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 Definició del potencial elèctric. Equació de Poisson i 
equació de Laplace. 

 Interpretació del potencial 
 Energia potencial d’una distribució discreta 
 Solucions de l’equació de Poisson 
 Potencial creat per conductors carregats. Capacitat d’un 
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Sigui 

     ࢇ,௤ܧ ൌ ௤
ସగఌబ

ଵ
య|ࢇି࢘| ሺ࢘ െ   ሻࢇ

el camp creat per una càrrega puntual q situada a ࢇ. Llavors  

   ߶௤,ࢇሺ࢘ሻ ൌ ଵ
ସగఌబ

௤
 |ࢇି࢘|

és un potencial per a ܧ௤,ࢇ:  

    െࣔ࢘߶௤,ࢇ ൌ ௤
ସగఌబ

ଵ
య|ࢇି࢘| ሺ࢘ െ ሻࢇ ൌ .ࢇ,௤ܧ

N1 

Pel principi de superposició, 

     ߶ሺ࢘ሻ ൌ ∑ ߶௤೔,ࢇ೔ሺ࢘ሻ௡
௜ୀଵ ൌ ଵ

ସగఌబ
∑ ௤೔

೔|௜ࢇି࢘|  

és un potencial per al camp creat per  les càrregues puntuals ݍ௜ situades 
en  els  punts   ௜ࢇ (݅ ൌ 1, … , ݊).  En  el  cas  d’una  distribució  contínua,  cal 
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substituir  la  suma per una  integral. Per exemple, en el cas 
d’una distribució volumètrica, el potencial és 

    ߶ሺ࢘ሻ ൌ ଵ
ସగఌబ

׬ ఘሺ࢞ሻ
|࢘ି࢞| ݀࢞ .  

Corol∙lari  (Primera  equació  fonamental  de  l’electrostàtica)     
     rܜܗሺࡱሻ ൌ ૙.  

Corol∙lari (Equació de Poisson). Δ߶ ൌ െ ఘ
ఌబ
.    

Corol∙lari  (Equació  de  Laplace  =  equació  de  Poisson  quan 
ߩ ൌ 0):   Δ߶ ൌ 0. 

Corol∙lari (Interpretació del potencial)  

Per a tot camí ߛ amb extrems ࢘ଵ i ࢘ଶ,  

    ߬ఊሺࡱሻ ൌ ׬ ࡱ ൉ ఊ࢒݀ ൌ െ ׬ ࣔ߶ ൉ ఊ࢒݀ ൌ െ ׬ ݀߶ఊ ൌ ߶ሺ࢘ଵሻ െ ߶ሺ࢘ଶሻ.  

Per a qualsevol camí ߛ d’extrems ࢘ i ∞, 

Poisson 1781‐1840 

Laplace 1749‐1827 
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    ׬ ࡱ ൉ ఊ࢒݀ ൌ ߶ሺ࢘ሻ.  

És a dir, el potencial ߶ሺ࢘ሻ és el treball que fa el camp elèctric per moure 
una  càrrega unitat des de ࢘ fins a l’infinit. 
Expressió de ࣋ en termes de ࡱ i ࣘ, de ࡱ en termes de ࣋ i ࣘ, i de ࣘ en termes de ࣋ i ࡱ. 

   ߩ  ࡱ ߶ 

 ߩ െ 
ଵ

ସగఌబ
׬ ఘሺ࢞ሻௗ࢞

|࢘ି࢞|య ሺ࢘ െ ࢞ሻ௏  
ଵ

ସగఌబ
׬ ఘሺ࢞ሻ

|࢘ି࢞| ݀࢞௏  

 ࡱ ሻࡱ଴divሺߝ െ  ׬ ࡱ ൉ ஶ࢒݀
࢘   

߶  െߝ଴Δ߶  െࣔ߶  െ 

 

Remarca. La unitat SI per al potencial és el volt (V). L'equació ࡱ ൌ ࣔ߶ 
implica que V/m és la unitat de camp elèctric, d'on V/m ൌ N/C, o bé 
V ൌ Nm/C. 
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Corol∙lari. L’energia potencial W del sistema de càrregues puntuals ݍ௜ si‐
tuades en punts ࢘௜ (݅ ൌ 1, … , ݊) ve donada per l’expressió 

    ܹ ൌ ଵ
ସగఌబ

∑ ௤೔௤ೕ

௥೔ೕ
௜ழ௝ ௜௝ݎ  , ൌ ห࢘௜ െ ௝࢘ห . 

