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Nota historica. A principis del 1820 Oersted descobri que un

N
corrent electric desvia una agulla imantada (bruixola), tal
com indica la figura. Resultava aixi que ['electricitat i el
magnetisme, fins aleshores considerats fenomens indepen- ] >

dents, estaven profundament relacionats: un corrent elec-
tric era com un imant (avui diem que crea un «camp mag-

netic»). Aquest fet té dos aspectes: un corrent electric no
nomes actua sobre els imants, sind que també actua, com ho fan els
ants (aixo també ho va descobrir Oersted), sobre altres corrents eléctrics.

Les lleis precises que regeixen aquestes interaccions van ser establertes
abans d’acabar 1820 per Biot i Savart (expressié de la forca produida per
un corrent rectilini sobre un imant) i Ampere (expressié de la forca entre
dos corrents rectilinis paral-lels).



Ampere, que fou el primer en postular que el magne-
tisme era produit per petits corrents en el si de la |
substancia magnetitzada, va continuar investigant la "
interaccio entre dos corrents electrics i publica els re- ; .
sultats el 1825 (Mémoire sur la théorie mathématique i

des phénomeénes électrodynamiques uniquement dé- % __
duite de I'expérience). El més important és la llei que A”d;e"v'a”e A’;‘pere

1775-1836
dona la forca que un camp magnetic exerceix sobre un

corrent.

Ampere inventa 'amperimetre, per mesurar intensitats de corrent, i és
per aix0 que la unitat SI d’intensitat de corrent s'anomena amperi
(A = C/s ). Actualment I"'amperi es defineix, com veurem més avall, com
una unitat primaria i C = As com una unitat derivada.

D’Ampere, Maxwell digué que era «el Newton de I'electricitat».



Forca magnetica entre carregues mobils

La forca de Coulomb sobre una carrega puntual g causada per una car-
rega q' ve donada per la férmula

1 qq'r
ATTEY T2 T

’

on 1 és el vector de posicié de g respecte de q'.

Si les carregues es mouen amb velocitats v i v/,
respectivament, es pot considerar com un fet

experimental (vegeu la remarca de la pag. 14)

gue existeix, a més, una forca magnetica exer-
cida sobre g per q' i que aquesta forca ve donada per la férmula
Ko qq’ —7TN<2 /(2
F,(r)= pp — VAW AT),onpuy =4m x 107'Ns“/C

(la constant uy s"anomena permeabilitat magnetica del buit; el seu valor

’ . N1
és exacte en el sistema Sl)." -



Camp magnetici llei de Lorentz

Per analogia amb la definicio de camp electric, basada en la llei de Cou-
lomb, definim el camp magnetic B = qu’vr creat per la carrega q' per la

relacio

B(r) = Ho & (v' AT).

4T 13

D’aquesta manera la forca magnetica té la forma
F., (r) =qvAB.

La forca total F que g’ exerceix sobre g és la suma de la forga eléctrica i la
forca magnetica, F = F, + F,,, és a dir,

F=q(E+vAB)
i aquesta relacio s"anomena /lei de Lorentz.

Remarca. Ates que F,, = qu A B és perpendicular a v, la for¢a magne-
tica no exerceix cap treball sobre la carrega g a la qual s’aplica.



Remarca. Podem escriure

Hoé€ qu
F,(r) = 4me, T — VAW AT).

: : , Ns? (C? 1 , : .. ,
Les dimensions de po&g SON ~ -+ -— = mz/s2 €53 dir, de I'invers d’una

velocitat al quadrat: pggy = 1/c?. Numéricament,

= 299792458 m/s,

gue coincideix amb el valor que s’obté experimentalment per a la veloci-
tat de la llum en el buit (actualment, és un valor exacte en el Sl). En parti-
cular podem posar

F,(r) = - ﬂ(C )/\(—v AT).

4ey 13

D’aquesta formula es dedueix facilment que
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la qual cosa prova que la intensitat de la interaccido magnetica és molt

més petita que la de |a interaccio electrica si les velocitats de les carre-
, . . N2

gues son petites comparades amb la velocitat de la llum.

Per altra banda, tenint en compte que

1 q’ to q'
E = —7riB= VAT
41EY T3 nr3( )

el camp magnetic B es pot expressar en termes del camp electric E creat
perq’:
B= @ NE)/c*.

Remarca (Principi de superposicié per a camps magnétics). Es un fet ex-
perimental que el principi de superposicid és valid per a camps magne-
tics. Aixo vol dir que si tenim carregues ¢4, ..., ¢, que es mouen amb ve-
locitats v4, ..., v, | B; és el camp magnetic creat per g; separadament,
llavors el camp magnetic B creat per les carregues en conjunt és X;B;, és
a dir, la suma dels camps magnetics individuals, en el sentit que la forca
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magnetica F,,, que les carregues exerceixen sobre una carrega g que es
mou amb velocitat v és qu A (Z;B;) .

