ఠ
coshሺܿ′ሻ. Si ݎሶ଴ ൐ 0, llavors 

ݎ	 ൌ
√െܿ
߱ coshሺ߱ݐ ൅ ܿ′ሻ, 

mentre que si ݎሶ଴ ൏ 0, llavors 

ݎ ൌ
√െܿ
߱ coshሺ|െ߱ݐ ൅ ܿ′|ሻ. 
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Massa puntual lliscant sobre una circumferència  

Considerem  una  massa  puntual  ݉  que  es  mou 
sense  fricció sobre una circumferència vertical de 
radi ݎ que gira al voltant del seu diàmetre vertical 
amb velocitat angular constant ߱. Si posem ߮ per 
denotar  l’angle  que  forma  el  radi de  la  partícula 
amb  el  diàmetre  vertical  (orientat  en  sentit  des‐
cendent), l'expressió per a l'energia cinètica és 

ܶ ൌ ଶሺݎ݉ ሶ߮ ଶ ൅ ሺ߱ sinሺ߮ሻሻଶሻ	, 

ja que la velocitat en sentit tangencial (ݎ ሶ߮ ) és perpendicular a la velocitat 
deguda a la rotació ሺݎ sinሺ߮ሻ߱ሻ.  

Com que l'energia potencial és –݉݃ݎ cosሺ߮ሻ, l’equació d'Euler‐‐Lagrange 
ens dóna que  

ଶݎ݉ ሷ߮ െ ଶ߱ଶݎ݉ sinሺ߮ሻ cosሺ߮ሻ ൅ ݎ݃݉ sinሺ߮ሻ ൌ 0	, 

߮ ݎ
݉
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que equival a 

ݎ ሷ߮ ൌ ଶ߱ݎ sinሺ߮ሻ cosሺ߮ሻ െ ݃ sinሺ߮ሻ	. 
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Exercicis M.3 (Formalisme lagrangià) 

 

M.3.1. Una barra rígida situada en un pla vertical i els ex‐
trems de  la qual es  recolzen  en una paret  vertical  (ex‐
trem  superior)  i en un pla horitzontal  (extrem  inferior). 
Suposem, a més, que  l'extrem  inferior està  relligat a  la 
paret per una corda inextensible horitzontal perpendicu‐
lar a la paret. Si podem negligir la fricció dels extrems de 
la barra amb la paret i el pla horitzontal, respectivament, 
demostreu que la tensió de la corda és  

݉݃
2tanሺߙሻ

	, 

on ݉ és  la massa de  la barra  i ߙ és  l’angle que forma  la 
barra amb el pla horitzontal. 

 

ߙ

mg	
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M.3.2.  1) Escriviu l'energia cinètica, usant coordenades generalitzades apropia‐
des a cada cas, d'una partícula de massa ݉ constreta a moure's sobre: 

a)    una esfera;  
b) un cilindre circular recte; 
c)    un paraboloide de revolució. 

2) Si la partícula està sotmesa a una força neta ࡲ i les lligadures són ideals, tro‐
beu  l’expressió de  la força generalitzada corresponent a cada coordenada  i es‐
criviu les equacions del moviment corresponents. 

M.3.3. Considerem un pèndol simple de longitud ݈ i suposem que el seu punt de 
suspensió es pot moure sense fricció sobre una corba donada ܥ. Demostreu que 
les lligadures d'aquest sistema són ideals. 

M.3.4. Amb les notacions de l’exemple de la pàgina 5, deduïu que les equacions 
d’EulerെLagrange d’un pèndol esfèric de longitud ݈ ൌ ݈ሺݐሻ són les següents: 

 

2݈ሶߠሶ ൅ ሷߠ݈ െ ሶ߮ ଶ sinሺߠሻ cosሺߠሻ ൌ ݃ sinሺߠሻ 
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2݈ሶ sinሺߠሻ ሶ߮ െ 2݈ cosሺߠሻ ߠ ሶ߮ሶ ൅ ݈ sinሺߠሻ ሷ߮ ൌ 0 

M.3.5. Considerem el sistema  format per una boleta de massa ݉ que es mou 
sotmesa a la força de la gravetat ࡲ ൌ ሺ0,0,െ݉݃ሻ sobre l’espiral d'equacions pa‐
ramètriques 

ݔ ൌ ܽ cos ቀ
ݖ
ܾቁ , ݕ	 ൌ ܽ sin ቀ

ݖ
ܾቁ	, 

on ܽ, ܾ són constants positives. Proveu que el moviment de la partícula es regeix 

per l'equació ݖሷ ൌ െ ௚௕మ

௔మା௕మ
	. Es tracta, doncs, d'un moviment uniformement acce‐

lerat amb acceleració  ௚௕
మ

௔మା௕మ
  (respecte de la direcció vertical). 