Alternativament, ܹ ൌ ଵ
ଶ

∑ ௜߶௜௜ݍ , on ߶௜ és el potencial creat per totes les 

càrregues llevat ݍ௜. 

Prova. Per inducció respecte de ݊. Per ݊ ൌ 1, els dos membres són 0. Su‐
posant ݊ ൐ 1  i que  l’afirmació és vàlida per a ݊ െ 1, tenim  l’energia po‐

tencial de  les  càrregues ݍଵ, … , ௡ିଵ és ܹԢݍ ൌ ଵ
ସగఌబ

∑ ௤೔௤ೕ

௥೔ೕ
௜ழ௝ழ௡   . Per altra 

banda,  el  potencial  en  el  punt  ࢘௡  del  camp  creat  per  ,ଵݍ … ,  ௡ିଵݍ és 
ଵ

ସగఌబ
∑ ௤೔

௥೔೙
௜ழ௡ ,  i  l’energia que cal aportar per dur ݍ௡ des de  l’infinit  fins a 

࢘௡ és ܹԢԢ ൌ ଵ
ସగఌబ

∑ ௤೔௤೙
௥೔೙

௜ழ௡ . Ara basta observar que l’energia potencial de 

la distribució final és ܹ ൌ ܹᇱ ൅ ܹԢԢ i que ܹᇱ ൅ ܹᇱᇱ ൌ ଵ
ସగఌబ

∑ ௤೔௤ೕ

௥೔ೕ
௜ழ௝  . 
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Remarca. En el cas d’una distribució contínua, ܹ ൌ ଵ
ଶ

׬  Usant que .࢞݀߶ߩ
ߩ ൌ  ,ሻࡱ଴divሺߝ

  ߶ߩ ൌ ߶ሻࡱ଴divሺߝ ൌ ሻࡱ߶଴divሺߝ െ ଴ሺࣔ߶ሻߝ ൉ ࡱ ൌ ሻࡱ߶଴divሺߝ ൅    ,ଶܧ଴ߝ

d’on resulta, tenint en compte que ߶ࡱ ൌ ܱሺିݎଷሻ, que 

    ܹ ൌ ଵ
ଶ

׬଴ߝ   . ଶ݀࢞ܧ

Remarca. L’equació de Poisson ens mostra que ׬ Δ߶ ݀࢘ௐ ൌ െ ொሺௐሻ
ఌబ

. En el 

cas del potencial d’una càrrega puntual ݍ situada en un punt ࢇ, sabem 
Δ߶ no està definida a ࢇ  i que Δ߶ ൌ divሺࣔ߶ሻ ൌ െdivሺࡱሻ ൌ 0 en tots els 

punts ࢘ ്  Tanmateix, si volguéssim que .ࢇ l’equació ׬ Δ߶ ݀࢘ௐ ൌ െ ொሺௐሻ
ఌబ

 

fos certa per aquest cas, tindríem que 

    ׬ Δ߶ ݀࢘ௐ ൌ ቊ
െ ௤

ఌబ
 si ࢇ א ܹ

0 si ࢇ ב ܹ     
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Aquestes relacions mostren que Δ߶ ൌ െ ௤
ఌబ

ሺ࢘ߜ െ  ”és la “funció ߜ ሻ, onࢇ

de Dirac (delta de Dirac), és a dir, Δ࢘ ቀ ଵ
ସగఌబ

௤
ቁ|ࢇି࢘| ൌ െ ௤

ఌబ
ሺ࢘ߜ െ  ሻ , o béࢇ

    Δ࢘ ቀ ଵ
ቁ|ࢇି࢘| ൌ െ4ߜߨሺ࢘ െ  ሻ.N2ࢇ

Des del punt de vista matemàtic, ߜ no és una funció en el sentit usual del 
terme,  sinó una “distribució”,N3  i operacionalment queda caracteritzada 
per la relació 

   ׬ δሺ࢘ െ ሻ݀࢘ௐࢇ ൌ ቄ 1 si ࢇ א ܹ
 0 si ࢇ ב ܹ  

o, més generalment, 

   ׬ ݂ሺ࢘ሻδሺ࢘ െ ሻ݀࢘ௐࢇ ൌ ൜݂ሺࢇሻ si ࢇ א ܹ
   0     si ࢇ ב ܹ 
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Solucions de l’equació de Poisson 

Teorema. L’equació de Poisson admet la solució 

߶P୭୧ୱୱ୭୬ሺ࢘ሻ ൌ ଵ
ସగఌబ

׬ ఘሺ࢞ሻ
|࢘ି࢞| ݀࢞.  