Remarca (El camp magnetic dels imants). El principi de superposicid ens
permet donar una explicacio sobre l'origen del camp magnetic dels im-
ants. Tenint en compte que els electrons d'un atom estan en moviment,
cadascun d'ells produeix un minuscul camp magnetic. Podem considerar,
doncs, la suma B de tots aquests camps magnetics per a un cert conjunt
d'atoms, com ara els continguts en una determinada porcié de materia.
Com que en general els atoms del conjunt estan desordenats aleatoria-
ment, el camp B és nul (o molt petit) per raons estadistiques. Pero en
ocasions, com és el cas dels imants, la distribucio dels atoms, i dels camps
magnetics dels seus electrons, és ordenada i aleshores B és un camp no
nul. La relacid que hi ha entre I'ordenacio dels atoms i la direccid i magni-
tud de B sera estudiada més endavant.
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Exemple. Una particula de massa m i carrega g es mou en un camp magnetic
uniforme B. Siguin v! i v els moduls de les components paral-lela i perpendicu-
lar (a B) de la velocitat. Veurem que v i vt sén constants i que la particula des-
criu una hélix de radi vim/qB i pas 2rnv'm/gB.

En efecte, podem suposar que B = (B,0,0). La for¢a sobre la particula és
qu AB = gqB(0,z,—y). Per tant m(X,y,Z) = qB(0,Z,—y). En resulta que
x = vl és constant. Posant w = gB/m, les equacions corresponents a les altres
dues coordenades sén y = wz i Z = —wYy. La solucié d’aquest sistema té la
forma y = Asin(wt + ¢), z = Acos(wt + @), A >0 i ¢ constants. Com que
(v1)? = 92 + 22 = A?, resulta que A = v, i v també és constant. Integrant,

y = —gcos(wt+¢) +ky, z= %sin(a)t+ b) + k,

(k, i k, constants), la qual cosa mostra que la particula descriu una helix de radi

: 2
r=A/w =vtm/qBipas vlf = 2nv'm/qB.

Del radi r i de la freqgtiéncia w se’n diuen radi i freqiiéncia de Larmor (o freqiién-
cia ciclotronica).™*
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Corrents electrics

Considerem un corrent electric, és a dir, una distribucio de carregues en
moviment. Si la densitat és p = p(x,t), i v = v(x,t) el camp de veloci-
tats, el vector

jx,t) = p(x,)v(x, 1)
s’anomena densitat de corrent. Per simplificar les notacions, usualment
nomeés escriurem j per denotar-lo.

Teorema (Llei de conservacio de la carrega en forma diferencial). El prin-
cipi de conservacio de la carrega és equivalent a I’'equacio diferencial

d:p + div(j) = 0 (equacio de continuitat).
Prova. Vegeu E.1 (Camp electric), pag. 3.

Direm que la densitat p és estacionaria si d;p = 0, és a dir, si la densitat
de carrega en cada punt és independent del temps. Si p és estacionaria i
a més es compleix d;j = 0, direm que el corrent j és estacionari.
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Corol-lari. Una densitat de carrega p és estacionaria si i nomes si
div(j) = 0.

Exemple (Corrents filiformes). Els corrents més usats en |la practica estan
formats pel moviment d’electrons en fils. La nocié de corrent filiforme és
un model matematic convenient d’aquesta mena de corrents i esta cons-
tituit per dos objectes: una corba orientada y de E;, que en direm el fil
del corrent (o el circuit en el cas que la corba sigui tancada) i un nombre
real I, que en direm la intensitat del corrent. Vegem com cal interpretar
la densitat de corrent j associada a aquest corrent filiforme. Per a cor-
rents en fils conductors, les carregues que formen j tenen una densitat
constant p (determinada pel material de que esta fet el fil conductor) i les
hem d’imaginar localitzades en el tub format a partir de y amb una secci6
transversal s > 0 que suposem negligible en comparacié amb la longitud
del fil (aguest tub representa |’espai ocupat pel conductor fisic). Més con-
cretament, les carregues mobils estan en el tub que podem formar per



dow 12

unidé dels tubs infinitesimals dw = sdl associats a Y
cada element dl del fil y. A més, suposarem que la ?ﬁ;

velocitat v de les carregues contingudes a
dw = adl és tangent a y, és a dir, que v = vt, on t és el vector tangent
unitari a y. D’aquesta manera

jdw = pvs dl = pvs(dl)t = Idl,

on hem interpretat que I = pvs, ates que aquesta expressio denota la
guantitat de carrega que cada segon travessa la seccio transversal del fil.

