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Notacions i convencions 
 

Sigui ܸ: ܫ → Թ una funció real diferenciable definida en un interval ܫ ⊆ Թ 
(no necessàriament finit) i considerem l'equació diferencial 

݉
݀ଶݔ
ଶݐ݀ ൌ െܸ′ሺݔሻ,݉ ൐ 0	. 

Aquesta equació pot  ser pensada com a un model del moviment d'una 
partícula puntual de massa ݉ sotmesa a la força െܸᇱሺݔሻ quan ݉ ocupa la 
posició ݔ ∈ ‐D'aquest model en direm un sistema conservatiu unidimen .ܫ
sional o amb un grau de llibertat. La funció ܸ s'anomena potencial del sis‐

tema. Notem que  l'acceleració ݔሷ ൌ ௗమ௫
ௗ௧మ

 és de signe contrari al de ܸ′ሺݔሻ, 
de manera que la velocitat augmenta en punts on la gràfica de ܸሺݔሻ bai‐
xa  i disminueix en punts on ܸሺݔሻ puja. Notem també que el sistema no 
canvia si ܸሺݔሻ es substitueix per ܸሺݔሻ ൅ ‐constant, cosa que expres ܥ ,ܥ
sarem escrivint ܸሺݔሻ ≡ ܸሺݔሻ ൅  .ܥ
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Exemple. L'oscil∙lador harmònic  
ሷݔ݉ ൌ െ݇ݔ 

és un sistema conservatiu unidimensional amb 
potencial la paràbola   

ܸሺݔሻ ൌ ଵ
ଶ
ݔ)  ଶݔ݇ ∈ Թ). 

 
Dinàmica dels sistemes 1D 

Multiplicant la relació ݉ௗమ௫
ௗ௧మ

ൌ െܸ′ሺݔሻ per ݔሶ  s'obté que 
݀
ݐ݀ ൬

1
ሶݔ2݉

ଶ൰ ൌ െ
݀
ݐ݀
ሺܸሺݔሻሻ	, 

la qual cosa demostra que la quantitat 

ܧ ൌ 	
1
2 ሶݔ	݉	

ଶ ൅ ܸሺݔሻ 

és constant en el decurs del moviment de ݉  (també es diu que és una 
quantitat conservada, o una integral primera, del moviment). De ܧ en di‐
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em energia de  la partícula (relativa a  la coordenada ݔ). Notem que ܧ és 
suma d'un terme cinètic  ଵ

ଶ
ሶݔ݉ ଶ i del potencial ܸሺݔሻ. 

Remarca. En general ݔሶ  no coincideix amb la velocitat ݒ de ݉ i, per tant, 
ଵ
ଶ
ሶݔ݉ ଶ no coincideix amb  l'energia cinètica ଵ

ଶ
 ଶ de ݉ relativa aݒ݉ l'espai 

en el qual es mou (v., per exemple, l’estudi del pèndol simple més avall). 
 

Com que el terme cinètic és no negatiu, s'ha de complir ܸሺݔሻ ൑  on la ,ܧ	
igualtat  val  si  i  només  si  ሶݔ ൌ 0.  El  conjunt  dels  punts   ݔ que  satisfan 
ܸሺݔሻ ൑  és unió d'intervals tancats amb interiors disjunts i els extrems ܧ	
d'aquests  intervals s'obtenen a partir del conjunt de punts que complei‐
xen la condició ܸሺݔሻ ൌ   .ܧ

A la figura de la pàgina següent ho hem il∙lustrat per a quatre valors de ܧ. 
Si ܧ ൌ ,ଵ, tenim els intervals ሾ݂ܧ ݃ሿ i ሾ݈,∞ሿ (suposant que ܸሺݔሻ ൏  ଵ perܧ
ݔ ൐ ݈);  si  ܧ ൌ  ,ଶܧ els  intervals  ሾܿ, ݀ሿ,  ሾ݁, ݄ሿ  i  ሾ݇,∞ሿ;  si  ܧ ൌ  ,ଷܧ ሾܾ, ݅ሿ  i 
ሾ݆,∞ሿ; i si ܧ ൌ  .ସ, només ሾܽ,∞ሿܧ
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Possible gràfic de la funció potencial ܸሺݔሻ i intervals en els quals és 
possible el moviment segons diverses energies. 