Prova*. Δ࢘ ቀ ଵ
ସగఌబ

׬ ఘሺ࢞ሻ
|࢘ି࢞| ݀࢞ቁ ൌ ଵ

ସగఌబ
׬ ሺ࢞ሻΔ࢘ߩ ቀ ଵ

|࢘ି࢞|ቁ ݀࢞ 

     ൌ ଵ
ସగఌబ

׬ ሺ࢘ߜߨሺ࢞ሻሺെ4ߩ െ ࢞ሻሻ݀࢞ ൌ െ ఘሺ࢘ሻ
ఌబ

 .  

(L’asterisc indica que usem la fórmula Δ࢘ ቀ ଵ
ቁ|ࢇି࢘| ൌ െ4ߜߨሺ࢘ െ   .(ሻࢇ

Solució de  l’equació de Poisson. La solució general de  l'equació de Pois‐

son és la suma de ߶P୭୧ୱୱ୭୬ሺ࢘ሻ ൌ ଵ
ସగఌబ

׬ ఘሺ࢞ሻ
|࢘ି࢞| ݀࢞ i una solució arbitrària de 

l'equació de Laplace. 
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Condicions suficients per a la unicitat de la so‐
lució de  l’equació de  Laplace. Considerem un 
obert  U  que  és  el  complementari  de  regions 
regulars ܭଵ, … ,  ௡, dues a dues disjuntes, i d’unܭ
conjunt finit de punts ࢇଵ, … ,  ௜ܭ ௥ exteriors alsࢇ
i en els quals  suposarem que  tenim càrregues 
puntuals ݍଵ, … ,  ௥. Ens interessen les solucions ߶ de l'equació de Laplaceݍ
diferenciables sobre U, contínues sobre ܷ ׫ ଵܵ ׫ ڮ ׫ ܵ௡, on  ௜ܵ ൌ  ,௜ܭ߲ i 
que compleixen les condicions de contorn següents: 

1. ߮௜ ൌ ߶หௌ೔  són funcions contínues donades, ݅ ൌ 1, … , ݊. 

2.  En  l'entorn  de  cada ࢇ௝, ߶ െ ߶௤ೕ,ࢇೕ   és  una  funció  diferenciable  en  el 

punt ࢇ௝. 

3. ߶ሺ࢘ሻ ൉ ሺࣔ߶ሻሺ࢘ሻ és ܱሺିݎଷሻ per ݎ ب 0.  

Aleshores: 

1K2K

3K
3a

1a 2a

4a
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Teorema (Unicitat de  les solucions de  l’equació de Laplace). Per a funci‐
ons ߶ que satisfan les condicions de contorn 1, 2 i 3, l'equació de Laplace 
Δ߶ ൌ 0 sobre U té com a molt una solució. 

Conjunts que apareixen en la prova 

ܷ  Obert complementari dels ܭ௜ i ࢇ௝
ܷԢ  Obert complementari dels ܭ௜ (ൌ ܷ ׫ ሼࢇଵ, … , (௥ሽࢇ
ഥܷ  ܷԢ ׫ ଵܵ ׫ ڮ ׫ ܵ௡

 ଴ܤ Bola que conté els ܭ௜ i els ࢇ௝  
ഥܷ଴  Resulta d’extreure de ܤ଴ els interiors dels ௜ܭ
ܵ଴  ߲  ଴; notem queܤ߲ ഥܷ଴ ൌ ܵ଴ ׫ ଵܵ ׫ ڮ ׫ ܵ௡

 

Prova. Veurem que si ߶Ԣ i ߶ԢԢ són solucions de 
l'equació de Laplace sobre U, amb les mateixes 
condicions  de  contorn,  llavors  ߶ᇱ ൌ ߶ԢԢ.  Per 
demostrar‐ho,  veurem  que  ߶ ൌ ߶ᇱ െ ߶ԢԢ  és 
nul∙la sobre U. Ens basarem en el fet que ߶ és 

1K2K

3K
3a

1a 2a

4a
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una solució de l'equació de Laplace sobre l'obert ܷԢ complementari de les 
regions ܭ௜ (ja que ߶ és diferenciable en els punts ࢇ௜) i que s'anul∙la sobre 
cada una de les superfícies  ௜ܵ ൌ  .௜ܭ߲