En resum, per a corrents filiformes cal interpretar I'element de corrent
jdx com a ldliles integrals de volum s’han de transformar en les corres-
ponents integrals de linia. Formalment,

Jh(x)*xj(x)dw — 1 fy h(x) * dl(x),

on x denota una operacio arbitraria entre I'integrant h(x) i '’element de
corrent j(x) dw. Notem que el principi de conservacio de la carrega im-
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plica que I no depéen de x € y (i per tant la podem treure fora del signe
integral), pero que tanmateix pot dependre de t.

Camp magnetic generat per un corrent j

Com que el camp magnétic en un punt r creat per (p dw)v = j dw és

o (p dw)VAGr—%) _ o JA(r—2)
= dw ,
ATT |lr—x|3 41 |r—x|3

el camp magnetic B generat per j es pot calcular
per la formula

(X)A(r—x)
[r—x|3

dow(x) N

B(r) =% [

En el cas d’un corrent d’intensitat I en un fil y,

tenim la formula de Biot—Savart:

B(T) _ ;i(;TI fy dl(x)N(r—x)

[r—x|3
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Mo d
41 13
rega puntual ¢’ que es mou amb velocitat v’, és un postulat inspirat di-

Remarca. La formula (v' A1) que dbna el camp magnétic d'una car-

rectament en l'expressio

II
B(r)=-"—[

del camp magnetic produit per I'element dl’ de y' amb intensitat de cor-

al' (x"n(r-x"
lr—x'|3

rent I' (formula de Biot—Savart). Notem que si posem g’ per indicar la
carrega continguda a dl’, llavors g'v' = I'dl’ (si y' té seccid transversa s’
i p' és la densitat de carregues mobils, I'dl' = ps’'v'dl’ = ps'dl'v' =
q'v').

Remarquem també que la verificacio experimental directa de formula

I/
B(r) = Z—;g—s (v’ AT) ésinviable, ja que per a carregues puntuals isolades

el camp magnetic és negligible en comparacio amb el camp electric. La
rao inicial per admetre-la ha estat simplement que d’ella hem pogut de-



15

duir la formula de Biot—Savart, ben establerta experimentalment. En la
part de Relativitat veurem una rad molt més profunda per acceptar-la: Ia

I/
formula B(r) = Z—iz—s (v' A1) resulta ser una féormula aproximada, valida

per a velocitats petites, d'una formula que es pot establir amb la teoria
de la relativitat. Remarcablement, la formula de Biot—Savart és també
una consequencia de la teoria de la relativitat, pero, a diferencia de Ia
formula que acabem de comentar, no és aproximada, sind exacta.

Exemple. Donat un corrent filiforme rectilini in-
finit d’intensitat I, el camp magnetic en un
punt a distancia r del fil és

I
B=£r"e¢ =t Ar —
2nr P 27TT 2

on (x,7,@) son coordenades cilindriques amb
eix Ox la recta del corrent, orientada segons el
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sentit d’aquest, i I = le,. Els vectors e, i e, son els vectors unitaris cor-

responents a les coordenades x i ¢. Noteu que e, = e, A e..

En efecte, dIA (r —x) = (dx e,) Ar = (dx)re,, i posant & = x/r,

= Hol (0 __ax = Bl (o __ 48 — Kol
B(r) = el (f—oo (r2+x2)3/2) €0 = tnr (f—oo (1+52)3/2) €o = Jnr Co

Exemple. Considerem un corrent filiforme

d’intensitat I en un circuit circular de radi R. Si-
gui O el centre del cercle i P un punt tal que
=P — 0 és perpendicular al pla del cercle.
Per raons de simetria, el camp magnetic produit
per [ en el punt P és paral-lel a OP i el seu mo-
dul resulta sera

B = “TOI R?/(R? +12)%/2, onr = OP.
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En efecte, de dI A (r — x) només ens cal tenir en compte —dl A x, ja que
dl A 1 és perpendicular a OP. Com que

—dlAx = —(Re,) A (Re,) = R%ey,

_ Mol po [ (21 de Ul R?
B(r) = ar (fo (RZ+r2)32) €2 T 5 (Re4r2y3rz Ex

Remarca. La unitat SI del camp magnetic és el tesla (T). En termes de les
dimensions fonamentals tenim T = Ns/Cm = N/Am. S'aconsegueixen
camps de l'ordre de 1T amb electroimants mitjans, o amb els imants més
potents (els imants en forma de ferradura de mitjana poténcia produei-
xen camps magnetics de 'ordre de 0.01T). Els camps més forts que s'a-
consegueixen al laboratori, amb solenoides superconductors, s'apropen a
100T. Els més grans de qué es té noticia, de I'ordre de 108T, es ma-
nifesten a la superficie de les estrelles de neutrons. En l'altre extrem te-
nim que la magnitud del camp magnetic de la Terra (el nucli de la qual és
com un gran imant) és, en la seva superficie, de I'ordre de 10™*T; que el
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de I'espai interestel-lar és de I'ordre de 1071%T; i que els instruments ac-
tuals més precisos arriben a detectar camps de 107 14T.

