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Abstract. Lagrangian and Hamiltonian mechanics. Symmetries in
physical systems and conserved quantities. Noether’s theorem.
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Hamiltonian formalism
Symmetries in the physical systems

Noether’s theorem
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Lagrangian analytical
approach

S. Xambó (UPC & IMTech) AL&DNN 2/11/2021 4 / 50



Lagrangian analytical approach Foreword

Joseph Louis Lagrange (1736-1813): Mécanique analytique (1788).

Wrote the evolution equations of a mechanical system in terms of
arbitrary generalized coordinates qj (parameters specifying the
configuration of the system):

d
dt

∂T
∂q̇j

= ∂(T−V )
∂qj

(j = 1, . . . , n).

Has had a major influence in the development of differential
geometry (manifolds).

The Lagrangian method has played a key role not only in Mechanics,
but also in the field theory (both classical and quantum fields).
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Lagrangian analytical approach Foreword

(1) Harmonic oscillator. (2) Simple pendulum. (3) Duble pendulum.
(4) Mas sliding on a moving curve. (5) Spherical pendulum of variable
lenght. (6) Two masses moving on a curve and connected with a spring

(1)

(2)

(3)

(4)

(5)

(6)
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Lagrangian analytical approach Mechanical systems

m1, . . . ,mN ∈ R++: point masses

r 1, . . . , rN : positions of the point masses

v j =
dr j
dt

= ṙ j : velocity of mj

pj = mjv j : (linear) momentum of mj

F j : force acting on mj : F j = mjaj = mj v̇ j = ṗj

fα(r 1, . . . , r n, t) = 0, α = 1, . . . ,m: constraints

Xt : configuration space at time t:

Xt = {(r 1, . . . , rN) ∈ EN
3 : fα(r 1, . . . , r n, t) = 0, α ∈ [m]}

Note: Simply X if the constraints do not depend on t.

Note: Depending on the scale, a point masses can be a galaxies,
stars in a galaxy, planets around a star (like the solar system),
molecules (in solid bodies, deformable or rigid, in liquids, or in gases).
And they can be simple idealized examples as in the illustrations.
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Lagrangian analytical approach Newtonian gravitation model

F k =
∑

j ̸=k G
mjmk

|r j−rk |3
(r j − r k),

G=6.67 × 10−11 N m2 Kg−2.

There are no constraints.
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Lagrangian analytical approach Holonomic constraints

The constraints are said to be holonomic if the positions r j can be
expressed (locally in Xt) as functions r j = r j(q, t), where
q = (q1, . . . , qn) ∈ U , U ⊆ Rn open, such that

(q, t) 7→ (r 1(q, t), . . . , r n(q, t), t)

is a diffeormorfism of U with an open set U ′ ⊆ Xt .

In other words, Xt is a manifold of dimension n.
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Lagrangian analytical approach Holonomic constraints

(1) and (2) Simple and double Atwood machines. (3) Stattics of a ladder:
tension of the rope connecting its foot to the wall. (4) Mass sliding on a
straight rod that is rotating about a perpendicular line. (5) Mass connected
to two fixed points by springs of the same elastic constant. (6) Mass sliding
on a circumference that is turning about a vertical diameter.
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Lagrangian analytical approach State space

S ⊆ EN
3 × EN

3 × R.

Its points (r 1, . . . , rN , v 1, . . . , vN , t) are such that

(r 1, . . . , rN , t) ∈ Xt and (v 1, . . . , vN) are the possible velocities
allowed by the contraints.∑

j ∂ j f · v j + ∂tfα = 0 (∂ j =
∂
∂r j

, ∂t =
∂
∂t
).

v j = ṙ j =
∑

k(∂kr j)q̇k + ∂tr j (∂k = ∂
∂qk

) [∗]

(q, q̇, t) = (q1, . . . , qn, q̇1, . . . , q̇N , t): local coordinates of S.

Lemma. (1) ∂̇k ṙ j = ∂kr j (∂̇k = ∂
∂q̇k

). (2) d
dt
∂kr j = ∂k ṙ j .

(1) is a direct consequence of [∗]. (2) follows from the chain rule and
Schwarz’s theorem on second derivatives.
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Lagrangian analytical approach The kinetic energy T

T =
N∑
j=1

1

2
mjv 2

j =
N∑
j=1

1

2
mj

(∑
k

(∂kr j)q̇k + ∂tr j

)2

= T0 + T1 + T2,

T0=
N∑
j=1

1

2
mj(∂tr j)2

T1 =
N∑
j=1

mj

(∑
k

(∂kr j)q̇k

)
· ∂tr j

T2 =
N∑
j=1

1

2
mj

(∑
k

(∂kr j)q̇k

)2

Note. T = T2 if the constraints are not dependent on t
(scleronomous constraints)
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Lagrangian analytical approach Generalized forces

Qk =
∑N

j=1 F j · ∂kr j (k = 1, . . . , n), Qt =
∑N

j=1 F j · ∂tr j
(generalized forces).