Per  veure  que ߶ ൌ 0,  aplicarem  el  teorema  de  la  divergència  al  camp 
vectorial ߶ࣔ߶ sobre  la regió  ഥܷ଴ obtinguda extraient els  interiors dels ܭ௜ 
d'una bola  tancada ܤ଴ que  conté  les  regions ܭ௜  i els punts ࢇ௝.  Si ܵ଴ ൌ
 ,଴ܤ߲

    ׬ divሺ߶ࣔ߶ሻ௎ഥబ
ൌ ׬ ߶ࣔ߶ ൉ ࢙݀డ௎ഥబ

ൌ ׬ ߶ࣔ߶ ൉ ࢙݀ௌబ
 

ja que ߶ s'anul∙la sobre les superfícies  ଵܵ, … , ܵ௡. Tenint en compte que la 
darrera expressió és ܱሺିݎଵሻ per ݎ ب 0  (per  la hipòtesi 3 de  les condici‐
ons de contorn), obtenim que la darrera integral tendeix a 0 quan el radi 
de ܵ଴ tendeix a infinit i, per tant, que 

    ׬ divሺ߶ࣔ߶ሻ௎ഥ ൌ 0,  

on  ഥܷ és el complementari dels interiors dels ܭ௜. Però 
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    divሺ߶ࣔ߶ሻ ൌ ߶Δ߶ ൅ ሺࣔ߶ሻଶ 

i Δ߶ ൌ 0 sobre  ഥܷ, d'on resulta que 

    ׬ divሺ߶ࣔ߶ሻ௎ഥ ൌ ׬ ሺࣔࣘሻଶ
௎ഥ . 

Com  que  l’integrant  és  no  negatiu  i  la  integral  és  nul∙la,  veiem  que 
ࣔ߶ ൌ 0. Per  tant, ߶ és constant. Però aquesta constant ha de  ser 0,  ja 
que ߶ és 0 sobre les superfícies  ௜ܵ.   
 
Remarca.  Si  en  lloc  de  la  condició  de  contorn  (1),  ߶|ௌ೔ ൌ ߮௜  (pàg.  9), 

usem 
(1Ԣ)     ࣔ߶|ௌ೔ ൌ ࢛௜,  

on ࢛௜ és un camp vectorial definit sobre  ௜ܵ, la prova anterior es pot adap‐
tar per mostrar que l'equació de Laplace té com a molt una solució, llevat 
de constants additives. 
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Exemple  (Potencial  creat  per  conductors  carregats).  Suposem  que   ௜ܭ
(݅ ൌ 1, … , ݊)  són  cossos  conductors  carregats  i que ݍଵ, … ,  ௥ݍ són  càrre‐
gues situades en punts ࢇଵ, … , ݎ) ௜ܭ ௥ exteriors alsࢇ ൒ 0). Suposem que ܭ௜ 
té una càrrega neta total ܳ௜. Aquestes càrregues es distribueixen a la su‐
perfície dels conductors i, junt amb les ݍ௝, creen un camp elèctric a l'exte‐

rior dels conductors (a  l'interior, en canvi, el camp és nul). Aquest camp 
elèctric té un potencial ߶ que satisfà  l'equació de Laplace fora dels con‐
ductors (i dels punts ࢇଵ, … , ௡). Posem ߮௜ࢇ ൌ ߶|డ௄೔, de manera que ߮௜ és 

el potencial del conductor ܭ௜ (una constant). L'objecte d'aquest exemple 
és  veure  que  la  transformació  ሺܳଵ, … , ܳ௡ሻ հ ሺ߮ଵ, … , ߮௡ሻ  és  lineal.  En 
particular resulta que si les càrregues ܳଵ, … , ܳ௡ són nul∙les, aleshores els 
potencials ߮ଵ, … , ߮௡ també són nuls. 

En efecte, si posem ߶ሺ௜ሻ per denotar el potencial corresponent a una uni‐
tat de càrrega sobre ܭ௜  i càrrega nul∙la sobre els demés conductors, de‐
mostrarem que 
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    ߶ ൌ ܳଵ߶ሺଵሻ ൅ ڮ ൅ ܳ௡߶ሺ௡ሻ, 

i d'aquí resulta l'enunciat, ja que restringint a ߲ܭ௜ obtenim 

    ߮௝ ൌ ∑ ܳ௜߮௜௝
௡
௜ୀଵ , 

on ߮௜௝ ൌ ߶ሺ௜ሻ|డ௄ೕ. 