Forca d’'un camp magnetic sobre un corrent

Si un corrent electric és en el si d'un camp magnetic B, la forca de Lo-
rentz que B exerceix sobre I'element dw és igual a

(pdw)vAB = (jAB)dw .
Per tant, la forca magnetica total de B sobre el corrent és
F=[(AB)dw.

Exemple (Formula d’Ampere per a la forca que un camp magnetic exer-
ceix sobre un corrent filiforme). Usualment j es redueix a corrents filifor-
mes. En aquest cas, I'expressio de la forca ve donada, d’acord amb la re-
gla que hem vist abans, per una integral de linia sobre el fil y del corrent:

F=I[dIAB.
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Carregues en moviment

Creen B

q' a velocitat v en el punt x’

B,,,=Mo 1 (v’/\(r—x’))

q.x.,v 41T |[r—x1|3

q; avelocitatv; (i =1, ..., 1)

2.i By, x;v; (Principi superposicio)

Corrent j

Ko (JA(r—x)
47Tf lr—x|3 dw

Corrent filiforme

Ko f din(r—x)
ATT lr—x|3

Carregues en movimentenun B

For¢ca magnetica F,,

q a velocitat v

qv A B (llei de Lorentz)

q; avelocitatv; (i =1, ..., 1)

2. q;v; A\ B(x;) (Principi superposicid)

Corrent j

[jABdw

Corrent filiforme

I[{dIAB
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Forces entre dos circuits filiformes. Considerem un altre corrent filiforme
d’intensitat I' en un circuit y'. La forca que el seu camp magneétic exerceix
sobre el corrent filiforme d’intensitat I en
el circuit y es pot expressar per la formula
d’Ampere:

uu dl(rA@l’ (x"A(r-x")) nib
0 ff T N2

Exemple. La forca per metre que un cor-

rent filiforme rectilini infinit d’intensitat |
exerceix sobre un corrent similar paral-lel d’intensitat I és perpendicular

uo I

. La forca és
2w d

als fils, paral-lela al pla que els conté, i el seu modul és —
atractiva si els dos corrents tenen el mateix sentit i repulsiva en cas con-
trari.

Ho

[Com que — e = 10""kg m C~2, veiem que en el sistema S| es pot definir

la unitat d'intensitat, 'amperi (A), com el corrent que han de dur cadas-
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cun de dos fils rectilinis infinits paral-lels, separats 1 m, per tal que la for-
ca en un d'ells sigui de 2 X 10~7 N/m. De fet aquesta és la definicié ac-

tual de la unitat d'intensitat, de la qual es deriva la unitat de carrega:
1C=1As .

Formules auxiliars

Sigui j un camp vectorial de suport compacte tal que div(j) = 0. Llavors:
(1) [ (j-df)dw = 0, per a tota funcio f.

(2) [jdw = 0.

(3) [ (a -j(x)) xdw = —] (a-x)j(x) dw, per a qualsevol camp uni-
forme a.

4) [ (r-x)j(x)dw = %f (x /\j(x)) AT dw, per a qualsevol camp uni-

former.
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Prova. (1) j - df = div(fj), ja que div(j) = 0. Per tant,
[ G-af)dw = [ div(fdw = [, div(f)de = ¢os(f)) = 0,

on B és qualsevol bola que contingui totes les carregues que formen el
corrent j.

(2) Per a qualsevol vector a es compleix a - fj dw = 0, atés que a és el
gradient de la funcié lineal a - x.

(3) Apliquem (1) a la funcid f(x) = (a- x)(b - x), on b és un vector arbi-
trari. Com que el gradientde fés (b - x)a + (a - x)b,

0=J(a jx)(x b)dw+ [ (a-x)(b-jx))dw
=b-[(a-jx))xdw+b- [ (a-x)jx)dw,
i la formula resulta per ser b és arbitrari.

(4) Per la férmula del doble producte vectorial,

(X AjO) AT = (00 — (- j())x.
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Ara és suficient multiplicar per dw i adonar-se que la integral de
I’expressio de la dreta és igual, tenint en compte (3), a

2 (r-x) j(x)dw.

Moment M de les forces d’un camp magnetic uniforme B sobre un cor-
rent j.

Proposicio. Sim = %f(x Aj(x))dw, llavors M = m A B .

Prova. La forca de Lorentz que B exerceix sobre les carregues contingu-
desadw és

(p(x)dw)(vAB) =(j(x) AB) dw .
Per tant, el moment d'aquesta forca és
xAN(Jjx)AB)dw .

