MMF 10 / 2. Electromagnetisme

2. Potencial electric
S. Xambod

Definicid del potencial electric. Equacio de Poisson i

equacio de Laplace.

Interpretacid del potencial

Energia potencial d’una distribucié discreta
Solucions de I'equacio de Poisson

Potencial creat per conductors carregats. Capacitat d’un
conductor.

Metode de les imatges



Sigui

E,  =—1_1 (r—a)

42  ame, |r—ald

el camp creat per una cérrega puntual g situada a a. Llavors

bga(r) = !

41Ey |r—al

és un potencial per a Eq,a:

q N1
ar¢q' 41ty |r— a|3 (r—a)= q, '

Pel principi de superposicio,
_\m _ 1 qi
¢(r) — =1 ¢C[i,ai (r) T ATTE, Zl |T—ai|

és un potencial per al camp creat per les carregues puntuals g; situades

en els punts a; (i =1,...,n). En el cas d’una distribucié continua, cal



substituir la suma per una integral. Per exemple, en el cas
d’una distribucio volumetrica, el potencial és

o(r) = L™ oy

4EY ¥ |r—x|

. . . s .« . Poisson 1781-1840
Corol-lari (Primera equaciéo fonamental de I'electrostatica)

rot(E) = 0.

Corol-lari (Equacio de Poisson). Ap = —eﬁ.
0

Corol-lari (Equacio de Laplace = equacid de Poisson quan
p=0) A¢p =0.

Laplace 1749-1827

Corol-lari (Interpretacié del potencial)

Per a tot camiy amb extremsr, ir,,
7, (E) = ny dl = —fy A - dl = —fy dp = ¢p(ry) — P(1y).

Per a qualsevol camiy d’extrems r i oo,



LE-dl= ¢

Es a dir, el potencial ¢(r) és el treball que fa el camp eléctric per moure
una carrega unitat des de 7 fins a l'infinit.

Expressid de p entermesde E i ¢, de Eentermesde pi¢,ide ¢d entermesdepiE.

p E ¢
1 p(x)dx 1 p(x)
B a1ey YV |r—x|3 (T N x) ATTE J‘V |r—x| dx
E | div(E) - [CE-dl
b | —€l¢ —0d¢ -

Remarca. La unitat Sl per al potencial és el volt (V). L'equacio E = d¢
implica que V/m és la unitat de camp electric, d'on V/m = N/C, o bé
V =Nm/C.



Corol-lari. L’energia potencial W del sistema de carregues puntuals g; si-
tuades en punts7; (i = 1, ..., n) ve donada per I'expressio

. qlCI] . -
W= 41T, Zl<] rij’ Nij = |ri rj| '

. 1 . :
Alternativament, W = EZi q;®;, on ¢; és el potencial creat per totes les

carregues llevat g;.

Prova. Per induccio respecte de n. Per n = 1, els dos membres son 0. Su-

posant n > 1 i que 'afirmacio és valida per a n — 1, tenim I'energia po-
qid;
rij
banda el potencial en el punt r,, del camp creat per q4,...,q—1 €S

tencial de les carregues g4, ...,q,,_1 és W' = . Per altra

ATT Zl<]<n

ZKn - I’energia que cal aportar per dur g,, des de l'infinit fins a

477:80
r, és W' = HZanriﬂ- Ara basta observar que I’energia potencial de
0 in
et : qiq;j
la distribucid final ésW = W' + W"ique W' + W' = po— Zl<] ; L,
0 ij
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Remarca. En el cas d’una distribucié continua, W = %f ppdx. Usant que
p = gdiv(E),
pp = godiv(E)p = odiv(pE) — £9(0¢) - E = ydiv(¢E) + oE?,
d’on resulta, tenint en compte que ¢E = 0(r~3), que
W =—gf E%dx.
QW)

€o

Remarca. L'equacio de Poisson ens mostra que fW Ap dr = — . En el

cas del potencial d’'una carrega puntual g situada en un punt a, sabem
A¢ no esta definida a a i que Ag = div(d¢p) = —div(E) = 0 en tots els
QW)

€o

punts r # a. Tanmateix, si volguéssim que I'equacio fw A dr = —

fos certa per aquest cas, tindriem que

—Lsiaew

fWAqde:{ €0
Osia &g W
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Aquestes relacions mostren que A¢p = —815(1‘ —a), on ¢ és la “funcio”
0

de Dirac (delta de Dirac), és a dir, A, ( L 4 ) = —815(1‘ —a),obé
0

41y |r—al

A (=) = —4n8(r — a).?

