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UPC & IMTech

13/12/2021
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Preface Report and philosophy

Interest is Algebraic Geometry, Geometric Algebra, Physics, Effective
computations, Image Processing, Computer Vision, Biographical studies:

[1] (X-2008-Visio), [2] (X-2009-WIT), [3] (X-2009-K2),
[4] (X-2009-qc) (Lisbon talk), [5] (X-2010) WCCI, [6] (X-odintsov-saez-2011).

[7] (X-rue-2013) QC, [8] (X-2013-DM), [9] (X-roma-2013) pycones,
[10] (X-2015-jbsg) GA, Q esperanto, [11] (X-2015-review),
[12] (X-2015-GAT-A), [13] (X-2016-GAT-B), [14] (X-2016-Santalo-school),
[15] (X-2016-santalo-talks), [16] (X-2017-agacse), [17] (X-2017-icca11),
[18] (X-wainer-2018-b), [19] (X-2018-spins), [20] (lavor-X-zaplana-2018),
[21] (X-2018-Leibniz), [22] (X-greuel-narvaez-2018) AC60, [23] (X-2019-agacse),
[24] (X-2019-lightdream) Vigo, [25] (X-franch-2019) DHC AF,
[26] (X-2019-cadiz) PQ crypto, [27] (X-2019-uned), [28] (X-sayols-2020-MCS).
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Preface Report and philosophy

A pivotal shift in my interests was meeting Eduardo U. Moya at the
AGACSE 2015 conference in Barcelona, but it was not until the
ICCA11 conference in Ghent [17], in August 2017, that we started
talking about the role of GA in DL and how to go about
implementing the computational aspects. We have been collaborating
since then:

[29] (moya-X-perez-salazar-mzortega-cortes-2020-PRL),
[30] (X-2021-iciam), [31] (X-moya-2021),
[32] (moya-X-salazar-sanchez-cortes-2021),
[33] (moya-X-sanchez-salazar-cortes-2021).

Another momentous influence has been the preparation of [34] with
Joan Bruna, followed by our collaboration in this BGSM course:
[35] (bruna-X-2021-b) (computational aspects developed in
collaboration of EUM).
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Preface Report and philosophy

October 5 to November 9: Six two-hour sessions at the BGSM/CRM
course on Mathematical Aspects of Algorithmic Learning and Deep
Neural Networks: Slides 10-05a and 10-05b, 10-13, 10-14, 10-19,
11-02a, 11-02b, 11-09. The other six two-hour sessions were
delivered by Joan Bruna.

October 10: Chair of the round-table New Bridges between
Mathematics and Data Science: a Scientifc Debate planned within
the conference New Bridges between Mathematics and Data
Science organized by the REM in Valladolid, 8-12 November 2021.

November 12: IMUVa Ateneo Lecture, Algorithmic Learning:
Analysis, Algebra and Geometry.

Member of the Scientic Committee of the ICACGA 2022
(International Conference of Advanced Computational Applications of
Geometric Algebra, October 2-5, 2022, Denver, Colorado)
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https://bgsmath.cat/event/algorithmic-learning-and-deep-neural-networks/
https://bgsmath.cat/event/algorithmic-learning-and-deep-neural-networks/
https://bgsmath.cat/wp-content/uploads/2021/10/10-05a-Intro.pdf
https://bgsmath.cat/wp-content/uploads/2021/10/10-05b-Opt-1.pdf
https://bgsmath.cat/wp-content/uploads/2021/10/10-13-RKHS.pdf
https://bgsmath.cat/wp-content/uploads/2021/10/10-14-SGD.pdf
https://bgsmath.cat/wp-content/uploads/2021/11/10-19-NTK.pdf
https://bgsmath.cat/wp-content/uploads/2021/11/11-02-DG.pdf
https://bgsmath.cat/wp-content/uploads/2021/11/11-02-GPh.pdf
https://bgsmath.cat/wp-content/uploads/2021/11/11-09-FW-1.pdf
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http://nbmds.uva.es/round-tables/
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https://web.mat.upc.edu/sebastia.xambo/BGSM/11-12-imuva.pdf
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Preface Report and philosophy

Slide 9 of [9] (X-roma-2013)

Image: Björling minimal surface
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Preface Report and philosophy
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It’s blowing in the wind
In the news

In textbooks and books
In arXiv et al (a sample)
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It’s blowing in the wind In the news
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It’s blowing in the wind In the news

Beethoven’s Unfinished 10th Symphony Brought to Life by Artificial
Intelligence (Scientific American, October 15, 2021).

Water Werzowa: I dare to say that nobody knows Beethoven as well
as the AI algorithm.

I think music, when you hear it, when you feel it, when you close your
eyes, it does something to your body. Close your eyes, sit back and
be open for it, and I would love to hear what you felt after.

[36] Música algoŕıtmica: experiments i perspectives. FME, December
1st, 2021: bayer-2021-video (55’56”-58’03”).
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It’s blowing in the wind In the news

“The new model suggests the partnership between neuroscience and
AI could also move beyond our understanding of each one alone and
instead find the general principles that are necessary for brains and
machines to be able to learn anything at all.” QM21-10-18.

Source: Nature neuroscience

Reference: [37], Learning representations by back-propagating errors,
Nature-1986-10-09.
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https://www.quantamagazine.org/brain-bursts-can-mimic-famous-ai-learning-strategy-20211018/
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It’s blowing in the wind In textbooks and books
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It’s blowing in the wind In textbooks and books

Bayesian approaches

N
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It’s blowing in the wind In textbooks and books

Applications

N
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It’s blowing in the wind In textbooks and books

The many facets of the symbiosis
Mathematics & Computation are appraised
in [38] (wigderson-2019).

In particular, Chapter 17 is devoted to
computational learning theory.

See also the extensive survey [39]
and, with a more popular style, Marr’s blog [40].

