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Preface How did | bump into this?

Interest is Geometric Algebra, Physics, Effective computations, Image
processing, Computer Vision:

[1]. [2], (3], 4], 5], [6]. [7], [8]*, [9], [1O]*, [11], [12]**, [13]**, [14]*,
[15], [16], [17], [18], [19], [20], [21], [22], [23]**, [24], [25], [26], [27].

A pivotal shift in my interests was meeting Eduardo U. Moya at the
AGACSE 2015 conference in Barcelona, but it was not until the ICCA11
conference in Ghent [17], in August 2017, that we started talking about
the role of GA in DL and how to go about implementing the
computational aspects. At that time he was visiting the BSC and we have
been collaborating since then ([24] is the first outcome). Later we
presented joint work at the ICIAM-2019 MS on “Systems, patterns, and
data engineering with geometric calculi’ which has appeared this year as
two chapters of the Springer volume with the same title. Currently he is
“Director de IA de la Coordinacién General de Innovacién del Estado de
Jalisco” (México).

Another momentous influence has been the preparation of [27] with

Joan Bruna, followed by our collaboration in this BGSM course.
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https://bgsmath.cat/event/algorithmic-learning-and-deep-neural-networks/

It’s blowing in the wind In the news

Chess, Backgammon, Go, Console games, Protein folding, ...
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It’s blowing in the wind In the news

Beethoven's Unfinished 10th Symphony Brought to Life by Artificial
Intelligence (Scientific American, October 15, 2021).

Water Werzowa: | dare to say that nobody knows Beethoven as well
as the Al, did—as well as the algorithm.

| think music, when you hear it, when you feel it, when you close your
eyes, it does something to your body. Close your eyes, sit back and
be open for it, and | would love to hear what you felt after.
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It’s blowing in the wind In the news

“The new model suggests the partnership between neuroscience and
Al could also move beyond our understanding of each one alone and
instead find the general principles that are necessary for brains and
machines to be able to learn anything at all.” QM21-10-18.

Neuron Bursts Can Mimic Famous Al
Learning Strategy

A new model of learning centers on bursts of neural
activity that act as teaching signals --- approximating -
backpropagation, the algorithm behind learning in Al. Allison Whitten

Source: Nature neuroscience

Reference: [28], Learning representations by back-propagating errors,
Nature-86-10-09.
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https://www.quantamagazine.org/brain-bursts-can-mimic-famous-ai-learning-strategy-20211018/
https://www.nature.com/articles/s41593-021-00857-x
https://www.nature.com/articles/323533a0

It’s blowing in the wind In textbooks

UNDERSTANDING
MACHINE
LEARNING

Foundations of
Machine Learning o

"~ Machines

Third Edition

Simon Haykin

Gopinath Rebala - Ajay Ravi
Sanjay Churivala

Introduction
to Machine

Learning

&) Springer
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It’s blowing in the wind In textbooks

Bayesian approaches

Machine Learning DATA‘DRIVEN
B el CONPUTATIONAL
: NEUROSCIENC

Perspective
fodels

Machine Le:
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Sergios Theodoridis
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It’s blowing in the wind In textbooks

Applications

StulesinBig Data 46

Alan Said - Vicenc Torra ditors

Reinforcement Data
Learning

Science in
Practice

Abhishek Nandy
Manisha Biswas

SpingerTract i Advanced Rottics 134

Adria Colomé
CaimeTorras

Handbook of
Deep Learning
Applications

&) Springer
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It’s blowing in the wind In textbooks
The many facets of the symbiosis T
Mathematics & Computation are appraised
in [29] (wigderson-2019). L

A THEORY REVOLUTIONIZING
TECHWOLOEY AND SclEWCE

A My/en-saﬂ

In particular, Chapter 17 is devoted to
computational learning theory.

See also the extensive survey [30]
and, with a more popular style, Marr’s blog [31].

Another useful reference is [32] (strang-2019).

LINEAR ALGEBRA
and Learning

from Dato
THOUSAND -
BRAINS
1
S
GILBERT STRANG

JEFF HAWKINS
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It’s blowing in the wind The Bayes-Laplace rule

Bayes rule
Learning from experience is neatly encoded, in probabilistic terms, by
the Bayes-Laplace rule:

P(Y|X)=P(Y)K(X,Y),

where K(X,Y)=P(XNY)/P(X)P(Y) is symmetric
(K(X,Y)=K(Y,X)), which tells us how to modify our prior believe
in Y, P(Y), to the belief P(Y|X) posterior to having observed X.

