MMF 10 / 2. Electromagnetisme

5. Potencial magnetic
S. Xambo

Definicid del potencial magnetic.

Llei d’Ampere.

Aproximacio del potencial magnetic lluny dels corrents.
Exemples

— Potencial magnetic d’un corrent filiforme rectilini infinit.
— Potencial magnetic d’un corrent filiforme circular.

— Potencial magnetic d’un solenoide infinit.



Definicié de potencial magnetic

Teorema (B és un rotacional). Si definim el camp A4 per la formula

A(T) — HOJ‘ J(x) da)(x)

[r—x|

llavors |B = rot(A)

Prova. Usant les formules

r—x

S

Ir—x|3 T r- xI

i rot(pw) = dp Aw + ¢ rot(w)

podem escriure les seglients igualtats relatives al camp magnetic produit
per un corrent:

B(T) — “0 f](x)/\(r_x) da)(x)

|r—x|3

£ [9, (=) nj(®) dox) =




J (x)> dw(x) =

_ B
— 47Tfrot,, (Ir—xl

= rot, (Z;f Jx) da)(x)).

[r—x|

Remarca. En el cas d’un corrent filiforme d’intensitat I, en un circuit y,
tenim la mateixa expressié de B, pero amb A definit per la féormula

A(r) — HOI f al(x)

r—x|

En el cas d’una densitat de corrent superficial, de manera que j és un

camp vectorial sobre una superficie S, A(r) = Ho fS |{~(x:)c| ds(x).

El camp A s’anomena potencial magnetic. Adonem-nos que la formula

A(r) = ”Of J&) dw(x) és analoga a la férmula ¢(r) = f P o

|[r—x| |[r—x|

4TTE

per al potencial del camp electric en termes de |la densitat de carregues.
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Exemples. Potencial magnetic d’un corrent filiforme rectilini infinit (pag.
12); potencial magnetic d’un corrent filiforme circular (pag. 14); potencial
magnetic d’un solenoide infinit (pag. 17).

Ates que la divergencia d’un rotacional és nul-la, la formula B = rot(A4)
ens dona:

Corol-lari. div(B) = 0

Remarca. Aquesta formula és analoga a |a llei de Gauss per al camp elec-
tric, div(E) = p/g,, pero amb el segon membre 0. En direm /lei de Gauss
del camp magnetic. La interpretacio d’aquesta llei és que la densitat de
“carrega magnetica” neta és sempre zero, és a dir, que no existeixen
“pols magnetics” isolats (també dits “monopols magnetics”).

Exemple. No existeixen camps magnetics radials no nuls (pag. 21).

Junt amb el teorema d’Stokes la formula B = rot(A) també ens ddéna:



Corol-lari. Per a tota superficie orientada S amb vora 95,

Tys(4) = ¢ps(B)

Proposicio. |AA = —u,j

Prova. Per definicio de A4 tenim la relacio

1 _ 1 jix)
qu(r) = Mf dw

[r—x|

i sabem que la laplaciana d’aquesta expressio és j(x).

Proposicio. |div(4) = 0

Prova. Usant la definicio de 4 tenim que

1
|r—x|

div,(4) = £ [ div, (Tlﬂ j(x)) do =% [j(x)- 8, (=) dw

ja que divr(j(x)) = 0.



Com que es compleix d,-(1/|r — x|) = —0,(1/|r — x|), també tenim
. U (. 1
div(4) = —£2 [ j(x) - 0, (=) dow.

|r—x|
Pero aquesta expressio és nul-la (férmula auxiliar 1 del tema anterior), i

aixo acaba la prova.

Teorema (Llei d’'Ampere). |rot(B) = uyj| .

Prova. rot(B) = rot(rot(A)) = 0(div(4)) — A4, i la relacio de
I’enunciat en resulta pel fet que div(4) = 0 i que AA = —u,j.

Corol-lari (forma integral de la llei d’Ampere)
Si S és una superficie regular amb vora tancaday, ¥ = 05

Ty (B) = poPs() ,
on 7, (B) és la circulacié de B al llarg de y i ¢s(j) al

el flux de j a través de S.

