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Joseph Louis Lagrange (1736-1813)

Meécanique analytique (1788)

Escriu les equacions del moviment
d’un sistema mecanic en termes
«coordenades generalitzades» ar-
bitraries.

Ha estat una de les influencies im-
portants del desenvolupament de
la geometria de les varietats dife-
renciables.

El «metode lagrangia» ha tingut i
té un paper principal en la teoria
(classica i quantica) de camps.




Sistemes mecanics
mq, ..., My masses puntuals (nombres reals positius).

T4, ..., Ty posicions de les masses (vectors)

dr; . .
v; = — = r; velocitat de m;
dt

p; = m;v; moment (lineal) de m;

F,...,Fy forces (vectors)

dp;i
dt

. : dv; .
= Fi (Za llei de Newton: Pi — mid—i = m;r; = m;a; = Fl)
£y, ry,t) =0,a=1,....,mm=>0 lligadures’
X espai de configuracio en l'instant t

Xt — {(Tl, ...,TN) (S Eév|fa(1‘1,...,rN, t) — O, a — 1, ,m}

(si no depen de t, el denotarem simplement X)
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r;=71;(q1,...,9n t) expressio de les posicions en funcio de parame-
tres q4,...,qy I t. Suposem que aquestes expressions parametrit-
zen (localment) X;, fet que expressem dient que les lligadures son
holonomes i que q4, ..., qy SOn coordenades generalitzades.

Oscil-lador harmonic

N =1, i no hilligadures; X = R; g = x és una coor-
denada generalitzada; F = —kx (usualment x és la
diferencia entre una elongacié [, posem per cas
d’'una molla com la de la figura, i una elongacio [,
d’equilibri). En lloc de X = R, és més realista pren-
dreX =(lp—a,lg+a),ona€R, a>0.




Pendol simple oscil-lant en un pla vertical Y 4
N =1,F =mg;
Una lligadura independent del temps: 5 x
r:—12=0
(origen en el punt de suspensio); o\
X = 51(0,1), circumferéncia de radi [ i centre O; m
mg
qa=,

r(p) = (Isin(g), —1l cos(p))
Pendol simple esferic de longitud variable
N =1, F =mg;

Una lligadura dependent del temps:
fr,t) =r*—=1(t)*=0

(origen en el punt de suspensio, [(t) funcio donada);



X, = S%(0,1(t)), esfera de centre O i radi [(¢t);

(q1,92) = (¢, 0);
r(p,0) = (I(t) sin(8) cos(p), I(t) sin(0) sin(¢e), —L(t) cos(O));
Boleta que llisca sobre una corba

N =1, F =mg;
Dues lligadures (equacions locals de C;): l

fl(ri t) — O)fZ(ri t) — O;

q = s (distancia sobre C;); r = r(s, t).

Pendol doble oscil-lant en un pla o\
N=2F=mg,F =mg,;
Dues lligadures: 12 — 12 =0, (' — 1r)? = I"? = 0; y -
X =S'W)xS'WY; (4.9) = (0.9, 7
r(p,¢') = (Isin(p),—Lcos(¢)) m

r'(p, ") = (Isin(p) + U'sin(¢’), —1 cos(p) — ' cos(¢"))



Dues masses connectades per una molla que llisquen sobre una corba C
N = 2;
F=mg+ k(' —r), ,
F =m'g+k(r—1');

m
Model newtonia de la gravitacio
N arbitrari;
Fi=Y s G%(rj —1;), G = 6.67 x 107N m2Kg~%;
rj—rl-

No hi ha lligadures i com a coordenades podem usar les 3N coordenades
cartesianes dels punts.



Espai d’estats

S c EY x EY x R, format pels punts (ry,...,Ty,Vq, ..., Uy, t) tals que
(ry,..,ry,t) € X; i amb (vq, ..., vy) velocitats possibles segons les lliga-
dures.

Notem que (v4, ..., V) han de complir les relacions

0fa Ofa _ _
Zl arl + at - O, C( - ) ...,m.