Per veure la igualtat en qüestió, posem ߰ ൌ ܳଵ߶ሺଵሻ ൅ ڮ ൅ ܳ௡߶ሺ௡ሻ. Com 

que  les  ߶ሺ௜ሻ  satisfan  l'equació  de  Laplace  fora  dels  conductors  (i  dels 
punts ࢇଵ, … ,  ߰ ,(௥ࢇ també  la satisfà. El camp elèctric que defineix ߰ és 

– ࣔ߰ ൌ Σ௜ܳ௜ࡱ௜, on ࡱ௜ és el  camp elèctric definit per ߶ሺ௜ሻ. Si  restringim 
aquest camp a ߲ܭ௝, i recordem la relació entre el camp elèctric a la super‐

fície d'un conductor i la densitat superficial de càrrega, obtenim la relació 

    ௝ߪ ൌ Σ௜ܳ௜ߪ௜௝, 
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on ߪ௝ i ߪ௜௝ són les densitats superficials sobre ܭ௝ degudes als potencials ߰ 

i ߶ሺ௜ሻ. Integrant sobre ߲ܭ௝  obtenim, si ܳ௝
ᇱ  és la càrrega total sobre ܭ௝ de‐

guda al potencial ߰, 

    ܳ௝
ᇱ ൌ Σ௜ܳ௜ߜ௜௝ ൌ ܳ௝, 

ja que per construcció  la càrrega  total de ߪ௜௝ és 0  si  ݅ ് ݆  i 1  si  ݅ ൌ ݆,  i 
d'això resulta que ߰ ൌ ߶. 

Remarca  (Capacitat  d'un  conductor).  L'exemple  anterior mostra  que  el 
potencial ߮ d'un conductor  isolat carregat amb una càrrega ܳ compleix 
ܳ ൌ ‐és una constant que només depèn del conductor. La cons ܥ on ,߮ܥ
tant ܥ s'anomena capacitat del conductor. 

Exemple. Làmina plana conductora  infinita, a potencial 0  (connectada a 
terra)  i una càrrega q situada a una certa distància de  la  làmina. La pre‐
sència de q origina una distribució de càrregues 
a la làmina (aquest fenomen s’anomena inducció 

�����
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electrostàtica) i el problema és obtenir el potencial ߶ del camp creat per 
aquesta distribució i q en el semiespai definit per la làmina i q. 

Les  condicions  de  contorn  d’aquest  problema 
són  la presència  de  la  càrrega  q,  diguem  en  el 
punt ࢇ,  i  que  el  potencial  a  la  superfície  de  la 
làmina és nul. El que volem és trobar una funció amb les mateixes condi‐
cions de contorn i que satisfaci l’equació de Laplace. A tal fi, considerem 
el potencial ߶Ԣ de la càrrega q i el potencial ߶ԢԢ d’una càrrega imaginària 
െݍ situada en el punt ࢇԢ simètric de ࢇ respecte del pla de la làmina. Lla‐
vors ߶ ൌ ߶ᇱ ൅ ߶ԢԢ satisfà l’equació de Laplace (fora dels punts ࢇ i ࢇԢ). És 
a més clar, per la manera com s’ha definit ߶, que sobre el pla de la làmina 
val 0. Com que ߶ԢԢ és diferenciable en el semiespai de q, resulta que ߶ és 
la  solució  del  problema. Notem,  però,  que  ߶  no  dóna  el  potencial  en 

l’altre semiespai, el semiespai de la càrrega imatge – ‐ja que aquest po ,ݍ
tencial és diferenciable i en canvi ߶ no està definida en el punt ࢇԢ. 

�

��

�

��

�

��

�

��

�
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Remarca. També és  interessant  trobar  la distribució de càrregues sobre 
la  làmina. En efecte, si restringim el camp elèctric ࡱ ൌ െࣔ߶ a  la làmina, 

obtenim el vector 
ఙ
ఌబ

 és ߪ on ,࢔ la densitat de càrregues  i ࢔ és el vector 

normal unitari a  la  làmina dirigit cap el semiespai de q. Si prenem coor‐
denades de manera que  la  làmina sigui el pla yz  i ࢇ el punt ሺܽ, 0,0ሻ,  lla‐
vors resulta que ߪ ൌ ,ݕሺߪ  ሻ ve donada per la fórmulaݖ

    ,ݕሺߪ ሻݖ ൌ െ ௤௔
ଶగሺ௔మା௬మା௭మሻయ/మ .  

En coordenades polars del pla yz, ߪ ൌ ሻݎሺߪ ,ሻݎሺߪ ൌ െ ௤௔
ଶగሺ௔మା௥మሻయ/మ .