 

Si ሾݔଵ,  ଶሿ és un delsݔ intervals corresponents a ܧ  (admetem, doncs, que 
ሶݔ ଵ pot ser െ∞), la velocitatݔ ଶ pot ser ∞ i queݔ  és no nul∙la en l’interval 
obert ሺݔଵ,  ଶሻ. Per tant, siݔ la velocitat  inicial és positiva (negativa),  l'evo‐
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lució és de ݔଵ envers ݔଶ (de ݔଶ envers ݔଵ). Per altra banda, si ݔଵ (ݔଶ) és 
finit, la velocitat és nul∙la en el punt ݔଵ (ݔଶ).  
 
En el  cas d'un  interval  finit  ሾݔଵ,  ,ଶሿݔ i  suposant que ܸᇱሺݔଵሻ, ܸᇱሺݔଶሻ ് 0, 
l'evolució del sistema és un moviment de ݔଵ a ݔଶ seguit d'un moviment 
de ݔଶ a ݔଵ, i com que en cada punt ݔ la velocitat és la mateixa en els dos 
casos,  llevat del  signe,  veiem que es  tracta d'un moviment periòdic de 
període ܶ, on ܶ/2 és el temps que tarda el sistema en anar de ݔଵ a ݔଶ. 
Per exemple, amb les notacions de la figura de la pàgina anterior, veiem 
que aquest moviment periòdic es produeix en l’interval ሾ݂, ݃ሿ per l'ener‐
gia ܧଵ, 
en  l’interval  ሾܿ, ݀ሿ o  l'interval  ሾ݁, ݄ሿ per  l'energia ܧଶ;  i en  l'interval  ሾܾ, ݅ሿ 
per l'energia ܧଷ. 
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Període de les oscil∙lacions 

Remarquem que de l'equació  ܧ ൌ 	 ଵ
ଶ
ሶݔ	݉	 ଶ ൅ ܸሺݔሻ obtenim 

ݔ݀
ݐ݀ ൌ േටଶ

௠
ሺܧ െ ܸሺݔሻሻ	, 

d’on  

ݐ ൌ ට௠
ଶ න

ݔ݀
ඥܧ െ ܸሺݔሻ

൅ ܿ	, 

ܿ una constant que depèn de les condicions inicials. Aquesta integral ens 
dóna ݐ com a funció de ݔ  i per tant, almenys  implícitament, ݔ en funció 
de ݐ. En particular podem obtenir la fórmula del període ܶ: 

ܶ ൌ √2݉න
ݔ݀

ඥܧ െ ܸሺݔሻ

௫మ

௫భ
	. 

Si ݔଶ és  infinit  (com ara, amb  les notacions de  la  figura de  la pàgina 5, 
l’interval ሾܽ,∞ሿ per a  l'energia ܧସ), el moviment és de ݔଵ envers ∞ si  la 
velocitat inicial és positiva. Si la velocitat inicial és negativa, el moviment 
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arriba fins a ݔଵ i després canvia de sentit i prossegueix com en el cas an‐
terior. Consideracions anàlogues es poden fer si ݔଵ ൌ െ∞. 
 

Remarca.  Fins  ara  hem  exclòs  la  consideració  de  condicions  com  ara 
ܸ′ሺݔଶሻ ൌ 0, és a dir, punts del gràfic de ܸሺݔሻ amb tangent horitzontal en 
els quals es compleix a més que ܸ ൌ ‐Ho hem fet perquè aquesta situa .ܧ
ció especial dóna lloc a una evolució diferent: com que en un tal punt te‐
nim ݔሶ ൌ 0 i ݔሷ ൌ 0, si la partícula arribés en un temps finit a un tal extrem 
 ଵ siݔ ଶ, s'hi quedaria per sempre. Un comentari similar val per a l'extremݔ
ܸ′ሺݔଵሻ ൌ 0. Resulta, però, que el  temps per arribar‐hi és  sempre  infinit 
(v. M.2.8, pàgina 17). 
 