Per altra banda,

. or; -
— — n |-
Vi =T = k=15, 9t 5, - [*]

Coordenades de I'espai d’estats: (q1, ..., Gn, 415 > Gy t).
or; _ 0r; d 0r; _ Of;
dqr  0qx’ dtoqx  0qy

Lema.

Prova. La primera relacié resulta de [*] i |]a segona de la regla de la cade-
na i el teorema d’Schwarz (sobre les segones derivades).



Equacions de Lagrange

T=Y%N, 2m;v? (energia cinética)

or; i ari)z

Zl 1 Zml (Zk

T; = partdeT homogénia de grauien les q;

Iy = )= 12m1 (Zk g;l QR)Z

T =T, siles lligadures no depenen del temps.
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Teorema (Lagrange). L'evolucié d’un sistema mecanic amb lligadures ho-
lonomes es regeix per les equacions

d 0T oT

dt 94y — daqn = Qk (k = 1, ...,n),

arl

_ yN
on Q = 2i=1 Fi -5

(forces generalitzades).

Prova. Si en l'interval dt el vector r; varia dr;, el treball W produit per
les forces en aquest interval és

W =2;F;-dr;=2;F, (Z"
=Zk(ZiFi 'g_;i)qu i (ZiFi '%)dt

= 2k Qrdqy + Q. dt

ory
ot

or;

ari
dqy + > dt)

on hem posat Q; = ),; F



Com que per la segona llei de Newton tenim
F; = mry,
també podem escriure:

W = Zimii*i . dr-

_Zlml (Zk arld k+ﬁdt)
= Soemi (5 (Fi - 50) = i Gros) dag + Qudt

— Y. m. (L '..af‘i)_-..ia"i)
_Zl,kml (dt(rl 9dx ri dt dqy dCIk'l'Qtdt

_ M(; 2 (i) = L (St ))qu + Quat

d oT oT
- Zk (dt aqy B aqk) qu + Qtdt’

10
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’ af‘i ari

on en el tercer pas hem usat la relacio 90, — 94 (primera igualtat del le-
k k
. ., d 6ri ai‘i .
ma) i en el quart la relacio — = (segona igualtat del lema). Ara les
atdqx  0qg

equacions de I'enunciat resulten de comparar els coeficients de dg; en
les dues expressions de W.

Remarca. Si no hi ha lligadures, i usem les coordenades cartesianes origi-
nals, les equacions de Lagrange equivalen a les equacions de Newton.

Exemple (Expressid del moviment d’una particula en un pla usant coor-
: 1 : :
denades polars). Tenim T = Em(x2 + y2). Per expressar T en les coor-

denades polars r i @, derivem respecte de t les relacions
X =7COS@, y=rSsing:
X =71TCcosS@ —r@sing,y =7rsin® + r¢o cos @.

Substituint en I'expressio de T, resulta
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T = %m(fz + (r9)?).

Calculem ara les forces generalitzades Qi Q,:

Q, =F-%=F-(cos<p,sin<p) =F-r=E,
. or . _ 1 _
Q(p_F-%— F-(—rsing,rcosp) =F-r- =r1F,,

on F. i F, son les projeccions ortogonals de F

sobre la direccio r i sobre la perpendicular a
aquesta direccio.

Finalment, a partir de |'expressio de T en

termes de 7 i ¢ és immediat calcular les ex-
ddT 4T d T oT

ressions - - i obtenim
P dtor or ' dtoep Jdo’

gue, en aquest exemple, les equacions de Lagrange son

mit — mr¢?* = F., mr?$ + 2mroi = rk,,.



13

Lligadures ideals

Considerem un sistema mecanic amb lligadures holonomes
fo(ry,...,Tp,t) =0 (a =1, ...,m).

Direm que aquestes lligadures son ideals si per a qualsevol configuracio

existeixen 4, € R tals que

R; = Zala% (en notacié compacta: R = ), 1, 9f,)

on R; és la resultant de les forces de lligadura sobre la i-esima particula
(observem que les A, generalment depenen de les r; en el seu conjunt, i
possiblement de t, pero que no depenen de i).

