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Energia electromagnetica. Vector de Poynting

Donat un camp electromagnetic, la seva densitat d'energia electromag-
netica es defineix per la formula

u=-gE? + 2—;032.1
Per una regido V de l'espai, la seva energia electromagnetica es defineix
per I'expressio

U= [,udw.
Finalment, el vector de Poynting es defineix per I'expressio

S=2EAB=EAH
Ko

Per una ona electromagnetica monocromatica, és un vector paral-lel a Ia
direccio de propagacio de I'ona.



Conservacio de lI'energia del camp electromagnetic

Teorema (Poynting). Si K és I'energia cinetica de les particules que es
mouen en una regio V i sobre aquestes particules no actua altra forca
qgue la de Lorentz, llavors

K =-U-ov(S).

Prova. La variacio instantania d'energia cinetica d'una particula de massa
micarregaqgésquv - E:

d (1 .
E(Emvz)=v-p=v-F=qv-(E+V/\B)=qv-E,

ja que v és perpendiculara v A B.

Aixi, doncs, la potencia exercida pel camp electromagnetic sobre ['ele-
ment de volum dw és (pdw)v - E = j - E dw, d’on resulta que

K=[j Edw.



Pero j = Mirot(B) — £00:E (per la llei dAmpere—Maxwell), i per tant
0

" E - rot(B) — ey (0,E) - E
0

J E=--

= Mi (E - rot(B) — B - rot(E)) + HiB -Tot(E) — & (0.E) - E
0 0
= —i(diV(E/\B)) — iB 0B — £yg(0+E) - E
Ko Ho
= —div(S) — d;u

Finalment

K=/[j Edo=-[(0:u)dw— [, div(s) dw

d
=——J,udw— [, S ds

= —U — ¢ov (S).
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Remarca. El teorema anterior mostra que U i ¢4, (8) representen ener-
gies, ja que l'augment (disminucié) de qualsevol d’elles equival a una
disminucié (augment) de |'energia cinetica K. L'energia U (energia elec-
tromagnetica) esta distribuida en tot el volum V segons la densitat u,
mentre que ¢y1(S) expressa la quantitat d’aquesta energia que surt de
IV per unitat de temps.

Adonem-nos que

d

oy (S) = —— (K +U),

de manera que la quantitat d’energia que surt de V per unitat de temps
coincideix amb la disminucio instantania de I’energia continguda a I/
(mecanica i electromagnetica) per unitat de temps.



Exemple: energia d’'un camp magnetic estatic

En el cas d’'un camp electric estatic, I'energia que li hem d’atribuir, segons
el teorema, és %eof E?dw. Aquest valor coincideix amb el que vam tro-
bar a (E.3, pag. 6). Alla també vam descobrir que I'energia del camp elec-

tric es podia expressar com %qub dw(x).

L \ . \ ] V4 1
L’energia d’'un camp magnetic estatic és, segons el teorema, Ef B?dw.
0

En aquest cas, pero, no hem descobert encara cap formula analoga a

%f pP dw(x). Ates que per al camp magnetic j i A fan el paperde p i ¢

per al camp electric, una tal formula podria ser %f] -Adw(x). Vegem

que aquesta conjectura es correcta. En efecte, per la llei d’Ampere,
j-A=—=rot(B)-A=—div(BAA)+—B - rot(Ad) = —div(B A A) + — B?.
Ho o Ho Ho Ko

Per tant,



Lj-Adox) == B%dw + = [ div(B A A)dw.
2 2l Ko

Perd r?B i rA s’anul-len a l'infinit, i aixi (I’largument és analeg a I’exposat

en el cas electric), Mif div(B A A)dw = 0. Tenim, doncs, que
0
1ri. __1 (p2
Zf] Adw(x) _ZuofB dw ,

com voliem demostrar.



Exemple: Estimacio del valor del camp electromagnetic d’un laser

Un raig laser de potencia p mW (miliwatt) emet un raig de llum mono-
cromatica de seccid transversa s mm?. Calcularem els valors maxims del
camp electric i magnetic en el cas que el raig estigui linealment polaritzat
i en el cas que estigui circularment polaritzat. Suposarem que el raig és
un front d'ones pla perpendicular al raig.