Another useful reference is [41] (strang-2019).
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It’s blowing in the wind In arXiv et al (a sample)

[42] (jin-netrapalli-ge-kakade-jordan-2019)

[43] (carleo-cirac-cranmer-daudet-schuld-tishby-vogtmaranto-
zdeborova-2019)

[44] (lample-charton-2019) symbolic integration

[45] (du-zhai-poczos-singh-2019) GD

[46] (du-lee-li-wang-zhai-2019) GD

[47] (wang-shi-cao-2019) GA-SURF

[48] (he-kim-2019)* Learning algebraic structures

[49] (alessandretti-baronchelli-he-2019)* Birch-S-D

[50] (kusaba-liu-koyama-terakura-yoshida-2019) Periodic table

[51] (guo-wan-hu-liu-liu-bennamoun-2019) 3D point clouds

[177] (pyzerknapp-laino-2019) ML in Chemistry
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It’s blowing in the wind In arXiv et al (a sample)

[52] (garcia-cortes-napagao-cortes-2020)

[53] (charton-hayat-lample-2020)

[54] (weinan-ma-wojtowytsch-wu-2020)

[55] (zhao-birdal-lenssen-menegatti-guibas-tombari-2020)

[56] (wu-xu-wu-kong-senhadji-shu-2020)

[57] (hoffmann-schmitt-osindero-simonyan-elsen-2020)**

[58] (he-yau-2020)*, [59] (cranmer-et-5-2020)*

[60] (lamb-garcez-gori-prates-avelar-vardi-2020)*

[61] (iten-metger-wilming-delrio-renner-2020)*

[62] (townshend2-eismann-dror-2020)**, [63] (melas-2020)

[64] (scholze-2020), [65] (raghu-schmidt-2020)**,

[66] (heal-kulkarni-sertoz-2020)*, [67] (hughes-2020)*
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It’s blowing in the wind In arXiv et al (a sample)

[68] (jiang-luo-2021)**, [69] (ghojogh-ghodsi-karray-crowley-2021a)

[70] (scellier-2021), [71] (bach-2021)

[72] (bronstein-bruna-cohen-velickovic-2021)

[73] (mei-misiakiewicz-montanari-2021), [74] (cohen-2021)

[75] (beniaguev-segev-london-2021)**, [76] (wagner-2021)*

[77] (berner-grohs-kutyniok-petersen-2021), [78] (smirnov-2021)*

[79] (zaplana-2021), [80] (fernandes-2021)

[81] (franchini-vitabile-2021), [82] (raayoni-et8-2021)*,

[83] (payeur-guerguiev-zenke-richards-naud-2021)

[84] (davies-et13-2021)*, [85] (blundell-et4-2021)

[86] (davies-et3-2021), [87] (scholze-2021), [88] (he-2021)*

[89] (avigad-moura-kong-2021), [90] (yaseen-et4-2022)
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It’s blowing in the wind Review, Survey, Criticism?

The current situation concerning AI is not unlike that of the Human
Comunication of fifty years ago, but surely even more “explosive”.

Where to begin?
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Everlasting jewels
The Bayes-Laplace rule

Maximum a posteriori rule
Clustering methods (k-Means and k-NN)

Principal component analysis
Singular Value Decomposition
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Everlasting jewels The Bayes-Laplace rule [91], [92]
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Everlasting jewels The Bayes-Laplace rule

Learning from experience is neatly encoded, in probabilistic terms, by
the Bayes-Laplace rule:

P(Y |X ) = P(Y )K (X ,Y ),

where K (X ,Y ) = P(X ∩ Y )/P(X )P(Y ) is symmetric
(K (X ,Y ) = K (Y ,X )), which tells us how to modify our prior believe
in Y , P(Y ), to the belief P(Y |X ) posterior to having observed X .

When K > 1 (K < 1), our believe is increased (decreased), and in
any case it may be construed as a learning on Y produced by the
observation of X .

The condition K = 1 is equivalent to say that X and Y are
independent, and in this case the believe in Y is unaffected by
whether or not X occurs.

The Bayes–Laplace rule is the basis for prediction models of many
sorts, as for example in weather forecasting.
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Everlasting jewels MAP: Maximum a porteriori rule

If an event X occurs, and it can be assigned to disjoint hypothesis
Y1, · · · ,Yr , the MAP rule selects the hypothesis Yj such that
P(Yj |X ) is maximum. The Bayes-Laplace formula tels us that this is
the same as selecting the Yj such that P(X |Yj)P(Yj) is maximum.

In the special case in which the Yj have the same probability, this
amounts to select the Yj such that P(X |Yj) is maximum.

[92] (silver-2012), The signal and the noise:

“Bayes’s theorem [...] implies that we must think differently about
our ideas — and how to test them. We must become more
comfortable with probability and uncertainty. We must think more
carefully about the assumptions and beliefs that we bring to a
problem” (page 15).
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Everlasting jewels Probabilistic learning machine

In this book, we study a method which employs a parametric probability density

function. A conditional probability density function pw(x) = p(x|w) of x ∈ RN

for a given parameter w ∈ W is called a learning machine or a statistical model,

where W is the set of all parameters.

From [93] (watanabe-2009).
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Everlasting jewels Probabilistic learning machine
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Everlasting jewels Clustering methods

Aimed at finding hidden structure in data, D = {x1, . . . , xm}.

k-Means. This algorithm groups unlabeled data D in k classes:

(1) Select k vectors z1, · · · , zk ∈ D at random.

(2) Assign each x j ∈ D to the first z i nearest to x j (initial groups).

(3) Update each z i to the centroid (or mean) of the z i group.

(4) Iterate (2) and (3) until the z i are stable (up to a tolerance).

The associated cluster predictor assigns x to the first nearest z i .

k-NN (nearest neighbors). Let D = {(x1, y 1), · · · , (xm, ym)} be a
labeled set and k a positive integer. The label predictor of the k-NN
algorithm assigns a vector x to the mode of y j1 , · · · , y jk , where
x j1 , · · · , x jk are the nearest neighbors of x from among x1, · · · , xm.
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Everlasting jewels Data science: Principal Component Analysis

Let X a data matrix of size m × n. We regard the rows X i of X as
observations on n objects, X i = (x i1, . . . , x

i
n), for m features

(i = 1, . . . ,m).