La utilitat del concepte de lligadura ideal prové, d'una banda, del fet que
es compleix en moltes circumstancies (almenys en primera aproximacio)
i, de 'altra, que la contribucid de les forces de lligadura en el calcul de les
forces generalitzades és O per a lligadures ideals.
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Exemple. La lligadura d'un péndol simple és ideal. En efecte, la lligadura
té la forma

fry=r?-12=0,

on [ és la longitud del pendol i r el vector de posicid de la massa del pen-
dol respecte del punt de suspensio. Per altra banda, la forca de lligadura
R és paral-lela al pendol, és a dir, R = ur per algun u € R. Ara només cal
observar que

of _

Pl 21,

de manera que

_ 29 4 _
R—/lar,l—,u/Z.
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Exemple. Les lligadures d'un pendol doble son ideals.

En efecte, si O és el punt de suspensid del primer péndol i i 1’ sén els
vectors de posicio respecte de O de les corresponents masses m i m’,
aleshores les forces de lligadura R i R’ tenen la forma seguent:

R=ur+pu(r—-r), RR=py-r),

on u, 1’ sdn nombres reals (hem usat la tercera llei de Newton, segons la
qual la forca que m exerceix sobre m' és igual, pero de signe contrari, a la
que m’ exerceix sobre m). Per altra banda les lligadures son

f=r*=1°=0, f'=0"-1r)>-1?=0,
de manera que

O _ o, 9 o, o[ o
or or of or
of' 2(r—r") 2(r' =)
R jur+p'(r—r)|p'@ —1)

OoR

U — oer—r"), L= 20 —
- =20r-1), —=2(r —7),

d’on resulta que
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R=2YL %L g = ,1 +/1'af
or or

amb A =pu/2iA" = u'/2,iaixo estableix I'afirmacio.

Exemple. Considerem una particula que es mou sense friccidé sobre una
superficie variable f(r,t) = 0 (en aquest cas, I'espai de configuracid és,
per a cada t, la superficie X; = {r € E3|f (r,t) = 0}). Donat que no hi ha
friccio, la forga de lligadura és perpendicular a X, ja que en cada instant

la superficie no pot exercir cap forca tangencial sobre la particula. Per al-

of

tra banda, sabem que el gradient — =

és un vector perpendicular a X;, de

af

manera que la forca de lligadura R i el gradlent son paral-lels. Per tant,

existeix A € Rtal que R = AE’ i aix0 prova que la lligadura és ideal.
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Exemple. Un solid rigid es pot pensar com un conjunt de particules pun-
tuals de masses m; (i = 1, ..., N) sotmeses a les lligadures

Z(Ti—rj)z_dizj=0r

on d;; son constants. Si posem R;; per denotar la forca de lligadura que
L] Lj

m; exerceix sobre m;, llavors
Rij = w;j(r; — 1)),
on u;; € Riu;; = wj;, per latercera llei de Newton.

Si definim A;; = ,ul-j/4, llavors
Yijlij o o =X 24 (e — 1) — 2i 22y (ry — 1)

= Xjtkj (T —17})
= YRy =Ry

i aixo estableix que les lligadures d'un solid rigid son ideals.
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Exemple. Considerem una particula que es mou sense friccido sobre una
corba X; (possiblement variable). La forca de lligadura R és perpendicular
a la corba, ja que la no existencia de friccio ens diu que la corba no pot
exercir forces tangencials sobre m. Si la corba ve donada per les equaci-
ons f(r,t) =0, g(r,t) = 0 (aixdo sempre és possible localment), alesho-
res df /Or i dg/o0r formen una base del pla perpendicular a X; i, per
tant, existeixen A, u € R tals que

af adg
R=1— T H

i aix0 prova que les lligadures f i g son ideals.
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Teorema. En un sistema mecanic amb lligadures holonomes ideals, Ia
contribucio de les forces de lligadura en les forces generalitzades és
nul-la.

arl

Prova. La part de la forca generalitzada Q; = );; F; que correspon a

6ri
dqy

les forces de lligadura R; és ),; R; - —. Si les Iligadures fo sON ideals, sa-

a
6ri’

0 or; 0
Ya oYt 25, e,
0qk or; 0qx & = 0qx

I,

bem que existeixen funcions 4, tals que R; = )., 1, de manera que

ja que f, ésidenticament nul-la com a funcio de les gy,.
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Remarca. D'ara endavant, només considerarem sistemes amb lligadures
holonomes ideals i posarem F; per denotar la forca neta (és a dir, la que
resulta de descomptar les forces de lligadura) sobre la particula i-esima.
Aixi, doncs, F; és la suma de les forces d'interaccié amb les altres particu-
les i de les forces aplicades, i per al calcul de les forces generalitzades
nomeés ens cal tenir en compte aquestes forces.