[r—al

Des del punt de vista matematic, § no és una funcio en el sentit usual del

.« s . . . sy N3 . . .
terme, sind una “distribucid”,™ i operacionalment queda caracteritzada
per la relacio

1siaeW
fw5(r_“)dr={051aew

0, més generalment,

e gt



Solucions de I'equacio de Poisson

Teorema. L’equacio de Poisson admet la solucio

)
d)Poisson(r) e, f|',o,(xx| dx.
p(x)
Prova*. A, ( flr 74X ) P — [ p(X)A, (Ir xl) dx
= fp(x)( 48 (r — x))dx = —p:) .

1
[r—al

(L’asterisc indica que usem la formula A, ( ) = —4nd(r — a)).

Solucio de I'equacio de Poisson. La solucié general de l'equacio de Pois-

f I;O” (x :Z| dx i una solucio arbitraria de

son és la suma de ¢Poisson(r) ATTE

I'equacio de Laplace.



Condicions suficients per a la unicitat de la so-
oy

lucio de I’'equacio de Laplace. Considerem un

obert U que és el complementari de regions @
regulars Ky, ..., K,;, dues a dues disjuntes, i d’un

conjunt finit de punts a4, ..., a, exteriors als K; @ % A

i en els quals suposarem que tenim carregues o
puntuals g4, ..., g,-. Ens interessen les solucions ¢ de |'equacio de Laplace

diferenciables sobre U, continues sobre UU S, U---US,, on §; = 0K;, i
gue compleixen les condicions de contorn seguents:

1. @; = gb|5i son funcions continues donades, i = 1, ..., n.

2. En lI'entorn de cada a;, ¢ — ¢,.,. €s una funcio diferenciable en el
.] q];a]

punt a;.

3.9(r) - (8p)(1) és O(r~3) perr > 0.

Aleshores:
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Teorema (Unicitat de les solucions de I'equacio de Laplace). Per a funci-
ons ¢ que satisfan les condicions de contorn 1, 2 i 3, I'equacio de Laplace
A¢p = 0 sobre U té com a molt una solucio.

Conjunts que apareixen en la prova

U | Obert complementari dels K; i a;

U’ | Obert complementaridels K; (= U U {ay4, ...,a,})
U|lUuUuS,uU-uUsS,

B, |Bola que conteé els K; i els a;

U, | Resulta d’extreure de B els interiors dels K;

So |0By; notem que 0Uy = Sy US; U--US,

a . o V4 °
& *“2 Prova. Veurem que si ¢’ i ¢'' sén solucions de
@ I'equacio de Laplace sobre U, amb les mateixes
condicions de contorn, llavors ¢’ = ¢"". Per

a, demostrar-ho, veurem que ¢ = ¢’ — "’ és
a s
* nul-la sobre U. Ens basarem en el fet que ¢ és
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una solucid de I'equacio de Laplace sobre |'obert U’ complementari de les
regions K; (ja que ¢ és diferenciable en els punts a;) i que s'anul-la sobre
cada una de les superficies §; = 0K;.

Per veure que ¢ = 0, aplicarem el teorema de la divergencia al camp
vectorial ¢p@¢ sobre la regié U, obtinguda extraient els interiors dels K;
d'una bola tancada By que conte les regions K; i els punts a;. Si Sy =

0By,
U div(¢ae) = faﬁo $oP - ds = fSO Qo - ds

ja que ¢ s'anul-la sobre les superficies S, ..., S,,. Tenint en compte que la
darrera expressio és O(r~1) per v > 0 (per la hipotesi 3 de les condici-
ons de contorn), obtenim que la darrera integral tendeix a O quan el radi
de S, tendeix a infinit i, per tant, que

fU div(¢a¢) =0,

on U és el complementari dels interiors dels K;. Perod
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div(¢pdd) = pAp + (3¢)?
i A¢p = 0 sobre U, d'on resulta que

[ div(¢ag) = [(3)>.

Com que l'integrant és no negatiu i la integral és nul-la, veiem que
d¢p = 0. Per tant, ¢ és constant. Pero aquesta constant ha de ser O, ja
que ¢ és 0 sobre les superficies S;.