N4  

Integrant, es pot  veure que  la  càrrega  total de  la distribució ߪሺݕ,  ሻ ésݖ
–  .ݍ

Mètode de les imatges 

El mètode que hem  seguit  a  l'exemple  anterior per  trobar  el potencial 
creat per una càrrega prop d'una  làmina conductora  infinita,  i  la corres‐
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ponent distribució de càrregues sobre  la  làmina, és un cas particular de 
l’anomenat mètode de  les  imatges. El que hem fet és substituir el camp 
creat per  la distribució sobre  la  làmina, que en principi és desconeguda, 

pel camp creat per una càrrega –  situada (càrrega anomenada imatge) ݍ
en el punt ࢇԢ. En general, el mètode s'aplica a potencials de la forma  

    ߶ሺ࢘ሻ ൌ ߶ଵሺ࢘ሻ ൅ ଵ
ସగఌబ

׬ ఙሺ࢞ሻ
|࢘ି࢞| ݀࢞ 

on ߶ଵ és una funció coneguda i on la integral és la contribució de la càr‐
rega superficial  (en principi desconeguda) sobre tots els conductors que 
apareguin al problema. Pot  succeir,  i aquesta és  l'essència del mètode, 
que l'últim terme d'aquesta equació pugui ser substituït per un potencial 
߶ଶ degut a una distribució de càrregues especificada, generalment càrre‐
gues puntuals o lineals. Les càrregues imaginàries que produeixen ߶ଶ s'a‐
nomenen  càrregues  imatge.  Tal  com  passa  a  l'exercici  E.2.1,  aquestes 
càrregues poden trobar‐se a l'interior dels conductors. 
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Exercicis E.2 (Potencial elèctric) 

E.2.1. Considereu una esfera  conductora de  radi   que es manté ݎ a potencial 

߶ ൌ 0 i una càrrega ݍ situada a una distància ܽ ൐   .del seu centre ݎ

1.  Demostreu  que  el  potencial  fora  de  l'esfera  és 
igual al potencial de ݍ més el potencial d'una càrrega 
imatge  de  valor  ᇱݍ ൌ െݎݍ/ܽ  situada  sobre  el  seg‐
ment que uneix el centre amb el punt en el que està 
situada ݍ a una distància ܾ ൌ ଶݎ ܽ⁄ . 

2. Quina és la força que l'esfera exerceix sobre ݍ? 

3. Calculeu  la densitat de càrrega  superficial  induïda  sobre  l'esfera per  la pre‐
sència de ݍ. 
4. Què canvia si  l'esfera conductora es manté a un potencial ߮ no necessària‐
ment nul? 
 

E.2.2. Sabem que el camp elèctric creat per un fil rectilini  infinit carregat amb 

una densitat lineal constant ߣ és, a una distància ݎ del fil, 

Ԣݍ ݍ

ܽ

ݎ
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௥ܧ  ൌ ଵ
ଶగఌబ

ఒ
௥
. 

Mostreu que el potencial ߶ d'aquest camp, a una distància ݎ de fil, té la forma 

    ߶ሺݎሻ ൌ െ ఒ
ଶగఌబ

lnሺݎሻ ൅  ,ܥ

on ܥ és una constant arbitrària. 

E.2.3. Una distribució esfèrica de càrrega ve donada per una densitat 

    ሺ࢘ሻߩ ൌ ቊߩ଴ ቀ1 െ ௥మ

௔మቁ  si ݎ ൑ ܽ
0 si ݎ ൐ ܽ                    

 

on ݎ ൌ |࢘|. Calculeu el camp elèctric i el potencial a l'exterior i a l'interior de la 
distribució de càrrega i la seva càrrega total ܳ. 

E.2.4. Només un dels camps vectorials  següents pot  ser el camp electrostàtic 

creat per una distribució de càrrega. Determineu quin és i calculeu‐ne el poten‐
cial corresponent (comproveu el resultat calculant el gradient): 

(a)   ࡱ ൌ ݇ሾሺݕݔሻ࢏ ൅ ሺ2ݖݕሻ࢐ ൅ ሺ3ݖݔሻ࢑ሿ 
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(b)   ࡱ ൌ ݇ሾሺݕଶሻ࢏ ൅ ሺ2ݕݔ ൅ ଶሻ࢐ݖ ൅ ሺ2ݖݕሻ࢑ሿ 

(݇ una constant). Quina és la distribució de càrrega que crea aquest camp? 

E.2.5.  L’hemisferi nord d’una esfera està  carregat uniforme‐

ment amb una densitat superficial ߪ. Calculeu la diferència de 
potencial entre el pol nord i el centre de l’esfera. 