Corol-lari. L’evolucié d’un sistema mecanic amb lligadures holonomes
ideals ve regit per les equacions de Lagrange

40T _OT _ o ket ..m
dtoq, 0qx U L0=10m),
ari

on Qp =YV, F; son les forces generalitzades corresponents a les

0qk
forces netes.
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Remarca (Principi de d'Alembert). Podria semblar, quan considerem el teorema
anterior, que les forces de les lligadures ideals no fan treball. Aixo, pero, no és
aixi, ja que per disposar de lligadures dependents del temps cal incorporar una
potencia externa (una certa motoritzacio) per a realitzar-les, i d'aquesta poten-
cia una part pot apareixer com a potencia de les forces de lligadura. De fet, si
tenim lligadures holonomes ideals f, ..., f;;; i, amb les notacions usades fins ara,

] L : . .
R, =), , a—fi‘, llavors la potéencia W = );; R; - T; produida per les forces R; és

igual a — ), Aa% (és una conseqguéencia immediata de la regla de la cadena).
En particular resulta que W = 0 si les lligadures ideals son independents del
temps (aquest fet, que equival a dir que les forces de lligadura de les lligadures

ideals independents del temps no fan treball, es coneix com a principi de
d’Alembert dels treballs virtuals).
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Exemple (Problemes d'estatica). El principi de d’Alembert es pot usar per
resoldre problemes d'estatica en els quals les lligadures sén ideals. En un
sistema mecanic estatic, les forces totals (incloent-hi les de lligadura) han
de ser nul-les. En particular, el treball d'aquestes forces en qualsevol vari-
acio infinitesimal de la configuracio del sistema ha de ser 0. Ates que les
forces de lligadura, per a lligadures ideals, no fan treball, en resulta que

el corresponent treball de les forces netes F; (les que resulten
d’ometre les forces de lligadura) també ha de ser 0.

Per aplicar aquest fet, cal descriure la configuracio del sistema en coor-
denades generalitzades g; i imposar que en una variacio infinitesimal dg;
d'aquesta configuracio el treball de les forces externes i d'interaccid que
actuen sobre el sistema és 0. Per a una il-lustracié d'aquest metode, ve-
geu |'exercici M.3.1.
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Equacions d’Euler-Lagrange

Si les forces F; tenen la forma

F; = —g—:i = —grad, (V), F = —adV enforma compacte,

diem que son conservatives i que V és una funcio potencial.

Un sistema mecanic conservatiu és un sistema mecanic amb lligadures
holonomes ideals i forces netes conservatives.

Potencial newtonia

V= G2i<]~mim]-/|ri —rjl .

Notem que d(1/r) = —r~3r, d'on @, —— = ——— (r; — ;).

ri |ri—rj| o |ri—rj|3
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Remarca. Si tenim masses m; situades en punts r;, la for¢a que aquestes
masses exerceixen sobre una particula de massa unitat situada en un
punt r és

gr) = GZilri_L:,lg(ri —-T1)

av

(té dimensions d'una acceleracid). Aquesta forca és igual a —=> on V,

anomenat potencial gravitatori corresponent a les masses m;, s'expressa
per la formula

V) =G6Yi—

r-r;|

Per una distribucio continua de massa en una regio K, la formula que do-
na el potencial creat per aquesta distribucio en un punt r és

Vr) =G [, B2

|r—x|

on p(x) és la densitat de massa en el punt x.
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Remarca (Interpretacid del potencial). Si r i ' sén dos punts, la diferén-
cia V(r) — V(r") coincideix amb el treball fet per la forca F = —aV al
llarg de qualsevol camiy amb origen rifiar’, ja que

fyF dy = fy -V -dy=—WV@")-Vv@)=V(r)-v).

