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Nomenclatura i notacions 
Sempre que no diem el contrari explícitament, per diferenciable enten-
drem una funció de classe .  

Si  és un obert de , i  és diferenciable, en lloc de   so-

vint escriurem , o simplement  si les coordenades  queden 

clarament especificades pel context. 
Posarem  per denotar la diferencial de , és a dir, 

 

Proposició.  Si ,  . 

Remarca.  és la derivada de  en la direcció 

 (en el punt ).  



Camps vectorials 
Per camp vectorial  sobre un obert  de  entendrem una aplicació di-
ferenciable . Donar  equival a donar  funcions diferenciables 

 definides sobre : 
 

Exemple: gradient d’una funció 

Si  és una funció diferenciable, posarem 
 

D’aquest camp vectorial (definit sobre ) en diem gradient de , i també 
posarem , o  , per denotar-lo. Dels camps de la forma , per 
alguna funció , en direm camps conservatius.  
Proposició. Si  és un camp vectorial definit sobre , 
llavors 

 
Prova. Basta recordar que . 
Corol·lari.   és perpendicular a les hipersuperfícies de nivell  



Posarem  per denotar l’espai vectorial dels camps diferenciables de-
finits sobre . 
La divergència d’un camp , , es defineix per  l’expressió  

 
Simbòlicament, 

 
(l’operador  s’anomena del o nabla, segons el símbol usat). Dels 
camps  tals que  se’n diu que són solenoïdals. 
 

Exemple (Laplaciana d’una funció). Si  és una funció,  

És a dir, , on . Diem que  és l’operador la-
placià. Simbòlicament, , notació que és usada per un bon 
nombre d’autors, especialment pels de l’àmbit de la física. De les funcions 

 tals que  es diu que són harmòniques. 
 
 
  



En el cas , i posant  en lloc de , el rotacional d’un 
camp , , es defineix per l’expressió 

 

Simbòlicament, i posant  per denotar una base ortonormal positiva, 

 

Dels camps  tals que  es diu que són irrotacionals. 
 

Exemples. El camp  compleix ,  Si 
 és un vector constant, llavors  i 

  
Exercici. Si , posem . Llavors  

 
 

per a qualsevol . 



Formes diferencials 
Posarem  per denotar les funcions diferenciables de-
finides en l’obert  (també s’anomenen 0-formes diferencials) i 

 per denotar les 1-formes diferencials definides sobre , és a dir, 
l’espai vectorial de les expressions  de la forma 

 
Notem que tenim una aplicació lineal  

 
 

Més en general, posarem  per denotar l’espai de les k-formes 
diferencials definides sobre , i  per denotar la diferencial 
exterior. Com que de moment només ens cal el cas , vegem de mo-
ment com es concreten aquests objectes en aquest cas. Posarem  
en lloc de . 
 

              

        



Notem que tenim isomorfismes 
   

   

   
Pel que fa a la diferencial exterior, 

   

              

                                     

                                     

 

 

Proposició 
 

 

Equivalentment, el diagrama 

   



 

 
 
 
és commutatiu. En particular tenim (atès que )  

 i , 

relacions que per altra banda es poden comprovar directament a partir de 
les definicions. 
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Una forma diferencial  es diu que és tancada si  i que és ex-
acta si  per alguna . Les formes exactes són tancades, ja 
que . El recíproc, però, no és en general cert. El resultat que se-
gueix, que ens limitem a enunciar en el cas particular que necessitem, és 
una condició suficient sobre l’obert  per garantir-ne la validesa.   
 

Lema de Poincaré. Sigui  un obert estrellat de . Si ,  
és tancada, llavors  és exacta. En particular resulta que si  és ir-
rotacional (respectivament solenoïdal), llavors existeix  (respecti-
vament ) tal que  (respectivament ). 
 
Circulació d’un camp vectorial i integració de 1-formes 
Sigui  un camí diferenciable i  un 
camp definit en un entorn de la imatge de . Es 
defineix circulació de  al llarg de , , com  

  . 