Sumant sobre tots els elements de volum, tenim



M= [xA({(x)AB)dow = [(x-B)j(x)dw— [(x-j(x))B dw.

Com que B és uniforme, el segon terme és igual a
(J(x-j(0)dw)B,

i aquesta expressid s'anul-la, perqué x = d,(=x2) i podem aplicar la pri-
X2

mera formula. Per altra banda, la quarta formula auxiliar ens diu que el
primer terme és igual a

%f(x/\j(x)) A Bdw,

gue coincideix amb m A B per ser B uniforme i per la definicio de m.

Diem que m és el moment magnetic dipolar, o el dipol magnétic, del cor-
rent j. En el cas d’un corrent filiforme d’intensitat I en un circuit y, la for-
mula apropiada per al corresponent moment magnetic és

I
m—gfyx/\dl.
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Remarca. L'expressio M = m A B ens diu que B tendeix a alinear el dipol
magnetic m d'un circuit amb B, en direccid i sentit, analogament a com
un camp electric uniforme aplicat a una distribucio de carregues tendeix
a alinear el dipol electric d'aquesta distribucié amb el camp electric.

lgual que en el cas electric, el potencial del dipol magnetic m en el si del

camp magneticBés-m- B .

L endl
E.X'/\
Exemple. El moment magnetic d’'un corrent fili-
forme d’intensitat I que circula en un circuit sim-
plement tancat situat en el pla xy és el vector Is, dl

on s és I'area vectorial associada al circuit (és a
dir, s = (0,0, £s), s I'area del circuit, amb el signe + si I'orientacié del
circuit és antihoraria i signe — altrament).

Remarca. En general, si y és un circuit recorregut per un corrent d’intensitat [, i
existeix una superficie S tal que y = 95§, llavors el moment magnetic d’aquest es
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pot calcular per la formula m = IfS ds (notem que en particular m = IfS ds

només depen de y, i no de la superficie S). En efecte, si b és un vector arbitrari,

m-b = Ify%(b A x) - dl, que pel teorema d’Stokes i la formula rot(b A x) =
2bésigualal [ b-ds = (I[,ds)-b,donm =1 [_ds.

Exemple (Moment magnetic dels atoms i nuclis
atomics, i teorema de Larmor). El moment
magnetic electronic (nuclear) total d’'un atom,

m, és proporcional al corresponent moment an-

gular M, diguem m = —yM, on y és un factor m
que depén de I'atom (nucli) i del seu estat."” Anem a veure que M, sota
un camp magnetic uniforme B, efectua un moviment de precessio uni-
forme de frequencia angular yB al voltant d’un eix paral-lel a B (teorema
de Larmor), és a dir, M té modul constant i gira al voltant d’un eix pa-
ral-lel a B, formant un angle constant amb B, amb frequencia angular
constant w = yB (freqiiencia de Larmor).
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En efecte, podem suposar que B = (0,0, B). Tenim
m = —yM = —y(M,, M,,, M,)

i el moment de les forces produides per B sobre ['atom (nucli atomic) és
mAB=—-yMAB =-yB(M,,—M,,0).

Com que el moment de les forces produides per B sobre I'atom també és
M = (M, My, M),

tenim les equacions
M, = —yBM,,, M, =yBM,, M, =0.

Aixi M, és constant i si escollim |'origen del temps de forma que
M= (M'0,M,) pert =0, llavors

M, = M’ cos(wt), M,, = M' sin(wt),

on w = y¥B, i aixo estableix el que voliem veure.
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Remarca. La precessio dels nuclis atomics en un camp magnetic uniforme
és la base de I'anomenada ressonancia magnetica nuclear (RMN). Hi ha
també una ressonancia magneética electronica, basada en la precessio del
moment magnetic electronic.

Altres exemples d’aplicacid de la teoria del moment magnetic

Materials dia-, para- i ferromagnetics. Un material és diamagnétic si el mo-
ment magnetic dels seus constituents (atoms o molécules) és nul. Un material
es diu que és paramagnetic si el moment magnetic dels seus atoms o molecules
és no nul, pero l'orientacido d'aquests moments elementals és a l'atzar. En
aguest cas, els atoms o molecules tendiran a alinear-se amb un camp magnetic
aplicat al material i el material estara (feblement) magnetitzat mentre el camp
persisteixi. En els materials ferromagnetics, a causa de la relativament elevada
intensitat del moment magnetic dels seus atoms o molecules, el volum del ma-
terial es divideix espontaniament en cel-les (generalment microscopiques) en
cadascuna de les quals els moments magnetics elementals son paral-lels, pero
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I'orientacio de les diverses cel-les és aleatoria. En aplicar un camp magnetic a un
material d'aquesta mena, el moment magnetic resultant és ordres de magnitud
meés gran que en el cas paramagnetic. Per acabar, cal dir que els materials dia-
magnetics també reaccionen, encara que molt feblement, als camps magnetics,
pero el moment magnetic té orientacié oposada al camp (l'origen d'aixo és una
mena de dissociacio a nivell atomic o molecular produida pel camp).