Si V s'anul-la a I'infinit, com ara en el cas del potencial gravitatori, V(1) és
el treball fet pel camp de forces F al llarg de qualsevol cami amb origen r
i fi a l'infinit, o bé el treball fet contra les forces del sistema all llarg de
qualsevol cami amb origen a l'infinit i fi en la configuracio r.

av av

Lema. Si F; = — o i les lligadures son holonomes, llavors Q, = 0
i k

Prova. Regla de |la cadena.

Definicio. La lagrangiana d’un sistema conservatiués L =T — V.
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oL

Teorema (Euler-Lagrange). Per un sistema conser-
. .7 . . 2
vatiu, I'evolucid es regeix per les equacions

d oL 0L
dtdoqg, 0dq,

BANCANAZIUNALA SVIZRA. &

SCHWEIZERISCHE NATIONALBANK

0(k=1,..,n).

Prova. Basta usar el lema anterior per expressar les

& VHEZZ/S ITYNOZYN YONVE [ -

: 1%

| notar que — = 0.
Qx q 2dn
Definicio. Es diu que un sistema mecanic amb lligadures holonomes és
lagrangia, definit per la lagrangiana L = L(q, q,t), si la seva evolucio es
regeix per les equacions

En particular, doncs, el teorema anterior ens diu que un sistema mecanic
. ‘r . 3
conservatiu és lagrangia, amb lagrangiana L =T — V.
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Exemples sense lligadures
Multioscil-lador harmonic

Considerem el sistema lagrangia definit per la lagrangiana

=1 =1
L=z§miéli2—2§ki%2-
=1 =1

Les equacions d'Euler—Lagrange donen, com és immediat de comprovar,
el sistema d'equacions
rniqi===——kiqi (i== 1,".,n).

Aixi, doncs, g; evoluciona, independentment de les demés coordenades,
com un oscil-lador harmonic de freqliencia angular w; = /k;/m,;.
Meés endavant veurem que en I'entorn d’una configuracio d’equilibri es-

table, tot sistema conservatiu es pot aproximar per un multioscil-lador
harmonic, tal com ja hem vist en el cas d’un grau de llibertat.
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Particula en un potencial central

Una particula es mou en un potencial central V (és a dir, V és una funcid
de la distancia 7 a un punt fix 0). Com que les superficies equipotencials
son esferes, la forca és paral-lela a r. En particular, el pla (1, r) és cons-
tant. Podem, doncs, suposar que el moviment té lloc en un pla. Si en
aquest pla prenem coordenades polars (1, @), la lagrangiana és

L=-m@2 +12¢?) — V().
Les dues equacions d'Euler—Lagrange que se'n dedueixen son
mit —mr@? = =V', dimr?¢)/dt = 0.

La segona equacid ens déna que ¢ = h/mr?, on h és una constant. Subs-
tituint a la primera equacio, obtenim m# — h? /mr3 = —=V’, que en prin-
cipi ens permet obtenir r com a funcié de t. Substituint en la segona
equacio, podem obtenir ¢ com a funcié de t.



29

Remarca. La constant h = mr?¢ = r(m(rcj))) de I'exemple anterior és el mo-
, . h 1 N s
ment angular de la particula respecte de O i e ET(T(p) I'area escombrada

pel radi vector r per unitat de temps (en particular resulta que aguesta area és
constant, de manera que la «segona llei de Kepler» és valida per a qualsevol po-
tencial central, incloent-hi, és clar, el potencial newtonia produit per una massa
situada en el punt 0).

Exemples amb lligadures
Pendol simple

Podem prendre com a coordenada generalitzada
I'angle @ que forma el pendol amb la vertical (ori-

entada en sentit ascendent). Si [ denota la longitud

\ . 1 5
del péndol i m la seva massa, llavors T = Emlch2 i

V =mgy = —mgl cos @. Per tant,
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oL v oL aT

e ' = — 2.
70 30 mglsin @, 39 90 ml“@,

i I'equacio de Lagrange ens dona que
@ +ksing =0, k=g/l,

qgue coincideix amb 'equacio establerta al capitol anterior per un altre
metode.