Let µi = E (X i), the mean value, or expected value, of X i .

Let σij = Cov(X i ,X j) = E [(X i − µi)(X j − µj)] = E [X iX j ]− µiµj

and Σ = (σij)1⩽i ,j⩽n. This is the covariance matrix of X ,
Σ = Cov(X ). Notice that σii = Var(X i) = σ2

i , where Var(X i) and σi

are the variance and the standard deviation of X i .

Given a unit m-vector u, it turns out that Var(uX ) = uΣuT , and
that this is maximum precisely when u is an eigenvector of Σ with
the highest eigenvalue. This vector is the principal component of X ,
that is, the unit eigenvector u = u1 of Σ whose eigenvalue λ1 is
largest (the eigenvalues of Σ are real). It accounts for the greatest
variance of the data along a direction.
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Everlasting jewels Data science: Principal Component Analysis

The second principal component of X is the eigenvector u2
corresponding to the second eigenvector λ2. It maximizes
Var(uX ) = uΣuT for unit vectors u orthogonal to u1. And so on.

This frames an (unsupervised) approach to dimension reduction by
means of the spectral decomposition Σ = UΛUT , where Λ is the
diagonal matrix with the eigenvalues of Σ, ordered in non-increasing
order, and U is the orthonormal matrix formed with the unit
eigenvectors of Σ. In fact, the reduction of X to dimension k ⩽ m is
the k × n matrix X ′ = UkX , where the rows of Uk are the first k
rows of U .
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Everlasting jewels Data science: Singular Value Decomposition

Let X be an m× n data matrix as above, and let r be its rank. Then
XXT and XTX have rank r and they have the same non-zero
eigenvalues λ2

1, . . . , λ
2
r , where λ1 ⩾ λ2 ⩾ · · · ⩾ λr > 0.

Moreover, if we let U and V denote the orthonormal matrices of
eigenvectors of XXT and XTX , then X = UΛV T where Λjj = λj for
j = 1, . . . , r are the only non-zero values of Λ.

Note that XXT = U(ΛΛT )UT and XTX = V (ΛTΛ)V T , where the
first r values of the diagonals of ΛΛT and ΛTΛ are λ2

1, . . . , λ
2
r and all

others 0 in both matrices (of sizes m ×m and n × n, respectively).
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Everlasting jewels Data science: Singular Value Decomposition

Since UΛ = (λ1u1, . . . , λrur ), we get the singular value
decomposition of X :

X = λ1u
T
1 v1 + · · ·+ λru

T
r vr .

Actually it turns out (Eckart-Young theorem) that for k = 1, . . . , r
the matrix

Mk = λ1u
T
1 v1 + · · ·+ λru

T
k vk

is the closest to X among the matrices of rank k .

Remark. The least-squares solution to Xa = b is a = X †b, where
X † = VΣ†UT (Moore-Penrose pseudo-inverse of X ),
Σ† = diag(λ−1

1 , . . . , λ−1
r , 0, . . . , 0).
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Data and learners
Reinforcement learning
Supervised learning
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Data and learners Reinforcement learning

Algorithm learns to react to an environment

Environment

Agent

A
ct
io
n

R
ew
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d State
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Data and learners Supervised learning: A historical analogy

H = {h}
D

World – Observer1

1 Urbi et Orbi engraving (Flammarion). Tycho Brahe (observer model): He experienced the solar eclipse of 21 August
1560 [he was 15], and was greatly impressed by the fact that it had been predicted, although the prediction based on
current observational data was a day off. He realized that more accurate observations would be the key to making
more exact predictions. 2 Ephemeris: Tables of planet and comet positions over time.
3 Inductive bias. Greeks: circles around Earth. 4 Loss, risk, regret. How close are predictions to observations?
5 Learner model (Kepler): Ellipses with a focus at the Sun. Today: Learning algorithm. 6 Hopefully, h ≈ f∗.

Data, expert tables2

{(x1, y1), . . . , (xm, ym)}

Hypothesis space3

Error measure4
Learner/LA5

=⇒ y = h(x)

Prediction rule6

xj ∼ P, yj = f ∗(yj)

S. Xambó (UPC & IMTech) AL (math inside) 13/12/2021 32 / 141



Data and learners Supervised learning

Set of objects x j , j ∈ [m] (dataset).

Want to predict values y j provided by a supervisor or expert in such a
way that for objects x not in the dataset the value y corresponding
to x is predicted with high probability (generalization capacity).

Hypothesis space: a space of parameterized functions,

H = {hw}w∈W .

Problem: to find w ∈ W such that hw (x
j) ≈ y j .

Method: If the criterion for fitness depends on a function ℓ(h(x), y)
(local cost), we transfer the problem to finding w that minimizes∑

j ℓ(hw (x
j), y j) (empirical cost or risk):

argminw

∑
j ℓ(hw (x

j), y j).

This is the empirical risk minimization rule, ERM.
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Data and learners Supervised learning: classification and regression

Supervised learning has two main modalities:

Classification: When the set Y is finite. In this case its elements are
usually called labels or classes.

Regression: When the set Y is the set R of real numbers.

In linear regression, H is the space of functions of the form

h(x) = w1x1 + · · ·+ wnxn = w · x

and the the local cost is usually (h(x)− y)2.

Logistic regression is linear regression of the function log p
1−p

,

p ∈ [0, 1]. If w is a solution, then p = 1/(1 + e−w ·x).
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Artificial neural networks
Artificial neurons

Layered architectures
A-NNs

Examples: CxNN, QNN, GNN,...
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Artificial NNs Artificial neurons

In AL, a useful model of a neuron is depicted in Fig. 9.1:

x1

x2

xn

σ

w1

w2

wn

x0 = 1

w0

...

...

...