Exemple. El període de l'oscil∙lador harmònic ݉ݔሷ ൌ െ݇ݔ és 

   ܶ ൌ 4ඥ݉/݇ ׬ ௗ௫
√௔మି௫మ

௔
଴ ൌ   .݇/ඥ݉ߨ2	

En particular, és independent de l’elongació màxima ܽ. La relació entre els perí‐
odes  ଵܶ i  ଶܶ corresponents a les masses ݉ଵ i ݉ଶ és, doncs,  ଵܶ/ ଶܶ ൌ ඥ݉ଵ/݉ଶ, o 
bé,  ଵܶ

ଶ/݉ଵ ൌ ଶܶ
ଶ/݉ଶ. Adonem‐nos, finalment, que ݇ ൌ  .ଶ݉/ܶଶߨ4
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Pèndol simple 

Aplicarem  les  idees anteriors per obtenir el perí‐
ode d'un pèndol simple que efectua oscil∙lacions 
d'amplitud  màxima   ,ߙ |ߙ| ൏  .ߨ En  aquest  cas 
podem  prendre  ݔ ൌ ߮,  on  ߮  és  l'angle  que  el 
pèndol  fa amb  la vertical. Com que  l'acceleració 
de ݉ sobre  la circumferència de radi ݈ és ݈ ሷ߮   i  la 
força  efectiva  (tangencial)  sobre  ݉  és  igual  a 

–݉݃ sinሺ߮ሻ, tenim 
݈ ሷ߮ ൌ–݃ sinሺ߮ሻ ൌ െܸᇱሺ߮ሻ, 

ܸሺ߮ሻ ൌ െ݃ cosሺ߮ሻ. 
Així, doncs, 

ܧ ൌ ଵ
ଶ݈ ሶ߮

ଶ െ ݃ cosሺ߮ሻ 
és una integral primera. L'amplitud màxima ߙ 
s'obté quan  ሶ߮ ൌ 0, de manera que 

l߮

m

mg	
g	

െ݃	

ߨ
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ܧ ൌ െ݃ cosሺߙሻ. 
Substituint en l'equació anterior, i simplificant, obtenim que 

ሶ߮ ൌ ටଶ௚
௟
ሺcosሺ߮ሻ െ cosሺߙሻሻ	, 

o bé 

ݐ݀ ൌ
݀߮

ටଶ௚
௟ ሺcosሺ߮ሻ െ cosሺߙሻሻ

ൌ 	
݀߮

2ට௚
௟ ൫sinଶ൫

ఈ
ଶ൯െsinଶ൫

ఝ
ଶ൯൯

	 

(hem usat la identitat cosሺ߮ሻ െ cosሺߙሻ ൌ 2 sinଶ൫ഀమ൯ െ 2 sinଶ൫കమ൯). 
Així, doncs, si ܶ és el període de les oscil∙lacions, tenim 

ܶ ൌ 4න
݀߮

2ට௚
௟ ൫sinଶ൫

ఈ
ଶ൯െsinଶ൫

ఝ
ଶ൯൯

ఈ

଴
ൌ 2ට௟

௚න
݀߮

ටsinଶ൫ఈଶ൯െsinଶ൫
ఝ
ଶ൯

ఈ

଴
 

ൌ 2ට௟
௚න

݀߮/ sinሺఈଶሻ

ට1 െ sinଶ൫ఝଶ൯ /sinଶ൫
ఈ
ଶ൯

ఈ

଴
	. 
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Fent el  canvi  sinሺߦሻ ൌ sin൫കమ൯ /sin൫
ഀ
మ൯  i posant ݇ ൌ sin൫ഀమ൯, després d'al‐

guns càlculs (notem que el denominador de la darrera integral és cosሺߦሻ i 
que ݀߮ ൌ 2sin൫ഀమ൯ cosሺߦሻ /ߦ݀ cos൫

ക
మ൯), obtenim que 

ܶ ൌ 4ට௟
௚
න

ߦ݀
ඥ1 െ ݇ଶsinଶ ߦ

గ ଶ⁄

଴
	. 