Prova. Es una conseqiiéncia de la llei d’Ampére i el teorema d’Stokes.
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Exemples de potencial magnetic. (1) d’un fil rectilini infinit (pag. 12); (2)
d’un corrent filiforme circular (pag. 14); (3) d’un solenoide rectilini infinit
(pag. 17); (4) d’un solenoide toroidal (pag. 21).

Remarca. Un corrent j determina B (férmula de Biot—Savart) i 4 (per de-
finicio del potencial magnetic). Les relacions AA = —uyj i B = rot(A) ens
diuen que A4 determina j i B. Finalment, la llei d’Ampere ens diu que B
determina j. Per completar aquestes interdependencies ens caldria veure
com determinar A a partir de B. La comparacio de les relacions
div(4) = 0, rot(4) = B amb les relacions div(B) = 0, rot(B) = uyj
suggereix que basta substituir uyj per B en I'expressio de B a partir de j
per obtenir una expressido de A a partir de B. Alternativament, podem
substituir uyj per rot(B) en I'expressio a A a partir de j i establir la rela-
cio amb identitats de calcul vectorial a I'estil de les usades en la demos-
tracié que div(4) = 0. Una comprensié més cabal d’aquestes questions
'aporta el teorema de Helmholtz."



j B A

. - Mo  JX)X(r—x) * Ho  J(x)
.’ 41T fV |r—x|3 d(,() (x) 41T fV |r_x| d(,()(x)

1 B 1 B(x)x(r—x) * %
B Ko rOt(B) 41T fV |r—x|3 dw(x)
1
——AA —

A e rot(4)

*div(B) = 0, rot(B) = ugj ** div(A) =0, rot(4) =B

Remarca. Les formules de la taula anterior son valides per a corrents con-
tinguts en regions afitades, i fins i tot per a corrents (o camps) nuls a
I'infinit. Altrament poden donar resultats absurds. Per exemple, si B és

un camp magnetic uniforme, llavors A(r) = %B AT és un potencial per a
B, jaque rot(BAr) =2B i div(4) = 0, pero en canvi rot(B) = 0. Lla-
vors la llei d’Ampere ens diu que j = 0 i és clar que aixo és incompatible
amb les formules de la primera fila de la taula.



Aproximacio del potencial magnetic lluny dels corrents

Suposem que j esta localitzat en una regio W i que r és lluny d’aquesta
regio. Canviant d’origen si cal, podem suposar que r > x per a tot x €
W. Aleshores

: =—+—(r x) + -

|r—x| r
Y= £ 6o + 5 -6 ) -

En aquest desenvolupament el primer terme és nul, ates que fj(x)da)

és 0 (formula auxiliar 2 del tema anterior). Pel que fa al segon terme, te-
nim, per la formula auxiliar 4,

[ (r- x)j(x)dw = Fo —f(x/\](x))/\rda)—

(mAT),

4nr3 nr3
onm = Ef(x /\j(x))da) és el moment magnetic dipolar, o el dipol mag-

netic, del corrent j (recordem que en el cas d’un corrent filiforme
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d’intensitat I en un circuit y, la féormula apropiada per al corresponent

e I :
moment magnetic ésm = Efx A dl). Per tant, si posem

Am(r)z
A=A, +,B=B, +

(mAT)iB,, =rot(4,,), aleshores

nr3

en punts allunyats de la regid dels corrents (els punts indiquen termes
0(r=3).

Remarca. El fet que el terme “monopolar” del desenvolupament del
camp magnétic sigui nul (perqué [ j dw = 0), confirma, per analogia amb
el cas del desenvolupament del potencial electric, que la “carrega magne-
tica” total corresponent a qualsevol corrent estacionari és nul-la.

