

BGSM/CRM AL&DNN

Geometrical Physics Symmetries and Noether's theorem

S. Xambó

UPC & IMTech

2/11/2021

Abstract. Lagrangian and Hamiltonian mechanics. Symmetries in physical systems and conserved quantities. Noether's theorem.

References:

- [1] (bronstein-bruna-cohen-velickovic-2021)
- [2] (cohen-2021)
- [3] (lavor-xambo-zaplana-2018)
- [4] (frankel-2011)
- [5] (folland-2008)

For Noether's theorem:

- [6] (kosmann-2011)
- [7] (neuenschwander-2011)

See also [8, page 786].

Geometrical physics

Lagrangian analytical approach

Hamiltonian formalism

Symmetries in the physical systems

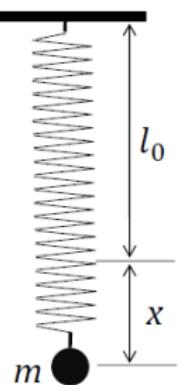
Noether's theorem

Lagrangian analytical approach

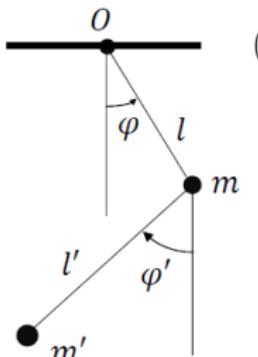
- Joseph Louis Lagrange (1736-1813): *Mécanique analytique* (1788).
- Wrote the evolution equations of a mechanical system in terms of arbitrary *generalized coordinates* q_j (parameters specifying the configuration of the system):

$$\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_j} = \frac{\partial (T-V)}{\partial q_j} \quad (j = 1, \dots, n).$$

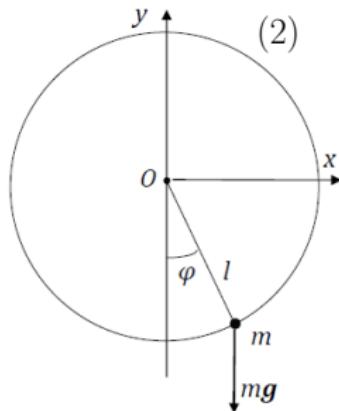
- Has had a major influence in the development of *differential geometry* (manifolds).
- The Lagrangian method has played a key role not only in Mechanics, but also in the *field theory* (both *classical* and *quantum* fields).



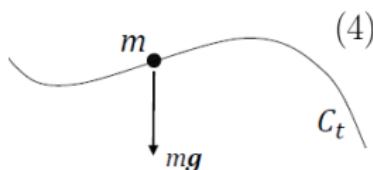
(1)



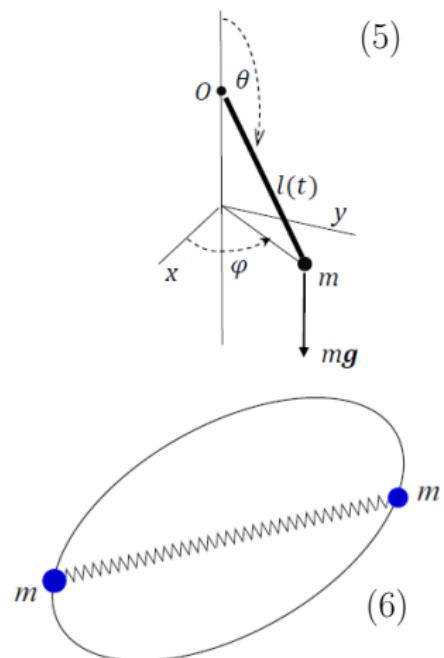
(3)



(2)



(4)



(5)

(6)

(1) Harmonic oscillator. (2) Simple pendulum. (3) Double pendulum.
 (4) Mass sliding on a moving curve. (5) Spherical pendulum of variable length. (6) Two masses moving on a curve and connected with a spring

- $m_1, \dots, m_N \in \mathbf{R}_{++}$: point masses
- $\mathbf{r}_1, \dots, \mathbf{r}_N$: positions of the point masses
- $\mathbf{v}_j = \frac{d\mathbf{r}_j}{dt} = \dot{\mathbf{r}}_j$: velocity of m_j
- $\mathbf{p}_j = m_j \mathbf{v}_j$: (linear) momentum of m_j
- \mathbf{F}_j : force acting on m_j : $\mathbf{F}_j = m_j \mathbf{a}_j = m_j \dot{\mathbf{v}}_j = \dot{\mathbf{p}}_j$
- $f_\alpha(\mathbf{r}_1, \dots, \mathbf{r}_n, t) = 0$, $\alpha = 1, \dots, m$: constraints
- \mathcal{X}_t : configuration space at time t :

$$\mathcal{X}_t = \{(\mathbf{r}_1, \dots, \mathbf{r}_N) \in E_3^N : f_\alpha(\mathbf{r}_1, \dots, \mathbf{r}_n, t) = 0, \alpha \in [m]\}$$

Note: Simply \mathcal{X} if the constraints do not depend on t .

Note: Depending on the scale, a point masses can be a galaxies, stars in a galaxy, planets around a star (like the solar system), molecules (in solid bodies, deformable or rigid, in liquids, or in gases). And they can be simple idealized examples as in the illustrations.