Bruixoles. En materials com la magnetita, els moments magnetics dels seus
atoms son paral-lels a una direccio, de manera que aquests materials tenen un
moment magnetic no nul. Per tant, situada una petita porcié d'aquest material
en el si d'un camp magnetic, el material experimentara un moment de forca que
tendira a alinear el seu moment magnetic amb el camp magnetic.

Aquest fet és el que esta a la base del funcionament de les bruixoles, inicialment
fetes de magnetita (també dita pedra d'imant): una agulla de magnetita, tallada
en la direccido del moment magnetic (convencionalment denotada S-N), equival
a un petit dipol magnetic i aquest tendeix a alinear-se en la direccio sud-nord de
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la Terra perque aquesta és la direccid (aproximadament) del camp magnetic de
la Terra (cf. la Nota N3 al final).

Imants i electroimants. En els materials anomenats ferromagnetics els mo-
ments magnetics dels atoms son no nuls i susceptibles de ser orientats en una
direccié donada (aquesta orientacid es pot aconseguir aplicant un camp magne-
tic en la direccié desitjada, cosa que es pot fer facilment amb una bobina a la
qual s'hi fa circular un corrent). Si aquest és el cas, tenim un material amb un
moment magnetic no nul, és a dir, un imant.

Depenent del material, aquests imants poden ser permanents (si conserven el
moment magnetic quan el camp magnetic desapareix) o temporals (si el mo-
ment magnetic desapareix en desapareixer el camp). Els materials temporal-
ment imantables, com és el cas de certes varietats de Fe, s'usen per fer elec-
troimants, els quals estan formats per una bobina al voltant d'una barra del ma-
terial en questio. Pel que hem dit, és clar que la barra es comportara com un
imant precisament quan hi hagi corrent a la bobina. Tal com hem dit a la re-
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marca de la pagina 17, d'aquesta manera s'aconsegueixen camps magnetics de
I"ordre de 100 T.

Imants i solenoides. Sabem que un solenoide recorregut per un corrent produ-
eix un camp magnetic B. També té un moment magnetic m. Per a solenoides
llargs, B és practicament uniforme en el seu interior i paral-lel a m. Un sole-
noide es comporta, doncs, com un imant de barra. Reciprocament, en un imant
de barra els corrents circulen en plans perpendiculars a I'eix de I'imant, en petits
circuits de dimensions atomiques, i aixo fa que en cadascun d'aquests plans |'U-
nic corrent net sigui el que recorre la superficie lateral.

Un imant de barra es comporta, quan el situem en un camp magnetic perpendi-
cular a la barra, com si hi hagués en els seus extrems dues carreqgues magneti-
ques de signes oposats (aguestes carregues també s'anomenen pols magnetics).
A més, si el camp magnetic és el d'un altre imant de barra, |'atraccid o repulsio
segueix una llei analoga a la de Coulomb per a les carregues electriques. Pero
resulta que aquestes carregues magnetiques no tenen una entitat separada;
nomes es saben produir en parelles de signes oposats. De fet, és clar per les ex-
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plicacions que hem donat sobre els imants que si intentem dividir-ne un per la
meitat, el resultat no sén dos pols individuals (o monopols) i de signes contraris,
sind dos imants similars a l'inicial, pero cadascun amb un moment magnetic
igual a la meitat de l'inicial.

. . ’ \ . N6 . \ \ .
Si existis un monopol magnetic™ en el punt x, i la seva carrega magnetica fos Q,
llavors el camp magnetic produit per Q seria

B(r) =% ¢ (r — x)

41 |[r—x|3

i la forca que aquest monopol exerciria sobre un segon monopol situat a x' i
amb carrega magnética Q' seria

!/
_ Uo QQ (x/ _ x).

4 |x'—x|3

Una rao per l'interes en especular sobre els monopols magnetics és que aporta
llum sobre |la quantificacio de |la carrega electrica, un dels fenomens més fona-
mentals, i ensems misteriosos, de la natura. En efecte, tal com va mostrar Dirac
el 1931, la quantificacidé de la carrega electrica es pot deduir de I'existencia d’un
sol monopol magnetic. A més, 'argument de Dirac també prova que la carrega
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magnetica esta quantificada i fins i tot déna el minim valor possible de la car-
rega magnetica elemental.
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Exercicis E.3 (Forca magnetica)

E.4.1. Proveu que per una carrega puntual g, de massa m, movent-se per un
\ . \ . ’ o 7/ 1 2 V4 7
camp electromagneétic estatic 'expressio E = Smve + q¢® és constant, on ¢ és

el potencial electric.