Remarca. Si en lloc de la condicié de contorn (1), ¢|Si = @; (pag. 9),
usem

(1) Adls, = u;,

on u; és un camp vectorial definit sobre S;, la prova anterior es pot adap-
tar per mostrar que l'equacio de Laplace té com a molt una solucio, llevat
de constants additives.
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Exemple (Potencial creat per conductors carregats). Suposem que K;
(i =1,...,m) sén cossos conductors carregats i que ¢4, ..., ¢, SOn carre-
gues situades en punts a;, ..., a,- exteriors als K; (r = 0). Suposem que K;
té una carrega neta total ;. Aquestes carregues es distribueixen a la su-
perficie dels conductors i, junt amb les g, creen un camp electric a I'exte-

rior dels conductors (a l'interior, en canvi, el camp és nul). Aquest camp
electric té un potencial ¢ que satisfa I'equacié de Laplace fora dels con-
ductors (i dels punts a4, ..., ay). Posem @; = ¢|5k,, de manera que @; és

el potencial del conductor K; (una constant). L'objecte d'aquest exemple
és veure que la transformacié (Q,...,Q,) » (@4, ..., ;) és lineal. En
particular resulta que si les carregues @y, ..., Q,, sOn nul-les, aleshores els
potencials ¢4, ..., @,, també son nuls.

En efecte, si posem ¢ per denotar el potencial corresponent a una uni-
tat de carrega sobre K; i carrega nul-la sobre els demés conductors, de-
mostrarem que
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b= Q™M + -+ Q™
i d'aqui resulta I'enunciat, ja que restringint a dK; obtenim
@j = Ni=1Qi®ij,
on @i = ¢WV|ak -
Per veure la igualtat en questio, posem P = QM + -+ + 0, . Com

que les ¢ satisfan I'equacié de Laplace fora dels conductors (i dels
punts a4, ..., a,), Y també la satisfa. El camp electric que defineix P és
-0y = X;Q;E;, on E; és el camp eléctric definit per ¢, Si restringim
aquest camp a dK;, i recordem la relacid entre el camp eléctric a la super-

ficie d'un conductor i la densitat superficial de carrega, obtenim la relacid

0j = 2;Q;0ij,
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on g; i g;; son les densitats superficials sobre K; degudes als potencials ¥
i d)(i). Integrant sobre dK; obtenim, si Q]'- es la carrega total sobre K; de-

guda al potencial Y,

Q; = %;Q:6; = Q,
ja que per construccié la carrega total de g;; ésOsii#jilsii=j,i
d'aixo resulta que Y = ¢.
Remarca (Capacitat d'un conductor). L'exemple anterior mostra que el
potencial ¢ d'un conductor isolat carregat amb una carrega Q compleix

Q = Cyp, on C és una constant que només depen del conductor. La cons-
tant C s'anomena capacitat del conductor.

Exemple. Lamina plana conductora infinita, a potencial O (connectada a
terra) i una carrega g situada a una certa distancia de la lamina. La pre-

sencia de g origina una distribucié de carregues g
([

a la lamina (aguest fenomen s"anomena induccio
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electrostatica) i el problema és obtenir el potencial ¢ del camp creat per
aquesta distribucid i g en el semiespai definit per la lamina i g.

Les condicions de contorn d’aquest problema 0-q
son la presencia de la carrega g, diguem en el |

punt a, i que el potencial a la superficie de la .d

lamina és nul. El que volem és trobar una funcié amb les mateixes condi-
cions de contorn i que satisfaci I'equacio de Laplace. A tal fi, considerem
el potencial ¢’ de la carrega g i el potencial ¢"" d’una carrega imaginaria
—q situada en el punt a’ simétric de a respecte del pla de la lamina. Lla-
vors ¢ = ¢’ + @'’ satisfa 'equacié de Laplace (fora dels punts a i a’). Es
a més clar, per la manera com s’ha definit ¢, que sobre el pla de la lamina
val 0. Com que ¢ és diferenciable en el semiespai de g, resulta que ¢ és
la solucid del problema. Notem, pero, que ¢ no dona el potencial en
I"altre semiespai, el semiespai de la carrega imatge - g, ja que aquest po-
tencial és diferenciable i en canvi ¢ no esta definida en el punt a’.
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Remarca. També és interessant trobar |la distribucio de carregues sobre
la lamina. En efecte, si restringim el camp eléectric E = —d¢ a la lamina,