La  integral d'aquesta expressió és una  funció de ݇, anomenada  integral 
el∙líptica  completa de primera espècie, ܭሺ݇ሻ,  i el  seu desenvolupament 
en sèrie resulta ser1 

గ
ଶ ൬1 ൅ ቀଵଶቁ

ଶ
݇ଶ ൅ ቀଵ൉ଷଶ൉ସቁ

ଶ
݇ସ ൅ ቀଵ൉ଷ൉ହଶ൉ସ൉଺ቁ

ଶ
݇଺ ൅ ⋯൰ 

Per tant, 

ܶ ൌ ට௟ߨ2
௚ ቆ1 ൅

݇ଶ

4 ൅
9݇ସ

64 ൅⋯ቇ ൌ ට௟ߨ2
௚ ቆ1 ൅

ଶߙ

16 ൅⋯ቇ	. 

                                                            
1
 http://en.wikipedia.org/wiki/Elliptic_integral 



12 
 

Remarquem  que  per   molt ߙ petit  obtenim  el  període  d'un  oscil∙lador 
harmònic de freqüència angular √௟ ௚⁄ . En canvi, ܶ → ∞ quan ߙ →  que) ߨ
equival a ݇ → 1).  
 

Gràfica de la funció el∙líptica de primera espècie 

  
 
 
 
 
 

Si posem  ଴ܶ per  indicar el període d'un pèndol harmònic de  la mateixa 
longitud ݈, la taula següent ens dóna el quocient ܶ/ ଴ܶ en funció de ߙ: 
 

ߙ 0  10 20 30 40 50 60 70 80
ܶ/ ଴ܶ  1.000  1.002 1.008 1.017 1.031  1.050 1.073 1.102 1.138

 
 
 

ߙ 90  100  110  120  130  140  150  160  170 
ܶ/ ଴ܶ  1.180  1.232 1.295 1.373 1.470  1.594 1.762 2.008 2.439

2/ߨ
K(k) 

k 1
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Remarca. Notem que en la fórmula ܧ ൌ ଵ
ଶ
݈ ሶ߮ ଶ െ ݃ cosሺ߮ሻ el terme cinè‐

tic  ଵ
ଶ
݈ ሶ߮ ଶ no coincideix amb l'energia cinètica ଵ

ଶ
ଶݒ݉ ൌ ଵ

ଶ
݈݉ଶ߮ଶሶ  de ݉. De 

fet, les solucions de l'equació ݉ݔሷ ൌ െܸᇱሺݔሻ d'un sistema unidimensional 
no canvien si la substituïm pel resultat de multiplicar‐la per una constant 
positiva arbitrària. Anàlogament, el terme potencial െ݃ cosሺ߮ሻ no coin‐
cideix amb el potencial െ݈݉݃ cosሺ߮ሻ ≡ ݈݉݃ሺ1 െ cosሺ߮ሻሻ	corresponent 
a la posició de ݉ a l'espai (notem, però, que el factor per passar del pri‐
mer al segon és també ݈݉). 
 

Remarca  (Petites  oscil∙lacions).  Si   ଴ݔ és  un mínim  relatiu  del  potencial 

ܸሺݔሻ,  podem  escriure  ܸሺݔሻ ≡ ଵ
ଶ
ଶߦ݇ ൅ ܱሺߦଷሻ,  on  ߦ ൌ ݔ െ  ଴ݔ i 

݇ ൌ ܸ′′ሺݔ଴ሻ. Això mostra que en  l'entorn de ݔ଴ podem aproximar el sis‐
tema  unidimensional ݉ݔሷ ൌ െܸᇱሺݔሻ  pel  sistema ݉ߦሷ ൌ െ݇ߦ,  que  és  un 
oscil∙lador harmònic. 
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Exercicis M.2 (Sistemes conservatius 1D) 

