MMF 10 / 2. Electromagnetisme

9. Potencial vector i potencial escalar
S. Xambé

B Potencial vector (o potencial magnetic)
B Potencial escalar

B Condicio de Lorentz

B Equacions dels potencials

B Quadripotencial i quadricorrent



Potencial vector (o potencial magnetic)
Com que div(B) = 0, existeixen camps A tals que
B =rot(A).

Direm que A és un potencial magnetic, o un potencial vector.

Remarca. Recordem que en el cas magnetostatic tenim una formula expli-
cita que dona un potencial magnetic, formula que caldra modificar apropi-
adament en el cas general (ho farem posteriorment).

El vector 4 esta determinat llevat transformacions de la forma
A A =A+0«a, [*]

on a és una funcio arbitraria. Seguint la nomenclatura acceptada, aquestes
transformacions seran anomenades transformacions de gauge del poten-
cial magnetic (“gauge” es pronuncia guéitx).



Potencial escalar
Observem ara que

rot(E) = —0;B = —6t(rot(A)) = —rot(d;A4),
d’on

rot(E +0d;4A) =0.

Per tant, existeix una funcid ¢ (determinada llevat constants additives) tal
que

E + atA — —ad) P
és a dir, tal que

Direm que ¢ és un potencial escalar. Donat A, esta definit llevat d’una
constant additiva.
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Notem que si fem la transformacié de gauge [*], llavors la corresponent
transformacio de ¢ és

b ¢ =¢ -0
En efecte, si A’ = A + d«, es tracta de buscar la funcid ¢’ tal que
E=-0¢'—0.,A.
Com que també tenim E = —d¢ — d;A, restant obtenim
0=0(p' —¢p)+0;(A"'—A)=0(¢p' —¢p) +0;0a =3(¢p' — ¢ + 0:).

Per tant ¢’ — ¢ + 0, a és una constant, i aix0 prova la relacid, ja que ¢ i ¢

4
estan definides llevat una constant additiva.

Per tant, tenim la seglient transformacié combinada dels potencials:

(A4,¢) » (A+0a,¢ — 0;).



Condicio de Lorentz

Quan s'han fixat els potencials electromagnetics, es sol dir que s'ha fixat el
gauge. Normalment aixo es fa escollint @ de manera que A" i ¢’ compleixin
alguna condicio addicional.

El més important en el nostre estudi és el que anomenarem gauge de Lo-
rentz: diem que (A4, ¢) compleix la condicio de Lorentz, o que esta en el
gauge de Lorentz, si

le(A) + €0H06t¢ =0.
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Proposicio. Si (4, ¢) no compleix la condicié de Lorentz, la condicio neces-
saria i suficient per tal que (4',¢") = (A+ 0da,p — d,a) la compleixi és
gue «a satisfaci I'equacio

Oa = _h, h = le(A) + Eoﬂoat¢ .
Prova. Basta adonar-se que
le(A’) + goﬂoat¢’ = le(A + aa) + goﬂoat(¢ — ata)

= h+div(da) ——02a = h+ Aa —— d%a = h+ Oa.

CZ
Corol-lari. Com que I'’equacio Oa = —h té com a solucié particular
|r—x|
1 h(x,t— . )
A plambert (T, 1) = 47.[[ r—x| dw(x),

veiem que sempre existeix un gauge de Lorentz.



Equacions dels potencials

Anem a veure ara quines equacions compleixen els potencials A i ¢, espe-
cialment quan compleixen la condicio de Lorentz.

Equacio del potencial vector. Per I'equacio d'Ampere—Maxwell, i la defini-
cio de potencials,
rot(B) = poj + Ho&oO0:E

= foJ *+ €90 (—0¢p — 0, A)
= UoJ — HoEo0(0¢P) — Uo€gIFA .
Per altra banda,
rot(B) = rot(rot(A)) = a(diV(A)) — AA.
lgualant, AA — pyeg0fA = —pugj + B(div(A)) + UogEed(0:0).
Proposicio. 0A = —uyj + 0h, on h = div(A) + €yuy0; .



Corol-lari. OA = —u,j en el gauge de Lorentz.
OA = 0 si estem en el buit.

Equacio del potencial escalar
Podem procedir similarment amb el potencial escalar. D'una banda,

div(E) = p/&,
per la llei de Coulomb-Gauss, i de l'altra,
div(E) = div(—d¢ — 9;A) = —A¢p — 3,(div(4)).
Aixi doncs Ap = —p/ey — 6t(div(A)). Restant gouo07¢ dels dos mem-
bres, A¢ — gouo0f ¢ = —p/eg — 0¢(div(A) + o110 P).
Proposicio. O¢p = — p /ey — 0:h, on h = div(A) + gyuy0; .

Corol-lari. i¢p = — p /&, en el gauge de Lorentz.
O¢p = 0 si estem en el buit.



Quadripotencial i quadricorrent
Posem a = [A, ¢]. Direm que a és el quadripotencial.
Posem j = [ugj, p/&o]. Direm que j és el quadricorrent.

L’enunciat que segueix és una conseqguencia immediata de les equacions
dels potencials.

Teorema (Equacié del quadripotencial). ODa=—j+ A, A = [0h,—0;h],
h = le(A) + Soﬂoat¢.

L’equacio del quadripotencial s'ha deduit de les equacions de Maxwell. Re-
ciprocament:

Teorema. 'equacié 0a = —j + A, A = [dh, —0;h], h = div(A4) + gyuy0;¢
implica les equacions de Maxwell per als camps

E=—-0¢—0;A, B=rot(A4).



Prova. Un petit calcul per a cada equacié de Maxwell.

div(B) = div(rot(4)) = 0.

div(E) = —div(d¢ + 0;4) = —A¢ — 9, div(4)
= p/eo + 0ch — toggdf ¢ — 0, div(4) = p/e,.

rot(E) = —rot(d¢) — d;(rot(4)) = —0d:(B).

rot(B) = rot(rot (4)) = d(div(4)) — AA = dh — p1y£,0(0,:¢p) — AA
= 0h — uyen0:(0¢) — AA = 0h + uyeyd:(E + 0;A) — AA
= 0h — OA + up&g0:E = ugj + toco0:E.
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Exercicis

E.9.1. Sigui A’ el potencial vector d’'un camp electromagnétic. Suposant que
div(4") s’anul-la a l'infinit, proveu que existeix una funcié a talque A = A’ + da
satisfa div(4) = 0 (si es satisfa aquesta condicid, es diu que el potencial esta en
el gauge de Coulomb).

. qt . .
E.9.2. Donats els potencials A(r, t) = —KST | ¢(r,t) =0,

(1) trobeu B, E, pij.

(2) Trobeu la transformacio de gauge [A', ¢'] de [A4, ¢] corresponent a la funcié

t ..
1 , i interpreteu el resultat.

a=—K—
r

E.9.3. Demostreu que en termes dels potencials la forca de Lorentz per unitat de
carrega electrica, E + v A B, ésigual a

—diA—0(¢p —v-A),ond; = 0; + v, 0, + 1,0, + 1,0, = 0y + V"