$$\mathbf{F}_k = \sum_{j \neq k} G \frac{m_j m_k}{|\mathbf{r}_j - \mathbf{r}_k|^3} (\mathbf{r}_j - \mathbf{r}_k),$$

$$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ Kg}^{-2}.$$

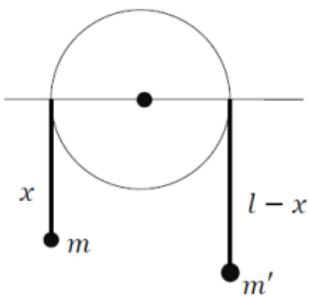
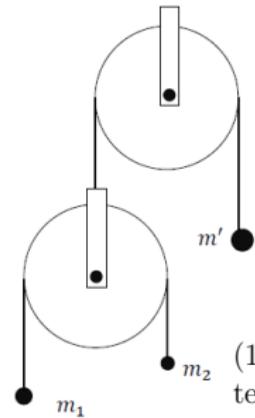
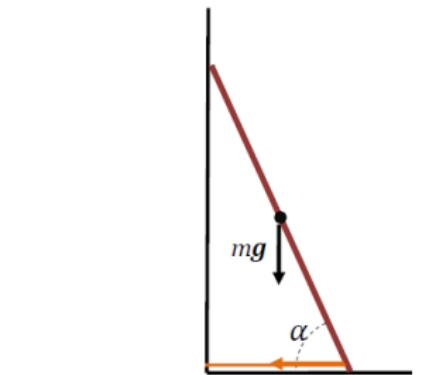
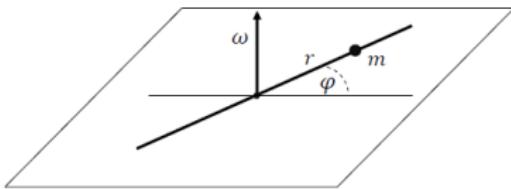
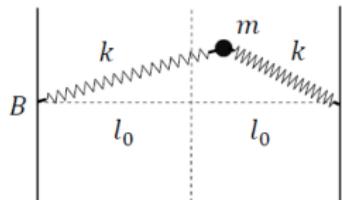
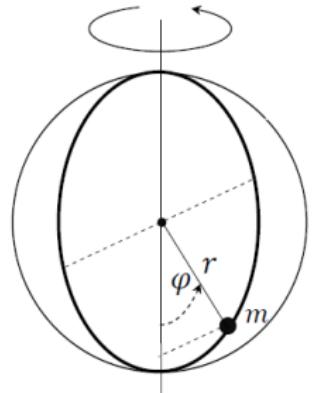
There are no constraints.

The constraints are said to be *holonomic* if the positions \mathbf{r}_j can be expressed (locally in \mathcal{X}_t) as functions $\mathbf{r}_j = \mathbf{r}_j(\mathbf{q}, t)$, where $\mathbf{q} = (q_1, \dots, q_n) \in U$, $U \subseteq \mathbf{R}^n$ open, such that

$$(\mathbf{q}, t) \mapsto (\mathbf{r}_1(\mathbf{q}, t), \dots, \mathbf{r}_n(\mathbf{q}, t), t)$$

is a diffeomorphism of U with an open set $U' \subseteq \mathcal{X}_t$.

In other words, \mathcal{X}_t is a manifold of dimension n .



(1) and (2) Simple and double Atwood machines. (3) Statics of a ladder: tension of the rope connecting its foot to the wall. (4) Mass sliding on a straight rod that is rotating about a perpendicular line. (5) Mass connected to two fixed points by springs of the same elastic constant. (6) Mass sliding on a circumference that is turning about a vertical diameter.

$$\mathcal{S} \subseteq E_3^N \times E_3^N \times \mathbf{R}.$$

Its points $(\mathbf{r}_1, \dots, \mathbf{r}_N, \mathbf{v}_1, \dots, \mathbf{v}_N, t)$ are such that

$(\mathbf{r}_1, \dots, \mathbf{r}_N, t) \in \mathcal{X}_t$ and $(\mathbf{v}_1, \dots, \mathbf{v}_N)$ are the possible velocities allowed by the constraints.

- $\sum_j \partial_j f \cdot \mathbf{v}_j + \partial_t f_\alpha = 0$ ($\partial_j = \frac{\partial}{\partial \mathbf{r}_j}$, $\partial_t = \frac{\partial}{\partial t}$).
- $\mathbf{v}_j = \dot{\mathbf{r}}_j = \sum_k (\partial_k \mathbf{r}_j) \dot{q}_k + \partial_t \mathbf{r}_j$ ($\partial_k = \frac{\partial}{\partial q_k}$) [*]
- $(\mathbf{q}, \dot{\mathbf{q}}, t) = (q_1, \dots, q_n, \dot{q}_1, \dots, \dot{q}_N, t)$: *local coordinates of \mathcal{S} .*

Lemma. (1) $\dot{\partial}_k \dot{\mathbf{r}}_j = \partial_k \dot{\mathbf{r}}_j$ ($\dot{\partial}_k = \frac{\partial}{\partial \dot{q}_k}$). (2) $\frac{d}{dt} \partial_k \mathbf{r}_j = \partial_k \dot{\mathbf{r}}_j$.

(1) is a direct consequence of [*]. (2) follows from the chain rule and Schwarz's theorem on second derivatives.

$$T = \sum_{j=1}^N \frac{1}{2} m_j \mathbf{v}_j^2 = \sum_{j=1}^N \frac{1}{2} m_j \left(\sum_k (\partial_k \mathbf{r}_j) \dot{q}_k + \partial_t \mathbf{r}_j \right)^2$$

$$= T_0 + T_1 + T_2,$$

$$T_0 = \sum_{j=1}^N \frac{1}{2} m_j (\partial_t \mathbf{r}_j)^2$$

$$T_1 = \sum_{j=1}^N m_j \left(\sum_k (\partial_k \mathbf{r}_j) \dot{q}_k \right) \cdot \partial_t \mathbf{r}_j$$

$$T_2 = \sum_{j=1}^N \frac{1}{2} m_j \left(\sum_k (\partial_k \mathbf{r}_j) \dot{q}_k \right)^2$$

Note. $T = T_2$ if the constraints are not dependent on t
(scleronomous constraints)

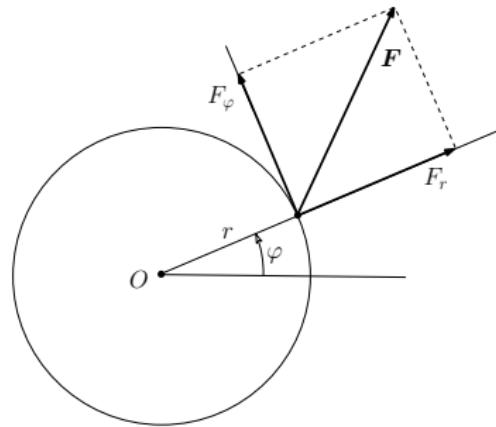
- $Q_k = \sum_{j=1}^N \mathbf{F}_j \cdot \partial_k \mathbf{r}_j$ ($k = 1, \dots, n$), $Q_t = \sum_{j=1}^N \mathbf{F}_j \cdot \partial_t \mathbf{r}_j$ (generalized forces).