E.4.2. Estimeu la velocitat v dels electrons d'un corrent filiforme d'intensitat
15 A en un fil de coure (Cu) de seccid transversal 1 mm? (la densitat del Cu és
8.96 g/cm?, el seu pes atdmic és 63.55 uma, i podeu suposar que cada atom de
Cu contribueix al corrent amb un electré lliure (recordem la unitat de massa

.. . 1 L :
atomica, uma o dalton, es defineix com > del pes d'un atom de carboni, la qual
cosa resulta ser equivalent a 1.66 x 10727 kg).

Solucid. Pel que hem dit, v = I /ps, on I és la intensitat del corrent, s la superfi-
cie transversal del fil i p la densitat de carrega. Segons el que s’especifica a

I’enunciat, p = ne, on n és el nombre d’atoms de Cu per unitat de volumii e la
carrega elemental (1.60 x 1071°C). Perd
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10~%7kg
uma

107 3kg
10~6m3

n = (8.96 x )/63.55 uma x 1.66 x = 84935 x 107 —,

p = ne = 8.4935 X 1028$ x 1.60 X 10719C = 1.359 x 10%° C/m3,

ps = p X 107°m? = 1.359 x 10° C/m

p=—2>2 _AM_ 400112 =1122
1.359%x10°> C S S

E.4.3. Considereu un disc de radi R i centre O carregat electricament amb den-
sitat superficial uniforme o. Suposeu que el disc gira a velocitat angular constant
w al voltant de la recta OZ perpendicular al disc. Calculeu:

1. La densitat superficial de corrent.
2. El camp magnetic creat en un punt P de I'eix OZ.
3. El moment dipolar magnetic del disc.

Com es moura una carrega puntual g que inicialment estigui sobre 0Z, a una
distancia a de |'origen, i amb velocitat v, en la direccio d'0Z?
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E.4.4. Considereu una superficie esferica de radi R carregada uniformement
amb una densitat superficial 0. Suposem que la superficie gira al voltant d'un
diametre amb una velocitat angular constant w.

1. Calculeu la densitat superficial de corrent generada per la rotacio de la super-
ficie.
2. Proveu que el camp magnetic en el centre de |'esfera degut a la rotacio és

B = %,uOJRa).

E.4.5. Un corrent estacionari j es diu que és simetric respecte d'un pla 7 si, per
a qualsevol parell de punts P i P’ simétrics respecte de m, els vectors j(P) i j(P")
son també simetrics respecte de m (i.e., les components tangencials al pla coin-

cideixen i les normals només difereixen en el signe). Proveu que si j és simetric
respecte de 7, llavors el camp magnetic B generat per j és antisimetric respecte
de 7 (i.e., B(P") és menys el simétric de B(P)). Deduiu-ne en particular que B
és perpendicular a T en tot punt de .
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Notes
N1la. [pag. 4] La forca magnética que g exerceix sobre q’ és

F,(—r)= —Z—;i—‘i’v’ ANVAT)

no compleix el tercer postulat de Newton: com que
VAWATr)=vA@ Ar)+ (W' Av) Ar (identitat Jacobi)
=—vA@WA(T)+ W AV)AT,

resulta que F.,.(r)=—-F, ,(r)+rA@®Av),

i el termer A (v A V") només és nul si r és coplanariamb v'.

N1b. [pag. 20] La forca que el corrent del circuit ¥’ exerceix sobre el corrent del
circuit y és

u 1’ dl(on@l’ (x" A(x-x ))
— 1,

|x—x'|3

Desenvolupant el doble producte vectorial, obtenim



38

dl(x) A (dlU'(x) AR) = —(dl(x) - dU'(x))R + (dl(x) - R)dl'(x"),

14
X—X \
Pero

onR = .
|lx—x"|3

(dl(x) - R)dl'(x") = (dl(x) - 0,¢)dl'(x") ,amb ¢ = —

1

|x—x'|’

Com que ¥y és un circuit tancat, el teorema fonamental del calcul ens diu que
f)/ dl(x) ’ ax(:b — 0;

de manera que

F=-— ”:;’ ' fy fy,(dl(x) -dl'(x))R.

Raonant de la mateixa manera amb la forca F' que el segon corrent exerceix so-
bre el primer,

Vi

r uoll al’ (x"Ha(dl(x)A(x'—x))
F = 41T f)" f)/ |x"—x|3

obtenim que
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F = — ”0” — [ [, (dl'@)-dlx)R’, R =

Ix xI3 '
Finalment, com que R’ = —R, obtenim que
F' = —F.

Es a dir, encara que la forca magnética entre particules carregades (o entre ele-
ments de corrent) no satisfaci la tercera llei de Newton, la forca magneética entre
corrents tancats si la satisfa.