Ko (3("1'1‘)

41r7r3 r2

Remarca. Si posem, donat un vector p,

D,(r) = (3('”)1‘—19),

Remarca. B,,,(r) = r— m).
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(a) llavors tenim la seguent analogia entre
els dipols electric i magnetic: el camp

electric E, d’un dipol electric p ve donat

per la formula
1
(b) E,(r) =——D,(r)

477:80

i el camp magnetic del dipol magnetic m
per la formula

B(r) = 2D, (1)

(c)

CONHIN

=TT

(a) Camp d’un dipol pur
(b) Detall d’un dipol electric
(c¢) Detall d’un dipol magnetic
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Exemples

Potencial magnéetic d’un corrent filiforme rectilini infinit. Si orientem el

corrent en la direccid de 'eix Ox, en I'aplicacio de la formula A(r) =

Iiolfdl(x)
4 vV |r—x|

corrent. Donada la simetria cilindrica de la situacio, resulta que

tenim dl = dx e,,, on e, és el vector unitari en la direccio del

A(r) = A(p)e,, on p és la distancia del

. dA = kldl/d
punt 7 al fil. Per calcular A(p), podem su- /T
posar que la projeccioé de r sobre el fil és i .
dl I

’origen, amb la qual cosa |r — x| =

\/pz + x2iA(p) = i—j;f_oooo pczbixz. Com que aquesta integral és diver-

gent, farem la integracid entre — i £. En aquesta situacid, A(p) esdevé
A(p,x) ilaintegral en questid és

f+£ dé ol nx—{’+\/p2+(x—{’)2

—0 [pZ+(x=8)2  4Am  x+b+/p2+(x+0)2

Alp,x) =42

41T
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Per £ — oo aquesta integral esdevé In(0), cosa que concorda amb el fet
que és divergent. Tanmateix, la podem usar per trobar el camp magnetic
creat pel corrent. Com que en coordenades cilindriques tenim A, =

Ay =0iA, = A(p, x), ielrotacional en cilindriques de A és

(1 0A, 6A¢) ~ n (% _ %) $ n l (a(pA¢) _ aAp) ,x\

p 0P - ox p dx ap P ap 0]
resulta que
__0Ax 5 0A(pX) 7
En particular obtenim B

_ Mol =
B(p,0) = an\/mqb'
Fent £ - oo, retrobem la llei de Biot—Savart:

I —~
B=B(p)=,-¢.
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Potencial magnetic d’un corrent filiforme circular. La simetria cilindrica
de les dades impliquen la simetria cilindrica del potencial magnétic. Es su-
ficient, doncs, trobar el potencial magnetic en un puntr del pla¢ = 0. A
meés, podem suposar que el corrent esta en el pla yz i que el seu centre
és l'origen. Amb les notacions de la figura, la contribucid al potencial
magnetic en el punt r de Idl

dl = (Rda)¢

. dl
és dA = kI —. En resulta que ~
u dAg = (Rcos(a)da)¢

A és perpendicular a I'eix Ox.

A més a meés, la component
radial de A4 és nul-la, ja que les
components horitzontals de
dl(a) i dl(—a) en el punt r
tenen signes contraris. De fet, la component horitzontal de dl(«) és igual
a sin(a)dl i és clar que u(a) = u(—a). En resulta finalment que

A =A(,0)$, amb A(p) = kRI fO (@) da = 2kxRI foﬂczzfxc;)

21 cos(a) da. Com
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que el vector de posici6 de dl és (0,Rcos(a),Rsin(a)) i r=
(r cos(0),rsin(8), 0), resulta que
u? = r?cos?(0) + (R cos(a) — rsin(8))? + R? sin?(a),
d’on
cos(a)
JR2+12-2R7 sin(0) cos(a)

A(p) = 2kRI [

Vegem com es pot expressar aquesta integral. Com que 72 = x2 + p?, |
rsin @ = x, tenim que
R? + 1% — 2Rrsin(@) cos(a) = x> + (R + p)? — 2Rp(1 + cos a).