Example (Generalized forces on a point mass m moving in \mathbf{R}^2 with respect to polar coordinates r, φ). We have $x = r \cos \varphi$, $y = r \sin \varphi$, hence $\mathbf{r} = r(\cos \varphi, \sin \varphi)$. and

$$Q_r = \mathbf{F} \cdot \partial_r \mathbf{r} = \mathbf{F} \cdot (\cos \varphi, \sin \varphi) = \mathbf{F} \cdot \hat{\mathbf{r}} = F_r,$$

$$Q_\varphi = \mathbf{F} \cdot \partial_\varphi \mathbf{r} = \mathbf{F} \cdot (-r \sin \varphi, r \cos \varphi) = r \mathbf{F} \cdot \hat{\varphi} = r F_\varphi,$$

where $\hat{\mathbf{r}} = \mathbf{r}/r$ and $\hat{\varphi} = \hat{\mathbf{r}}^\perp$,
and hence F_r and F_φ are
the components of \mathbf{F} with respect
to the orthonormal basis $\hat{\mathbf{r}}, \hat{\varphi}$.



Theorem. The evolution of a holonomic mechanical system is governed by the equations

$$d_t \dot{\partial}_k T - \partial_k T = Q_k \quad (k = 1, \dots, n, \quad d_t = \frac{d}{dt}).$$

Proof. If in the infinitesimal time interval dt the position vectors change by $d\mathbf{r}_j$, the work done by the forces is

$$\begin{aligned} W &= \sum_j \mathbf{F}_j \cdot d\mathbf{r}_j = \sum_j \mathbf{F}_j \cdot \left(\sum_k (\partial_k \mathbf{r}_j) dq_k + (\partial_t \mathbf{r}_j) dt \right) \\ &= \sum_k \left(\sum_j \mathbf{F}_j \cdot \partial_k \mathbf{r}_j \right) dq_k + \left(\sum_j \mathbf{F}_j \cdot \partial_t \mathbf{r}_j \right) dt \\ &= \sum_k Q_k dq_k + Q_t dt. \end{aligned}$$

On the other hand we have $\mathbf{F}_j = m_j \ddot{\mathbf{r}}_j$, and we can write:

$$\begin{aligned}
 W &= \sum_j m_j \ddot{\mathbf{r}}_j \cdot d\mathbf{r}_j \\
 &= \sum_j m_j \ddot{\mathbf{r}}_j \cdot \left(\sum_k (\partial_k \mathbf{r}_j) dq_k + (\partial_t \mathbf{r}_j) dt \right) \\
 &= \sum_{j,k} m_j \left(d_t (\dot{\mathbf{r}}_k \cdot \partial_k \mathbf{r}_j) - \dot{\mathbf{r}}_j \cdot d_t \partial_k \mathbf{r}_j \right) dq_k + Q_t dt \\
 &= \sum_{j,k} m_j \left(d_t (\dot{\mathbf{r}}_k \cdot \dot{\partial}_k \dot{\mathbf{r}}_j) - \dot{\mathbf{r}}_j \cdot d_t \partial_k \mathbf{r}_j \right) dq_k + Q_t dt \\
 &= \sum_{j,k} \left(d_t \dot{\partial}_k \left(\frac{1}{2} m_j \dot{\mathbf{r}}_j^2 \right) - \partial_k \left(\frac{1}{2} m_j \dot{\mathbf{r}}_j^2 \right) \right) dq_k + Q_t dt \\
 &= \sum_k (d_t \dot{\partial}_k T - \partial_k T) dq_k + Q_t dt
 \end{aligned}$$

Now the claim follows on equating the coefficients of dq_k in both expressions. □

Remark. If there are no constraints and we use the cartesian coordinates of the \mathbf{r}_j , the Lagrange equations are equivalent to Newton's equations.

Evolution of a particle in a plane using polar coordinates

In cartesian coordinates x, y , the kinetic energy is $T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2)$.

In polar coordinates r, φ , we have $x = r \cos \varphi$, $y = r \sin \varphi$, and a straightforward computation shows that $T = \frac{1}{2}m(\dot{r}^2 + (r\dot{\varphi})^2)$.

We also know that the generalized forces with respect to polar coordinates are $Q_r = F_r$ and $Q_\varphi = F_\varphi$ (the components of \mathbf{F} with respect to the orthonormal basis $\hat{\mathbf{r}}, \hat{\mathbf{\varphi}}$).

$\dot{\partial}_r T$	$d_t \dot{\partial}_r T$	$\partial_r T$	Eq _r
$m\dot{r}$	$m\ddot{r}$	$mr\dot{\varphi}^2$	$m\ddot{r} - mr\dot{\varphi}^2 = F_r$

$\dot{\partial}_\varphi T$	$d_t \dot{\partial}_\varphi T$	$\partial_\varphi T$	Eq _{\varphi}
$mr^2\dot{\varphi}$	$2mr\dot{r}\dot{\varphi} + mr^2\ddot{\varphi}$	0	$mr^2\ddot{\varphi} + 2mr\dot{r}\dot{\varphi} = rF_\varphi$

The constraints $f_\alpha(\mathbf{r}_1, \dots, \mathbf{r}_N, t)$ ($\alpha = 1, \dots, m$) are said to be *ideal* if for any state there exist $\lambda_\alpha \in \mathbf{R}$ such that

$$\mathbf{R}_j = \sum_\alpha \lambda_\alpha \partial_j f_\alpha,$$

where \mathbf{R}_j is the resultant of the *constraining forces* on \mathbf{m}_j . The λ_α may depend on $(\mathbf{r}_1, \dots, \mathbf{r}_N, t)$, but they should not depend on j .

Remark. The usefulness of the concept of ideal constraints comes, on the one hand, from the fact that it *holds in many circumstances* (at least in the first approximation) and, on the other, that the contribution of the *constraining forces in the calculation of generalized forces is 0* for ideal constraints.