M.2.1. Mostreu que les solucions de l’oscil∙lador harmònic ݉ݔሷ ൌ െ݇ݔ tenen la 
forma ݔ ൌ ܣ cosሺ߱ݐ ൅ ߶ሻ, on ߱ ൌ ඥ݇/݉ i ܣ,߶ ∈ Թ. Trobeu també ܣ i ߶ per a 
les condicions inicials ݔሺ0ሻ ൌ ᇱሺ0ሻݔ ,଴ݔ ൌ  .଴ݒ
 

M.2.2. Considereu una partícula de massa ݉ sotmesa a un potencial del  tipus 
ܸሺݔሻ ൌ ሺ݁ିଶఈ௫ܦ െ 2݁ିఈ௫ሻ, amb ܦ,  constants positives ߙ (se'n diu el potencial 
de Morse). 
1.  Comproveu  que  si  ܦ– ൏ ܧ ൏ 0,  el  moviment  té  lloc  en  un  cert  interval 
ሾݔ୫୧୬,  Què passa si .ܧ ୫ୟ୶ en funció deݔ ୫୧୬ iݔ ሿ i determineu els valors	୫ୟ୶ݔ
 ?0	�	ܧ

2.  Proveu  que  el  període  del  moviment  quan  ܦ– ൏ ܧ ൏ 0  ve  donat  per 

ܶ ൌ గ
ఈට

ଶ௠
|ா|
	. 

3.  Com  és  el moviment  si  la  partícula  està  inicialment  en  repòs  en  el  punt 
ݔ ൌ  Amb quina velocitat passarà per l’origen de coordenades en aquest ?ߙ/1
cas? 
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M.2.3. L’espai de fases (o d’estats) del sistema ݉ௗమ௫
ௗ௧మ

ൌ െܸ′ሺݔሻ és el pla Թଶ de 

coordenades ሺݔ, ሶݔ ሻ. A una solució ሺݔሺݐሻ, ሶݔ ሺݐሻሻ correspon una corba parametrit‐

zada d’aquet pla. Com que ܧ ൌ 	 ଵ
ଶ
ሶݔ	݉	 ଶ ൅ ܸሺݔሻ  és una quantitat  conservada, 

veiem que les solucions són corbes de nivell de la funció 

       ,ݔሺܪ ሶݔ ሻ ൌ ଵ
ଶ
ሶݔ	݉	 ଶ ൅ ܸሺݔሻ , 

dita hamiltonià (o hamiltoniana) del sistema. Descriviu les corbes de nivell dels 
següents sistemes: 
1.  ܸሺݔሻ ൌ  (caiguda lliure d’una partícula) ݔ݃݉
2.  ܸሺݔሻ ൌ ଵ

ଶ
 ଶ (oscil∙lador harmònic)ݔ݇

3.  ܸሺݔሻ ൌ െ݉௚
௟
cosሺݔሻ (pèndol simple). 

 
M.2.4. Un sistema mecànic d’un grau de llibertat general té la forma 
    ሷݔ݉ ൌ ݂ሺݔ, ሶݔ ,  ,ሻݐ
on ݂ሺݔ, ሶݔ , ,ݔ ሻ és una funció diferenciable deݐ ሶݔ  i ݐ. El cas en què ݂ només depèn 
de ݔ ens dóna els sistemes conservatius. Els casos en què ݂ només depèn de ݐ, o 
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de ݔሶ , en principi també es poden resoldre per quadratures. Per il∙lustrar aquesta 
idea, estudieu la solució general dels sistemes següents: 
 

ሷݔ݉  .1 ൌ ܽ cosሺ߱ݐ ൅ ߶ሻ. 
ሷݔ݉  .2 ൌ െܾݔሶ  (força de fricció proporcional a la velocitat). 

 
M.2.5. El radi de la Terra és ܴ ൌ 6370 km. 
 

1.  Calculeu el potencial del moviment unidimensional d'una partícula que es  
mou radialment en el camp gravitatori terrestre. 

2.  Descriviu les corbes de fase (o corbes de nivell de l’energia ܧ). [Observació: 
en  lloc de  l’energia ܧ, es pot prendre  l’energia per unitat de massa ܧ/݉, 
que també és una integral primera]. 