σ(w · x)

w · x = w0 + w1x1 + · · ·+ wnxn

Figure 9.1: Scheme of a neuron. The neuron’s output depends on the
weights w and on σ (activation function), and this functionality is
represented by the decorated circle.
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Artificial NNs Artificial neurons

In mathematical terms, a neuron is a function

x 7→ fw (x) = σ(x · w), (1)

where w ∈ Rn (weights or parameters) and σ is a sigmoid function
(called activation function), like for instance the logistic function
σ(t) = (1 + e−t)−1, in which case the neuron computes a logistic
regression.

Augmenting x with x0 = 1 and providing an extra weight w0 (called
the bias), the neuron computes σ(w0 + w1x1 + · · ·+ xnwn).

To display separately the bias and the other weights, we may write
fw ,w0 or some similar notation.

S. Xambó (UPC & IMTech) AL (math inside) 13/12/2021 37 / 141



Artificial NNs Architectures and layered NNs

A neural network (NN) can be construed as a composition of neurons
according to a graph of connections called the architecture of the net.

Here we will consider the case of directed graphs and thus leaving
aside nets based on undirected graphs such as Boltzmann machines.
Nor will we discuss networks with feedback (those having closed
paths), such as the Hopfield networks.

The standard architecture of a NN is a directed graph structured in
layers Lj , as illustrated in Figure 9.2, and its functional signature can
be condensed as a chain:

N : Input → L0
f1

−→ L1
f2

−→ · · · → Ld−1

fd
−→ Ld → Output (2)

The integer d is the depth of the net. Conventionally, the net is deep
if d > 2, and shallow otherwise. The layers L1, . . . , Ld−1 are
considered to be hidden, while the input and output layers (L0 and
Ld), are visible.
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Artificial NNs Architectures and layered NNs

(a)

L0

Input

Output

L1

(b)

L0 L1 L2

x1

x2

x3

x4

x5

Figure 9.2: (a) Neural network with no hidden neurons and fully
connected. (b) Network with a hidden layer L1 of three neurons fully
connected to the two output neurons of L2. The input layer, L0, is only
partially connected to L1.
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Artificial NNs A-neurons and A-networks

The quantities xj and wj used in the neuron model introduced in
equation (1) are real numbers. But we can imagine that they are
entities of an algebraic structure A sufficient to guarantee that the
expression x · w = x1w1 + · · ·+ xnwn, and an activation function
σ : A → A, make sense.

For example, A can be a real algebra of finite dimension and σ the
function of an ordinary sigmoid applied component-wise (with respect
to a fixed basis of the algebra). We thus arrive at the concept of
A-neuron and, connecting neurons as we have done before, to the
notion of A-neural network, or A-NN.

Another generalization is to replace x and w with more general data
structures, such as A-arrays (or tensors), and the product x · w by a
suitable operation x ⋆ w . Among these operations, the most
commonly used are certain bilinear products, such as
cross-correlation, as well as nonlinear ones, such as max-pooling.
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Artificial NNs A-neurons and A-networks

Thus the conventional (artificial) neurons and neural networks are
R-neurons and R-neuronal networks.

Beyond real numbers, among the most immediate concrete cases of
algebras A we can mention C (complex numbers), H (quaternions),
O (octonions), an algebra of matrices R(n), or a geometric algebra
G = Gr ,s of signature (r , s). N

To simplify the terminology, we will talk about real, complex (CxNN),
quaternionic (QNN), octonionic (ONN), matrix (MNN), and
geometric (GNN) networks, respectively.
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Artificial NNs A-neurons and A-networks

One advantage of A-neurons is that the number of (real) weights
they require decreases in inverse proportion to d = dimA. The
argument is based on the simple observation that w ∈ A counts for d
real weights, whereas both x and x ′ = x ⋆ w count for d real
parameters each and hence we need d2 real weights to connect them.

Another advantage is that the algebraic structure of A can be
regarded as a resource for describing and implementing AL
algorithms, a point that is particularly relevant when A is a geometric
algebra on account of its intimate connection with the geometry of
its geometric space.

Remark. This is not unlike the use of finite fields as alphabets for
coding information, for being able to sum, multiply and divide
alphabet symbols turns out to represent a great bonus with respect
to a set with no structure.
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Besides the further references provided henceforth, we find that the
text [94] is a remarkably inspiring early reference for most of the
topics discussed in this section. In particular, it studies complex NNs
in chapter 2 and QNNs in chapter 5. It also features interesting
applications of these algebras to predict chaotic time series (chapter
6) and to robotics (chapter 7).
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Artificial NNs CxNN

Perhaps the most important idea of these networks is that they can
exploit the phase properties of complex numbers.

At the beginning of the study of these networks, the contributions of
Hirose and his school stand out. They focus on signal processing,
with collections such as [95] (2003) and treated as [96] (2009), or
[97] (2012; a second edition of a book of the same title and author
published in 2006), and the collection of ten articles collected in [98]
(2013), of which the first stands out, by Hirose himself (the editor of
the volume), with the title Application fields and fundamental merits
of complex-valued neural networks.

The text [99] belongs to the same circle, which illustrates with very
convincing graphic experiments the value of considering the phase.
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More recently we have [100] (2016), on complex convolutional
networks; [101] (2017), focused on image classification; [102] (2017),
where the emphasis is on deep networks; and [103] (2018), which
provides an assessment of complex networks in real signal
classification tasks.

Finally we mention [104], which reveals the significance of complex
networks from other points of view, particularly that of deep AL, an
“umbrella term for emerging techniques that attempt to generalize
deep (structured) neural models to non-Euclidean domains such as
graphs and varieties.”
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The interest of these networks comes from the relation that the
quaternions keep with the group of rotations of the ordinary
Euclidean space, a relation especially transparent in terms of
H = G+

3 , for the expression h(x) = hxh̄, h ∈ H non-zero, is a vector
and h is a similarity of ratio |h|2 (a rotation if h is unitary).