E.2.6 (Teorema de reciprocitat de Green). Siguin ߩଵሺ࢘ሻ i ߩଶሺ࢘ሻ 
dues distribucions de càrrega qualssevol. Siguin  ଵܸሺ࢘ሻ i  ଶܸሺ࢘ሻ els corresponents 
potencials  (s'entén que no  totes dues distribucions de càrrega són presents al 
mateix temps, sinó que corresponen a dues situacions possibles diferents). Pro‐
veu que 
    ׬ ଵሺ࢘ሻߩ ଶܸሺ࢘ሻ݀࢘ ൌ ׬ ଶሺ࢘ሻߩ ଵܸሺ࢘ሻ݀࢘. 
[Indicació: calculeu ׬ሺࡱଵ ൉  ଵࡱ ଶሻ݀࢘ de dues maneres diferents, una expressantࡱ
en termes del corresponent potencial    i usant  integració per parts,  i  l'altra fent 
el mateix però amb ࡱଶ] 
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E.2.7. Considereu dos objectes conductors qualssevol ܥଵ i ܥଶ (per exemple, du‐

es esferes metàl∙liques separades una certa distància). Sigui  ଵܸଶ el potencial de 
 ܳ ଵ té una càrrega netaܥ ଶ quanܥ i ܥଶ està descarregat,  i sigui  ଶܸଵ el potencial 
de ܥଵ quan ܥଶ té una càrrega neta ܳ i ܥଵ està descarregat. Proveu, usant el teo‐
rema de reciprocitat de Green, que  ଵܸଶ ൌ ଶܸଵ.

N6 

 

E.2.8. Considereu una esfera conductora de radi ܴ a potencial ܸ i amb una càr‐

rega neta ܳ. Calculeu la densitat superficial de càrrega i la relació entre ܳ i ܸ. 
 

E.2.9. Considereu el mateix problema de l'esfera conductora i la càrrega puntu‐

al ݍ anterior però suposant que  l'esfera es manté amb càrrega constant ܳ ൌ 0 
enlloc de mantenir‐se a potencial constant  (esfera neutra aïllada). Determineu 
quin és el potencial de l'esfera en aquestes condicions. 
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Notes 

N1. ࣔ࢘
ଵ

|࢘ି࢞| ൌ ቀ ௥߲భ
ଵ

|࢘ି࢞| , ߲௥మ
ଵ

|࢘ି࢞| , ߲௥య
ଵ

|࢘ି࢞|ቁ, i  

   ߲௥೔
ଵ

|࢘ି࢞| ൌ ߲௥೔
ሺሺݎଵ െ ଵሻଶݔ ൅ ሺݎଶ െ ଶሻଶݔ ൅ ሺݎଷ െ ଷሻଶሻିଵݔ ଶ⁄  

  ൌ ሺെ1/2ሻ ൉ 2ሺݎ௜ െ ௜ሻݔ ൉ ሺሺݎଵ െ ଵሻଶݔ ൅ ሺݎଶ െ ଶሻଶݔ ൅ ሺݎଷ െ ଷሻଶሻିଷݔ ଶ⁄  

  ൌ െሺݎ௜ െ ௜ሻ ଵݔ
|࢘ି࢞|య.  

 

N2. Notem que  la relació Δ࢘ ቀ ଵ
ቁ|ࢇି࢘| ൌ െ4ߜߨሺ࢘ െ   ,ሻ és purament matemàticaࢇ

tot i que aquí s’ha “derivat” en el context del potencial elèctric. 

  

N3.  Les  “distribucions” en el  sentit de  l’anàlisi  funcional  són  funcionals  lineals 
sobre certs espais de funcions. En el cas de ߜሺ࢘ െ ݂ ሻ, el funcional ésࢇ հ ݂ሺࢇሻ, 
en concordança amb el sentit de l’expressió ׬ ݂ሺ࢘ሻߜሺ࢘ െ  .ሻ݀࢘ࢇ
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N4. [Pàg. 17] La distribució ߪሺݎሻ ൌ െ ௤௔
ଶగሺ௔మା௥మሻయ/మ del pla ݖݕ ha de crear el camp 

– ݔ en la regió ࢇ,௤ࡱ ൏ 0, ja que el potencial en aquesta regió és nul (߶ ൌ 0 satis‐
fà  l’equació de Laplace  i ߶หሼ௫ୀ଴ሽ ൌ 0). Tanmateix, això no és  fàcil d’establir en 

general,  ja que  la  integral per obtenir el camp creat per  la distribució ߪ en un 
punt arbitrari no sembla fàcil de resoldre. La comprovació és més manejable per 

als punts de  l’eix –  ,ݔܱ ja que el valor d’aquest camp en el punt ሺെݔ, 0,0ሻ és, 
usant la fórmula establerta a la Remarca de la pàg. 17, 