Example. The constraint of a simple pendulum is $f(\mathbf{r}) - l^2 = 0$. The constraining force is proportional to \mathbf{r} , say $\mathbf{R} = \mu \mathbf{r}$. On the other hand $\partial_{\mathbf{r}} f = 2\mathbf{r}$, and hence $\mathbf{R} = \frac{1}{2} \mu \partial_{\mathbf{r}} f$.

Double pendulum. If and \mathbf{r} and \mathbf{r}' are the position vectors of the two masses m and m' with respect to suspension point O of the first pendulum, the constraining forces \mathbf{R} (on m) and \mathbf{R}' (on m') have the form (using Newton's third law)

$$\mathbf{R} = \mu \mathbf{r} + \mu' (\mathbf{r} - \mathbf{r}'), \quad \mathbf{R}' = \mu' (\mathbf{r}' - \mathbf{r}), \quad \mu, \mu' \in \mathbf{R}$$

The constraints are

$$f = \mathbf{r}^2 - l^2, \quad f' = (\mathbf{r}' - \mathbf{r})^2 - l'^2 = 0$$

and the conclusion is clear from the following table:

∂	$\partial_{\mathbf{r}}$	$\partial_{\mathbf{r}'}$
f	$2\mathbf{r}$	0
f'	$2(\mathbf{r} - \mathbf{r}')$	$2(\mathbf{r}' - \mathbf{r})$
\mathbf{R}	$\mu \mathbf{r} + \mu' (\mathbf{r} - \mathbf{r}')$	$\mu' (\mathbf{r}' - \mathbf{r})$

Particle moving with no friction on the variable surface. Let

$f(\mathbf{r}, t) = 0$ be the moving surface. If the particle moves with no friction, the constraining force \mathbf{R} must be orthogonal to

$\mathcal{X}_t = \{\mathbf{r} \in E_3 : f(\mathbf{r}, t) = 0\}$ and hence $\mathbf{R} = \lambda \partial_{\mathbf{r}} f$, which means that the constraint is ideal.

Rigid bodies. A *rigid body* can be thought as a set of point masses m_1, \dots, m_N with constraints

$$f_{ij} = (\mathbf{r}_i - \mathbf{r}_j)^2 - d_{ij}^2 = 0, \text{ where } d_{ij} \text{ are constants.}$$

The constraining force that m_i exerts on m_j has the form

$\mathbf{R}_{ij} = \mu_{ij}(\mathbf{r}_i - \mathbf{r}_j)$, and $\mu_{ij} = \mu_{ji}$ by Newton's third law. Let $\lambda_{ij} = -\mu_{ij}/4$. Then we have

$$\begin{aligned} \sum_{ij} \lambda_{ij} (\partial_k f_{ij}) &= 2 \sum_j \lambda_{kj} (\mathbf{r}_k - \mathbf{r}_j) + 2 \sum_i \lambda_{ik} (\mathbf{r}_k - \mathbf{r}_i) \\ &= \sum_i \mu_{ik} (\mathbf{r}_i - \mathbf{r}_k) = \sum_i \mathbf{R}_{ik} = \mathbf{R}_k. \end{aligned}$$

Theorem. In a holonomic system, the contribution of the constraining forces to the generalized forces is 0.

Proof. If the constraints are ideal, then $\mathbf{R}_i = \sum_{\alpha} \lambda_{\alpha} \partial_i f_{\alpha}$ ($\lambda_{\alpha} \in \mathbf{R}$), and their contribution of to the generalized force Q_k is

$$\sum_i \mathbf{R}_i \cdot \partial_k \mathbf{r}_i = \sum_{i,\alpha} \lambda_{\alpha} \partial_i f_{\alpha} \cdot \partial_k \mathbf{r}_i = \sum_{\alpha} \lambda_{\alpha} \partial_k f_{\alpha} = 0,$$

because f_{α} is, for a fixed \mathbf{t} , identically 0 as a function of the q_1, \dots, q_n . □

Corollary. The Lagrange equations of a holonomic system with ideal constraints have the form

$$d_t \dot{\partial}_k T - \partial_k T = Q'_k, \text{ where } Q'_k = \sum_i (\mathbf{F}_i - \mathbf{R}_i) \cdot \partial_k \mathbf{r}_i. \quad \square$$

The forces $\mathbf{F}'_i = \mathbf{F}_i - \mathbf{R}_i$ are the *net forces* acting on the system. They are the sum of the *interaction forces* between the particles (like the gravitational forces) and the *applied* or *external* forces (like gravity if the particles are placed in a gravitational field).

Henceforth, by *mechanical system* we will understand a *holonomic mechanical system*, the forces will \mathbf{F}_j will be the net forces, and $Q_k = \sum_j \mathbf{F}_j \cdot \partial_k \mathbf{r}_i$ the generalized forces. By the corollary above, these systems are governed by the equations

$$d_t \dot{\partial}_k T - \partial_k T = Q_k.$$

Remark (The d'Alambert principle). If the constraints are time-dependent, the constraining forces *can do work*. In fact, if $\mathbf{R}_i = \sum_\alpha \lambda_\alpha \partial_i f_\alpha$, then the *power* produced by the \mathbf{R}_i is, as a consequence of the chain rule,

$$\sum_i \mathbf{R}_i \cdot \dot{\mathbf{r}}_i = - \sum_\alpha \lambda_\alpha \partial_t f_\alpha.$$

In particular, if the constraints do not depend on t , then the constraining forces do no work. This is known as the *d'Alembert principle* (of virtual work).

The forces \mathbf{F}_j are said to be *conservative* if there exists a function $V = V(\mathbf{r}_1, \dots, \mathbf{r}_N, t)$ (called the *potential*) such that

$$\mathbf{F}_i = -\partial_i V.$$

In this case the mechanical system is said to be *conservative*.

Example. The function $V = G \sum_{i \neq j} m_i m_j / |\mathbf{r}_i - \mathbf{r}_j|$ is a potential for the newtonian gravitational forces

$$\mathbf{F}_i = G \sum_{j \neq i} (\mathbf{r}_i - \mathbf{r}_j) / |\mathbf{r}_i - \mathbf{r}_j|^3.$$

Indeed, from $\partial(1/r) = -r^{-3} \mathbf{r}$,

$$\partial_i(1/|\mathbf{r}_i - \mathbf{r}_j|) = -(\mathbf{r}_i - \mathbf{r}_j) / |\mathbf{r}_i - \mathbf{r}_j|^3,$$

and this implies the claim.