Another reason is that quaternions have three phases and that these
phases can be used to extract valuable information from the signals
to be processed.
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Research in QNNs also comes from long ago, even before that of
complex networks. We refer to [105] and [106] for relevant historical
information regarding what is called Clifford’s analysis, especially in
relation to Fourier and wavelet transforms in a quaternionic context
and their generalization to the geometric context.

In the origin of the more specific topic we are considering, we find
Gerald Sommer and his collaborators: [107] (generalization of Gabor
filters) and [108] (generalization of the real multilayer perceptron, cf.
[109]).

The report [110] presents a quaternion wavelet theory “for image
analysis and processing” and [111] an overview of the properties and
applications of quaternion networks up to that point.
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In the last decade, research on QNNs has continued both on the
applied and theoretical fronts.

The article [112] deals with the quaternionic multilayer perceptron.
Hopfield QNNs and their rotation invariance are investigated in [113].
In the works [114] and [115], the QNNs are applied to the
comprehension of the spoken language. Deep QNNs are studied in
[116] and convolutional ones in [117]. Finally [55] presents a
quaternionic version of capsule networks aimed at processing point
clouds in Euclidean space and in [29] a new QNN deterministic layer
is introduced that provides contrast invariance and sensitivity to
rotation angles using quaternionic Gabor functions and Hilbert
transforms, while in [32] the authors use the Riesz transform in the
quatermion monogenic representation to propose a novel
deterministic convolution layer in the Fourier domain robust to
contrast and haze changes in image classification.
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Artificial NNs GNN

Interestingly, the study of GNNs began even before that of QNNs, as in
[118], and G. Sommer was a strong proponent of this inquiry at the
beginning of the millennium with works such as [119], in which he
developed the theoretical foundations that served him well for problems
such as artificial vision and robotics; [120], dedicated to a G-version of the
multilayer perceptron; [121] and [122], which develop the notion of
monogenic signal. A culmination of these efforts was Sven Buchholz’s
thesis, [123], which should be considered, as its title indicates, a theory of
neuronal computation with geometric algebras. As a sample of
applications, we cite [124] (image segmentation), [125] (support vectors in
the geometric context), the volumes [126] (geometric computing for
wavelet transforms, artificial vision, learning, control and action) and [127]
(geometric computing in engineering and computer science), [128] (use of
geometric algebra for edge detection in color images), [129] (clustering
methods based on the conformal geometric algebra G4,1), and [47]
(treatment of multispectral images with geometric algebra). We end with
[130] and [131], a 2-volume set of what should be a systematic treatment
on these developments, but see also [132] and [133].
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In the recent article [56], convolutional octonion networks are
constructed and applied to CIFAR-10 and CIFAR-100 image
classification. According to the authors, they have better convergence
and accuracy than other networks applied to the same tasks.

Octonions have also been successfully applied to dictionary learning,
as for instance in [134], an approach that can in fact be formulated
for more general algebras, including geometric ones, as in [135].

Another recent example is the case when A is the algebra of
commutative quaternions, Hc = ⟨1, i 1, i 2, i 2⟩. They were introduced
by C. Segre in 1892 (see [136]) and can be defined by the relations
i 21 = i 23 = −1, i 22 = 1, i 1i 2i 3 = −1. These imply that
i 1i 2 = i 2i 1 = i 3, i 2i 3 = i 3i 2 = i 1, i 3i 1 = i 1i 3 = −i 2, and hence Hc

is commutative. This algebra has been revived in [137] at the level of
what, in our notations, would be called Hc-neurons.
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Finally let us have a look to the recent paper [57]. In its Abstract we
read:

Our work considers a richer set of objects for activations and weights,
and undertakes a comprehensive study of alternative algebras as num-
ber representations by studying their performance on two challenging
problems: large-scale image classification using the ImageNet dataset
and language modeling using the enwiki8 and WikiText-103 datasets.
We denote this broader class of models as AlgebraNets. Our findings
indicate that the conclusions of prior work, which explored neural net-
works constructed from C (complex numbers) and H (quaternions) on
smaller datasets, do not always transfer to these challenging settings.
However, our results demonstrate that there are alternative algebras
which deliver better parameter and computational efficiency compared
with R. We consider C, H, M2(R) (the set of 2× 2 real-valued matri-
ces), M2(C), M3(R), M4(R), dual numbers and the R3 cross product.
Additionally, we note that multiplication in these algebras has higher
compute density than real multiplication, a useful property in situations
with inherently limited parameter reuse such as auto-regressive infer-
ence and sparse neural networks.

S. Xambó (UPC & IMTech) AL (math inside) 13/12/2021 52 / 141



Artificial NNs Other A-NNs

These are all A-NNs. Are they GNNs?

By our comments on the isomorphism class of Gr ,s , this is certainly
the case for 2R ≃ G1,0,

1 C ≃ G0,1, R(2) ≃ G2,0, H ≃ G0,2 = G+
3,0,

C(2) ≃ G1,2, and R(4) ≃ G2,2.

The exceptions are R(3) and (R3,×), as their dimensions are not
powers of 2. Note, however, that the nature of the latter is also
geometric, as the cross product is the Hodge dual of their wedge
product, which lives in G3,0. See also [94, Ch. 3] (on Vectorial NNs).

To remark also that although the octonions are not a geometric
algebra, they are nevertheless a subalgebra of G0,7 (see [138, §7.4]).

12R = R⊕ R is the algebra of dual numbers, and in general 2A = A⊕A. By
A(n), or Mn(A), we denote tha algebra of n × n matrices with entries in A.
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In this section we try to establish some connections between what
has been said or hinted before and possible lines of inquiry in the area
of AL by means of what can be described, in a broad sense, as
geometric calculi. Our comments will refer to the following topics:

AL of mathematical structures.

Other faces of geometric AL.

Robotics.

Computational resources and techniques.

Recent advances on k-NN (nearest neighbors).

Other liaisons.
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A compelling illustration of this theme is reported in [44].

