MMF 10 / 0. Preliminars matematics

1. Camps vectorials, formes i teorema d’Stokes
8.2.10 SX

Nomenclatura i notacions
Sempre que no diem el contrari explicitament, per diferenciable enten-

drem una funciod de classe C*.
of

axi

vint escriurem 0y f, o simplement 0; f si les coordenades x4, ..., X, queden

Si U és un obert de R", i f:U — R és diferenciable, en lloc de SO-

clarament especificades pel context.
Posarem df per denotar la diferencial de f, és a dir,

df = (0:f)dx; + -+ (0,f)dx,
Proposicié. Six, veR"™, (df,v)(x) = % (f(x+ tv))|t:O = (D, f)(x).
Remarca. (D,f)(x) = % (f(x + tv))|t:O és la derivada de f en la direccio

v (en el punt x).



Camps vectorials

Per camp vectorial v sobre un obert U de R™ entendrem una aplicacié di-
ferenciable v : U —» R™. Donar v equival a donar n funcions diferenciables
Vq, ... , U, definides sobre U:

v=(vq,..,U)
Exemple: gradient d’una funcio

Si f : U = R és una funcid diferenciable, posarem
of = (01f, ..., 0nf)
D’aquest camp vectorial (definit sobre U) en diem gradient de f, i també
posarem grad(f), o Vf, per denotar-lo. Dels camps de la forma af, per
alguna funcid f, en direm camps conservatius.

of

Proposicid. Si v és un camp vectorial definit sobre U,

f=k

llavors

of - v =(df,v).
Prova. Basta recordar que (dx;, v) = v;.
Corol-lari. df és perpendicular a les hipersuperficies de nivell f = k.



Posarem V(U) per denotar I'espai vectorial dels camps diferenciables de-
finits sobre U.
La divergéncia d’un camp v € V(U), div(v), es defineix per I'expressio

div(v) = 0,vy + -+ + 0,,1,,.
Simbolicament,

diviw) =0 -v=V-v

('operador @ =V s’anomena del o nabla, segons el simbol usat). Dels
camps v tals que div(v) = 0 se’n diu que sén solenoidals.

Exemple (Laplaciana d’una funcid). Si f és una funcié, div(df) = X, 07 f.
Es a dir, div(df) = Af, on A = 9% + --- + 92. Diem que A és I'operador la-
placia. Simbolicament, A = 8% = V?, notacié que és usada per un bon
nombre d’autors, especialment pels de "'ambit de la fisica. De les funcions
f tals que Af = 0 es diu que sén harmoniques.



Enelcasn = 3, iposant (x,y,z) en lloc de (x4, x5, X3), el rotacional d’'un
camp v, rot(v), es defineix per I'expressio

rot(v) = (ayvz — 04V, 0,0, — 0y, 0,1y, — ayvx).
Simbolicament, i posant i, j, k per denotar una base ortonormal positiva,
i j k
rotv) =0 xv=Vxv=|0, 0, 0.
Uy Uy 1

Dels camps v tals que rot(v) = 0 es diu que son irrotacionals.

Exemples. El camp r = (x,y,z) compleix div(r) =3, rot(r) = 0. Si
w = (wy, Wy, w;) €és un vector constant, llavors div(w X1) =0 |
rot(w Xr) = 2w.

Exercici. Siv € V, posem v¥ = v,.0, + V0, + v,0, . Llavors

dw-w) =vxrotiw) +w xrot(») + v'w + w'v
rot(v x w) = —diviw)w + diviw)v — v'w + w'v
per a qualsevol v,w € V.



Formes diferencials
Posarem Ay = Ayg(U) = F(U) per denotar les funcions diferenciables de-
finides en l'obert U (també s’anomenen 0-formes diferencials) i A; =
A{(U) per denotar les 1-formes diferencials definides sobre U, és a dir,
I’espai vectorial de les expressions a de la forma
a=a;dx; + -+ a,dx,, a; € FU).

Notem que tenim una aplicacio lineal

d:Ao—A,  df =(0:1f)dxy + -+ (Onf)dxy.

Més en general, posarem A, = A, (U) per denotar I'espai de les k-formes
diferencials definides sobre U, i d: A, = A, .1 per denotar la diferencial
exterior. Com que de moment només ens cal el cas n = 3, vegem de mo-
ment com es concreten aquests objectes en aquest cas. Posarem (x,y, z)
en lloc de (x4, X5, X3).