Magquina de Atwood

Dues masses m i m' estan lligades als extrems

d’una corda penjada d’una politja tal com indica m
O

la figura. Suposem les masses de la corda i de la
politja son negligibles, i que el gir de la politja és

sense friccid. Hi ha una unica coordenada inde- X | — x

pendent, ja que si coneixem la posicio d'un dels ®m
pesos la de l'altre queda determinada pel fet m
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qgue la longitud de la corda que els relliga és fixa. Amb les notacions de |la
figura,

T = %(m +mHx?, V=-mgx—m'g(l—x),
de manera que
L= %(m + m')x%? + mgx + m' g(l — x).

La corresponent equacio del moviment és

m-m'

X = gm+m’

amb |la qual cosa veiem que es tracta d'un moviment uniformement acce-

m—-m'

lerat amb acceleracié g -
m+m
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Boleta lliscant sobre barnilla que gira
En aquest exemple estudiarem el moviment d'un punt material de massa

m que es desplaca sense friccio sobre una barnilla recta que gira horit-
zontalment amb velocitat uniforme w al voltant d'un punt O de |a barni-

lla.

Siguin 7 i ¢ coordenades polars del o

punt material respecte del punt O, /

tal com indica la figura. Tenim

L=T-= %m(f"z +r2g?) = %m(f"z + 1r2w?).

. 0L . daL . . 0L .,
Tenim — = mr, —— = mi i — = mw?*r. L'equacié d’Euler—Lagrange
or dt or or

equival, doncs, a
V= w?r.

Aquesta equacio s'integra facilment multiplicant per 7: obtenim la relacio
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w2 — 2

a r+c

on ¢ és una constant arbitraria. Per tant

7 = i\/wzrz +c.
Posem 1 i 7y per denotar elsvalorsderir perat = 0. Aixi

c =718 — wré

, per tant, les condicionsc =0, ¢ > 0i ¢ < 0 equivalen, respectivament,
d |7"0| = WYy, |7"0| > w7y [ |T'0| < wry.
El cas ¢ = 0 es regeix per l'equacidé v = *+wr, de manera que

r =ryet®t,

Suposem ara ¢ > 0 i definim ¢’ > 0 per la relacié ry = %sinh(c’). Si

7o > 0, llavors obtenim

C
r = —sinh(wt + ¢’).
W



Si, en canvi, 7y < 0, el que s'obté és que

Ve

r = —sinh(|—wt + ¢'}|).
w

Finalment, suposem que ¢ < 0 i definim ¢’ > 0 per la relacio

V—c

Ty = Tcosh(c’). Sity > 0, llavors
V—c
r = ——cosh(wt + ¢'),
w
mentre que si 75 < 0, llavors
V—c
r = ——cosh(|—wt + c'|).

w

34
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Massa puntual lliscant sobre una circumferéncia Q)

Considerem una massa puntual m que es mou
sense friccid sobre una circumferencia vertical de
radi r que gira al voltant del seu diametre vertical
amb velocitat angular constant w. Si posem @ per
denotar I'angle que forma el radi de la particula

amb el diametre vertical (orientat en sentit des-
cendent), I'expressio per a l'energia cinetica és

T = mr4(¢? + (wsin(@))*?),

ja que la velocitat en sentit tangencial (r¢) és perpendicular a la velocitat
deguda a la rotacid (r sin(p)w).