In our view, it represents a line of research that may be promising for
AL with geometric calculi as well. Quote from the Abstract:

Neural networks have a reputation for being better at solving
statistical or approximate problems than at performing calcu-
lations or working with symbolic data. In this paper, we show
that they can be surprisingly good at more elaborated tasks in
mathematics, such as symbolic integration and solving differ-
ential equations. We propose a syntax for representing math-
ematical problems, and methods for generating large datasets
that can be used to train sequence-to-sequence models. We
achieve results that outperform commercial Computer Alge-
bra Systems such as Matlab or Mathematica.
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For other works of a similar potential, see [48] (on learning algebraic
structures), [49] (the bearing of AL on current research in number
theory), [43] (a kindred report in the realm of physical sciences, with
many useful insights in various aspects of AL), [58] (“a foray into
discrete analogues of Riemannian manifolds, providing a rich interplay
between combinatorics, geometry and theoretical physics”), [59] (on
finding symbolic equations that match a given dataset, with the
surprising illustration of an “overdensity equation for dark matter”),
[53] (showing that “neural networks can learn advanced theorems and
complex computations without built-in mathematical knowledge”),
[139] (a version of AL that learns mappings between function spaces,
with impressive applications to partial differential equations).

Altogether, these works point out to novel avenues for inquiries in AL
that are transforming the understanding of science in general, and of
mathematics in particular, in ways never seen hitherto.
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For people working in geometric algebra/calculus, it is natural to term
AL as “geometric” if based on those formalisms. But AL researchers
came up with a different use for this qualification, as in [140]:

[...] we consider the general question of how to con-
struct deep architectures with small learning complexity on
general non-Euclidean domains, which are typically unknown
and need to be estimated from the data.

Even more explicit in these appraisals is [141]:

Geometric deep learning is an umbrella term for emerging
techniques attempting to generalize (structured) deep neural
models to non-Euclidean domains such as graphs and man-
ifolds. The purpose of this paper is to overview different
examples of geometric deep learning problems and present
available solutions, key difficulties, applications, and future
research directions in this nascent field.
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Further evidence for the great potential of this paradigm can be
gleaned in the survey [60], whose main thrust lies in linking graph
neural networks and (neural) symbolic computing:

The need for improved explainability, interpretability and
trust of AI systems in general demands principled method-
ologies, as suggested by neural-symbolic computing. In this
paper, we review the state-of-the-art on the use of GNNs as
a model of neural-symbolic computing.

We do not regard the two views of “geometric” that we are
considering as antagonistic in any way, as in fact we sense that each
can benefit from the other.
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We have already mentioned the application of quaternions to robotics
presented in [94, Ch. 7].

Among later texts, let us refer to the pioneer book [132], particularly
chapters 2 and 7; Selig’s treatise Geometric fundamentals of robotics,
[142]; the collection [133], especially the papers in Part VIII
(Geometry and Robotics), and the extensive compilation [126],
especially Part IV (Geometric computing of robot kinematics and
dynamics) and Part VI (Applications II: Robotics and medical
robotics).

For recent summaries of robotics analyzed with CGA, see [20, Ch. 4]
and [79].
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Concerning AL in robotics, it has proceeded largely in parallel to the
geometric developments, as witnessed by [143] (how machine
learning has been applied to robotic path-planning and path-planning
related concepts), the survey [144] (reinforcement learning in
robotics; see also [145]), Lenz’ PhD thesis [146], and the surveys
[147] (DL techniques for mobile robot applications), [148] (DL
methods for robot vision), [149] (learning control in robotics).

It appears ever more clearly that advanced AL is playing a major role
in robotics aimed at providing all sorts of assisting services to
humans, as epitomized by the memoir [150].

In all these cases, the opportunities for applying geometric methods
to gain theoretical and applied advantages seem clearly plentiful, if
only because of the many engineering aspects that concur in any
such system.
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Artificial NNs Computational resources and techniques

Currently, there is a wealth of software (frameworks) for deep
learning (see Comparison_of_deep-learning_software in Wikipedia).

For example, Tensorflow (see [151]) provides

... an interface for expressing machine learning algorithms,
and an implementation for executing such algorithms.

Most of them offer a Python interface and increasingly also a Julia
interface, as for instance Tensorflow. An interesting case is Flux
(2017), which is pure Julia (framework and interface).

But as far as we know, none of these frameworks can deal with GNNs
beyond complex NNs.
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On the other hand, there is a rich variety of systems that perform
computations with geometric algebras (see, for example, the Software
section in the Wikipedia Geometric_algebra article).

But again, and as far as we know, none offers a deep learning
framework. By its design, the Julia system described in [152] has
perhaps the highest potentiality to serve as a basis for developing
such a framework.

A first step in this direction would be a framework supporting QNNs.
Another useful resource is provided by template libraries, as for
instance [80].
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Artificial NNs Recent advances in unsupervised learning

The authors of [153] also express the view (end of §2.1), that

the theory [...] for many branches of unsupervised learning is still
in its infancy.

For our inquiry, there are two main directions to look at.

One concerns recent advances in conventional (non-geometric)
unsupervised learning, as for example [154], which orchestrates a powerful
scenario for an automatic physicist with no supervision.

In our appraisal, there is much that can conceivably be transferred to
other domains, like the strategies that it advocates and the algorithmic
ways by which they are marshaled.

For other instances of a similar kind, see [50] (reconstruction of the
periodic table), [155] (proposing “a family of biologically plausible
artificial neural networks (NNs) for unsupervised learning”) and [61] (steps
“towards the long-term goal of machine-assisted scientific discovery from
experimental data without making prior assumptions about the system”).
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The other direction is linking unsupervised learning with GNNs.

Aside from contributions such as the innovative paper [129], which
develops a clustering method based on CGA, it appears to be a
largely uncharted terrain.

Many of the ideas in the preceding paragraph may be relevant for
these explorations.

In this, it may bear further fruits the unsupervised learning of Lie
group transformations studied in [156] on account of its generality
and the geometric character of Lie groups (cf. [19, §6.5]).
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Earlier we have met layered A-NNs, but now it is convenient for us to
allow more flexible architectures.