Anàlogament, si  és una 1-forma definida en un entorn de la imatge 
de , llavors definim  per la fórmula  

  

        . 

Proposició. . 

 
Flux d’un camp vectorial i integració de 2-formes 
Sigui  una regió regular de , és a 
dir, un conjunt tancat i acotat tal que 
la seva vora  és una corba diferenci-
able. Sigui   una aplicació 
diferenciable i  un camp definit en un 
entorn de la imatge de . Es defineix el flux de  relatiu a , , com  

  



Anàlogament, si  és una 2-forma definida en un entorn de la imatge 
de , llavors definim  per la fórmula  

  
 

Proposició. . 

Prova. Tenim 

 

i fórmules anàlogues per  i . L’afirmació resulta ara di-

rectament d’aquestes relacions i de la fórmula del flux. 
 
Teorema d’Stokes 
Donada una varietat diferenciable , una varietat compacta orientada  
de dimensió  amb vora , una aplicació diferenciable , i una 

-forma  sobre , definim . Per als propòsits d’aquest 

curs, podem suposar que  és un obert de  i que  és una regió regu-

lar de . En aquest cas , on el sumatori és respecte dels -



multiíndexs estrictament creixents , amb 
 i , on  són les coordenades de 

. Llavors , on   són les components 
de  i on  es calcula tenint en compte que  és mul-

tilineal alternat. Si  són les coordenades  , el resultat té la for-
ma , de manera que finalment és que de 

.  
 

Teorema (d’Stokes per a formes diferencials). Donada una -forma 
diferencial  sobre , aleshores 
                    , 

on  és la restricció de  a . 
 
Exemple (Teorema fonamental del càlcul en una varietat). En el cas en què 

 és un interval tancat de la recta real ( ),  (  



positiu i  negatiu),  és un camí diferenciable sobre ,  
és una funció diferenciable de ,  és l’aplicació  
  ,  
i el teorema d’Stokes ens dóna  

  .  

És a dir,                      

 
Exemple (Teorema d’Stokes clàssic). Suposem que  és una superfície 
oberta orientada de  amb vora  i que  és un camp vectorial de-
finit en un entorn de . Aleshores 

 

 En efecte,  

 



Exemple (Teorema de la divergència). Suposem que  és una regió regular 
de l’espai euclidià orientat  i  un camp vectorial definit en un entorn de 

. Aleshores  

                                                  

 En efecte, si  és la forma de volum de , llavors   
     

Remarca. Hi ha autors que atribueixen aquest teorema a Gauss, altres a 
Ostrogadski, i encara d’altres a Gauss–Ostrogadski.  
 
Exercicis 
 
PM.1.1. Sigui  el semiplà dret i  l’aplicació donada per 
   . 

Proveu que  i . Deduïu-ne que la 

1-forma  de  no és exacta.  



PM.1.2. Proveu que  

 

on . 

 
PM.1.3. (Gauss) Sigui  una regió regular de  amb vora  i po-
sem  per denotar el vector unitari norma a  i exterior a . Siguin  una 
funció de  i  un camp vectorial definit en un entorn de . Proveu que 
  . 

 
PM.1.4. (Gauss) Amb les mateixes notacions de l’exercici anterior, proveu 
que 
    

    

(el resultat de cadascuna de les quatre integrals és un vector). 
 
 



PM.1.5. (Stokes) Sigui  una superfície amb vora ,  
un vector unitari normal a  i  el vector tangent unitari a  
tal que  és del semiplà tangent exterior en el 
corresponent punt de . Donada una funció diferenciable 
en un entorn de , proveu que  
    

(els dos membres són vectors).  
 
PM.1.6. (Primera i segona fórmules de Green) Amb les mateixes notacions 
que en l’exercici anterior, siguin  funcions de . Proveu que 
  , 

  . 

 
PM.1.7. Siguin  les coordenades cilíndriques associades a l’eix  de 
les coordenades cartesianes . Posem  
 , , .  



Proveu que 

 

 

 

 

 
 
  


