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Induccid electromagnetica

Michael Faraday (1791-1867) va descobrir experimentalment que quan
un circuit de fil conductor es mou en el si d'un camp magnetic, apareix un
1 corrent induit en el circuit. Aquest és el fenomen de la
induccio electromagnética.

L'explicacido qualitativa és, des del nostre punt de vista,
gue les carregues elementals lliures del circuit, movent-
se respecte del camp magnetic, ex-
perimenten una forca de Lorentz,

amb la qual cosa es mouran en el
circuit —i aguest moviment és el corrent induit.

Remarca. En aquest fenomen es basen els genera-

dors electrics com els esquematitzats a la figura: si

P Imant permanent

fem girar 'espira, llavors s’hi indueix un corrent. E Eix de gir de espira

F Ferro

Adonem-nos que la figura també esquematitza el
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funcionament d’un motor eléectric: si fem circular un corrent per I'espira,
llavors el camp magnetic produeix un moment de forces en la direccio de
I’eix de gir de I'espira.

Llei de Faraday

La relacid quantitativa que expressa el corrent induit va ser obtinguda
experimentalment per Faraday i estableix que la “forca electromotriu” (o
“magnetomotriu”) en el circuit és igual, pero de signe contrari, a la “vari-
acio instantania” del flux del camp magnetic a través de circuit.

Tot seguit deduirem aquesta llei a partir de la forca de Lorentz i de la re-
lacio entre el producte vectorial de vectors i I'area.

Forca electromotriu. Si F és el camp vectorial que representa la forca per
unitat de carrega sobre les carregues lliures d'un circuit y, s'anomena for-
ca electromotriu (del camp F en el circuit ¥) a la integral



T, (F) = fyF - dl,

es a dir, a la circulacio de F al llarg de y. En lloc de 7, de vegades s’escriu

femy.

Sigui ¥ un circuit de fil conductor (possiblement deformable) i S una su-
perficie tal que dS = y. Posarem y; i S; per denotar el circuit i la superfi-
cie en l'instant t.

Si estem en presencia d'un camp magnetic B, el flux d'aquest camp a tra-
ves del circuit és

¢ = ¢s,(B) = fStB - ds .

Notem que la llei de Gauss per al camp magnetic, div(B) = 0, ens diu
que @ només depende y i B, i no de la superficie S usada.

Teorema. Amb les notacions anteriors, si T és la forca electromotriu de Ia

. . . dp 1
forca de Lorentz F en el circuit variable y;, llavors T = —d—(f.
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Prova. Per definicio tenim que T = 7, (F) = fth - dl, on F és la forca de

Lorentz per unitat de carrega. Com que F = v A B, on v és el camp de
velocitats,

t=[ wAB)-dl.

Ara per la formula del producte mixt tenim que
(WAB)-dl=({dlAv)-B=—-(vAdl -B.

s Multiplicant per dt, de la segona expressid ob-
‘ tenim

—(wdt Adl) - B = —¢yaepai(B),

. Xy onelvector vdt Adl és considerat també com

I'element d'area definit pels vectors vdt i dl.

Perd @,aenqi(B) és la variacio del flux en el temps dt produida pel mo-
viment de dl. Integrant al llarg de y; ens ddna que



(dp) = [, (vdt AdD) - B,

d’on

_49 _ _ B = ] =
— fyt(vAdl) B fyt(v/\B) dl=r1.

Induccid en un circuit fix per un camp magnetic variable

Si deixem el circuit ¥ quiet i movem el camp magnetic B (per exemple
movent I'imant que el produeix), llavors també hi ha un corrent induit en
el circuit, produit per una fem identica a la del cas en que movem el cir-
cuit, sempre i quan el moviment relatiu sigui el mateix. Aixo és el que
mostra I'experiencia i el que fa esperar el principi de relativitat (PR), que
estudiarem en el capitol seglient.