Com que l'energia potencial és -mgr cos(), I'equacio d'Euler--Lagrange
ens dona que

mr?¢p — mrw? sin(¢) cos(p) + mgr sin(p) =0,



gue equival a

r¢ = rw? sin(@) cos(¢) — g sin(y) .
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Exercicis M.3 (Formalisme lagrangia)

M.3.1. Una barra rigida situada en un pla vertical i els ex-
trems de la qual es recolzen en una paret vertical (ex-
trem superior) i en un pla horitzontal (extrem inferior).
Suposem, a més, que l'extrem inferior esta relligat a la
paret per una corda inextensible horitzontal perpendicu-
lar a la paret. Si podem negligir la friccié dels extrems de
la barra amb |a paret i el pla horitzontal, respectivament,
demostreu que la tensio de la corda és
mg
2tan(a)’

on m és la massa de la barra i a és I'angle que forma la
barra amb el pla horitzontal.
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M.3.2. 1) Escriviu lI'energia cinetica, usant coordenades generalitzades apropia-
des a cada cas, d'una particula de massa m constreta a moure's sobre:

a) una esfera;
b) un cilindre circular recte;
c) un paraboloide de revolucio.

2) Si la particula esta sotmesa a una forca neta F i les lligadures sén ideals, tro-
beu I'expressio de la forca generalitzada corresponent a cada coordenada i es-
criviu les equacions del moviment corresponents.

M.3.3. Considerem un pendol simple de longitud [ i suposem que el seu punt de
suspensio es pot moure sense friccid sobre una corba donada C. Demostreu que
les lligadures d'aquest sistema son ideals.

M.3.4. Amb les notacions de I'exemple de la pagina 5, deduiu que les equacions
d’Euler—Lagrange d’un pendol esferic de longitud [ = [(t) sOn les seglients:

216 + 16 — ¢? sin(0) cos(8) = g sin(H)
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21sin(0) ¢ — 21 cos(8) 8¢ + Lsin(0)p = 0

M.3.5. Considerem el sistema format per una boleta de massa m que es mou
sotmesa a la forca de la gravetat F = (0,0, —mg) sobre I’espiral d'equacions pa-
rametriques

x=acos(g), y = asin(g) ,

on a, b sén constants positives. Proveu que el moviment de la particula es regeix
gb®

aZ2+b2’
gb*

a2+b2

per l'equacié z = — Es tracta, doncs, d'un moviment uniformement acce-

lerat amb acceleracio (respecte de la direccid vertical).

M.3.6. Trobeu la lagrangiana i les equacions del moviment d’un pendol pla el
punt de suspensio del qual es pot moure sense friccid sobre una recta horitzon-
tal.

M.3.7. Trobeu la lagrangiana i les equacions del moviment d’un pendol pla do-
ble respecte dels angles ¢ i ¢’ que formen el primer i el segon fil amb la vertical.
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M.3.8. Sigui L la lagrangiana d'un sistema lagrangia i suposem que L = L' + Z—{,

on f = f(q,t) (posarem L = L’ per denotar aquest fet). Demostreu que les

equacions d'Euler—Lagrange de L coincideixen amb les de L'.

M.3.9. La lagrangiana d'una particula de massa m que es mou en un pla vertical
sota els efectes de la gravetat és L = %m(icz + y%2) —mgy, on x i y sén les
components horitzontal i vertical, respectivament, de la posicio de m. Compro-
veu que si escrivim equacions d’Euler—Lagrange usant en lloc de L una qualse-
vol de les funcions

L' = mxy —mgy

1 1 . .2 . 1 .
L’ =mgy — Emgxy2 —mx3y — E'my2

obtenim les mateixes equacions del moviment que amb L (aixo és, X = 0,

y=-9)

M.3.10. Mostreu que l'acceleracio d'una circumferencia que roda sense lliscar
. ] 7 1 L 7 ’ Iu . LI 4

per un pla inclinat és > sin(a), on a és I'angle d'inclinacié del pla (suposem

qgue la circumferencia és vertical i que el seu punt de contacte es mou sobre una
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recta de maxim pendent). Proveu també que el minim valor del coeficient de

. e . . . , 1 4
friccio que garanteix que no hi ha lliscament és Etan(a).

M.3.11. Un sistema mecanic és descrit per una lagrangiana L(q,q,t), on
q = (q4, .--,q,). Siimposem m lligadures addicionals ¢;(q,t) =0, s =1, ...,m,

mostreu que l'evolucié del sistema obeeix a les equacions de Lagrange

d 0L dL Z A,
— = ) As(t)
dqx . >

dtaqk aqk’

on A¢(t) son funcions desconegudes de t. Obervem que és un sistema de n ecu-

acions, que, junt a les m equacions de lligadura, formen un sistema de n +m
. . . \ . 5

equacions que determinen les n + m incognites qq, -.., 4.