When K > 1 (K < 1), our believe is increased (decreased), and in
any case it may be construed as a learning on Y produced by the
observation of X.

The condition K = 1 is equivalent to say that X and Y are
independent, and in this case the believe in Y is unaffected by
whether or not X occurs.

The Bayes—Laplace rule is the basis for prediction models of many

sorts, as for example in weather forecasting.
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It’s blowing in the wind Clustering methods

Aimed at finding hidden structure in data, D = {x* ... x™}.
k-Means. This algorithm groups unlabeled data D in k classes:
(1) Select k vectors z*',--- | z* € D at random.

(2) Assign each x/ € D to the first z' nearest to x/ (initial groups).
(3) Update each z' to the centroid (or mean) of the z' group.

(4) Iterate (2) and (3) until the z' are stable (up to a tolerance).
The associated cluster predictor assigns x to the first nearest z'.

k-NN (nearest neighbors). Let D = {(x,y!), -+ ,(x™,y™)} be a
labeled set and k a positive integer. The label predictor of the k~-NN
algorithm assigns a vector x to the mode of y/,--- | y/ where

Xt ... xJ are the nearest neighbors of x from among x!,--- , x™.
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Outline of AL DL, RL, ML (AL), Al

Deep learning Example:

Shallow Example:

Example: autoencoders
MLPs

Logistic
regression

Representation learning

Machine learning

Figure 2.1: Inclusion relations: DL € RL € ML (AL) C Al (cf. [33]).
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Outline of AL Reinforcement learning

Algorithm learns to react to an environment

envi me
KDnuggets Rviren \nf
agent b
actions
—) '
. rewards y
ﬁ e
observations ‘I ‘
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Outline of AL Reinforcement learning in mathematical research

“We demonstrate how by using a reinforcement learning algorithm,
the deep cross-entropy method, one can find explicit constructions
and counterexamples to several open conjectures in extremal
combinatorics and graph theory.

Amongst the conjectures we refute are a question of Brualdi and Cao
about maximizing permanents of pattern avoiding matrices, and
several problems related to the adjacency and distance eigenvalues of
graphs.” [34, Abstract].

An interesting feature is that in some cases the learning algorithm
does not produce directly a counterexample but graphs which are
close to refuting the conjecture; these graphs have a special structure
and give a very clear indication about where to search for

counterexamples. See IMTech NLO1, p. 20
(https://imtech.upc.edu/en/communication/nesletter/nl01_web.pdf).
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https://imtech.upc.edu/en/communication/nesletter/nl01_web.pdf

Outline of AL Data and supervised learners: A historical analogy

Hypothesis space® Data, expert tables? World — Observer!

% S

D
{(ZEl,yl), o (xI7L7y7IL)}
wl~ Pyl = f(y)

~

Learner/LA®

4

Error measure Prediction rule®

= y = h(z)

L Urbi et Orbi engraving (Flammarion). Tycho Brahe (observer model): He experienced the solar eclipse of 21 August
1560 [he was 15], and was greatly impressed by the fact that it had been predicted, although the prediction based on
current observational data was a day off. He realized that more accurate observations would be the key to making
more exact predictions. 2 Ephemeris: Tables of planet and comet positions over time.

3 Inductive bias. Greeks: circles around Earth. 4 Loss, risk, regret. How close are predictions to observations?

5 Learner model (Kepler): Ellipses with a focus at the Sun. Today: Learning algorithm. ¢ Hopefully, h =~ f*.
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Outline of AL Supervised learning

Set of objects x/, j € [m] (dataset).

Want to predict values y/ provided by a supervisor or expert in such a
way that for objects x not in the dataset the value y corresponding
to x is predicted with high probability (generalization capacity).

Hypothesis space: a space of parameterized functions,
H = {hW}WGW-
Problem: to find w € W such that h,(x/) ~ y/.

Method: If the criterion for fitness depends on a function /(h(x), y)
(local cost), we transfer the problem to finding w that minimizes
> Ufu (X)), ¥7) (empirical cost or risk):

argmin,, » ; 0(hy,(x), y9).

This is the empirical risk minimization rule, ERM.
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Outline of AL Supervised learning: classification and regression

Supervised learning has two main modalities:

Classification: When the set Y is finite. In this case its elements are
usually called /abels or classes.

Regression: When the set Y is the set R of real numbers.
In linear regression, 3 is the space of functions of the form
h(x) = wixy + -+ Wpx, = w - x
and the the local cost is usually (h(x) — y)?.