     െ ௔௤௫
ସగఌబ

׬ ଶݎሺݎ ൅ ଶሻିଷݔ ଶ⁄ ሺݎଶ ൅ ܽଶሻିଷ ଶ⁄ ஶݎ݀
଴ ൌ ௔௤௫

ସగఌబ

ିଶ௔௫ା௫మା௔మ

௫௔ሺ௔మି௫మሻమ ൌ ௤
ସగఌబ

ଵ
ሺ௔ା௫ሻమ 

    Hem usat que 

  ׬ ଶݎሺݎ ൅ ܽଶሻିଷ ଶ⁄ ሺݎଶ ൅ ܾଶሻିଷ ଶ⁄ ݎ݀ ൌ െ ଵ
ሺ௕మି௔మሻమ

ଶ௥మା௔మା௕మ

ሺ௥మା௔మሻషభ మ⁄ ሺ௥మା௕మሻషభ మ⁄  . 
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N5. [Pàg. 19] ݍᇱ ൌ െܴݍ/ܽ està situada a ܾ ൌ ܴଶ/ܽ. 

߶௤ ൌ ௤߶ ,ߩ/ݍߢ ൌ  .Ԣߩ/Ԣݍߢ

  ߩ ൌ ඥݎଶ ൅ ܽଶ െ ܽݎ2 cos ߮  

  Ԣߩ ൌ ඥݎଶ ൅ ܾଶ െ ܾݎ2 cos ߮ 

       ൌ ටݎଶ ൅ ܴସ/ܽଶ െ 2ሺ௥ோమ

௔
ሻ cos ߮  

       ൌ ோ
௔

ටቀ௥௔
ோ

ቁ
ଶ

൅ ܴଶ െ ଶܴܽݎ2 cos ߮  

   

Ԣݍ ݍ

ܽ
ܴ

Ԣߩߩ
ݎ
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N6. [E.2.7, pàg. 22: Considereu dos objectes conductors qualssevol ܥଵ i ܥଶ. Sigui 

ଵܸଶ el potencial de ܥଶ quan ܥଵ té una càrrega neta ܳ i ܥଶ està descarregat, i si‐
gui  ଶܸଵ el potencial de ܥଵ quan ܥଶ té una càrrega neta ܳ i ܥଵ està descarregat. 
Proveu, usant el teorema de reciprocitat de Green, que  ଵܸଶ ൌ ଶܸଵ.]  

La densitat ߩଵ corresponent al cas en què ܥଵ té càrrega ܳ i ܥଶ càrrega 0 es redu‐
eix a distribucions superficials de càrregues sobre ܥଵ  i ܥଶ, diguem‐ne ߪଵଵ  i ߪଵଶ, 
respectivament.  Per  tant,  la  integral  ׬ ଵሺ࢘ሻߩ ଶܸሺ࢘ሻ݀࢘  s’ha  d’interpretar  com 

׬ ଵଵߪ ଶܸଵ݀ݏଵడ஼భ
൅ ׬ ଵଶߪ ଶܸଶ݀ݏଶడ஼మ

, on hem posat  ଶܸଵ i  ଶܸଶ per denotar la restric‐

ció de  ଶܸ (la funció potencial quan ܥଶ té càrrega ܳ i ܥଵ està descarregat) a ߲ܥଵ i 
a ߲ܥଶ, respectivament. Però  ଶܸଵ i  ଶܸଶ són constants, de manera que el valor de 

׬ ଵሺ࢘ሻߩ ଶܸሺ࢘ሻ݀࢘ és 

  ଶܸଵ ׬ ଵడ஼భݏଵଵ݀ߪ
൅ ଶܸଶ ׬ ଵడ஼మݏଵଶ݀ߪ

ൌ ଶܸଵܳ. 

D’una manera similar es veu que el valor de ׬ ଶሺ࢘ሻߩ ଵܸሺ࢘ሻ݀࢘ és  ଵܸଶܳ. Finalment, 
el  teorema  de  reciprocitat  de  Green  (E.2.6)  ens  permet  concloure  que 

ଶܸଵܳ ൌ ଵܸଶܳ, és a dir, que  ଶܸଵ ൌ ଵܸଶ. 