Posem els eixos de coordenades de manera que l'eix del raig sigui Ox.
Aleshores el camp E i B del raig tenen |la forma

E = (0,E; cos(kx — wt), E, cos(kx — wt + ¢)),
B = (0,—E, cos(kx — wt + ¢), E; cos(kx — wt) ,

on ¢ € [0,2m) és una constant.

El vector de Poynting de l'ona és § = HiE A B, és a dir,
0

S = ui (E? cos?(kx — wt) + E% cos(kx — wt + ¢))e, .
0



El flux d’aquest vector a través d’una seccio perpendicular al raig és
w = ui (E? cos?(kx — wt) + E% cos(kx — wt + ¢)) .
0

Ara sabem que aquest flux és la quantitat d'energia electromagnetica que
travessa la seccid per segon i la potencia p del laser és el promig d'aques-
ta energia,

p=(w).
Ara, per la periodicitat de la funcié cos, aguest promig és igual al del

promig w en un semiperiode, d’on en resulta (perque el promig de
cos?(x) en un semiperiode és 1/2),

S
p =2—HO(E12 +E3).

El maxim de E? = E{ cos?(kx — wt) + EZ cos?(kx — wt + ¢) no sem-

bla facil de trobar explicitament per un ¢ qualsevol.

En el cas d'una ona linealment polaritzada, ¢ = 0 i
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E? = (Ef + E%)cos?(kx — wt),

amb la qual cosa el maxim de E? és

E? + E} =&
En el cas d'una ona circularment polaritzada (¢ = /2 i E; = E,),
E? = E# (és, doncs, constant) i p = uioElz = uioEZ’ i per tant
E? =2,
S
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Exercisis

E.8.1. L'energia que cal per carregar un condensador pla de capacitat C amb

1q° . , e s .
Eq? (per definicio de C, g = CV, on V és la diferencia de po-
tencial entre les plaques del condensador). Demostreu que aquesta energia co-

una carrega q és

incideix amb la del camp electric creat pel condensador (podeu suposar que la
separacio de les plagues és negligible respecte de la seva area).

E.8.2. 1) Proveu que l'energia que cal per carregar un condensador format per
dues esferes conductores concentriques de radis 1y < 7y, i entre les quals hi ha
q2
871'80 ToT1

r1—To

el buit, és , on g és la carrega de 'esfera positiva. 2) Comproveu que
també coincideix amb I'energia del camp eléctric creat pel condensador.

3) Fent tendir ry a l'infinit, obtenim que I'energia d'una esfera conductora de ra-
2

di r carregada amb una carrega g és . Useu aquest resultat per trobar

8megr
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I"anomenat “radi classic de |'electrd”, és a dir, el radi que ha de tenir una esfera
carregada amb eC per tal que la seva energia sigui la d'un electr, és a dir, m,c?
(formula d'Einstein).

[Resposta: 1.4 X 10™°m = 1.4 fermi; un fermi és 10~ 1°m]

E.8.3. Amb les notacions emprades en el teorema de conservacié de |'energia
del camp electromagnetic, i posant k per denotar la densitat d’energia cinética,
proveu que div(S) = —d,(k + u).



Annex: Algunes unitats del SI

Magnitud Nom Simbol | Dimensions

Massa kilogram | kg kg

Longitud metre m m

Temps segon S S

Forca newton |N kg m s~?2
Treball/energia |joule J=N-m |kg m?s~2

Poténcia watt W Js71

Corrent electric | ampere A A

Carrega electrica | coulomb |C As

Potencial eléctric | volt v W/A = Wb/s = kgm?s™3A~1
Camp eléctric volt/metre |[V/m |kgms 3A71
Capacitat farad F C/V = kg im™2s*A?
Camp magnétic |tesla T Wb/m? = kgs2A~1
Flux magnétic | weber Wb Vs =kgm?s 2A™!
Inductancia henry H kg m?s~2A™2
Resisténcia ohm Q V/A = kg m?s3A2
Conductancia siemens | S A/V = kg™l m~2s3A2

13
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Notes
1. (Pag. 2) De vegades convé introduir el vectors D = ¢yE (desplacament

C 1 : . w ,
electric) i H = M—B (intensitat magnética). Per exemple, en termes d'a-
0

guests vectors tenim
u=%(E-D+B-H).

2. (Pag. 3) Aquest resultat també es coneix com a teorema de Poynting.