Logistic regression is linear regression of the function log ﬁ,
p € [0,1]. If wis a solution, then p = 1/(1 4 e~"™X).
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Artificial neurons  Standard model

In AL, a useful model of a neuron is depicted in Fig. 3.1:

x1

Tn W+ T =Wy + W1x1 + ° + WpTy

Figure 3.1: Scheme of a neuron. The neuron's output depends on the
weights w and on o (activation function), and this functionality is
represented by the decorated circle.
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Artificial neurons  Standard model

In mathematical terms, a neuron is a function

x = fo(x) = o(x - w), (1)
where w € R” (weights or parameters) and o is a sigmoid function
(called activation function), like for instance the logistic function

o(t) = (1 + e *)~!, in which case the neuron computes a logistic
regression.

Augmenting x with xo = 1 and providing an extra weight w; (called
the bias), the neuron computes o(wy + wixy + - - + X, W,).

To display separately the bias and the other weights, we may write
fw.w, Or some similar notation.
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Neural networks Layered model

A neural network (NN) can be construed as a composition of neurons
according to a graph of connections called the architecture of the net.

Here we will consider the case of directed graphs and thus leaving
aside nets based on undirected graphs such as Boltzmann machines.
Nor will we discuss networks with feedback (those having closed
paths), such as the Hopfield networks.

The standard architecture of a NN is a directed graph structured in
layers L;, as illustrated in Figure 4.1, and its functional signature can
be condensed as a chain:

f £ f
N: Input — Lg N Ly NN Ly_1 %j Ly — Output  (2)

The integer d is the depth of the net. Conventionally, the net is deep
if d > 2, and shallow otherwise. The layers Ly,... Ly 1 are
considered to be hidden, while the input and output layers (Lo and
Ly), are visible.
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Neural networks Layered model

(a) Output Z1 (b)
€2
L C D) 3
T4
Lo z5 [
Input Lo Ly Lo

Figure 4.1: (a) Neural network with no hidden neurons and fully
connected. (b) Network with a hidden layer L; of three neurons fully
connected to the two output neurons of Ly. The input layer, Lo, is only
partially connected to L;.
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Neural networks  A-neurons and A-networks

The quantities x; and w; used in the neuron model introduced in
equation (1) are real numbers. But we can imagine that they are
entities of an algebraic structure A sufficient to guarantee that the
expression x - w = x;wy + - - - + x,W,, and an activation function
o A — A, make sense.

For example, A can be a real algebra of finite dimension and o the
function of an ordinary sigmoid applied component-wise (with respect
to a fixed basis of the algebra). We thus arrive at the concept of
A-neuron and, connecting neurons as we have done before, to the
notion of A-neural network, or A-NN.

Another generalization is to replace x and w with more general data
structures, such as A-arrays (or tensors), and the product x - w by a
suitable operation x x w. Among these operations, the most
commonly used are certain bilinear products, such as
cross-correlation, as well as nonlinear ones, such as max-pooling.
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Neural networks  A-neurons and A-networks

Thus the conventional (artificial) neurons and neural networks are
R-neurons and R-neuronal networks.

Beyond real numbers, among the most immediate concrete cases of
algebras A we can mention C (complex numbers), H (quaternions),
O (octonions), an algebra of matrices R(n), or a geometric algebra
G = G, s of signature (r,s).

To simplify the terminology, we will talk about real, complex,
quaternionic (QNN), octonionic (ONN), matrix (MNN), and
geometric (GNN) networks, respectively.
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Neural networks  A-neurons and A-networks

One advantage of A-neurons is that the number of (real) weights
they require decreases in inverse proportion to d = dimA. The
argument is based on the simple observation that w € A counts for d
real weights, whereas both x and x’ = x + w count for d real
parameters each and hence we need d? real weights to connect them.

Another advantage is that the algebraic structure of A can be
regarded as a resource for describing and implementing AL
algorithms, a point that is particularly relevant when A is a geometric
algebra on account of its intimate connection with the geometry of
its geometric space.

Remark. This is not unlike the use of finite fields as alphabets for
coding information, for being able to sum, multiply and divide
alphabet symbols turns out to represent a great bonus with respect
to a set with no structure.
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Neural networks  A-neurons and A-networks

Besides the further references provided henceforth, we find that the
text [35] is a remarkably inspiring early reference for most of the
topics discussed in this section. In particular, it studies complex NNs
in chapter 2 and QNNs in chapter 5. It also features interesting
applications of these algebras to predict chaotic time series (chapter
6) and to robotics (chapter 7).
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Neural networks CNN

Perhaps the most important idea of these networks is that they can
exploit the phase properties of complex numbers.