Example (Generalized forces on a point mass m moving in R2 with
respect to polar coordinates r , φ). We have x = r cosφ, y = r sinφ,
hence r = r(cosφ, sinφ). and

Qr = F · ∂rr = F · (cosφ, sinφ) = F · r̂ = Fr ,

Qφ = F · ∂φr = F · (−r sinφ, r cosφ) = rF · φ̂ = rFφ,

where r̂ = r/r and φ̂ = r̂⊥,
and hence Fr and Fφ are
the components of F with respect
to the orthonormal basis r̂ , φ̂.

O
φ

F

Fr

Fφ

r
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Lagrangian analytical approach Lagrange equations

Theorem. The evolution of a holonomic mechanical system is
governed by the equations

dt ∂̇kT − ∂kT = Qk (k = 1, . . . , n, dt =
d
dt
).

Proof. If in the infinitesimal time interval dt the position vectors
change by dr j , the work done by the forces is

W =
∑

jF j · dr j =
∑

jF j · (
∑

k(∂kr j)dqk + (∂tr j)dt)

=
∑

k(
∑

jF j · ∂kr j)dqk + (
∑

jF j · ∂tr j)dt
=
∑

kQkdqk + Qtdt.

On the other hand we have F j = mj r̈ j , and we can write:
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Lagrangian analytical approach Lagrange equations

W=
∑

jmj r̈ j · dr j
=
∑

jmj r̈ j · (
∑

k(∂kr j)dqk + (∂tr j)dt)

=
∑

j ,kmj

(
dt(ṙk · ∂kr j)− ṙj · dt∂kr j

)
dqk + Qtdt

=
∑

j ,kmj

(
dt(ṙk · ∂̇k ṙj)− ṙj · dt∂kr j

)
dqk + Qtdt

=
∑

j ,k

(
dt ∂̇k(

1
2
mj ṙ

2
j )− ∂k(

1
2
mj ṙ

2
j )
)
dqk + Qtdt

=
∑

k

(
dt ∂̇kT − ∂kT

)
dqk + Qtdt

Now the claim follows on equating the coefficients of dqk in both
expressions.

Remark. If there are no constraints and we use the cartesian
coordinates of the r j , the Lagrange equations are equivalent to
Newton’s equations.
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Lagrangian analytical approach Example

Evolution of a particle in a plane using polar coordinates

In cartesian coordinates x , y , the kinetic enerby is T = 1
2
m(ẋ2 + ẏ 2).

In polar coordinates r , φ, we have x = r cosφ, y = r sinφ, and a
straightforward computation shows that T = 1

2
m(ṙ 2 + (r φ̇)2).

We also know that the generalized forces with respect to polar
coordinates are Qr = Fr and Qφ = Fϕ (the components of F with
respect to the orthonormal basis r̂ , φ̂).

∂̇rT dt ∂̇rT ∂rT Eqr

mṙ mr̈ mr φ̇2 mr̈ −mr φ̇2 = Fr

∂̇φT dt ∂̇φT ∂ϕT Eqφ

mr 2φ̇ 2mr ṙ φ̇+mr 2φ̈ 0 mr 2φ̈+ 2mrṙ φ̇ = rFφ
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Lagrangian analytical approach Ideal constraints

The constraints fα(r 1, . . . , rN , t) (α = 1, . . . ,m) are said to be ideal
if for any state there exist λα ∈ R such that

R j =
∑

αλα∂ j fα,

where R j is the resultant of the constraining forces on mj . The λα

may depend on (r 1, . . . , rN , t), but they should not depend on j .

Remark. The usefulness of the concept of ideal constraints comes,
on the one hand, from the fact that it holds in many circumstances
(at least in the first approximation) and, on the other, that the
contribution of the constraining forces in the calculation of
generalized forces is 0 for ideal constraints.

Example. The constraint of a simple pendulum is f (r)− l2 = 0.
The constrining force is proportonal to r , say R = µr . On the other
hand ∂r f = 2r , and hence R = 1

2
µ∂r f .