M.3.12. Un sistema mecanic consta de dues masses puntuals iguals unides per
una barnilla rigida de longitud [ i massa negligible. Les masses es mouen en un
pla horitzontal i de manera que la velocitat del punt mitja de la barnilla sempre
és paral-lela a la barnilla. Si per descriure la configuracio del sistema s’utilitzen
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coordenades cartesianes (x4, Y1), (x,,y,) de cada massa, escriviu les equacions
de lligadura existents i estudieu si son holonomes.

M.3.13. Considereu la maquina d’Atwood composta de la
figura. Suposeu que les masses de les politges i de les cor-
des sén negligibles, i que no hi ha cap forca de friccio.

1) Escriviu les equacions de les lligadures.

2) Escolliu coordenades generalitzades independents i es-

. : : ., m’
criviu la lagrangiana del sistema (en funcié d’aquestes co- ®
ordenades).

3) Calculeu I'acceleracio de cadascuna de les tres masses. m,

mq

M.3.14. Determineu el nombre de graus de llibertat i, utilitzant coordenades
generalitzades adients, escriviu la lagrangiana i les equacions del moviment d’un
pendol simple tal que el seu punt de suspensid oscil-la harmonicament al llarg
d’una linea horitzontal amb freqiencia w i amplitud a.
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M.3.15. Una massa puntual m llisca sense friccido sobre I'helix vertical donada
. 2T . 2T
per les equacions x = acos—-z,y = asin—-z.

1) Escriviu la lagrangiana de I'esfera utilitzant com a coordenada generalitzada
la coordenada z de I'esfera.

2) Proveu que I'esfera descriu un moviment de caiguda uniformement accelerat
gb?
4m2a2+b? "

amb acceleracio

3) Suposant que inicialment I'esfera es troba en repos a una altura h, determi-
neu el temps que trigara en passar pel punt (a, 0,0) i calculeu la forga de lliga-
dura que actua sobre m quan passa per aquest punt.

M.3.16. Una massa puntual m sotmesa a
I"accié de la gravetat esta subjecta a dues mo-
lles idéntiques de constant recuperadora k i

longitud natural [y, tal com mostra la figura
(els punts A i B estan fixats). Suposeu, a més,

qgue la massa només es mou en el pla vertical.
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1) Calculeu la lagrangiana del sistema en coordenades cartesianes.

2) Comproveu que si la distancia de m a I'origen de coordenades és molt petita
comparada amb [, I'energia potencial es pot aproximar per

k(x? + y%)?
412

Vo(x,vy) = kx? + + mgy .

3) Considereu el sistema lagrangia de lagrangiana Ly, = T — V. Determineu-ne
les posicions d’equilibri.

Notes

1. Cadascuna de les equacions de lligadura f, ens dona una restriccio, en cada
instant, per a les posicions que poden ocupar les masses puntuals. Com veurem
en els exemples, la natura d’aquestes restriccions es pot expressar generalment
en llenguatge geometric.
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2. Posant q = (q4, ..., qy), les equacions d’Euler—Lagrange es poden condensar

d 0L 0L

enlarelacio————=20.
dtdq 0q

3 (Potencials generalitzats). L'equacio de Lagrange es transforma en la forma

d'Euler—Lagrange si les forces son conservatives. Aquesta transformacio també

és possible si les forces generalitzades que no deriven d'un potencial, diguem-ne
d oM M

Qy, es poden expressar en la forma Q;, = FTEEPRRIE P per un cert observable
k k

M. Si aquest és el cas, és clar que només cal posar L=T —V — M, on V és el

potencial de les forces conservatives. Direm que M és un potencial generalitzat.
Aquesta mena de potencials apareixen en l'estudi de la dinamica de particules
carregades sota camps magnetics.

4. Corben—Stehle, pag. 45.
5. Corben-Stehle, pag. 88.