M.3.6. Trobeu  la  lagrangiana  i  les equacions del moviment d’un pèndol pla el 
punt de suspensió del qual es pot moure sense fricció sobre una recta horitzon‐
tal. 

M.3.7. Trobeu la  lagrangiana i les equacions del moviment d’un pèndol pla do‐
ble respecte dels angles ߮ i ߮′ que formen el primer i el segon fil amb la vertical. 
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M.3.8. Sigui ܮ la lagrangiana d'un sistema lagrangià i suposem que ܮ ൌ ᇱܮ ൅ ௗ௙
ௗ௧
, 

on  ݂ ൌ ݂ሺࢗ,  ሻݐ (posarem  ܮ ≡  ′ܮ per  denotar  aquest  fet).  Demostreu  que  les 
equacions d'EulerെLagrange de ܮ coincideixen amb les de ܮ′. 

M.3.9. La lagrangiana d'una partícula de massa ݉ que es mou en un pla vertical 
sota  els  efectes  de  la  gravetat  és  ܮ ൌ భ

మ݉ሺݔሶ
ଶ ൅ ሶݕ ଶሻ െ  ,ݕ݃݉ on   ݔ i   ݕ són  les 

components horitzontal i vertical, respectivament, de la posició de ݉. Compro‐
veu que si escrivim equacions d’EulerെLagrange usant en  lloc de ܮ una qualse‐
vol de les funcions  

ᇱܮ ൌ ሶݕሶݔ݉ െ  ݕ݃݉

ᇱᇱܮ ൌ ݕ݃݉ െ ଵ
ଶ݉݃ݕݔሶ

ଶ െ ሶݔ݉ ଷݕሶ െ ଵ
ଶ݉ݕሶ

ଶ 

obtenim  les  mateixes  equacions  del  moviment  que  amb   ܮ (això  és,  ሷݔ ൌ 0, 
ሷݕ ൌ െ݃). 

M.3.10. Mostreu que  l'acceleració d'una circumferència que  roda sense  lliscar 

per un pla  inclinat és ଵ
ଶ
݃ sinሺߙሻ, on ߙ és  l’angle d'inclinació del pla  (suposem 

que la circumferència és vertical i que el seu punt de contacte es mou sobre una 
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recta de màxim pendent). Proveu  també que el mínim valor del coeficient de 

fricció que garanteix que no hi ha lliscament és ଵ
ଶ
tan	ሺߙሻ.4 

M.3.11.  Un  sistema  mecànic  és  descrit  per  una  lagrangiana  ,ࢗሺܮ ሶࢗ ,  ,ሻݐ on 
ࢗ ൌ ሺݍଵ, … , ,ࢗ௡ሻ. Si imposem ݉ lligadures addicionals ߶௦ሺݍ ሻݐ ൌ 0, ݏ ൌ 1,… ,݉, 

mostreu que l'evolució del sistema obeeix a les equacions de Lagrange 

݀
ݐ݀	

ܮ߲
ሶ௞ݍ߲

െ
ܮ߲
௞ݍ߲

ൌ෍ߣ௦ሺݐሻ	
௦

߲߶௦
௞ݍ߲

	, 

on ߣ௦ሺݐሻ són funcions desconegudes de ݐ. Obervem que és un sistema de ݊ ecu‐
acions, que,  junt a  les ݉ equacions de  lligadura,  formen un sistema de ݊ ൅݉ 
equacions que determinen les ݊ ൅݉ incògnites ݍଵ, … , .௡ݍ

5 

M.3.12. Un sistema mecànic consta de dues masses puntuals  iguals unides per 
una barnilla rígida de longitud ݈ i massa negligible. Les masses es mouen en un 
pla horitzontal i de manera que la velocitat del punt mitjà de la barnilla sempre 
és paral∙lela a  la barnilla. Si per descriure  la configuració del sistema s’utilitzen 
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coordenades cartesianes ሺݔଵ, ,ଶݔଵሻ, ሺݕ  ଶሻ de cada massa, escriviu les equacionsݕ
de lligadura existents i estudieu si són holònomes. 