Ay ={Bxdy Ndz + B,dz Adx + B,dx Ady | By, By, B, € F(U)},
A ={ydxAdyAndz|y e FU).}



Notem que tenim isomorfismes
V=M, v U=vdx+v,dy+v,dz
V=A;,, voV=vdyNdz+v,dzAdx+v,dx Ndy
F=A;, fof"=fdxNdyANdz
Pel que fa a la diferencial exterior,
df = (0,f)dx + (0, f)dy + (0,f)dz
d(axdx + a,dy + azdz) = (ayaz — azay) dy Ndz
+(0,a, — 0,a,) dz ANdx
+(6xay — ayax) dx A dy
d(Bydy Adz + Bydz A dx + B,dx A dy)
= (0xBx + 0y, + 0,B,) dx Ady A dz
Proposicio

df = af | rot(v) =dv | dv = div(v)*

Equivalentment, el diagrama



F—92 s yp__rot gy dv g

és commutatiu. En particular tenim (atés que d? = 0)

rot(d(v)) = 0idiv(rot(v)) =0,
relacions que per altra banda es poden comprovar directament a partir de
les definicions.

d(fg) = fdg+gdf d(fg) =fog+gof
aNa = (aya; — azag,)dy Ndz
+ (a,a;, — aya;)dz A dx DAD =v XV
-+ (axag, - aya;)dx Ady
d(fa) = fda +df AN« rot(fv) = frot(v) + af X v
a/\,Bz(axﬁx+ay,8y+azﬁz)dx/\dy/\dz VAW =W -w)
d(fp) =df AL+ fdf div(fv) = fdiv(v) + of - v




Una forma diferencial w € A es diu que és tancada si dw = 0 i que és ex-
acta si w = dn per alguna n € Aj,_,. Les formes exactes sOn tancades, ja
que d(dn) = 0. El reciproc, pero, no és en general cert. El resultat que se-
gueix, que ens limitem a enunciar en el cas particular que necessitem, és
una condicio suficient sobre I'obert U per garantir-ne la validesa.

Lema de Poincaré. Sigui U un obert estrellat de R3.Si § € A, (U), k = 1,2,
és tancada, llavors ¢ és exacta. En particular resulta que si v € V(U) és ir-
rotacional (respectivament solenoidal), llavors existeix f € F(U) (respecti-
vament w € V(U)) tal que v = df (respectivament v = rot(w)).

Circulacio d’'un camp vectorial i integracio de 1-formes
Sigui ¥:[a, b] » R3 un cami diferenciable i v un -
Y

camp definit en un entorn de la imatge de y. Es

defineix circulacio de v al llarg de y, T, (v), com y'(0)

y(8)
o) = [ v-dy =[] v(y(®) ¥ ®)dt (@)



Analogament, si &« € A; és una 1-forma definida en un entorn de la imatge
de y, llavors definim fya per la férmula

[a= [ a(y®)y ®)dt
= 7 (ax(r@©)i(0) + ay (r Oy (0 + a, (¥ (©O)r; (©)) d.

Proposicié. 7, (v) = fyﬁ.

Flux d’un camp vectorial i integracio de 2-formes
Sigui R una regid regular de R?, és a
dir, un conjunt tancat i acotat tal que |
la seva vora dR és una corba diferenci- /r'
able. Sigui o : R — R3 una aplicacid

diferenciable i ¥ un camp definit en un

entorn de la imatge de a. Es defineix el flux de v relatiu a o, ¢,(V), com
() = [v-do = [ v(a(s, 1)) (0s0(s,t) X 0,a(s, t))dsdL.



Analogament, si f € A, és una 2-forma definida en un entorn de la imatge
de g, llavors definim [ f per la férmula

J.B= [,(By°0)do, Ado, + (B o 6)do, Ado, + (B, ° 6)do, Ado,

Proposicié. ¢, (v) = | V.
Prova. Tenim
doy, Ndo, = (asayataz — atayasaz)ds Adt = (0,0 X 0;0),ds A dt,
i formules analogues per do, A doy i doy A do,,. U'afirmacié resulta ara di-

rectament d’aquestes relacions i de la formula del flux.

Teorema d’Stokes

Donada una varietat diferenciable M, una varietat compacta orientada W
de dimensid k amb vora dW, una aplicacié diferenciable o : W — M, i una
k-forma B sobre M, definim |_fB = [ o&*(B). Per als proposits d’aquest
curs, podem suposar que M és un obert de R™ i que W és una regid regu-

lar de R¥. En aquest cas B = Y. 5;dx;, on el sumatori és respecte dels k-



multiindexs estrictament creixents I = {i; < - < i} €{1,2,...,n}, amb
pr € F(M) idx; =dx; A--Adx;, on Xxq,...,X, sOn les coordenades de
R™. Llavors ¢*f = ),(B; e 0)do;, on o; (i =1,...,n) sén les components
de giondo; = do;, A---Adoy, es calcula tenint en compte que A és mul-

tilineal alternat. Si uq, ..., uy son les coordenades R% el resultat té la for-
ma do; = y;duy A---Adug,, de manera que finalment és que de

[0 (B) = f,, (S ydu, - duy.