Lemma. If we express V as a functions of the generalized coordinates q_1, \dots, q_N , then $Q_k = \sum_i -\partial_i V \cdot \partial_k \mathbf{r}_i = -\partial_k V$.

For a conservative system, the function $L = T - V : \mathcal{S} \rightarrow \mathbf{R}$ is called the *lagrangian* of the system.

Theorem (Euler-Lagrange). A conservative mechanical system is governed by the equations (*Euler-Lagrange equations*)

$$d_t \dot{\partial}_k L - \partial_k L = 0 \quad (k = 1, \dots, n). \quad [*]$$

Proof. Since V does not depend on the \dot{q}_j , $d_t \dot{\partial}_k L = d_t \dot{\partial}_k T$. On the other hand, $-\partial_k L = -\partial_k T + \partial_k V = -\partial_k T - Q_k$, and hence the equations $[*]$ are equivalent to $d_t \dot{\partial}_k T - \partial_k T = Q_k$. □

Definition. A holonomic system is said to be *lagrangian* if there exists a function $L = L(\mathbf{q}, \dot{\mathbf{q}}, t)$ such that its evolution is governed by the equations

$$d_t \dot{\partial}_k L - \partial_k L = 0 \quad (k = 1, \dots, n).$$

Clearly, a conservative mechanical system is lagrangian, with lagrangian function $L = T - V$.

Observables of a Lagrangian system. Energy

Observables, conserved quantities
and conjugate momenta

Example: Kepler's second law

Conditions for the conservation of energy

- **Observable**: A function $f : \mathcal{S} \rightarrow \mathbf{R}$, $f = f(\mathbf{q}, \dot{\mathbf{q}}, t)$. If f does not depend on $\dot{\mathbf{q}}$, we say that f is a *configuration observable*.
- A *conserved quantity*, or *first integral*, is an observable f such that $\dot{f} = 0$. This means that f remains constant during the temporal evolution of the system.
- **Conjugate momenta**: In a lagrangian system with lagrangian L , they are the observables $p_k = \dot{\partial}_k L$. They are also called *canonical momenta*.
- In rectangular cartesian coordinates, $\dot{\partial}_k L = \partial_{\dot{\mathbf{r}}_k} L = m_k \dot{\mathbf{r}}_k = \mathbf{p}_k$.
- A generalized coordinate q_k is *cyclic* if L does not depend on q_k .
- **Example**. In polar coordinates, the lagrangian of a point mass m moving in \mathbf{R}^2 under a central potential $V(r)$ is $\frac{1}{2}m(\dot{r}^2 + r^2\dot{\varphi}^2) - V(r)$. Thus φ is cyclic.

- If q_k is a cyclic coordinate of a lagrangian system, then p_k is a conserved quantity.

$$\dot{p}_k = d_t \partial_k L = \partial_k L = 0.$$

□

Example. With the same assumptions and notations as in the example

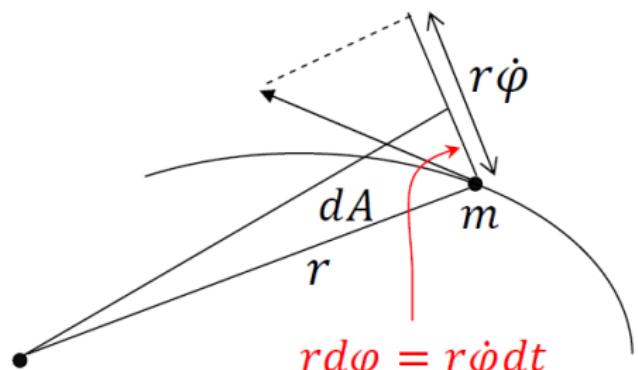
in the previous page,

φ is a cyclic coordinate of $L = m(r^2 + r^2\dot{\varphi}) - V(r)$

and its conjugate momentum is

$$p_\varphi = \partial_{\dot{\varphi}} L = mr^2\dot{\varphi}.$$

So this is a conserved quantity. Since $r\dot{\varphi}$ is the transversal velocity, $mr^2\dot{\varphi} = r(mr\dot{\varphi})$ is the angular momentum h of m with respect to the origin. So h is a conserved quantity.



If A is the area swept by r , we have

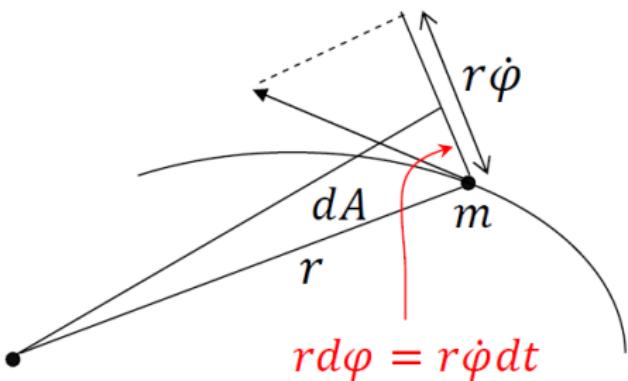
$$2dA = r(rd\varphi) = r^2 d\varphi.$$

Consequently,

$$\dot{A} = \frac{1}{2}r^2\dot{\varphi} = h/2m$$

is constant.

This is *Kepler's second law* for a mass m in a central potential:
the areolar velocity (namely \dot{A})
is constant.



- Consider a holonomic system and let V be *a potential for the conservative forces*.
- F'_j : the non-conservative force on m_j , hence $F_j = F'_j - \partial_j V$.
- Q'_1, \dots, Q'_n : *generalized forces produced by the F'_j* .
- $W' = \sum_k Q'_q \dot{q}_k$: *generalized power of the non-conservative forces*.
- We have seen that $T = T_2 + T_1 + T_0$, where T_j is *homogeneous* of degree j in the \dot{q}_k .
- $\sum_k \dot{q}_k (\partial_k T) = 2T_2 + T_1$. (Use *Euler's lemma*: if $f = f(x_1, \dots, x_n)$ is homogeneous of degree m , then $\sum_k x_k \partial_k f = mf$).