Si movem B, pero, no hi ha forca de Lorentz sobre les carregues del circu-
it. Com que |'Unica cosa que mou carregues electriques immobils son els
camps electrics, hem de postular que
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Un camp magnetic variable B genera un camp electric E tal que la va-
riacio instantania del flux a traves d'un circuit y ésigual a - 7, (E):

d

[E-dl=1,(E) = - py(B),

on S és una superficie tal que dS = y.

Ara aquesta equacio ens permet deduir facilment una equacio diferencial
equivalent. En efecte, pel teorema de Stokes podem escriure

ny -dl = [ .rot(E) - ds
Per altra banda,
d
—ECPS(B) = —fSGtB -ds,

d’on obtenim la llei d'induccio de Faraday en forma diferencial:

Teorema. Si E és el camp electric creat per un camp magnetic variable,
llavors rot(E) = —0d,B.
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Remarca. Aquesta equacio, que en principi nomeés és valida per al camp
electric creat per les variacions de B, també és valida per al camp eléectric
total, ja que aquest és suma del camp electric creat per les variacions de
B i el camp de Coulomb de les carregues, el qual té rotacional nul.

Remarca. La llei de Gauss per al camp magnetic, div(B) = 0, s’ha de
considerar valida per a camps magnetics variables. A més de la no exis-
tencia de monopols, que era la interpretacio que donavem de la llei
div(B) = 0 en el cas estatic, adonem-nos que el flux de B a través de y
(és a dir, a través d’una superficie S tal que dS = y) només esta ben de-
finit si és independent de la superficie S usada, és a dir, si i només si
div(B) = 0. Finalment, adonem-nos també que la llei de Faraday i la llei
de Gauss per al camp magnetic estan estretament relacionades:
at(diV(B)) = div(9;B) = —div(rot(E)) = 0, de manera que div(B) =
0 si podem suposar que en cada punt div(B) = 0 en algun instant.
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Remarca. La unitat del flux magnetic és el weber (Wb). Per definicid, la

variacio d'un weber per segon en el flux a través d'un circuit indueix una
fem d'un volt (V= Wb/s, o bé Wb = Vs).

Notem també que Wb = T - m?, o bé T = Wb/m?.

Corrent de desplagament i equacio d’Ampere—Maxwell

La llei d'Ampére, rot(B) = puyj, és valida per al camp magneétic B creat
per un corrent estacionari. Com va observar Maxwell, ja no ho és quan
aquesta condicido no es satisfa: d’una banda div(rot(B)) = 0 per a tot
camp vectorial B, mentre que div(uyj) = uediv(j) = —ued:p (hem usat
la llei de continuitat de la carrega) i en general d;p # 0 per a corrents no
estacionaris.

Ara bé, d:p = at(div(eoE)) = div(gyd,E), de manera que

div(pofj) = —div(pgggd,E).
Per tant, div(ugj + toggd:E) = 0



10

| aix0 suggereix substituir el terme uyj de la llei d’Ampere per I'expressio
UoJ + UoEO+E, és a dir, en canviar j per j + €30, E.
Es el que va fer Maxwell.”
El terme £y0(E té dimensions de densitat de corrent i s'anomena corrent
de desplacament. De |'’equacio

rot(B) = poj + Ho&o0:E
en direm equacié d’Ampere—Maxwell (forma diferencial). La correspo-
nent equacio en forma integral és

Tos(B) = poPs(J) + pogo %QbS(E),

on S és una superficie fixa qualsevol amb vora dS.

Equacio Nom
(C) dep = —div(j) Llei de continuitat
(G) div(E) = p/e, Llei de Gauss
(AM) | rot(B) = ugj + po&o0:E | Llei d’Ampere—Maxwell
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Remarca. Considerem les equacions de la taula de la pagina anterior.

(1) L'argument anterior mostra que (C)+(G) = div(ugyj + uoegd:E) = 0.
Seguint Maxwell, aix0 ens ha portat a “postular” (AM).