N2. [pag. 7] El fet que F,, < F, per a velocitats petites comparades amb la de Ia
llum podria fer pensar que la forca magnetica hauria de ser negligible en moltes
de les situacions ordinaries. Pero aixo no és aixi, com ho mostra I'exemple d'un
corrent en un fil conductor. En efecte, en aquest cas les carregues positives (fi-
xes) i negatives (mobils) tenen una densitat de carrega total nul-la, i, lluny del
conductor, produeixen un camp electric nul, pero en canvi, com veiem més
avall, les carregues mobils produeixen un camp magnetic no nul.
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N3. [pag. 9] Quan v = 0, Ia particula descriu un cercle. Aquest fet és la base del

ciclotro. En tot cas, el resultat d’aquest exercici és una de les claus per explicar
les aurores boreals, tal com mostra la il-lustracio.

Apy:Zona aurora boreal SN: Eix de rotacio de la Terra

Ag:Zona aurora austral ~ N,,: Nord magnetic (76°N, 102°0)

Aurores: fenomens lluminosos produits en les capes altes
de 'atmosfera de les zones boreal i austral per col-lisions
de particules carregades (vent solar) que en entrar en el
camp magnetic de la Terra descriuen espirals al voltant de

les linies del camp magnetic, cosa que fa que es concentrin
en les zones polars.

N4. [pag. 13] Aquesta formula és analoga a la formula

1 (r—x)
E(r) = 4n£0fp(x) %) do

lr—x|3

que dona el camp electric corresponent a la distribucié de carregues p.
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N5 (Moment magnetic dels atoms i nuclis atomics). [pag. 26] Considerem un
dels electrons d'un atom. Si ens imaginem que descriu una trajectoria circular
de radi r, el seu moment angular M és perpendicular al pla de I'orbita i té modul
M = m,vr. També podem imaginar que en el seu moviment l'electré crea un

. . . ev ,. ’, ve n . N
corrent circular d'intensitat [ = - (ja que v/2mr és la frequiencia en que I'e-

lectré passa per un punt donat de I'orbita), a la qual correspon un moment
magnétic m perpendicular al pla de I'drbita i de magnitud m = nr?l = —evr/
2. En resulta que m = —y,M, amb y, = —m/M = e/2m,. Com que y, només
depen de la massa i carrega de l'electrd, en podem deduir la relacié m, =
—y,M, entre el moment angular orbital total dels electrons, M,, i el moment
magnetic orbital m, corresponent al mateix moviment.

La relacid anterior s'ha obtingut amb un model classic molt simplificat, pero
sorprenentment el resultat segueix essent valid quan els calculs es fan amb el
model de |la mecanica quantica, que s'ha de considerar el correcte. Amb aquest
model es troba que les particules elementals tenen, a causa del seu moment
angular intrinsec (espin), Mg, un moment magnetic intrinsec (mg). En el cas de
I'electro6 s'obté mg, = —gy,M;, on g = 2 s'anomena el factor de Landé o rao gi-
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romagnetica. Val a dir que aquest resultat és al que s'arriba mitjancant la meca-
nica quantica no relativista, i que una de les prediccions més reeixides de tota la
historia de la fisica és la que fa la teoria quantica de camps (és a dir, la mecanica
quantica relativista) quan per calcul obté g = 2.0023193048(8) i per experi-
ment g = 2.0023193048(4).

En el cas dels protons i neutrons, |la teoria quantica de camps dona m, =
—g9YpMg, on y, = e/2m,, amb g = 5.58569478(12) en el cas del proto i
—3.8260854(10) en el cas del neutrd. El valor relativament gran d'aquests fac-
tors prové de |'estructura interna dels nucleons (protons i neutrons), pero s'ha
de remarcar que els moments magnetics son considerablement menors que els
de l'electro.

Tot comptat, s'acaba trobant que el moment magnetic electronic total d'un
atom, m, és proporcional al corresponent moment angular M, diguem
m = —yM, on y és un factor que depen de I'atom, i del seu estat (en forma de
factor de Landé, y = gy,). Hi ha una relacié semblant per als moments magne-
tic i angular totals d'un nucli atomic, m = —yM (y = gy, en forma de factor de
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Landé). En la determinacio de g hi entren no només els espins dels nucleons,
sind també els moments magnetics corresponents als moviments dels protons.
Pel que hem dit abans, el moment magnetic nuclear és considerablement me-
nor que el moment magnetic electronic.

N6. [pag. 32] Hem suggerit que no n’hi ha i la realitat és que fins el dia d'avui no
se n'ha detectat cap. Tanmateix certes teories quantiques preveuen que en al-
gun moment de la historia de I'Univers se’n van produir.