- The observable $E = T + V$ is the *mechanical energy* of the system, and $L = T - V$ the *lagrangian*

Theorem. $\dot{E} = W' - \partial_t L + d_t(T_1 + 2T_0)$.

$$\begin{aligned}
 \dot{T} &= \sum_k (\partial_k T) \dot{q}_k + (\dot{\partial}_k T) \ddot{q}_k + \partial_t T \\
 &= \sum_k d_t((\dot{\partial}_k T) \dot{q}_k) + \sum_k (\partial_k T - d_t \dot{\partial}_k T) \dot{q}_k + \partial_t T \\
 &= d_t(2T_2 + T_1) + \sum_k (\partial_k V - Q'_k) \dot{q}_k + \partial_t T \\
 &= 2\dot{T} - d_t(T_1 + 2T_0) + d_t V - \partial_t V - W' + \partial_t T \\
 &= \dot{T} + \dot{E} + \partial_t L - W' - d_t(T_1 + 2T_0),
 \end{aligned}$$

and from this the claim follows immediately. □

Corollary. (1) If the constraints do not depend on t , $\dot{E} = \partial_t V + W'$.
 (2) If in addition V does not depend on t , then $\dot{E} = W'$. (3) Finally, *the mechanical energy is conserved for holonomic conservative systems whose constraints and potential do not depend on t .* □

Remark. The non-conservative forces for which $W' < 0$ are called *dissipative forces*.

If $W' = 0$, they are called *gyroscopic*.

The *Coriolis forces*, due to the rotation of the Earth, are gyroscopic: they do no work because they are perpendicular to the velocity of particles.

Hamilton's formalism

The Hamiltonian
Legendre transformation
Hamilton's equations

The *Hamiltonian* of a Lagrange system is the observable

$$H = \sum_k p_k \dot{q}_k - L.$$

Lemma. $H = T_2 - T_0 + V = E - (T_1 + 2T_0)$.

Proof. First note that

$$\sum_k p_k \dot{q}_k = \sum_k (\dot{\partial}_k L) \dot{q}_k = 2T_2 + T_1 \text{ (by Euler's lemma).}$$

Therefore,

$$H = 2T_2 + T_1 - (T_2 + T_1 + T_0 - V) = T_2 - T_0 + V,$$

which is the first expression. Now $T_2 - T_0 = T - (T_1 + 2T_0)$, hence

$$T_2 - T_0 + V = T + V - (T_1 + 2T_0) = E - (T_1 + 2T_0),$$

which is the second expression. □

Corollary. If $T = T_2$, which happens if the constraints do not depend on t , then $H = E$. □

The *Legendre transformation* is the map

$$(q, \dot{q}, t) \mapsto (q, p, t), \quad p = \partial_{\dot{q}} L.$$

Example. The Lagrangian of a harmonic multioscillator is

$$L = \sum_j \frac{1}{2} m_j \dot{q}_j^2 - \sum_j \frac{1}{2} \kappa_j q_j^2.$$

In this case $\partial_{\dot{q}} L = (m_1 \dot{q}_1, \dots, m_n \dot{q}_n)$ and hence the Legendre transformation is

$$(q_1, \dots, q_n, \dot{q}_1, \dots, \dot{q}_n, t) \mapsto q_1, \dots, q_n, m_1 \dot{q}_1, \dots, m_n \dot{q}_n, t).$$

If the Legendre transformation is a diffeomorphism (as for example in the harmonic multioscillator), we say that the mechanical system is *hamiltonian*.

Theorem. The evolution of a Hamiltonian system is governed by *Hamilton's equations*:

$$\dot{q} = \partial_p H, \quad \dot{p} = -\partial_q H.$$

Moreover, the following relations hold: $d_t H = \partial_t H = -\partial_t L$.

Proof. $dH = \sum_k (\partial_k H) dq_k + \sum_k (\partial'_k H) dp_k + (\partial_t H) dt$ ($\partial'_k = \partial_{p_k}$).

Using the definition $H = \sum_k p_q \dot{q}_k - L$, we get

$$\begin{aligned} dH &= \sum_k \dot{q}_k dp_k + \sum_k p_k d\dot{q}_k - \sum_k (\partial_k L) dq_k - \sum_k (\dot{\partial}_k L) d\dot{q}_k - (\partial_t L) dt \\ &= \sum_k \dot{q}_k dp_k - \sum_k \dot{p}_k dq_k - (\partial_t L) dt. \end{aligned}$$

We have used that the second and forth term cancel, as $\dot{\partial}_k L = p_k$, and that, by the E-L equations, $\partial_k L = d_t \dot{\partial}_k L = d_t p_k = \dot{p}_k$.

On equating the coefficients of dp_k , and then of dq_k , we get $\dot{q}_k = \partial'_k H = \partial_{p_k} H$ and $\dot{p}_k = -\partial_k H = -\partial_{q_k} H$, respectively. And $\partial_t H = -\partial_t L$ is the the equality of the coefficients of dt .

Finally, $d_t H = \sum_k (\partial_k H) \dot{q}_k + \sum_k (\partial'_k H) \dot{p}_k + \partial_t H$, which is equal to $\partial_t H$ because the other two terms cancel ($\partial_k H = -\dot{p}_k$ and $\partial'_k H = \dot{q}_k$). □

Corollary. If L does not depend on t , then H is a conserved quantity.

Remark. Hamilton's equations form a system of $2n$ first-order ordinary differential equations in the variables q_1, \dots, q_n and p_1, \dots, p_n , while the Lagrange equations form a system of n second-order ordinary differential equations in the q_1, \dots, q_n . Thus Hamilton's equations can be thought of as an example of transforming a system of n second order ordinary differential equations into an equivalent system of $2n$ first order equations, with p_1, \dots, p_n in the role of “auxiliary variables”.

Symmetries of the physical systems

Definitions

Examples

Noether's theorem

Examples

Let \mathcal{X} be the *configuration space* (the space of the \mathbf{q} 's) of a lagrangian system Σ with lagrangian L .