At the beginning of the study of these networks, the contributions of
Hirose and his school stand out. They focus on signal processing,
with collections such as [36] (2003) and treated as [37] (2009), or
[38] (2012; a second edition of a book of the same title and author
published in 2006), and the collection of ten articles collected in [39]
(2013), of which the first stands out, by Hirose himself (the editor of
the volume), with the title Application fields and fundamental merits
of complex-valued neural networks.

The text [40] belongs to the same circle, which illustrates with very
convincing graphic experiments the value of considering the phase.
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Neural networks CNN

More recently we have [41] (2016), on complex convolutional
networks; [42] (2017), focused on image classification; [43] (2017),
where the emphasis is on deep networks; and [44] (2018), which
provides an assessment of complex networks in real signal
classification tasks.

Finally we mention [45], which reveals the significance of complex
networks from other points of view, particularly that of deep AL, an
“umbrella term for emerging techniques that attempt to generalize
deep (structured) neural models to non-Euclidean domains such as
graphs and varieties.”
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Neural networks QNN

The interest of these networks comes from the relation that the
quaternions keep with the group of rotations of the ordinary
Euclidean space, a relation especially transparent in terms of

H = G, for the expression h(x) = hxh, h € H non-zero, is a vector
and h is a similarity of ratio |h|? (a rotation if h is unitary).

Another reason is that quaternions have three phases and that these
phases can be used to extract valuable information from the signals
to be processed.
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Neural networks QNN

Research in QNNs also comes from long ago, even before that of
complex networks. We refer to [46] and [47] for relevant historical
information regarding what is called Clifford’s analysis, especially in
relation to Fourier and wavelet transforms in a quaternionic context
and their generalization to the geometric context.

In the origin of the more specific topic we are considering, we find
Gerald Sommer and his collaborators: [48] (generalization of Gabor
filters) and [49] (generalization of the real multilayer perceptron, cf.
[50]).

The report [51] presents a quaternion wavelet theory “for image
analysis and processing” and [52] an overview of the properties and
applications of quaternion networks up to that point.
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Neural networks QNN

In the last decade, research on QNNs has continued both on the
applied and theoretical fronts.

The article [53] deals with the quaternionic multilayer perceptron.
Hopfield QNNs and their rotation invariance are investigated in [54].
In the works [55] and [56], the QNNs are applied to the
comprehension of the spoken language. Deep QNNs are studied in
[57] and convolutional ones in [58]. Finally [59] presents a
quaternionic version of capsule networks aimed at processing point
clouds in Euclidean space and in [24] a new QNN deterministic layer
is introduced that provides contrast invariance and sensitivity to
rotation angles using quaternionic Gabor functions and Hilbert
transforms, while in [25] the authors use the Riesz transform in the
quatermion monogenic representation to propose a novel
deterministic convolution layer in the Fourier domain robust to
contrast and haze changes in image classification.
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Neural networks GNN

Interestingly, the study of GNNs began even before that of QNNs, as in
[60], and G. Sommer was a strong proponent of this inquiry at the
beginning of the millennium with works such as [61], in which he
developed the theoretical foundations that served him well for problems
such as artificial vision and robotics; [62], dedicated to a G-version of the
multilayer perceptron; [63] and [64], which develop the notion of
monogenic signal. A culmination of these efforts was Sven Buchholz’s
thesis, [65], which should be considered, as its title indicates, a theory of
neuronal computation with geometric algebras. As a sample of
applications, we cite [66] (image segmentation), [67] (support vectors in
the geometric context), the volumes [68] (geometric computing for
wavelet transforms, artificial vision, learning, control and action) and [69]
(geometric computing in engineering and computer science), [70] (use of
geometric algebra for edge detection in color images), [71] (clustering
methods based on the conformal geometric algebra G, 1), and [72]
(treatment of multispectral images with geometric algebra). We end with
[73] and [74], a 2-volume set of what should be a systematic treatment on

these developments, but see also [75] and [76].
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Neural networks  Other A-NNs

In the recent article [77], convolutional octonion networks are
constructed and applied to CIFAR-10 and CIFAR-100 image
classification. According to the authors, they have better convergence
and accuracy than other networks applied to the same tasks.