By adapting the conventional notions about graph NNs (cf. [157],
[158]), we find that a suitable class, among many other possible
generalizations, is formed by directed acyclic graphs (N ,E ) with no
isolated nodes and endowed with (trainable) weights we ∈ A (e ∈ E )
and, for each non-initial node n, (trainable) biases bn ∈ A and
activation functions σn : A → A.

The states of a node are in one-to-one correspondence with elements
of a ∈ A. The initial nodes are input nodes. For a non-initial node n,
its state an is determined by the formula an = σn(bn +

∑
e:e0=n weae1),

where e0 and e1 are the nodes connected by the edge e.

The output of the net is given by the states of the terminal nodes
produced by these rules.
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In the layered A-NN, the initial (final) nodes are those of L0 (Ld).

Let us also suggest that it may be productive, particularly in the case
of GNNs, to allow that weights w be operators acting on states a
according to suitable law w ⋆ a (let us dub ⋆NNs these structures).

These notions draw some inspiration from [20, Ch. 5] and [159] (on
oriented CGA and its application to molecular distance geometry),
and actually it looks puzzling to see whether they could help in
porting AL to bear on the problems tackled by molecular distance
geometry (see the more specific comments on AL in Chemistry at the
end of this section). In doing so, it is important to bear in mind early
trailblazers on Clifford neurons such as [160], [161] and [162].
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Other areas where the scheme may provide analytic and geometric
advantages is in the treatment of 3D point clouds (see the survey
[51], and papers like [163], [81], [164]), as well as in devising more
powerful capsule nets: see [165], [166], [167], [168].

Of these, only the latter operates with complex numbers. Since
CapsNets process elementary patterns, they should benefit from
drawing ideas about pattern theories, say in the sense of the
monograph [169], and also to enhance explainability along the lines of
[170].
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A few hints on the aptness of ⋆NNs to properly deal with invariance
and covariance properties are in order.

These concepts always refer to the action of some group. If a group
G = {g} acts on a set X, a function f (x) is invariant under this
action if f (g · x) = f (x) for all x ∈ X and g ∈ G .

Similarly, if G also acts on a set Y, a map f : X → Y is covariant (or
equivariant) with respect to the actions of G in X and Y if
f (g · x) = g · f (x) for all x ∈ X and g ∈ G .

Note that an invariant function f is covariant if we make G act
trivially on the range of f , so that g · f (x) = f (x) for all x ∈ X.

The main reason in the context of AL to care about G -covariance is
that no data augmentation is required to recognize features in
arbitrary G -poses, as in [171] for discrete groups of rigid motions.
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Let us go back to AL for Chemistry. We note a perceptible ⋆ character of
the networks studied in works such as [172], [173], [174], [175], [176],
which motivates a careful study of their contributions from the ⋆NN point
of view.

See also the collection [177] and especially the paper [178], in which the
relevant group is SE (3), the group of distance-preserving transformations
of the ordinary Euclidean space. The main claim is that the authors
“directly verify that the performance gains are connected with the unique
SE (3)-equivariant convolution architecture of the new model”.

Even closer to the spirit of our disquisition is [62], as for us geometric
algebras are optimally suited for the treatment of tensors (A-arrays), and
many other geometric entities and formalisms as well.

By the way, we note that the AlgebraNets that we have seen before are
special cases of ⋆NNs, and that they have been mainly applied to
classification problems, but more research could uncover properties and
applications based on their geometric character.
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We end with a few remarks on the scattering transforms (a special
kind of CNN) introduced in [179] and further studied in [180] (for
graph networks), [181] and [182]. The computational side of this
transform has produced the system [183].

Altogether, it would be worthwhile to define and study a geometric
scattering transform based on the geometric algebra wavelet theory
first introduced in [184] and further exploited in [110] (for
quaternions), the collection [185] (particularly the paper by P.
Cerejeiras, M. Ferreira, and U. Kähler), and [106].

It would also be gainful to devise a scattering transform network that
could be trained, both in the conventional sense and in the geometric
realm just mentioned, and a computational platform that could deal
with both.
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Readings for the season’s break:
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[5] S. Xambó-Descamps and J. e. Aranda, “Plenary and Invited
Lectures,” 2010.

2010 IEEE WORLD CONGRESS ON COMPUTATIONAL
INTELLIGENCE (WCCI 2010, July 18-23, Barcelona, Spain).
Published by the Institute of Electrical and Electronics Engineering,
Inc., 2010, x + 261 pp.
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LLúıs Santaló 2016.
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l’Enginyeria, vol. 16 , no. Special issue dedicated to commemorate
Leibniz (1646-1716), pp. 103–134, 2018.

pdf.
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[28] S. Xambó-Descamps and N. Sayols, “Computer algebra tales on
Goppa codes and McEliece cryptography,” Mathematics in
Computer Science, vol. 14, no. 2, pp. 457–469, 2020.

Springer link. pdf.

[29] E. U. Moya-Sánchez, S. Xambó-Descamps, A. S. Pérez,
S. Salazar-Colores, J. Mart́ınez-Ortega, and U. Cortés, “A
bio-inspired quaternion local phase CNN layer with contrast
invariance and linear sensitivity to rotation angles,” Pattern
Recognition Letters, vol. 131, pp. 56–62, 2020.
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S. Xambó (UPC & IMTech) AL (math inside) 13/12/2021 85 / 141

https://link.springer.com/chapter/10.1007%2F978-3-030-74486-1_7
https://arxiv.org/pdf/2109.06926.pdf


References XV
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[35] J. Bruna and S. Xambó-Descamps, “Mathematical Aspects of
Algorithmic Learning and Deep Neural Networks,” 2021.