(2) (G)+(AM) = (C) :

0tp — at(le(SoE)) — diV(antE) — uiodiV(‘UOgOatE)

= Mi div(rot(B) — ugj) = —div(j).
(3) (CO)+(AM) = 9, (div(E) — p/gy) = O:
0:(div(E) — p/&o) = div(0.E) — 0¢p/&o = div(j/eg + 0.E)
- div(ugj + toeg0:E) = - div(rot(B)) =0.

Koo Ho€o
La relacio d;(div(E) — p/gy) = 0 ens diu que div(E) = p/ey + C, on C
és una funcio que no depen de t. Podem deduir, doncs, la llei de Gauss

(és a dir, C = 0) si podem suposar que per a cada punt de I'espai es com-
pleix, div(E) = p/egy en algun instant t.
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Una altra manera de mirar la llei de Gauss per als camps electrics gene-
rals que estem considerant és notar que el camp electric és la suma del
camp de Coulomb de les carregues (que satisfa la llei de Gauss) i un camp
E induit per les variacions del camp magnetic i la divergencia del qual sa-
tisfa at(div(E)) = 0 : de la relacio rot(B) = ugy&y0.E entre aquest camp
E i el camp magnetic variable B que l'origina, en deduim que

at(div(E)) = div(9.E) = czdiv(rot(B)) =0
(recordem que oo = 1/c?).
Podem deduir, doncs, que div(E) = 0 si podem suposar que per a cada
punt de I'espai es compleix div(E) = 0 en algun instant t.

Exemples. (1) El corrent de desplacament entre les plagues d’un conden-
sador (pag. 16); (2) el corrent de desplacament en un corrent radial (pag.
18).
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Equacions de Maxwell

Forma diferencial

Forma integral

Tos(B) = pops(j) + HOEO%(PS(E)

div(E) = p/&g bow (E) = Q(W)/&g CG
rot(E) = —0,B tos(E) = —-¢5(B)

div(B) =0 $¢s(B) =0 G

rot(B) = uy(j + €y0+E) AM

CG, llei de Coulomb-Gauss. F, llei de Faraday.
G, llei de Gauss per al camp magnetic. AM, llei d’Ampere Maxwell.
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Remarca (Equacions de Maxwell en diferents sistemes d’unitats). Siguin

K, k' i K les constants, dependents del sistema d’unitats emprat, tals que

Fogoq = kqq'/d? és la forca de Coulomb entre dues carregues puntuals g
i g’ situades a distancia d; Fypr=xk'll"/d és la forga per unitat de longi-

tud entre dos corrents rectilinis filiformes paral-lels infinits d’intensitats [
i I' i separats per una distancia d; i rot(E) = —kd,B. Llavors resulta que
la llei de Lorentz i les equacions de Maxwell prenen la forma
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F=p(E+KvAB)
div(E) = 4nxp , div(B) =0,

rot(E) = —kdB, rot(B) = 4m %j + %BtE

Com que a més resulta que k = k'c?, I'Gltima formula es pot escriure

rot(B) = i—f%j + éatE.
Sistema K K
CGS-esu 1 1
CGS-emu c? 1
Gauss 1 c!
Sl 1/4me, 1
Heaviside-Lorentz 1/4m c~1

Vista la taula dels valors de k i k dels sistemes més importants, és imme-
diat escriure la forma concreta de les equacions de Maxwell en un qual-
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sevol d’ells. Per exemple, en el sistema de Gauss adopten la forma

1
F=p(E+Zv/\B)

div(E) = 4np div(B) =0
1 4 1
rot(E) = —ZatB rot(B) = T] + ZatE

Les equacions en el sistema de Heaviside—Lorentz s’obtenen a partir de
les d’aquesta taula fent la substitucio 4m — 1isoén les que mostren d’una
manera més clara la dualitat entre el camp electric i el camp magnetic,
fet que encara seria més manifest si tinguéssim en compte una possible
densitat de carregues magnetiques i el corresponent corrent.
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Exemples

Corrent de desplacament entre les plaques d’un condensador. Conside-
rem un condensador pla com el representat a la fi-
gura. Veurem que el corrent de desplacament en-
tre les seves plagues coincideix amb el corrent/en v

el fil que les uneix.

