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“On the theory that light is an electromagnetic disturbance, propagated in
the same medium through which other electromagnetic actions are trans-

mitted, VV [the propagation speed, which is equal to 1/\/K_,u] must be the ve-
locity of light, a quantity the value of which has been estimated by several
methods. [...] Hence the agreement or disagreement ... furnishes a test of
the electromagnetic theory of light.”

J.C. Maxwell, Treatise on Electricity and Magnetism, vol. ll, pag. 435.



Equacions d’ones en el buit
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Fet experimental: o ey = ¢~ “, c lavelocitat de la llum en el buit.

Les equacions de Maxwell en el buit, on no hi ha carregues (ni corrent),
adopten la forma seglient:

div(E) = 0 div(B) =0
rot(E) = —0,B |rot(B) = ¢ %0,E

Els calculs
d(div(E)) — AE = —AE

rot(rot(E)) = {rot(—atB) = —0,(rot(B)) = _cizatzE

d(div(B)) — AB = —AB

rot(rot(B)) = { (20,E) = 20,(rot(B)) = % 078



ens donen que

(A-502)E=0i(a-—02)B=0.

Es a dir, E i B satisfan ’equacié d’ones tridimensional de velocitat c.

Si definim I"'operador
D—A——at—62+62+62 aE
(anomenat dalembertia), les equacions d’ones queden resumides en

OF =0, aB = 0.

Nota. El dalembertia també és denotat OI12.



Ones planes

Siguin f, g i h funcions reals de variable real, diferenciables, i considerem
el camp

E = (f(kx — wt), g(kx — wt), h(kx — wt)). [+]

on k i w sén nombres reals positius. El camp E es pot interpretar com
una ona plana que es propaga en la direccié Ox, amb velocitat w/k. Els
seus fronts d’ones son plans perpendiculars a Ox (un front s’obté fent
kx — wt = a, amb a constant, d’on

a wt
X=—-+—
PR

. f(x) f(x —vt)
equacioé que representa un pla

perpendicular a Ox que es ﬂ / ﬂ / .
S S

mou amb velocitat w/k en la

&
<«

»
|

vt

direccié Ox).
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Proposicio. El camp [*] satisfa 'equacio d’ones OE = 0 si es compleix la
relacié w/k = ¢ (anomenada relacié de dispersid).*

Prova. Basta observar que Of (kx — wt) = (k% — w?/c?)f" (kx — wt), i
analogament amb g(kx — wt) i h(kx — wt).

Remarca. div(E) = kf'(kx — wt), i per tant E satisfa 'equacio de Gauss
en el buit si i només si f és constant. Com que un camp uniforme inde-
pendent del temps sempre satisfa les equacions de Maxwell, podem pro-
cedir amb I’analisi del camp

E = (O,g(kx — wt), h(kx — wt)).
’ w
Suposarem, a més, que z =cC.
Definim ara B de manera que

cB = (0, —h(kx — wt), g(kx — a)t)) =e, NE.
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Notem que rot(E) = (0,,0,0) AE = (O, —kh'(kx — wt), kg’ (kx — a)t))
ha de ser - d;B, és a dir, B = (O, —%h(kx — wt),%g(kx — wt)).
El camp B és també una ona que es propaga a velocitat ¢ en la direccid

Ox, i els seus fronts d’ona son plans perpendiculars a Ox, pero el vector
B és perpendicular a E, en tot punt i per a tot t.

Proposicio. Els camps E i B satisfan les equacions de Maxwell.

Prova. Les equacions div(E) = 0 i rot(E) = —0d;B es satisfan pel que
acabem de dir. L'equacié div(B) = 0 és directa a partir de la forma de B.

Finalment,

rot(B) = (dy,0,0) AB = —= (0, g'(ex — wt), b (kx — wt)),
Ciz(?tE = — :)—2 (O,g’(kx — wt), kh'(kx — a)t))

irot(B) = CizatE es compleix ja que w = kc.



Ones electromagnetiques monocromatiques.

Les ones electromagnetiques monocromatiques son les construides amb
el procediment anterior a partir de

E = (0, E, cos(kx — wt), E, cos(kx — wt — ¢)).”
Per x = 0, tenim el vector variable
E,(t) = (0,E; cos(wt), E, cos(wt + ¢)),

que s’anomena vector de polaritzacio ',
de I'ona.

Enelcas ¢ =0, N
E

EO(t) = (O) ElJEZ) COS((Ut),

de manera que sempre és paral-lel al
vector (0, E{, E,) i es diu que I'ona és
linealment polaritzada (figura).



Enelcas ¢ = +m/2, z
EO (t) — (O, El COS((,()t), i EZ Sln((,()t)) EZ

i Eg descriu l'el-lipse d’equacié Y

2 2
Y 4+ Z 1

Ef B3

de semieixos principals E; i E, (es diu que
I’'ona és el-lipticament polaritzada (circularment polaritzada si E; = E>).