BGSMath/CRM course.
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P. Maĺık, and L. Hluchỳ, “Machine Learning and Deep Learning
frameworks and libraries for large-scale data mining: a survey,” Artificial
Intelligence Review, vol. 52, no. 1, pp. 77–124, 2019.
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S. Xambó (UPC & IMTech) AL (math inside) 13/12/2021 90 / 141

http://proceedings.mlr.press/v97/du19c/du19c.pdf
https://arxiv.org/pdf/1905.02263.pdf
https://arxiv.org/pdf/1911.02008.pdf


References XX

[50] M. Kusaba, C. Liu, Y. Koyama, K. Terakura, and R. Yoshida, “Recreation
of the periodic table with an unsupervised machine learning algorithm,”
2019.

https://arxiv.org/ftp/arxiv/papers/1912/1912.10708.pdf.

[51] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
Learning for 3D Point Clouds: A Survey,” 2019.

https://arxiv.org/pdf/1912.12033.pdf.

[52] D. Garcia-Gasulla, A. Cortés, S. Alvarez-Napagao, and U. Cortés, “Signs
for ethical AI: A route towards transparency,” 2020.

https://arxiv.org/pdf/2009.13871.pdf.
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connections,” 2020.

https://arxiv.org/pdf/2007.13786.pdf.

[67] M. C. Hughes, “A neural network approach to predicting and computing
knot invariants,” Journal of Knot Theory and Its Ramifications, vol. 29,
no. 03, p. 2050005, 2020.

https://arxiv.org/pdf/1610.05744.pdf.
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S. Xambó (UPC & IMTech) AL (math inside) 13/12/2021 132 / 141



References LXII

[200] F. Chollet, Deep learning with Python (2nd edition, V4).

Manning Early Access Program, 2020.

210 p.

[201] H. Li, Invariant algebras and geometric reasoning.

World Scientific, 2008.
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Notes P8

For me, the most surprising aspect of these winning algorithms is that its
authors are not experts in the games, nor on the chemistry of proteins for
that matter.

In some sense they are not unlike the infinite variety of tools invented by
humanity that extend the human capacities beyond the biological nature.
Any tool can serve to illustrate this: the fire and the wheel; hammers and
anvils; screws and screwdrivers; bicycles, cars, planes and submarines;
photography, movies and digital cameras; and so on. Among the tools,
there is the outstanding class of scientific instruments, like lenses,
telescopes, microscopes, or the detectors of gravitational waves.
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Sketch of GA

The reason for using geometric algebras is that their formalism is
optimally adapted to express the geometric facts of any linear
geometric space, that is, of a real vector space E = Er ,s endowed
with a metric (a bilinear symmetric real-valued product x · x ′,
x , x ′ ∈ E ) of signature (r , s). The most direct way to introduce the
geometric algebra Gr ,s of this space, one that is arguably the closest
to the ideas on which W. K. Clifford (1845-1879) based his creation,
is that Grassmann’s exterior algebra of E , ΛE , has a unique bilinear
associative product with unit 1 (called geometric product by Clifford
himself) such that

xa = x · a + x ∧ a (x ∈ E , a ∈ ΛE ), (3)

where x · a = ix(a) (the contraction of x with a).
↘
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Since ix is the unique skew derivation of ΛE such that ix(x
′) = x · x ′

for any x ′ ∈ E , the formula (3) shows how to multiply any
multivector a by any vector x on the left.

In fact, the formula suffices for the calculation of any product of
multivectors because of the following reasoning.

By bilinearity, it is enough to know how to multiply a non-zero
exterior product b = x1 ∧ · · · ∧ xr (r ⩾ 2) of vectors x1, . . . , xr (such
products are called r -blades) by an arbitrary multivector a.

We can further assume that x1, . . . , xr are pair-wise orthogonal, for
the space ⟨x1, . . . , xr⟩ has orthogonal bases and the exterior product
of any such basis is equal, up to a multiplicative constant, to b.
Finally we have that x1 · · · xr = b (by induction on r we may assume
that x2 · · · xr = x2 ∧ · · · ∧ xr , and then x1x2 · · · xr = x1(x2 ∧ · · · ∧ xr )
= x1 ∧ x2 ∧ · · · ∧ xr because x1 · (x2 ∧ · · · ∧ xr ) = 0). So
ba = x1 · · · xra, which can be determined by r applications of (3).

↘
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Now the geometric algebra Gr ,s is the exterior algebra ΛEr ,s enriched
with the geometric product (this structure is also known as Clifford’s
algebra). It is clear then that it has dimension 2n, where
n = r + s = dimE .

Note that the equation (3) shows that the linear grading of Gr ,s ,
which is in fact a grading with respect to the exterior product, is not
a grading with respect to the geometric product.

But the decomposition G = G+ ⊕ G− into even (G+) and odd (G−)
grade components is a grading mod 2 also with respect to the
geometric product (ultimately this is derived from the equation (3),
by which the product of two vectors is resolved as the sum of a
scalar, which has grade 0, and a bivector, which has grade 2).

In particular, G+ is a subalgebra.

↘
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The isomorphisms G1,0 ≃ R⊕ R, G0,1 ≃ G+
2,0 ≃ C, G2,0 ≃ R(2), or

G0,2 ≃ G+
3,0 ≃ H, easy to derive directly, are in fact examples of a

general trend (cf. [19]):

Gr ,s is isomorphic to a matrix algebra Fν(m), where ν = s − r
mod 8, Fν = R,C,H, 2H,H,C,R, 2R for ν = 0, 1, 2, 3, 4, 5, 6, 7, and
dim(Fν)m

2 = 2n. For example, G1,3 = F2(m) = H(2).

Of these isomorphisms, those that most closely connect algebra with
geometry are C = G+

2,0 ≃ C and H = G+
3,0 ≃ H in the case of the

Euclidean plane and space, respectively (of C and H we say that they
are the geometric complex numbers and quaternions, respectively,
since they emerge directly from the geometry and not from ad hoc
definitions as the usual ones for C and H).

For samples of various applications of geometric algebra, see [19, 20]
and their bibliographies. For a discussion of a broader perspective of
geometric algebra and its applications, see [201] (especially Ch. 1).
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