S. Xambó (UPC & IMTech) AL&DNN 2/11/2021 17 / 50



Lagrangian analytical approach Ideal constraints: further examples

Double pendulum. If and r and r ′ are the position vectors of the
two masses m and m′ with respect to supension point O of the first
pendulum, the constraining forces R (on m) and R ′ (on m′) have the
form (using Newton’s third law)

R = µr + µ′(r − r ′), R ′ = µ′(r ′ − r), µ, µ′ ∈ R

The constraints are

f = r 2 − l2, f ′ = (r ′ − r)2 − l ′2 = 0

and the conclusion is clear from the following table:

∂ ∂r ∂r ′

f 2r 0
f ′ 2(r − r ′) 2(r ′ − r)
R µr + µ′(r − r ′) µ′(r ′ − r)
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Lagrangian analytical approach Ideal constraints: further examples

Particle moving with no friction on the variable surface. Let
f (r , t) = 0 be the moving surface. If the particle moves with no
friction, the constraining force R must be orthogonal to
Xt = {r ∈ E3 : f (r , t) = 0} and hence R = λ∂r f , which means that
the constraint is ideal.

Rigid bodies. A rigid body can be thought as a set of point masses
m1, . . . ,mN with constraints

fij = (r i − r j)2 − d2
ij = 0, where dij are constants.

The constraining force that mi exerts on mj has the form
R ij = µij(r i − r j), and µij = µji by Newton’s third law. Let
λij = −µij/4. Then we have∑

ij λij(∂k fij) = 2
∑

j λkj(r k − r j) + 2
∑

i λik(r k − r i)

=
∑

i µik(r i − r k) =
∑

i R ik = Rk .
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Lagrangian analytical approach Null contribution of the constraining forces to the Qk

Theorem. In a holonomic system, the cotribution of the constraining
forces to the generalized forces is 0.

Proof. If the constraints are ideal, then R i =
∑

α λα∂ i fα (λα ∈ R),
and their contribution of to the generalized force Qk is∑

i R i · ∂kr i =
∑

i ,α λα∂ i fα · ∂kr i =
∑

α λα∂k fα = 0,

because fα is, for a fixed t, identically 0 as a function of the
q1, . . . , qn.

Corollary. The Lagrange equations of a holonomic system with ideal
constraints have the form

dt ∂̇kT − ∂kT = Q ′
k , where Q ′

k =
∑

i(F i − R i) · ∂kr i .

The forces F ′
i = F i − R i are the net forces acting on the system.

They are the sum of the interaction forces between the particles (like
the gravitational forces) and the applied or external forces (like
gravity if the particles are placed in a gravitational field).
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Lagrangian analytical approach Null contribution of the constraining forces to the Qk

Henceforth, by mechanical system we will understand a holonomic
mechanichal system, the forces will F j will be the net forces, and
Qk =

∑
j F j · ∂kr i the generalized forces. By the corollary above,

these systems are governed by the equations

dt ∂̇kT − ∂kT = Qk .

Remark (The d’Alambert principle). If the constraints are
time-dependent, the constraining forces can do work. In fact, if
R i =

∑
α λα∂ i fα, then the power produced by the R i is, as a

consequence of the chain rule,∑
iR i · ṙi = −

∑
α λα∂tfα.

In particular, if the constraints do not depend on t, then the
constraining forces do no work. This is known as the d’Alembert
principle (of virtual work).
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Lagrangian analytical approach Conservative forces

The forces F j are said to be conservative if there exists a function
V = V (r 1, . . . , rN , t) (called the potential) such that

F i = −∂ iV .

In this case the mechanical system is said to be conservative.

Example. The function V = G
∑

i ̸=j mimj/|r i − r j | is a potential for
the newtonian gravitational forces

F i = G
∑

j ̸=i(r i − r j)/|r i − r j |3.

Indeed, from ∂(1/r) = −r−3r ,

∂ i(1/|r i − r j |) = −(r i − r j)/|r i − r j |3,

and this implies the claim.

Lemma. If we express V as a functions of the generalized
coordinates q1, . . . , qN , then Qk =

∑
i −∂ iV · ∂kr i = −∂kV .
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Lagrangian analytical approach Euler-Lagrange equations

For a conservative system, the function L = T − V : S → R is called
the lagrangian of the system.

Theorem (Euler-Lagrange). A conservative mechanical system is
governed by the equations (Euler-Lagrange equations)

dt ∂̇kL− ∂kL = 0 (k = 1, . . . , n). [∗]

Proof. Since V does not depend on the q̇j , dt ∂̇kL = dt ∂̇kT . On the
other hand, -∂kL = −∂kT + ∂kV = −∂kT − Qk , and hence the
equations [∗] are equivalent to dt ∂̇kT − ∂kT = Qk .