Octonions have also been successfully applied to dictionary learning,
as for instance in [78], an approach that can in fact be formulated for
more general algebras, including geometric ones, as in [79].

Another recent example is the case when A is the algebra of
commutative quaternions, H® = (1, iy,i>,i5). They were introduced
by C. Segre in 1892 (see [80]) and can be defined by the relations
lf = I% = -1, 13 =1, i1ipi3 = —1. These imply that

i1i2 = i2l1 = l3, 12l3 = l3l2 = i1, i3i1 = i1i3 = —i2, and hence H¢
is commutative. This algebra has been revived in [81] at the level of
what, in our notations, would be called H-neurons.
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Neural networks  Other A-NNs

Finally let us have a look to the recent paper [82]. In its Abstract we

read:

Our work considers a richer set of objects for activations and weights,
and undertakes a comprehensive study of alternative algebras as num-
ber representations by studying their performance on two challenging
problems: large-scale image classification using the ImageNet dataset
and language modeling using the enwiki8 and WikiText-103 datasets.
We denote this broader class of models as AlgebraNets. Our findings
indicate that the conclusions of prior work, which explored neural net-
works constructed from C (complex numbers) and H (quaternions) on
smaller datasets, do not always transfer to these challenging settings.
However, our results demonstrate that there are alternative algebras
which deliver better parameter and computational efficiency compared
with R. We consider C, H, M,(R) (the set of 2 x 2 real-valued matri-
ces), Mo(C), Ms(R), My(R), dual numbers and the R® cross product.
Additionally, we note that multiplication in these algebras has higher
compute density than real multiplication, a useful property in situations
with inherently limited parameter reuse such as auto-regressive infer-
ence and sparse neural networks.

S. Xambé (UPC & IMTech) AL&DNN 12/11/2021

34/110



Neural networks  Other A-NNs

These are all A-NNs. Are they GNNs?

By our comments on the isomorphism class of G, ., this is certainly
the case for 2R ~ 9170,1 C~ gO,l, R(2) ~ g2’0, H~ gO,Q = g;:O'
C(2) ~ g172, and R(4) ~ g2ﬁ2.

The exceptions are R(3) and (R®, x), as their dimensions are not
powers of 2. Note, however, that the nature of the latter is also
geometric, as the cross product is the Hodge dual of their wedge
product, which lives in G5 . See also [35, Ch. 3] (on Vectorial NNs).

To remark also that although the octonions are not a geometric
algebra, they are nevertheless a subalgebra of Gy (see [83, §7.4]).

12R = R@ R is the algebra of dual numbers, and in general 24 = A @ A. By

A(n), or M,(A), we denote tha algebra of n x n matrices with entries in A.
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Neural networks  Other A-NNs

In this section we try to establish some connections between what
has been said or hinted before and possible lines of inquiry in the area
of AL by means of what can be described, in a broad sense, as
geometric calculi. Our comments will refer to the following topics:

* AL of mathematical structures.

= Other faces of geometric AL.

= Robotics.

= Computational resources and techniques.

= Recent advances on k-NN (nearest neighbors).

= QOther liaisons.
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Neural networks AL of mathematical structures

A compelling illustration of this theme is reported in [84].

In our view, it represents a line of research that may be promising for
AL with geometric calculi as well. Quote from the Abstract:

Neural networks have a reputation for being better at solving
statistical or approximate problems than at performing calcu-
lations or working with symbolic data. In this paper, we show
that they can be surprisingly good at more elaborated tasks in
mathematics, such as symbolic integration and solving differ-
ential equations. e propose a syntax for representing math-
ematical problems, and methods for generating large datasets
that can be used to train sequence-to-sequence models. We
achieve results that outperform commercial Computer Alge-
bra Systems such as Matlab or Mathematica.
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Neural networks AL of mathematical structures

For other works of a similar potential, see [85] (on learning algebraic
structures), [86] (the bearing of AL on current research in number
theory), [87] (a kindred report in the realm of physical sciences, with
many useful insights in various aspects of AL), [88] (“a foray into
discrete analogues of Riemannian manifolds, providing a rich interplay
between combinatorics, geometry and theoretical physics’), [89] (on
finding symbolic equations that match a given dataset, with the
surprising illustration of an “overdensity equation for dark matter"),
[90] (showing that “neural networks can learn advanced theorems and
complex computations without built-in mathematical knowledge”),
[91] (a version of AL that learns mappings between function spaces,
with impressive applications to partial differential equations).