Remarca. El 1862 Maxwell va predir I'existencia d’ones elec-
tromagnetiques: «Dificilment podem evitar la conclusio que
la llum consisteix en ondulacions transverses [és a dir, amb
E i B perpendiculars a la direccié de propagacio] del mateix
medi que és la causa dels fenomens electrics i magnéetics».
Les ones electromagnetiques predites per la teoria de Max-

Heinrich Rudolf Hertz well van ser observades experimentalment per H. Hertz el
(1857-1894)
1888.




Polaritzacidé de les ones monocromatiques

Proposicio. Per ¢ # 0,1, la polarit-
Zacio

E,(t) = (E,cos(wt), E, cos(wt + ¢))

(situada en el pla yz) és el-liptica, /

recorreguda en sentit horari si
¢ € (0,m) i en sentit antihorari si
¢ € (m,2m).

L’equacio cartesiana de I'el-lipse és

ay? — 2byz + cz* =k,

amb a=E%, b=EE,cos(¢), c =E#, k =E?EZsin?(¢). Aquesta

el-lipse esta inscrita en el rectangle y = +E,, z = +E,.

A més, el punt de tangéncia amb y = E; és Ey(0) = (E{,E, cos(¢)) i el

de tangenciaamb z = E, és (E; cos(¢), E,).
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Prova. Usant la identitat trigonometrica
cos(wt + ¢) = cos(wt)cos(¢p) — sin(wt)sin(¢),
podem escriure el vector de polaritzacio
E,(t) = (E{ cos(wt), E, cos(wt + ¢))
= (E1 cos(wt), E,cos(wt)cos(¢p) — Ezsin(a)t)sin(qb))
de la manera seglient:
E,(t) = cos(wt)v; + sin(wt)v,,
on v{ = (Eq,E,cos(¢)) i v, = (0,E,sin(¢)). Aixd0 mostra, si posem
u; = (1,0)iu, = (0,1), que la corba que descriu el vector de polaritza-
cio és la transformacié de la corba (cos(wt), sin(wt)), que és la circum-
ferencia de radi 1 amb centre a l'origen, per I'afinitat tal que
u = (uy,uy) » v=(v,0;).
Es tracta, doncs, d'una el-lipse. Com que
det,v = —E,E,sin(¢),
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I'orientacid de |la base v és negativa si ¢ € (0, m) i positiva si ¢ € (1, 2m),
de manera que el recorregut é€s en sentit horari en el primer cas i en sen-
tit antihorari en el segon.

L’equacio de |'el-lipse es troba fent calculs, que es deixen com a exercici,
a partir de I'equacié de la circumferéncia €% + n% = 1 i les equacions de
I'afinitat,
E;, E;cos(¢)
0.0=En (g g
0 E; sin(¢)
Per altra banda, la velocitat del vector de polaritzacio és
E,(t) = (—E,w sin(wt), —E,w sin(wt + ¢)).
Aixi, doncs, la tangent és vertical quan wt és un multiple enter de . Per
t = 0, per exemple, el vector de polaritzacio és Ey(0) = (Ey, E; cos(¢))
i el vector tangent és (0, —E,w sin(¢)). Analogament, la tangent és ho-
ritzontal quan wt + ¢ és un multiple enter de m. Pet t = —¢/w, per
exemple, el vector de polaritzacié és (E; cos(¢), E,) i el vector tangent
en aquest punt és (E; sin(¢),0).
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E.7.1. Amb les notacions de la proposicié anterior, proveu que les direccions
dels eixos principals de I’el-lipse de polaritzacié sén (1,p) i (1,q), amb

2
~(B2-E3)+ (B3 -B3)* +4B2E3 cos?(¢)
2E{E; cos(¢)

pP,q=

Mostreu també que els dos vertexs de |'el-lipse corresponents a la direccio
(1,p) son (t, tp), on
E,E; cos(¢)

t = )
\/szf—ZpElEz cos(¢p)+E2

Els vertexs corresponents a I'eix de direccid (1, q) es troben analogament.

E.7.2. Un electrd esta en el si d'una ona electromagnetica plana tal que

E = (E,cos(kz — wt),0,0).
Estudieu el moviment de I'electré suposant que per t = 0 esta situat a l'origen
en repos i que l'efecte del camp magnetic de 'ona és negligible.
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Notes

1. (Pag. 6) En general, una relacido de dispersido és una relacid entre
I’energia i el moment d’'un sistema. Per exemple, per una particula de
massa m, 2mE = p?, on E és I'energia cinética i p el moment. En el cas
d’un foto, I'energia és E = hf = hw (h la constant de Planck, h = h/2m,
f la frequencia i w la frequencia angular) i el moment és proporcional a k
(que es coneix com el nombre d’ones), de manera que w = ck ddna efec-
tivament una relacio entre I’energia i el moment.

2. (pag. 8) La importancia de les ones monocromatiques prové de I'analisi
de Fourier, que ens diu com expressar una ona plana com a superposicio
(combinacio lineal) d’ones monocromatiques.