Per altra banda, posant a = m — 2&, cosa = —cos 2§ = 2sin* & — 1, és
adir, 1 + cosa = 2sin?&. Per tant,
2 2 _ - _ARp 1 12 2 2 _ _ “Rp
R% 4+ r% — 2Rrsin(8) cos(a) = P (1 —k-“sin“¢), k T (RID

Substituint a I'expressid de A(p) ens queda

_ 0 2(1-2sin? &) _ R ;0 (1-2sin?&)
A(p) = 2kRI f”/zﬂ\h—kz Sinzng = ZKIk\/;fﬂ/z e sinzfdf'

k
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Ara podem escriure
0 (1-2sin%&) _ m/2  sin?¢& _(T/2 aé
fﬂ/z J1-k?2sin2 ¢ d§ = 2 fO J1-k? sin2€dg fO J1—-k2sinZ &

. _(T/2 dé
I K(k) - fo \/1—k2 Sinzf

especie. Pel que fa a I'altra integral, es pot expressar en termes de K (k) i

és la integral el-liptica (completa) de primera

E(k) = fon/Z\/1 — k?sin® £ dé (integral el-liptica completa de segona

especie), ja que és immediat que val la identitat

Jo s 46 = 5 (K — E(R)).

Podem doncs escriure

A(p) = ZKIk\/g (% (K(k) — E(k)) — K(k)),

és a dir

A(p) =t |F ((% — k) K(k) - %E(k)) |

p
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Remarca. La funcid K, que ens va ser util per expressar el periode d’un
pendol, es pot calcular mitjancant Maple amb l'expressid EllipticK(k), i
E (k) amb EllipticE(k).

Potencial magnetic d’un solenoide infinit. Suposem que el solenoide té n
espires per unitat de longitud. Com en el cas d’un fil rectilini infinit, pren-
drem |'eix del solenoide com a Ox i primer trobarem el potencial creat

pel fil entre - i £. Com que en l'interval dx hi ha ndx espires, aquestes
espires es poden pensar com una espira circular amb corrent [ - ndx i el
potencial magnetic del solenoide sera la suma dels potencials magnetics
d’aquestes “espires”:

~ UoRnl +7 T cos(a)
A= dx
¢ 27 f—{’ fO Jx2+p2+R2—2Rr sin(0) cos(a)

Canviant I'ordre d’integracio,

~ UoRNI (T +¢ dx
A=¢=— ] cos()da |_, ==

a = p? + R? — 2Rr sin(0) cos(a).
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Descomponent la integral entre 0 i T en una integral entre 0 i /2 i una
integral entre m/2 i m, obtenim I'expressio

Rnl 1/2 +0 d +2 d
A=t [ cos(@da (12, 2= I, =),

b= p -+ R2 + 2Rr sin(0) cos(a).
Com que [ = In2 xa
k m xR

A= qb“ORnI fn/z cos(a)da ln(

{+VP%+a  —L+VE%+D
—f+Ve2+a  L+VE2+Db

i en el limit quan £ — oo,
A=¢t ORnI fn/z cos(a)da lné
uoRnI /2 p +R2+2Rrsm(9) cos(a)
- ¢ f COS(O() In p?+R?—2Rr sin(0) cos(a) da
Aquesta mtegral es pot fer per parts, i s’obté

MoRnI m(p +R2)( _ IpZ—RZI)
A= ¢ 2PR 1 p%2+RZ% )’

Més concretament,
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(~ uoR*nl 1 .
¢ x p,51p>R

& tond .
\ qb“ozn p,sip <R
Ara la formula B = rot(A), i I'expressio del rotacional en cilindriques ens

A=A

dona:
1 (0 sip >R
B =- Ag)x = ~
p p(,D ‘/’) {,uonlx sip <R
Es a dir, el camp magnétic és nul a I'exterior del solenoide i és uniforme,
paral-lel a I'eix en el sentit positiu i de modul yuynl a l'interior.

Remarca. Un solenoide és doncs I'analeg magnetic del condensador de

plagques paral-leles, ja que aquest crea un camp electric uniforme entre
les plaques.

