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Notacions i convencions

Sigui V:I — R una funcio real diferenciable definida en un interval I € R
(no necessariament finit) i considerem l'equacidé diferencial

d*x ,
mﬁ =—-V'(x),m>0.

Aquesta equacio pot ser pensada com a un model del moviment d'una
particula puntual de massa m sotmesa a la for¢ca —V'(x) quan m ocupa la
posicio x € I. D'aguest model en direm un sistema conservatiu unidimen-
sional o amb un grau de llibertat. La funcio V s'anomena potencial del sis-

N A : :
tema. Notem que l|'acceleracié X = —.z €5 de signe contrari al de V'(x),

de manera que la velocitat augmenta en punts on la grafica de V' (x) bai-
xa i disminueix en punts on V(x) puja. Notem també que el sistema no
canvia si V(x) es substitueix per V(x) + C, C constant, cosa que expres-
sarem escrivint V(x) = V(x) + C.



Exemple. L'oscil-lador harmonic %
mx = —kx

es un sistema conservatiu unidimensional amb

potencial la parabola

V(x) = ikx2 (x € R). X
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Multiplicant la relacio m% = —V'(x) per x s'obté que
d /1 d
——mx?) = ——(V ’
dt (2 e ) ar V)

la qual cosa demostra que la quantitat

1
E = me2+V(x)

és constant en el decurs del moviment de m (també es diu que és una
quantitat conservada, o una integral primera, del moviment). De E en di-
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em energia de la particula (relativa a la coordenada x). Notem que E és

o \ o 1 . . °
suma d'un terme cinétic mez i del potencial V (x).

Remarca. En general x no coincideix amb la velocitat v de m i, per tant,
1 L] [] . . [ ] . \ [ ] 1 . [ ]
mez no coincideix amb l'energia cinetica Emvz de m relativa a I'espai

en el qual es mou (v., per exemple, I'estudi del pendol simple més avall).

Com que el terme cinétic és no negatiu, s'ha de complir V(x) < E, on la
igualtat val si i només si x = 0. El conjunt dels punts x que satisfan
V(x) < E és unid d'intervals tancats amb interiors disjunts i els extrems
d'aquests intervals s'obtenen a partir del conjunt de punts que complei-
xen la condicio V(x) = E.

A la figura de la pagina segient ho hem il-lustrat per a quatre valors de E.
Si E = E4, tenim els intervals [f, g] i [[, o] (suposant que V(x) < E; per
x >1); si E=E,, els intervals [c,d], [e,h] i [k,]; si E = E3, |b,i] i
|j,];isi E = E4, només |a, o].
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Possible grafic de la funcié potencial V (x) i intervals en els quals és
possible el moviment segons diverses energies.

Si [x1,x,] és un dels intervals corresponents a E (admetem, doncs, que
X, pot ser oo i que x; pot ser —o0), la velocitat x és no nul-la en l'interval
obert (x4, x,). Per tant, si la velocitat inicial és positiva (negativa), I'evo-
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lucié és de x; envers x, (de x, envers x;). Per altra banda, si x; (x,) és
finit, la velocitat és nul-la en el punt x; (x,).

En el cas d'un interval finit [xq, x,], i suposant que V'(x,),V'(x,) # 0,
I'evolucié del sistema és un moviment de x; a x, seguit d'un moviment
de x, a x4, i com que en cada punt x la velocitat és la mateixa en els dos
casos, llevat del signe, veiem que es tracta d'un moviment periodic de
periode T, on T /2 és el temps que tarda el sistema en anar de x; a x,.
Per exemple, amb les notacions de la figura de la pagina anterior, veiem
que aquest moviment periodic es produeix en l'interval [f, g] per I'ener-
gia k4,

en l'interval [c,d] o l'interval [e, h| per I'energia E,; i en l'interval [b, (]
per I'energia E;.



Periode de les oscil-lacions

Remarquem que de l'equacié E = % m x% + V(x) obtenim

d
=k 2 -V,

tzx/%f\/Eile(x)H’

¢ una constant que depen de les condicions inicials. Aquesta integral ens

d’on

déna t com a funcidé de x i per tant, almenys implicitament, x en funcio
de t. En particular podem obtenir la féormula del periode T

X2 d
T =+V2m : :
X1 \/E — V(X)

Si x, és infinit (com ara, amb les notacions de la figura de la pagina 5,

interval |a, oo] per a I'energia E4), el moviment és de x; envers oo sj la
velocitat inicial és positiva. Si la velocitat inicial és negativa, el moviment
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arriba fins a x; i després canvia de sentit i prossegueix com en el cas an-
terior. Consideracions analogues es poden fer si x; = —oo.

Remarca. Fins ara hem exclos la consideracié de condicions com ara
V'(x5) = 0, és a dir, punts del grafic de V(x) amb tangent horitzontal en
els quals es compleix a més que V = E. Ho hem fet perque aquesta situa-
cio especial dona lloc a una evolucid diferent: com que en un tal punt te-
nimx =0iX =0, sila particula arribés en un temps finit a un tal extrem
X,, S'hi quedaria per sempre. Un comentari similar val per a I'extrem x; si
V'(x1) = 0. Resulta, pero, que el temps per arribar-hi és sempre infinit
(v. M.2.8, pagina 17).