Altogether, these works point out to novel avenues for inquiries in AL
that are transforming the understanding of science in general, and of
mathematics in particular, in ways never seen hitherto.
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Neural networks  Other faces of geometric AL

For people working in geometric algebra/calculus, it is natural to term
AL as “geometric” if based on those formalisms. But AL researchers

came up with a different use for this qualification, as in [92]:

[...] we consider the general question of how to con-
struct deep architectures with small learning complexity on
general non-Euclidean domains, which are typically unknown
and need to be estimated from the data.

Even more explicit in these appraisals is [93]:

Geometric deep learning is an umbrella term for emerging
techniques attempting to generalize (structured) deep neural
models to non-Euclidean domains such as graphs and man-
ifolds. The purpose of this paper is to overview different
examples of geometric deep learning problems and present
available solutions, key difficulties, applications, and future
research directions in this nascent field.

S. Xambé (UPC & IMTech) AL&DNN 12/11/2021
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Neural networks  Other faces of geometric AL

Further evidence for the great potential of this paradigm can be
gleaned in the survey [94], whose main thrust lies in linking graph
neural networks and (neural) symbolic computing:

The need for improved explainability, interpretability and
trust of Al systems in general demands principled method-
ologies, as suggested by neural-symbolic computing. In this
paper, we review the state-of-the-art on the use of GNNs as
a model of neural-symbolic computing.

We do not regard the two views of “geometric” that we are
considering as antagonistic in any way, as in fact we sense that each
can benefit from the other.
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Neural networks Robotics

We have already mentioned the application of quaternions to robotics
presented in [35, Ch. 7].

Among later texts, let us refer to the pioneer book [75], particularly
chapters 2 and 7; Selig's treatise Geometric fundamentals of robotics,
[95]; the collection [76], especially the papers in Part VIII (Geometry
and Robotics), and the extensive compilation [68], especially Part IV
(Geometric computing of robot kinematics and dynamics) and Part
VI (Applications Il: Robotics and medical robotics).

For recent summaries of robotics analyzed with CGA, see [19, Ch. 4]
and [96].
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Neural networks Robotics

Concerning AL in robotics, it has proceeded largely in parallel to the
geometric developments, as witnessed by [97] (how machine learning
has been applied to robotic path-planning and path-planning related
concepts), the survey [98] (reinforcement learning in robotics; see
also [99]), Lenz' PhD thesis [100], and the surveys [101] (DL
techniques for mobile robot applications), [102] (DL methods for
robot vision), [103] (learning control in robotics).

It appears ever more clearly that advanced AL is playing a major role
in robotics aimed at providing all sorts of assisting services to
humans, as epitomized by the memoir [104].

In all these cases, the opportunities for applying geometric methods
to gain theoretical and applied advantages seem clearly plentiful, if
only because of the many engineering aspects that concur in any
such system.
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Neural networks Computational resources and techniques

Currently, there is a wealth of software (frameworks) for deep
learning (see Comparison_of_deep-learning_software in Wikipedia).

For example, Tensorflow (see [105]) provides
an interface for expressing machine learning algorithms,
and an implementation for executing such algorithms.

Most of them offer a Python interface and increasingly also a Julia
interface, as for instance Tensorflow. An interesting case is Flux
(2017), which is pure Julia (framework and interface).

But as far as we know, none of these frameworks can deal with GNNs
beyond complex NNs.
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Neural networks Computational resources and techniques

On the other hand, there is a rich variety of systems that perform
computations with geometric algebras (see, for example, the Software
section in the Wikipedia Geometric_algebra article).

But again, and as far as we know, none offers a deep learning
framework. By its design, the Julia system described in [106] has
perhaps the highest potentiality to serve as a basis for developing
such a framework.

A first step in this direction would be a framework supporting QNN's.
Another useful resource is provided by template libraries, as for
instance [107].
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Neural networks Recent advances in unsupervised learning

The authors of [108] also express the view (end of §2.1), that

the theory [...] for many branches of unsupervised learning is still
in its infancy.

For our inquiry, there are two main directions to look at.

One concerns recent advances in conventional (non-geometric)
unsupervised learning, as for example [109], which orchestrates a powerful
scenario for an automatic physicist with no supervision.

In our appraisal, there is much that can conceivably be transferred to
other domains, like the strategies that it advocates and the algorithmic
ways by which they are marshaled.