Teorema (d’Stokes per a formes diferencials). Donada una (r — 1)-forma
diferencial o sobre M, aleshores

fcda - fac @,
on do : dW — M és la restriccid de g a dWV.

Exemple (Teorema fonamental del calcul en una varietat). En el cas en que
W = [a, b] és un interval tancat de la recta real (a < b), d|a,b] = {a, b} (b



positiu i a negatiu), o:|a,b] = M és un cami diferenciable sobre M, a = f
és una funcio diferenciable de M, do:{a, b} = M és I'aplicacio

{a»a(a), b alb)},
i el teorema d’Stokes ens doéna

[odf = foof = [y d oo =—f(c(@) + f(o(b)).
Es a dir, [df = f(a(®)) — f(o(a))

Exemple (Teorema d’Stokes classic). Suposem que S és una superficie
oberta orientada de R3 amb vora C = dS i que v és un camp vectorial de-
finit en un entorn de S. Aleshores

ps(rot(v)) = 7c(v)
En efecte, ¢s(rot(v)) = | rot(v) = Jodv = [ .V =1.().




Exemple (Teorema de la divergencia). Suposem que W és una regio regular

de I’espai euclidia orientat R3 i v un camp vectorial definit en un entorn de
W. Aleshores

J,, div(v) = ¢s(v)

En efecte, siw = dx A dy A dz és |la forma de volum de R3, llavors
J,diviw) = | diviw)w = [ div(v)" = [ d¥ = [T = ¢s(v).

Remarca. Hi ha autors que atribueixen aquest teorema a Gauss, altres a

Ostrogadski, i encara d’altres a Gauss—Ostrogadski.
Exercicis

PM.1.1. Sigui D el semipla dretio: D — R? — {0} I'aplicacié donada per
o(r,0) = (rcos(0),rsin(0)).

Proveu que o*(xdx + ydy) = rdrioc* (xdy_ydx

) = df. Deduiu-ne que la

x2+y?

xdy—-ydx ,
Y722 de R? — {0} no és exacta.

1-forma
x2+y?



PM.1.2. Proveu que
rot(rot(v)) = a(div(v)) — Av,
on Av = (Avy, Avy, Av,).

PM.1.3. (Gauss) Sigui W una regid regular de R3> amb vora S = dW i po-
sem n per denotar el vector unitari norma a S i exterior a W. Siguin f una
funcié de W i v un camp vectorial definit en un entorn de W. Proveu que

v Of + [, fdiv(w) = [, fw - m).

PM.1.4. (Gauss) Amb les mateixes notacions de |’exercici anterior, proveu
que

J Of = Loy fm
J,yrotw) = [, nxv
(el resultat de cadascuna de les quatre integrals és un vector).



PM.1.5. (Stokes) Sigui S una superficie amb vora C = dS, n
un vector unitari normal a S i t el vector tangent unitaria C
tal que n’ =t X n és del semipla tangent exterior en el

corresponent punt de C. Donada una funcio diferenciable
en un entorn de S, proveu que

fynxaf = [ ft

(els dos membres sén vectors).

PM.1.6. (Primera i segona formules de Green) Amb les mateixes notacions
que en I'exercici anterior, siguin f, g funcions de W. Proveu que

Jy,fAg+[,0f -dg=[,, f(@g- n),
J,,(gAf — fAg) = [,,,(g(8f -n) — f(dg - n)).

PM.1.7. Siguin (7, @, z) les coordenades cilindriques associades a I'eix z de
les coordenades cartesianes (x,y, z). Posem

r = (cos(g),sin(p),0), ® = (—sin(p), cos(p),0),z = (0,0,1).



Proveu que
L 1 _ .
of = (0T +~(9,f)P + (8:1)2
| 1 1
div(v) = ;6,. (rv,) + ;@pvgo +d,v,
1 R 1 R
rot(v) = (; (a(pvz) - azv(,,) r+ (0,v, — 0, v,)P + — (ar (rv(p) - a(pvr)z

1
Af = —a (10, f) +—62f+ 0z f