Exemple. El periode de I'oscil-lador harmonic mi = —kx és

d
T =4,/m/k foa\/ﬁ = 2mm/k.

En particular, és independent de I'elongacié maxima a. La relacio entre els peri-

odes T; i T, corresponents a les masses m, i m, és, doncs, T; /T, = \/m;/m,, o

bé, TZ /m,; = T /m,. Adonem-nos, finalment, que k = 4m?m/T?2.



Pendol simple

Aplicarem les idees anteriors per obtenir el peri-
ode d'un pendol simple que efectua oscil-lacions
d'amplitud maxima «, |a| < m. En aquest cas
podem prendre x = @, on @ és l'angle que el
pendol fa amb la vertical. Com que l'acceleracio
de m sobre la circumferencia de radi [ és [@ i la

forca efectiva (tangencial) sobre m és igual a

-mg sin(g), tenim

lp =-gsin(p) = V' (@),
V(p) = —g cos(p).

g

Aixi, doncs,

E = 31¢* — g cos(p)
és una integral primera. L'amplitud maxima «

s'obté quan ¢ = 0, de manera que
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E = —g cos(a).
Substituint en I'equacié anterior, i simplificant, obtenim que

b = [ (cos(p) - cos(@)),

o bé
dg B de

\/ZTg(cos(cp) — cos(a)) 2\/%(sin2 (%) —sin?(%))
(hem usat la identitat cos(¢) — cos(a) = 2sin*(%) — 2 sin?(2)).

Aixi, doncs, si T és el perl'ode de les oscil-lacions, tenim

=l 2|t (st(“)—smzwl)/ QJ
_ 9 éj‘ @ Slﬂi
Ji), v

dt =

sin? (“) —sin? (‘0)

1 — sin? (%) /sin? (%) |
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Fent el canvi sin(§) = sin(g) /sin(%) i posant k = sin(g), després d'al-
guns calculs (notem que el denominador de la darrera integral és cos(§) i
que dp = Zsin(g) cos(&)dé/ cos(%)), obtenim que

/2 d
T=4\Fj J |
9Jo /1 —k?2sin2¢

La integral d'aquesta expressid és una funcié de k, anomenada integral

el-liptica completa de primera especie, K(k), i el seu desenvolupament
. 1
en serie resulta ser

(0 @) e () (3 e )
Per tant,

T—z\F 1+k2+9k4+ —Z\F 1+“2+
— 4T3 4 " 64 — g 16 '

'http://en.wikipedia.org/wiki/Elliptic_integral
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Remarquem que per a molt petit obtenim el periode d'un oscil-lador
harmonic de freqtiencia angular \/1/g. En canvi, T = o quan a = @ (que
equivala k — 1).

Grafica de la funcid el-liptica de primera espécie

M
/2

k 1
Si posem Ty per indicar el periode d'un pendol harmonic de la mateixa

longitud [, la taula seglient ens dona el quocient T /T en funcié de a:

a 0 10 20 30 40 50 60 70 30
T/T,|1.000{1.002(1.008|1.017|1.031/1.050{1.073|1.102|1.138

04 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170
T/Ty|1.180|1.232|1.295|1.373|1.470|1.594|1.762|2.008|2.439
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Remarca. Notem que en la formula E = %lcpz — g cos(@) el terme cine-
tic %lcpz no coincideix amb I'energia cinética %mvz = %mlzcﬁz de m. De
fet, les solucions de I'equacio m¥ = —V'(x) d'un sistema unidimensional
no canvien si la substituim pel resultat de multiplicar-la per una constant
positiva arbitraria. Analogament, el terme potencial —g cos(¢) no coin-
cideix amb el potencial —mgl cos(¢) = mgl(1 — cos(p)) corresponent

a la posicio de m a l'espai (notem, pero, que el factor per passar del pri-
mer al segon és també ml).

Remarca (Petites oscil-lacions). Si x, és un minim relatiu del potencial

: 1 .
V(x), podem escriure V(x)= Ekfz +0(3), on &E=x—x, |
k = V" (xq). Aixdo mostra que en I'entorn de x, podem aproximar el sis-

tema unidimensional m¥ = —V'(x) pel sistema mé = —k¢, que és un
oscil-lador harmonic.



14

Exercicis M.2 (Sistemes conservatius 1D)

M.2.1. Mostreu que les solucions de "oscil-lador harmonic mx = —kx tenen la

formax = Acos(wt + ¢),onw = /k/miA, ¢ € R. Trobeu també A i ¢ per a
les condicions inicials x(0) = xg, x'(0) = v,.

M.2.2. Considereu una particula de massa m sotmesa a un potencial del tipus

V(x) = D(e 2% — 2¢~%*), amb D, a constants positives (se'n diu el potencial

de Morse).

1. Comproveu que si -D < E <0, el moviment té lloc en un cert interval
| Xmin» Xmax | 1 determineu els valors Xin | Xmax €0 funcid de E. Que passa si
E[10?