For other instances of a similar kind, see [110] (reconstruction of the
periodic table), [111] (proposing “a family of biologically plausible artificial
neural networks (NNs) for unsupervised learning”) and [112] (steps
“towards the long-term goal of machine-assisted scientific discovery from
experimental data without making prior assumptions about the system’).
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Neural networks Recent advances in unsupervised learning

The other direction is linking unsupervised learning with GNNs.

Aside from contributions such as the innovative paper [71], which
develops a clustering method based on CGA, it appears to be a
largely uncharted terrain.

Many of the ideas in the preceding paragraph may be relevant for
these explorations.

In this, it may bear further fruits the unsupervised learning of Lie
group transformations studied in [113] on account of its generality
and the geometric character of Lie groups (cf. [18, §6.5]).

S. Xambé (UPC & IMTech) AL&DNN 12/11/2021

46 /110



Neural networks  Other liaisons

Earlier we have met layered A-NNs, but now it is convenient for us to
allow more flexible architectures.

By adapting the conventional notions about graph NNs (cf. [114],
[115]), we find that a suitable class, among many other possible
generalizations, is formed by directed acyclic graphs (N, E) with no
isolated nodes and endowed with (trainable) weights w, € A (e € E)
and, for each non-initial node n, (trainable) biases b, € A and
activation functions o, : A — A.

The states of a node are in one-to-one correspondence with elements
of a € A. The initial nodes are input nodes. For a non-initial node n,
its state a, is determined by the formula a, = o,(b, +> ... _, Weae,),
where ey and e; are the nodes connected by the edge e.

The output of the net is given by the states of the terminal nodes
produced by these rules.
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Neural networks  Other liaisons

In the layered A-NN, the initial (final) nodes are those of Lg (Ly).

Let us also suggest that it may be productive, particularly in the case
of GNNs, to allow that weights w be operators acting on states a
according to suitable law w * a (let us dub xNNs these structures).

These notions draw some inspiration from [19, Ch. 5] and [116] (on
oriented CGA and its application to molecular distance geometry),
and actually it looks puzzling to see whether they could help in
porting AL to bear on the problems tackled by molecular distance
geometry (see the more specific comments on AL in Chemistry at the
end of this section). In doing so, it is important to bear in mind early
trailblazers on Clifford neurons such as [117], [118] and [119].
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Neural networks  Other liaisons

Other areas where the scheme may provide analytic and geometric
advantages is in the treatment of 3D point clouds (see the survey
[120], and papers like [121], [122], [123]), as well as in devising more
powerful capsule nets: see [124], [125], [126], [127].

Of these, only the latter operates with complex numbers. Since
CapsNets process elementary patterns, they should benefit from
drawing ideas about pattern theories, say in the sense of the
monograph [128], and also to enhance explainability along the lines of
[129].
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Neural networks  Other liaisons

A few hints on the aptness of xNNs to properly deal with invariance
and covariance properties are in order.

These concepts always refer to the action of some group. If a group
G = {g} acts on a set X, a function f(x) is invariant under this
action if f(g - x) = f(x) for all x € X and g € G.

Similarly, if G also acts on a set Y, a map f : X — Y is covariant (or
equivariant) with respect to the actions of G in X and Y if
flg-x)=g- f(x)forall x e X and g € G.

Note that an invariant function f is covariant if we let the action of G
act trivially on the range of f, so that g - f(x) = f(x) for all x € X.

The main reason in the context of AL to care about G-covariance is
that no data augmentation is required to recognize features in
arbitrary G-poses, as in [130] for discrete groups of rigid motions.
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Neural networks  Other liaisons

Let us go back to AL for Chemistry. We note a perceptible x character of
the networks studied in works such as [131], [132], [133], [134], [135],
which motivates a careful study of their contributions from the xNN point
of view.

See also the collection [136] and especially the paper [137], in which the
relevant group is SE(3), the group of distance-preserving transformations
of the ordinary Euclidean space. The main claim is that the authors
“directly verify that the performance gains are connected with the unique
SE(3)-equivariant convolution architecture of the new model”.

Even closer to the spirit of our disquisition is [138], as for us geometric
algebras are optimally suited for the treatment of tensors in the sense of
this paper, and many other geometric entities and formalisms as well.

By the way, we note that the AlgebraNets that we have seen before are
special cases of xNNs, and that they have been mainly applied to
classification problems, but more research could uncover properties and
applications based on their geometric character.
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Neural networks  Other liaisons

We end with a few remarks on the scattering transforms (a special
kind of CNN) introduced in [139] and further studied in [140] (for
graph networks), [141] and [142]. The computational side of this
transform has produced the system [143].