A *symmetry* of Σ is a *diffeomorphism* $\varphi : \mathcal{X} \rightarrow \mathcal{X}$ such that

$$L(\varphi \mathbf{q}, \partial \varphi \cdot \dot{\mathbf{q}}, t) = L(\mathbf{q}, \dot{\mathbf{q}}, t),$$

where $\partial \varphi$ is the (jacobian) gradient of φ .

A (uniparametric) *family of symmetries* is a set $\{\varphi_s\}$ of symmetries ($s \in (-\alpha, \alpha)$, $\alpha \in \mathbf{R}_{++}$) such that the map

$$(-\alpha, \alpha) \times \mathcal{X} \rightarrow \mathcal{X}, (s, \mathbf{q}) \mapsto \varphi_s(\mathbf{q})$$

is differentiable and $\varphi_0 = \text{Id}$.

If in addition we have

$$\varphi_{s'} \circ \varphi_s = \varphi_{s+s'} \text{ when } s, s', s+s' \in (-\alpha, \alpha),$$

then we say that family is a *uniparametric group of symmetries*.

Example. If the system Σ is composed of free particles (no constraints) subject to interaction forces given by a potential V that *only depends on the distances between the particles* (Newton's gravitational potential satisfies this), then *any rigid motion is a symmetry of the system*.

Let φ be a rigid motion, say $\varphi(\mathbf{r}) = \tilde{\varphi}(\mathbf{r}) + \boldsymbol{\tau}$, where $\tilde{\varphi}$ is a linear rotation and $\boldsymbol{\tau}$ a translation vector. Then we have

$$V(\varphi \mathbf{r}_1, \dots, \varphi \mathbf{r}_N, t) = V(\mathbf{r}_1, \dots, \mathbf{r}_N, t),$$

because φ preserves distances and V only depends on distances.

On the other hand, $\partial \varphi = \tilde{\varphi}$ and

$$T(\tilde{\varphi} \dot{\mathbf{r}}_1, \dots, \tilde{\varphi} \dot{\mathbf{r}}_N, t) = T(\dot{\mathbf{r}}_1, \dots, \dot{\mathbf{r}}_N, t),$$

because $\tilde{\varphi}$ is a linear isometry and hence $(\tilde{\varphi} \dot{\mathbf{r}})^2 = \dot{\mathbf{r}}^2$.

With the same notations as in the preceding example, fix $\mathbf{a} \in E_3$ and consider the family of translations $\varphi_s(\mathbf{r}) = \mathbf{r} + s\mathbf{a}$ ($s \in \mathbf{R}$). This family is a uniparametric group of symmetries of Σ .

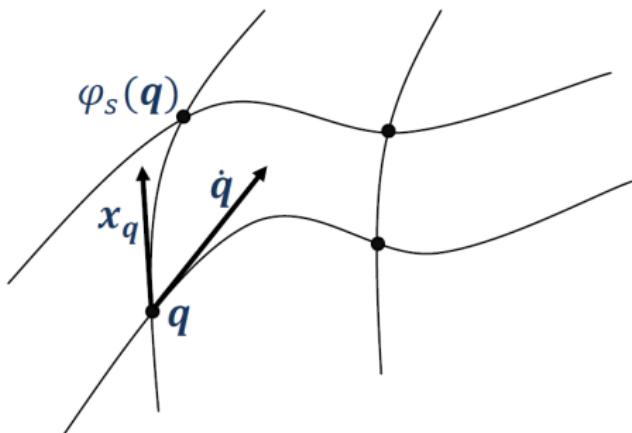
Similarly, if we let $\varphi_s(\mathbf{r}) = \rho_{s\mathbf{a}}(\mathbf{r})$, where $\rho_{s\mathbf{a}}$ is the rotation about the axis $\langle \mathbf{a} \rangle$ of amplitude $s\mathbf{a} = s|\mathbf{a}|$, then $\{\varphi_s\}$ is an uniparametric group of symmetries of Σ .

If φ_s is a family of symmetries, its *associated vector field* x is defined by the formula

$$x_q = d_s|_{s=0}(\varphi_s(q)).$$

In other words, x_q is the tangent vector to the curve

$$s \mapsto \varphi_s(q) \text{ at } q.$$



Examples. Let $q = (r_1, \dots, r_N) \in E_3^N$ and let $\varphi_s = t_{sa}$ be the uniparametric group of translations defined before. Then it is clear that

$$x_q = (a, \dots, a).$$

For the uniparametric group of rotations $\varphi_s = \rho_{sa}$, we have

$$x_q = (a \times r_1, \dots, a \times r_N).$$

This requires a justification:

We may choose the coordinate system so that $\mathbf{a} = (0, 0, a)$, $a = |\mathbf{a}| > 0$. Then the matrix of ρ_{sa} is

$$\begin{pmatrix} \cos(sa) & -\sin(sa) & 0 \\ \sin(sa) & \cos(sa) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The result of applying it to $\mathbf{r} = (x, y, z)$, followed by the derivative with respect to s at $s = 0$, yields the vector $(-ay, ax, 0)$, which is equal to $\mathbf{a} \times \mathbf{r}$. From this the claim follows immediately.

Theorem. Let φ_s be a family of symmetries of Σ and \mathbf{x} its associated vector field. Let $\mathbf{p} = \dot{\partial}L$ be the canonical momenta. Then $I = \mathbf{p} \cdot \mathbf{x}$ is a conserved quantity.