. O- V4 ] \ (] 7
obtenim el vector —M,onoes la densitat de carregues i n és el vector
0

normal unitari a la lamina dirigit cap el semiespai de q. Si prenem coor-
denades de manera que la lamina sigui el pla yz i a el punt (a, 0,0), lla-
vors resulta que 0 = g(y, z) ve donada per la férmula

qa
zZ) = — ,
En coordenades polars del playz, 0 = o(r), o(r) = — ad N4
’ ’ 2m(a2+r2)3/2 "

Integrant, es pot veure que la carrega total de la distribucié a(y,z) és
_Q'
Metode de les imatges

El metode que hem seguit a I'exemple anterior per trobar el potencial
creat per una carrega prop d'una lamina conductora infinita, i la corres-
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ponent distribucid de carregues sobre la lamina, és un cas particular de
I"anomenat metode de les imatges. El que hem fet és substituir el camp
creat per la distribucio sobre la lamina, que en principi és desconeguda,

pel camp creat per una carrega — g (carrega anomenada imatge) situada
en el punt a’. En general, el métode s'aplica a potencials de la forma

p(r) = ¢1 () + — [ 22 dx

g " |r—x|

on ¢4 és una funcio coneguda i on la integral és la contribucio de la car-
rega superficial (en principi desconeguda) sobre tots els conductors que
apareguin al problema. Pot succeir, i aguesta és |'essencia del metode,
que l'ultim terme d'aquesta equaciod pugui ser substituit per un potencial
¢, degut a una distribucié de carregues especificada, generalment carre-
gues puntuals o lineals. Les carregues imaginaries que produeixen ¢, s'a-
nomenen carreqgues imatge. Tal com passa a l'exercici E.2.1, aquestes
carregues poden trobar-se a l'interior dels conductors.
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Exercicis E.2 (Potencial electric)

E.2.1. Considereu una esfera conductora de radi r que es manté a potencial
¢ = 0iuna carrega q situada a una distancia a > r del seu centre.

1. Demostreu que el potencial fora de |'esfera és
igual al potencial de g més el potencial d'una carrega

imatge de valor q' = —qr/a situada sobre el seg-

ment que uneix el centre amb el punt en el que esta

situada g a una distancia b = r%/a.
2. Quina és la forga que |'esfera exerceix sobre g?

3. Calculeu la densitat de carrega superficial induida sobre |'esfera per la pre-
sencia de q.

4. Que canvia si l'esfera conductora es manté a un potencial ¢ no necessaria-
ment nul?

E.2.2. Sabem que el camp eléctric creat per un fil rectilini infinit carregat amb
una densitat lineal constant A és, a una distancia r del fil,
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1 A
2MEY T

E,. =
Mostreu que el potencial ¢ d'aquest camp, a una distancia r de fil, té la forma

p(r) = -

A
27'[80

In(r) + C,

on C és una constant arbitraria.

E.2.3. Una distribucié esferica de carrega ve donada per una densitat

r2 :
p(r) — {pO (1_;) S1Ir<a
Osir>a

on r = |r|. Calculeu el camp eléctric i el potencial a I'exterior i a l'interior de la
distribucio de carrega i la seva carrega total Q.

E.2.4. Només un dels camps vectorials seglients pot ser el camp electrostatic
creat per una distribucio de carrega. Determineu quin és i calculeu-ne el poten-
cial corresponent (comproveu el resultat calculant el gradient):

(a) E = k[(xy)i+ (2yz)j + (3xz)k]
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(b) E = k[(y?)i+ (2xy +z%)j + (2yz)k]
(k una constant). Quina és la distribucié de carrega que crea aquest camp?

E.2.5. L'hemisferi nord d’una esfera esta carregat uniforme-
ment amb una densitat superficial o. Calculeu la diferencia de
potencial entre el pol nord i el centre de 'esfera.
E.2.6 (Teorema de reciprocitat de Green). Siguin p{ (1) i p,(7)
dues distribucions de carrega qualssevol. Siguin V; (1) i V,(r) els corresponents
potencials (s'entén que no totes dues distribucions de carrega sén presents al
mateix temps, sind que corresponen a dues situacions possibles diferents). Pro-
veu que

J p1 (Vo (r)dr = [ p, (Vo (r)dr.
[Indicacié: calculeu [(E; - E;)dr de dues maneres diferents, una expressant E;
en termes del corresponent potencial i usant integracio per parts, i I'altra fent
el mateix pero amb E,]
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E.2.7. Considereu dos objectes conductors qualssevol C; i C, (per exemple, du-
es esferes metal-liques separades una certa distancia). Sigui /3, el potencial de
C, quan C; té una carrega neta Q i C, esta descarregat, i sigui V,; el potencial
de C; quan C, té una carrega neta @ i C; esta descarregat. Proveu, usant el teo-
rema de reciprocitat de Green, que V;, = V21.N6

E.2.8. Considereu una esfera conductora de radi R a potencial V i amb una car-
rega neta (). Calculeu la densitat superficial de carregaila relacié entre Q i V.