M.3.13. Considereu  la màquina d’Atwood composta de  la 
figura. Suposeu que les masses de les politges i de les cor‐
des són negligibles, i que no hi ha cap força de fricció. 

1) Escriviu les equacions de les lligadures. 

2) Escolliu coordenades generalitzades  independents  i es‐
criviu  la  lagrangiana del sistema  (en  funció d’aquestes co‐
ordenades). 

3) Calculeu l’acceleració de cadascuna de les tres masses. 

 

M.3.14. Determineu  el  nombre  de  graus  de  llibertat  i,  utilitzant  coordenades 
generalitzades adients, escriviu la lagrangiana i les equacions del moviment d’un 
pèndol simple tal que el seu punt de suspensió oscil∙la harmònicament al  llarg 
d’una línea horitzontal amb freqüència ߱ i amplitud ܽ. 

݉ଶ	

݉′	

݉ଵ
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M.3.15. Una massa puntual ݉  llisca  sense  fricció  sobre  l’hèlix vertical donada 

per les equacions ݔ ൌ ܽ cos ଶగ
௕
ݕ ,ݖ ൌ ܽ sin ଶగ

௕
 .ݖ

1) Escriviu  la  lagrangiana de  l’esfera utilitzant com a coordenada generalitzada 
la coordenada ݖ de l’esfera. 

2) Proveu que l’esfera descriu un moviment de caiguda uniformement accelerat 

amb acceleració  ௚௕మ

ସగమ௔మା௕మ
 . 

3) Suposant que  inicialment  l’esfera es troba en repòs a una altura ݄, determi‐
neu el temps que trigarà en passar pel punt ሺܽ, 0,0ሻ  i calculeu  la força de  lliga‐
dura que actua sobre ݉ quan passa per aquest punt.  

M.3.16.  Una  massa  puntual  ݉  sotmesa  a 
l’acció de la gravetat està subjecta a dues mo‐
lles  idèntiques  de  constant  recuperadora  ݇  i 
longitud  natural  ݈଴,  tal  com mostra  la  figura 
(els punts ܣ  i ܤ estan fixats). Suposeu, a més, 
que la massa només es mou en el pla vertical. 

݉

ܤ	ܣ

݇ ݇

݈଴ ݈଴
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1) Calculeu la lagrangiana del sistema en coordenades cartesianes. 

2) Comproveu que si la distància de ݉ a l’origen de coordenades és molt petita 
comparada amb ݈଴, l’energia potencial es pot aproximar per 

଴ܸሺݔ, ሻݕ ൌ ଶݔ݇ ൅
݇ሺݔଶ ൅ ଶሻଶݕ

4݈଴ଶ
൅  .	ݕ݃݉

3) Considereu el sistema  lagrangià de  lagrangiana ܮ଴ ൌ ܶ െ ଴ܸ. Determineu‐ne 
les posicions d’equilibri. 

 

Notes 
                                                            

1. Cadascuna de  les equacions de  lligadura  ఈ݂ ens dóna una restricció, en cada 
instant, per a les posicions que poden ocupar les masses puntuals. Com veurem 
en els exemples, la natura d’aquestes restriccions es pot expressar generalment 
en llenguatge geomètric. 
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2. Posant ࢗ ൌ ሺݍଵ, … ,  ௡ሻ, les equacions d’EulerെLagrange es poden condensarݍ
en la relació  ௗ

ௗ௧
డ௅
డࢗሶ
െ డ௅

డࢗ
ൌ 0	. 

 
3  (Potencials  generalitzats).  L'equació de  Lagrange  es  transforma  en  la  forma 
d'EulerെLagrange si les forces són conservatives. Aquesta transformació també 
és possible si les forces generalitzades que no deriven d'un potencial, diguem‐ne 

ܳ௞ᇱ , es poden expressar en  la  forma ܳ௞ᇱ ൌ
ௗ
ௗ௧

డெ
డ௤ሶೖ

െ డெ
డ௤ೖ

, per un cert observable 

ܮ Si aquest és el cas, és clar que només cal posar .ܯ ൌ ܶ െ ܸ െܯ, on ܸ és el 
potencial de les forces conservatives. Direm que ܯ és un potencial generalitzat. 
Aquesta mena de potencials apareixen en  l'estudi de  la dinàmica de partícules 
carregades sota camps magnètics. 

4. CorbenെStehle, pàg. 45. 
5. Corben‐Stehle, pàg. 88. 