Proof. By definition of symmetry, $L(\varphi_s \mathbf{q}, \varphi_s \dot{\mathbf{q}}, t) = L(\mathbf{q}, \dot{\mathbf{q}}, t)$. Hence

$$\begin{aligned}
 0 &= d_{s=0} L(\varphi_s \mathbf{q}, \varphi_s \dot{\mathbf{q}}, t) \\
 &= d_{s=0} L(\varphi_s \mathbf{q}, d_t \varphi_s \mathbf{q}, t) \\
 &= d_{s=0} L(\mathbf{q} + s \mathbf{x} + \dots, \dot{\mathbf{q}} + s \dot{\mathbf{x}} + \dots, t) \\
 &= d_{s=0} (L(\mathbf{q}, \dot{\mathbf{q}}, t) + s(\partial_{\mathbf{q}} L \cdot \mathbf{x} + \partial_{\dot{\mathbf{q}}} L \cdot \dot{\mathbf{x}}) + \dots) \\
 &= \partial_{\mathbf{q}} L \cdot \mathbf{x} + \partial_{\dot{\mathbf{q}}} L \cdot \dot{\mathbf{x}} \\
 &= d_t(\partial_{\dot{\mathbf{q}}} L) \cdot \mathbf{x} + \partial_{\dot{\mathbf{q}}} L \cdot \dot{\mathbf{x}} \quad (\text{by E-L}) \\
 &= d_t(\mathbf{p} \cdot \mathbf{x}).
 \end{aligned}$$

□

(1) We have seen that the momentum p_j of a cyclic q_j is a conserved quantity. Now we can prove this again as follows. In the q -space, let $\epsilon_j = (0, \dots, 0, 1, 0, \dots, 0)$, with 1 in the j -th place. Then $\varphi_s(q) = q + s\epsilon_j$ is clearly a uniparametric group of symmetries, as L does not depend on q_j . The associated vector field is ϵ_j and Noether's conserved quantity is $p \cdot \epsilon_j = p_j$.

(2) *Conservation of linear momentum.* Let a be a unit vector and assume that the translations $\varphi_s = t_{sa}$ are symmetries of Σ . We know that the conjugate momentum of $q_j = r_j$ is $p_j = m_j v_j$ and that the vector field associated to φ_s is $x = (a, \dots, a)$. Noether's conserved quantity is $\sum_j p_j \cdot a = (\sum_j p_j) \cdot a$, which is the projection of the total momentum $P = \sum_j p_j$ on a . This implies that if all translations are symmetries of Σ , then P itself is a conserved quantity.

Remark. The *center of mass*, \mathbf{R} , of the m_j is defined by $m\mathbf{R} = \sum_j m_j \mathbf{r}_j$, where $m = \sum m_j$ (*total mass*). Its velocity \mathbf{V} satisfies $m\mathbf{V} = \sum_j m_j \mathbf{v}_j = \mathbf{P}$. So \mathbf{V} is constant whenever \mathbf{P} is a conserved quantity.

In any case, the acceleration $\ddot{\mathbf{R}}$ of the center of mass satisfies $m\ddot{\mathbf{R}} = \sum_j \mathbf{F}_j$.

(3) *Conservation of angular momentum.* Let \mathbf{a} be a unit vector and assume that the rotations $\rho_{s\mathbf{a}}$ are symmetries of the system Σ . We know that the vector field \mathbf{x} associated to this uniparametric group is given by, at $\mathbf{q} = (\mathbf{r}_1, \dots, \mathbf{r}_N)$, by $\mathbf{x}_{\mathbf{q}} = (\mathbf{a} \times \mathbf{r}_1, \dots, \mathbf{a} \times \mathbf{r}_N)$. The corresponding Noether conserved quantity is

$\sum_j \mathbf{p}_j \cdot (\mathbf{a} \times \mathbf{r}_j) = \mathbf{a} \cdot (\sum_j \mathbf{r}_j \times \mathbf{p}_j)$, which is the projection of the *angular momentum* $\mathbf{L} = \sum_j \mathbf{r}_j \times \mathbf{p}_j$ on the direction $\langle \mathbf{a} \rangle$.

This implies that if all the rotations are symmetries, then \mathbf{L} itself is a conserved quantity.

The Lagrange and Hamilton equations, as well as Noether's results, can be phrased intrinsically in the realm of differential geometry. Our presentation with q 's and \dot{q} 's is the *local* treatment of the theory.

The following may be suitable texts to pursue coordinate-free approaches and delving into a myriad of related concepts and structures:

[9] (arnold-1989)

[10] (agricola-friedrich-2002)

[11] (rudolph-schmidt-2013)

[12] (rudolph-schmidt-2017).

References I

- [1] M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovic, “Geometric deep learning: Grids, groups, graphs, geodesics, and gauges,” 2021.
[arXiv:2104.13478](https://arxiv.org/abs/2104.13478).
- [2] T. Cohen, *Equivariant Convolutional Networks*.
PhD thesis, University of Amsterdam, 2021.
- [3] C. Lavor, S. Xambó-Descamps, and I. Zaplana, *A Geometric Algebra Invitation to Space-Time Physics, Robotics and Molecular Geometry*.
SBMA/Springerbrief, Springer, 2018.
- [4] T. Frankel, *The geometry of physics: an introduction*.
Cambridge University Press, 2011.

References II

[5] G. B. Folland, *Quantum Field Theory: A tourist guide for mathematicians*, vol. 149 of *Mathematical Surveys and Monographs*. American Mathematical Soc., 2008.

[6] Y. Kosmann-Schwarzbach, *The Noether Theorems. Invariance and conservation laws in the XX century*. Sources and Studies in the History of Mathematics and Physical Sciences, Springer, 2011.
Translation of *Les Théorèmes de Noether: Invariance et lois de conservation au XX^e siècle*, revised and augmented, by Bertram E. Schwarzbach.

[7] D. E. Neuenschwander, *Emmy Noether's wonderful theorem*. The Johns Hopkins University Press, 2011.

References III

[8] J. Sivardière, *La symétrie en mathématiques, physique et chimie*. Collection Grenoble Sciences, Presses universitaires de Grenoble, 1995.

[9] V. I. Arnol'd, *Mathematical methods of classical mechanics (2nd edition)*, vol. 60 of *Graduate Texts in Mathematics*. Springer, 1989.
The first Russian edition appeared in 1974, the MIR French translation in 1976, and Springer's English translation in 1978. The 2nd edition has xvi+516p.

[10] I. Agricola and T. Friedrich, “Global Analysis: Differential Forms in Analysis, Geometry, and Physics,” 2002.
xiv+343p.

References IV

[11] G. Rudolph and M. Schmidt, *Differential geometry and mathematical physics*.
Theoretical and Mathematical Physics, Springer, 2013.
xiii+759p.

[12] G. Rudolph and M. Schmidt, *Differential geometry and mathematical physics: Part II. Fibre bundles, Topology and Gauge fields*.
Theoretical and Mathematical Physics, Springer, 2017.
xvi+830p.