Sigui S una superficie que rodeja la placa positiva,

amb un petit forat circular X pel centre del qual -
passa perpendicularment el fil que hi arriba. Anem

a comprovar la llei d'/Ampere—Maxwell primer amb la superficie X i des-
présamb S.

Si el cercle X té radi 7, la circulacié del camp magnetic produit pel corrent
és 2nrB = uyl, ja que B = ugl/2nr a una distancia r del fil. Pel que fa
als dos termes de la dreta de l'equacio, el flux de ugj és ugl i el de
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UoEgD:E és zero, ja que E és nul sobre X. Per tant, la llei es compleix rela-
tivament a 2.

En el cas de §, la circulacié de B al llarg de y = 95 és uyl, pero en canvi el
flux de ugj €s nul perque no hi ha corrent de carregues que travessi S. Pel
qgue fa al flux del corrent de desplacament, només hem de tenir en comp-
te la part S’ de S que esta entre les dues plaques i que per simplificar po-
dem suposar que és una superficie plana paral-lela a les plagues. D'a-
questa manera el camp eléctric sobre S’ té la forma E = (6/gy)n, on n
és el vector normal unitari perpendicular a les plaques del condensador i
dirigit de la positiva vers la negativa. El flux de d;F és

(@) =a@) =1/

on A és |'area d'una placa, o |a densitat superficial de carrega de la placa
positiva i ¢ = Ao la seva carrega total. En resulta que el flux de puyegd:E
és uol, la qual cosa mostra que la llei també es compleix relativament a S.
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Aquest exemple és un dels que va analitzar Maxwell en les seves recer-
gues per generalitzar la llei d'Ampere.

Corrent de desplagcament en un corrent radial.
Suposem que tenim un corrent amb simetria radi-
al com el representat a la figura, com per exemple
el que produiria una petita esfera de material ra-
dioactiu de la qual surten particules a en totes di-
reccions. Aleshores la llei d’ Ampere-Maxwell apli-

cada a una esfera amb centre el del corrent, dona

la relacié Q + ] = 0 (Q la carrega total dins I'esfera, ] la carrega que surt
de I'esfera per segon), que coincideix amb el que ens ddna la llei de con-
tinuitat de la carrega.

En efecte, per raons de simetria, el camp magnetic i el camp electric tam-
bé tindran simetria radial. Com que div(B) = 0, tindrem B = 0 (és sufi-
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cient aplicar el teorema de la divergencia a una esfera S de radi arbitrari
r amb centre en el centre de simetria O). Si posem Q = Q(r, t) per deno-
tar la carrega en l'instant t dins S i E = E(r,t) per denotar la intensitat
del camp electric en l'instant t a una distancia r del centre de simetria,
llavors tindrem (llei de Gauss) E - 4mr? = Q/&,. El terme del corrent de
desplacament en la llei d'Ampere—Maxwell relativament a S és igual a
tosoE - 4nr? = uyQ. El terme del corrent de carregues relativament a la
mateixa superficie és uyJ, on J és el corrent que travessa S. Aixi, doncs, la
forma integral de la llei d'Ampére—Maxwell ens déna que Q +] = 0,
qgue, com hem dit, coincideix amb el que ddna la llei de continuitat.

Exercicis E.6 A

E.6.1. Sobre dos rails rectilinis, paral-lels, horit-

zontals, i sense resistencia situem dues barres
perpendiculars als rails amb resistencia R i mas-

sa m. Si el sistema esta sotmes a un camp mag-
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netic vertical uniforme i una barra es mou envers l|'altre en direccio paral-lela als
rails amb velocitat constant, estudieu el moviment de la segona barra. Podeu
negligir la friccio de les barres amb els rails i I'efecte sobre la segona barra del
camp magnetic generat pel corrent en la primera barra.