2. Proveu que el periode del moviment quan -D < E <0 ve donat per

T ,Zm
T—E m

3. Com és el moviment si la particula esta inicialment en repos en el punt
x = 1/a? Amb quina velocitat passara per I'origen de coordenades en aquest
cas?
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2
M.2.3. L'espai de fases (o d’estats) del sistema m% = —V'(x) és el pla R? de

coordenades (x,x). A una solucid (x(t), x(t)) correspon una corba parametrit-
zada d’aquet pla. Com que E = % m x* + V(x) és una quantitat conservada,
veiem que les solucions son corbes de nivell de la funcio

H(x, %) = % mx® +V(x),
dita hamiltonia (o hamiltoniana) del sistema. Descriviu les corbes de nivell dels

seguents sistemes:
1. V(x) = mgx (caiguda lliure d’una particula)

2. V(x) = %kx2 (oscil-lador harmonic)

3. V(x) = —m%cos(x) (péndol simple).

M.2.4. Un sistema mecanic d’un grau de llibertat general té la forma

mix = f(x, x,t),
on f(x,x,t) és una funcié diferenciable de x, X i t. El cas en qué f només depén
de x ens ddna els sistemes conservatius. Els casos en que f només depende t, o
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de x, en principi també es poden resoldre per quadratures. Per il-lustrar aguesta
idea, estudieu la solucié general dels sistemes seglients:

1. mxX = a cos(wt + ).
2. mXx = —bx (forca de friccié proporcional a la velocitat).

M.2.5. Elradide la Terraés R = 6370 km.

1. Calculeu el potencial del moviment unidimensional d'una particula que es
mou radialment en el camp gravitatori terrestre.

2. Descriviu les corbes de fase (o corbes de nivell de I'energia E). [Observacio:
en lloc de I'energia E, es pot prendre |'energia per unitat de massa E/m,
que també és una integral primeral.

3. Calculeu la velocitat d'escapament d'un coet llancat des de la superficie de
la Terra (és a dir, la velocitat minima necessaria per sortir de la influencia
gravitatoria terrestre).
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M.2.6. L'energia d'un pendol simple ve donada per E = %ml2<p —mglcos @

(en lloc de aquesta expressid podem fer servir E /ml).
1. Descriviu les corbes de fase.
2. Amb quina velocitat s’hauria de llangar la massa des de la posicio ¢ =0
per tal de que arribi amb velocitat zero a la posicié ¢ = m/2? Quant temps
trigara en arribar?

M.2.7. Una particula esta sotmesa al potencial unidimensional V(x). Sigui
[x1, X,] un interval del domini de V(x) tal que V(x;) =V(x,) = EiV(x) <E
per a tot x € (x4, Xx,). Suposem a més que V' (x) té un maxim relatiu a x,. Pro-
veu que el temps que tarda la particula per anar de x; a x, és infinit.

M.2.8. Considerem una particula de massa m que es mou per un medi (I'aire,
per exemple) que ofereix una resisténcia al moviment proporcional a la velocitat
de la particula, amb constant de proporcionalitat k. Suposeu que aquesta forca
de friccid és I"Unica que hi actua.

1. Trobeu i resoleu I'equacio del moviment de la particula (podeu escollir les co-
ordenades de manera que m es mogui sobre I'eix Ox).
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2. Calculeu la velocitat de la particula en funcio de |a posicio.
3. Calculeu la distancia total que recorre fins que s’atura (noteu que aixo pro-
porciona un metode experimental per determinar k).

M.2.9. Considereu encara la particula del cas anterior, pero ara suposant que, a
més de la forca de friccid, hi actua la gravetat (moviment d’un projectil).

1. Trobeu i resoleu la nova equacié del moviment (ara el moviment és bidimen-
sional, a menys que la velocitat inicial sigui en la direccio de |’eix vertical).

2. Suposant que la particula es llanca horitzontalment des d’una altura h, i amb
velocitat vy, calculeu, ignorant la friccid, la distancia que recorrera (horitzon-
talment) fins que toca a terra.

3. Proveu que si la particula es llanca verticalment cap avall acaba assolint una
velocitat limit que és independent de la velocitat inicial.

M.2.10. Una particula de massa m baixa per un pla inclinat sota I'accio de la
gravetat. Si al moviment s’oposa una forca de friccié de modul kmv?, on v és la
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velocitat de la particula, i inicialment m esta en repos, calculeu el temps que ne-
cessita per recorrer una distancia d.

M.2.11. Un objecte puntual situat a 'origen de coordenades atrau una particula
de massa m que esta sobre I'eix d’abscisses segons la llei F = —mk?/x3. Supo-
sant que la particula es troba inicialment en repos a una distancia d de I'objecte,
calculeu el temps que tarda en arribar a I'origen.

M.2.12. Considereu la mateixa situacid del problema anterior. Proveu que la
forca que actua sobre la particula deriva d’un potencial i calculeu-lo. Suposant
que la particula es troba inicialment a una distancia d de 'origen, pero allu-
nyant-se a velocitat v, calculeu fins a quina distancia maxima de I'origen arriba-
ra. En particular, determineu la velocitat d’escapament en funcié de d.