3.  Calculeu la velocitat d'escapament d'un coet llançat des de la superfície de 
la Terra  (és a dir,  la velocitat mínima necessària per sortir de  la  influencia 
gravitatòria terrestre). 
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M.2.6.  L'energia d'un pèndol  simple ve donada per ܧ ൌ ଵ
ଶ
݈݉ଶ ሶ߮ ଶ െ ݈݉݃ cos߮ 

(en lloc de aquesta expressió podem fer servir ܧ/݈݉).  
1.  Descriviu les corbes de fase. 
2.  Amb quina velocitat s’hauria de  llançar  la massa des de  la posició ߮ ൌ 0 
per tal de que arribi amb velocitat zero a la posició ߮ ൌ  Quant temps ?2/ߨ
trigarà en arribar? 

 
M.2.7.  Una  partícula  està  sotmesa  al  potencial  unidimensional  ܸሺݔሻ.  Sigui 
ሾݔଵ,  ଶሿ unݔ interval del domini de ܸሺݔሻ tal que ܸሺݔଵሻ ൌ ܸሺݔଶሻ ൌ  ܧ i ܸሺݔሻ ൏  ܧ
per a tot ݔ ∈ ሺݔଵ, ‐ଶ. Proݔ ሻ té un màxim relatiu aݔଶሻ. Suposem a més que ܸሺݔ
veu que el temps que tarda la partícula per anar de ݔଵ a ݔଶ és infinit. 
 
M.2.8. Considerem una partícula de massa ݉ que es mou per un medi  (l’aire, 
per exemple) que ofereix una resistència al moviment proporcional a la velocitat 
de la partícula, amb constant de proporcionalitat ݇. Suposeu que aquesta força 
de fricció és l’única que hi actua. 
1. Trobeu i resoleu l’equació del moviment de la partícula (podeu escollir les co‐
ordenades de manera que ݉ es mogui sobre l’eix ܱݔ). 
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2. Calculeu la velocitat de la partícula en funció de la posició. 
3. Calculeu  la distància  total que recorre  fins que s’atura  (noteu que això pro‐
porciona un mètode experimental per determinar ݇). 
 
M.2.9. Considereu encara la partícula del cas anterior, però ara suposant que, a 
més de la força de fricció, hi actua la gravetat (moviment d’un projectil). 
1. Trobeu i resoleu la nova equació del moviment (ara el moviment és bidimen‐
sional, a menys que la velocitat inicial sigui en la direcció de l’eix vertical). 
2. Suposant que la partícula es llança horitzontalment des d’una altura ݄, i amb 
velocitat ݒ଴,  calculeu,  ignorant  la  fricció,  la distància que  recorrerà  (horitzon‐
talment) fins que toca a terra. 
3. Proveu que si  la partícula es  llança verticalment cap avall acaba assolint una 
velocitat límit que és independent de la velocitat inicial. 
 
M.2.10. Una partícula de massa ݉ baixa per un pla  inclinat  sota  l’acció de  la 
gravetat. Si al moviment s’oposa una força de fricció de mòdul ݇݉ݒଶ, on ݒ és la 
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velocitat de la partícula, i inicialment ݉ està en repòs, calculeu el temps que ne‐
cessita per recórrer una distància ݀. 
 
M.2.11. Un objecte puntual situat a l’origen de coordenades atrau una partícula 
de massa ݉ que està sobre l’eix d’abscisses segons la llei ܨ ൌ െ݉݇ଶ/ݔଷ.  Supo‐
sant que la partícula es troba inicialment en repòs a una distància ݀ de l’objecte, 
calculeu el temps que tarda en arribar a l’origen. 
 
M.2.12.  Considereu  la mateixa  situació  del  problema  anterior.  Proveu  que  la 
força que actua sobre  la partícula deriva d’un potencial  i calculeu‐lo. Suposant 
que  la  partícula  es  troba  inicialment  a  una  distància ݀  de  l’origen,  però  allu‐
nyant‐se a velocitat ݒ଴, calculeu fins a quina distància màxima de l’origen arriba‐
rà. En particular, determineu la velocitat d’escapament en funció de ݀. 