Altogether, it would be worthwhile to define and study a geometric
scattering transform based on the geometric algebra wavelet theory
first introduced in [144] and further exploited in [51] (for
quaternions), the collection [145] (particularly the paper by P.
Cerejeiras, M. Ferreira, and U. Kahler), and [47].

It would also be gainful to devise a scattering transform network that
could be trained, both in the conventional sense and in the geometric
realm just mentioned, and a computational platform that could deal
with both.
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Notes P3

For me, the most surprising aspect of these winning algorithms is that its
authors are not experts in the games, nor on the chemistry of proteins for
that matter.

In some sense they are not unlike the infinite variety of tools invented by
humanity that extend the human capacities beyond the biological nature.
Any tool can serve to illustrate this: the fire and the wheel; hammers and
anvils; screws and screwdrivers; bicycles, cars, planes and submarines;
photography, movies and digital cameras; and so on. Among the tools,
there is the outstanding class of scientific instruments, like lenses,
telescopes, microscopes, or the detectors of gravitational waves.
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Notes P23

Sketch of GA

The reason for using geometric algebras is that their formalism is
optimally adapted to express the geometric facts of any linear
geometric space, that is, of a real vector space E = E, ; endowed
with a metric (a bilinear symmetric real-valued product x - x/,

x,x" € E) of signature (r,s). The most direct way to introduce the
geometric algebra G, ; of this space, one that is arguably the closest
to the ideas on which W. K. Clifford (1845-1879) based his creation,
is that Grassmann's exterior algebra of E, AE, has a unique bilinear
associative product with unit 1 (called geometric product by Clifford
himself) such that

xa=x-a+xNa (xeE,aelE), (3)

pN

where x - a = i,(a) (the contraction of x with a).
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Notes P23

Since i, is the unique skew derivation of AE such that i, (x") = x - x’

for any x" € E, the formula (3) shows how to multiply any
multivector a by any vector x on the left.

In fact, the formula suffices for the calculation of any product of
multivectors because of the following reasoning.

By bilinearity, it is enough to know how to multiply a non-zero
exterior product b = x; A -+ A x, (r > 2) of vectors xi, ..., x, (such
products are called r-blades) by an arbitrary multivector a.

We can further assume that xi, ..., x, are pair-wise orthogonal, for
the space (xq,...,x,) has orthogonal bases and the exterior product
of any such basis is equal, up to a multiplicative constant, to b.
Finally we have that x; - - - x, = b (by induction on r we may assume
that x; - - x, = xo A -+ A x,, and then x;x0 - - x, = x1(00 A -+ A x;,)
=x31 AXo A+ A X, because x; - (xo A -+ A x,) =0). So

ba = x; - - - x,a, which can be determined by r applications of (3).

hY
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Notes P23

Now the geometric algebra G, s is the exterior algebra AE, s enriched
with the geometric product (this structure is also known as Clifford’s
algebra). It is clear then that it has dimension 2", where
n=r+s=dmE.

Note that the equation (3) shows that the linear grading of G, .,
which is in fact a grading with respect to the exterior product, is not
a grading with respect to the geometric product.

But the decomposition G = G* & G~ into even (G1) and odd (G )
grade components is a grading mod 2 also with respect to the
geometric product (ultimately this is derived from the equation (3),
by which the product of two vectors is resolved as the sum of a
scalar, which has grade 0, and a bivector, which has grade 2).

In particular, G is a subalgebra.

e
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Notes P23

The isomorphisms G o ~ R @ R, Gy q ~ g;o ~ C, Gop ~ R(2), or
Goo =~ (];O ~ M, easy to derive directly, are in fact examples of a
general trend (cf. [18]):

G, s is isomorphic to a matrix algebra F,(m), where v = s — r
mod 8, F, =R, C,H,2H, H, C, R, 2R for » =0,1,2,3,4,5,6,7, and
dim(F,)m? = 2". For example, G; 3 = F,(m) = H(2).

Of these isomorphisms, those that most closely connect algebra with
geometry are C = G, ~ C and H = G, ~ H in the case of the
Euclidean plane and space, respectively (of C and H we say that they
are the geometric complex numbers and quaternions, respectively,
since they emerge directly from the geometry and not from ad hoc
definitions as the usual ones for C and H).

For samples of various applications of geometric algebra, see [18, 19]
and their bibliographies. For a discussion of a broader perspective of
geometric algebra and its applications, see [161] (especially Ch. 1).
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