E.2.9. Considereu el mateix problema de I'esfera conductora i la carrega puntu-
al g anterior pero suposant que l'esfera es manté amb carrega constant Q = 0
enlloc de mantenir-se a potencial constant (esfera neutra aillada). Determineu
quin és el potencial de I'esfera en aquestes condicions.
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Notes
1 1 1 1 .
N1. 0, r-x| (arl lr—x|’ Or, |r—x|’ Or, |r—x|)' !

— = 0r, ((ry — %)% + (ry — %)% + (13 — x3)%)~1/2

Oy
" r—x|

= (=1/2) - 2(r; = x;) - ((ry = %)% + (1 = %) + (15 — x3)?) 73/2

1
— _(rl T xl) |r_x|3'

1

[r—al

N2. Notem que la relacio Ar( ) = —4md(r — a) és purament matematica,

tot i que aqui s’ha “derivat” en el context del potencial electric.

N3. Les “distribucions” en el sentit de I'analisi funcional sén funcionals lineals
sobre certs espais de funcions. En el cas de §(r — a), el funcional és f = f(a),

en concordanca amb el sentit de I'expressié [ f ()8 (r — a)dr.
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qa
21m(a2+1r2)3/2

-E;, enlaregio x <0, ja que el potencial en aquesta regio es nul (¢ = 0 satis-

N4. [Pag. 17] La distribucié o(r) = — del pla yz ha de crear el camp

fa I'equacio de Laplace i qb|{x=0} = (). Tanmateix, aixo no és facil d’establir en
general, ja que la integral per obtenir el camp creat per la distribucid o en un
punt arbitrari no sembla facil de resoldre. La comprovacié és més manejable per
als punts de l'eix - Ox, ja que el valor d’aquest camp en el punt (—x,0,0) és,
usant la férmula establerta a la Remarca de la pag. 17,

2, 2
aqgx oo 2 2\—3/2 (.2 2\—3/2 __aqx —2ax+x“+a° _  q 1
= r(r“+x r“+a dr = =
ATTE fO ( ) ( ) amey xa(a?—x2)2 4treg (a+x)?
Hem usat que
1 2r?+a’+b?

2 2\—3/2 (.2 2\—3/2 —
f’l"(?" +a ) (7" + b ) d?‘ o (bz_az)z (r2+a2)‘1/2(7”2+b2)_1/2 :



N5. [Pag. 19] ¢’ = —gR/a esta situadaa b = R%/a.

bq =Kq/p, g = Kkq'/p’.

p=+r2+a?—2racos¢

p' =12+ b%2—2rbcosg

— |2 4 /2 R?
= [r“+ R*/a —Z(T)cos<p

_ R [(ra)? 2 _ 2
—a\/(R) + R 2rR“a cos @

25




26

N6. [E.2.7, pag. 22: Considereu dos objectes conductors qualssevol C; i C,. Sigui
V1, el potencial de C, quan C; té una carrega neta Q i C, esta descarregat, i si-
gui V5, el potencial de C; quan C, té una carrega neta @ i C; esta descarregat.
Proveu, usant el teorema de reciprocitat de Green, que /'3, = V54.]

La densitat p; corresponent al cas en que C; té carrega Q i C, carrega 0 es redu-
eix a distribucions superficials de carregues sobre C; i C,, diguem-ne 041 i 015,
respectivament. Per tant, la integral [ p;(m)V,(r)dr s’ha d’interpretar com
facl 011V,1dsq + facz 01,V,,ds,, on hem posat /5, i V,, per denotar la restric-

cié de V, (la funcid potencial quan C, té carrega @ i C; esta descarregat) a d(; i
a dC,, respectivament. Pero V,; i V,, son constants, de manera que el valor de

[ o1 (Vo (r)dr és
V21 facl 011dsy + Va2 facz 012ds, = V51Q.
D’una manera similar es veu que el valor de [ p,(r)V;(r)dr és V;,Q. Finalment,

el teorema de reciprocitat de Green (E.2.6) ens permet concloure que
V21Q = V1,0Q, ésadir, que V5 = Vy,.