Remarca. Establiu la formula anterior mitjancant I'aplicacio de les lleis de Gauss
(per al camp magnetic) i d’Ampeére. [La llei de Gauss aplicada a un cilindre coaxi-
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al amb el solenoide déna que el camp magnetic no té component radial;
I"aplicacio de la llei d’Ampere a una circumferencia concentrica amb seccio
transversal del solenoide dona que no hi ha component azimutal, de manera
que B = B(p)X. Com que a l'interior i a I'exterior del solenoide rot(B) = 0, la
formula pel rotacional en cilindriques ens déna que B(p) és constant. Final-
ment, la llei d’Ampere aplicada a rectangles radials ens permet concloure que el
valor de B és 0 a I'exterior i ugnl a l'interior]

Remarca. El fet que el potencial magnetic sigui no nul a 'exterior del so-
lenoide juga un paper fonamental en I'explicacié (en termes de mecanica
quantica) de I'anomenat experiment de Aharonov—Bohm, en que el pa-
tro d’interferencia d’un feix d’electrons a I'exterior d’un solenoide molt
prim i llarg canvia quan es fa circular corrent pel solenoide. Aixo mostra
gue el potencial magnetic no és només una conveniencia matematica, si-
nO que expressa una realitat fisica (per a una introduccid a aquestes
qguestions, v. Lectures on Physics, vol. Il, de R. Feynmann, llicd 15).
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No existeixen camps magnéetics radials no nuls. En efecte, el flux d’un
camp radial B = B(r)r a través de |'esfera de centre 'origen i radi r és
d’una banda B(r)mr?, i de I'altra 0 pel teorema de la divergéncia i la llei
de Gauss per al camp magnetic (div(B) = 0). Aixi, doncs, ha de ser
B(r) =0, ésadir, B =0.

Camp magnetic d’un solenoide toroidal. Amb arguments de simetria es
pot veure que el camp magnetic creat per un solenoide toroidal té Ia

forma B = B(p)@. Prenent ara una circumferéncia C de radi r en el pla
perpendicular a I'eix del solenoide, amb centre sobre I'eix, i aplicant la llei
d’Ampere, obtenim que B(p)2mr és 0 si C és exterior al solenoide i ugNI,

N el nombre total d’espires, si C és interior al solenoide. Per tant, el
UoNI —

b.

camp magnetic és nul a I'exterior del solenoide i és igual a B = p—
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E.5.1. Useu la llei d’Ampere per calcular el camp magnetic creat per un corrent
filiforme rectilini infinit d’intensitat /.

I = . . : : :
[El resultat, ZHToqu, ha estat obtingut a E.4 mitjancant la llei de Biot-Savarti a la

pag. 13 a partir del potencial magnetic]

___________________________________________________

E.5.2. Un cable coaxial rectilini esta format @ ...................... S , @
per dues superficies cilindriques rectes amb

el mateix eix i de forma que puguin transportar el mateix corrent I, pero en sen-
tit contrari. Useu la llei d’Ampere per mostrar que el camp magnetic és nul fora

del cilindre exterior i dins del cilindre interior, i que entre els dos cilindres té |la

I o~
forma Kol b,
21p
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Notes
1. (Pag. 7) Teorema de Helmholtz. Siguin f una funcio i k un camp vecto-
rial solenoidal (div(k) = 0), i suposem que r%f i r?k s’anul-len a 'infinit.
Llavors existeix un unic camp u nul a l'infinit tal que

div(u) = firot(u) = k.

A més,
u = -—0¢ + rot(a), amb
_ 1 r flx)
¢(r) - 47Tf |T—X| d(l)(x),
1 k(x)
a(r) = 4nf e Ao ().
De fet, definint u per aquestes férmules, és clar que div(u) = —A¢p = f i

rot(u) = rot(rot(a)) = a(div(a)) — Aa =k (que div(a) =0 es veu
pel mateix metode usat per veure que el potencial magnetic té divergen-
cia nul-la). Notem que

-0 = o[ 5 (= x) do(x)
rot(a) = - ] dw(x).

k(x)A(r—x)
41T lr—x|3
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2. (Pag. 10) Amb les notacions de I'exerci E.3.2, el terme quadrupolar del
potencial magnetic té la form r)j(x)dw(x). En el cas fili-

forme, -2 f(r Q,r)dl(x).

41T S