E.6.2. Considerem un fil rectilini infinit i a distancia [ del
fil una espira rectangular de resistencia R i dimensions

a, b, tal i com mostra la figura. Suposeu que |'autoinduc-
cio de l'espira és negligible.

1) Suposant que un corrent d'intensitat I variable recor- b
re el fil, calculeu el valor del corrent I’ induit a I'espira, i

indiqueu-ne el sentit segons el sentit de I.
[ a

2) Suposem que afegim un altre fil rectilini infinit pa-
ral-lel al primer, i també en el pla de l'espira, a distancia d del primer, com
tra la figura. Si per aquest fil passa el mateix corrent I pero de sentit contrari,
calculeu el nou valor del corrent induit.



3) Quant valdra I’ si el segon fil infinit és perpendicular
al pla de I'espira?

4) Discutiu qualitativament qué passara si l'auto-
induccio de lI'espira no és negligible.

E.6.3. Considerem dos circuits
filiformes y i y' i suposem que

Yy porta un corrent I. Sigui ¢
el flux a través de y' del camp

formula de Neumann per a M:

[

_

d
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magnetic produit per aquest corrent. La llei de Bi-
ot—Savart aplicada al corrent I implica que existeix
una constant M, que només depen dels dos circuits, tal
que ¢’ = MI. (La constant M s’anomena). Useu
I"’expressid del potencial de B per deduir 'anomenda
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dl(x)- dl’(x)
f fY’ |x—x' '
Aquesta formula prova que el valor de M, que s"anomena inductancia mutua
dels dos circuits, és de natura geometrica i que no canvia si intercanviem els pa-
pers de ¥ i ¥'. La inductancia mutua d’un circuit amb si mateix s"anomena auto-
inductancia.

E.6.4. Una espira plana vertical d’area S, resisténcia R i autoinductancia L gira
entorn d'un eix vertical amb velocitat angular constant w. Si l'espira esta immer-
sa en un camp magnetic uniforme, perpendicular a I'eix de rotacié de l'espira,
determineu la intensitat del corrent induit.

E.6.5. Proveu que la formula de Biot—Savart aplicada al corrent de desplaca-
ment dona un camp magnetic nul.



Notes
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1. (Pag. 4) El signe — de la llei de Faraday es pot interpretar de la manera

seglent: el sentit del corrent induit en el circuit és tal que el flux del

camp magnetic que crea s'oposa al flux del camp magnetic B. Aquest fet

es coneix també com a llei de Len:.

2. (Pag. 10) “One of the chief peculiarities of this treatise is the doctrine
which asserts, that the true electric current €, that on which the elec-

tromagnetic phenomena depend, is not the

D

D

¢

: : K]
same thing as &, the current of conduction, —;

EoE

E90+E

Jj+ €0 E

but that the time variation of D, the electric

displacement, must be taken into account in estimating the total move-

ment of electricity, so that we must write € = & + D (Equation of True

Currents).”

J.C. Maxwell, Treatise on Electricity and Magnetism, vol ll, pag. 253.
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3. (Pag. 14) Les contribucions més importants de
Maxwell van ser (a) I'expressio de les lleis en forma di-
ferencial, (b) la introduccié del corrent de desplaca-
ment, (c) la prediccid que el camp electromagnétic es
pot propagar en ones que viatgen a la velocitat de la

llum i (d) I"afirmacio que les ones lluminoses son elec- ' JHENE-.

James Clerk Maxwell
(1831-1879)

tromagnetiques.

Pel que fa a (b), cal dir el corrent de desplacament només pot ser no ne-
gligible en dielectrics en que el corrent de conduccid és nul o quan les va-
riacions del camp electric son molt rapides (tenen una molt altra fre-
guéencia). La primera evidencia indirecta de |'existencia d’aquest corrent
fou I'existencia d’ones electromagnetiques en el buit (Herz, 1888).

Els punts (c) i (d) seran tractats en llicons posteriors.