Definition. A holonomic system is said to be lagrangian if there
exists a function L = L(q, q̇, t) such that its evolution is governed by
the equations

dt ∂̇kL− ∂kL = 0 (k = 1, . . . , n).

Clearly, a conservative mechanical system is lagrangian, with
lagrangian function L = T − V .
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Observables of a Lagrangian
system. Energy

Observables, conserved quantities
and conjugate momenta

Example: Kepler’s second law
Conditions for the conservation of energy
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Observables of a Lagrangian system. Energy Observables, conserved quantities and conjugate momenta

Observable: A function f : S → R, f = f (q, q̇, t). If f does not
depend on q̇, we say that f is a configuration observable.

A conserved quantity, or first integral, is an observable f such that
ḟ = 0. This means that f remains constant during the temporal
evolution of the system.

Conjugate momenta: In a lagrangian system with lagrangian L, they
are the observables pk = ∂̇kL. They are also called canonical
momenta.

In rectangular cartesian coordinates, ∂̇kL = ∂ṙkL = mk ṙ k = pk .

A generalized coordinate qk is cyclic if L does not depend on qk .

Example. In polar coordinates, the lagrangian of a point mass m
moving in R2 under a central potential V (r) is 1

2
m(ṙ 2 + r 2φ̇)− V (r).

Thus φ is cyclic.
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Observables of a Lagrangian system. Energy Example: Kepler’s second law

If qk is a cyclic cordinate of a lagrangian system, them pk is a
conserved quantity.

ṗk = dt ∂̇kL = ∂kL = 0.

Example. With the same
assumptions and notations
as in the example
in the previous page,
φ is a cyclic coordinate of
L = m(ṙ 2 + r 2φ̇)− V (r)
and its conjugate momentum is
pφ = ∂φ̇L = mr 2φ̇.
So this is a conserved quantity. Since r φ̇ is the tranversal velocity,
mr 2φ̇ = r(mr φ̇) is the angular momentum h of m with respect to the
origin. So h is a conserved quantity.
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Observables of a Lagrangian system. Energy Example: Kepler’s second law

If A is the area swept by r , we have

2dA = r(rdφ) = r 2dφ.

Consequently,

Ȧ = 1
2
r 2φ̇ = h/2m

is constant.

This is Kepler’s second law for a
mass m in a central potential:
the areolar velocity (namely Ȧ)
is constant.
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Observables of a Lagrangian system. Energy Conditions for the conservation of energy

Consider a holonomic system and let V be a potential for the
conservative forces.

F ′
j : the non-conservative force on mj , hence F j = F ′

j − ∂ jV .

Q ′
1, . . . ,Q

′
n: generalized forces produced by the F ′

j .

W ′ =
∑

k Q
′
qq̇k : generalized power of the non-coservative forces.

We have seen that T = T2 + T1 + T0, where Tj is homogeneous of
degre j in the q̇k .∑

k q̇k(∂̇kT ) = 2T2 + T1. (Use Euler’s lemma: if f = f (x1, . . . , xn)
is homogeneous of degree m, then

∑
k xk∂k f = mf ).
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Observables of a Lagrangian system. Energy Conditions for the conservation of energy

The observable E = T + V is the mechanical energy of the system,
and L = T − V the lagrangian

Theorem. Ė = W ′ − ∂tL+ dt(T1 + 2T0).

Ṫ=
∑

k(∂kT )q̇k + (∂̇kT )q̈k + ∂tT

=
∑

kdt((∂̇kT )q̇k) +
∑

k(∂kT − dt ∂̇kT )q̇k + ∂tT

= dt(2T2 + T1) +
∑

k(∂kV − Q ′
k)q̇k + ∂tT

= 2Ṫ − dt(T1 + 2T0) + dtV − ∂tV −W ′ + ∂tT

= Ṫ + Ė + ∂tL−W ′ − dt(T1 + 2T0),

and from this the claim follows immediately.

Corollary. (1) If the constraints do not depend on t, Ė = ∂tV +W ′.
(2) If in addtion V does not depend on t, then Ė = W ′. (3) Finally,
the mechanical energy is conserved for holonomic conservative
systems whose constraints and potential do not depend on t.
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Observables of a Lagrangian system. Energy Conditions for the conservation of energy

Remark. The non-conservative forces for which W ′ < 0 are called
dissipative forces.

If W ′ = 0, they are called gyroscopic.

The Coriolis forces, due to the rotation of the Earth, are gyroscopic:
they do no work because they are perpendicular to the velocity of
particles.
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Hamilton’s formalism
The Hamiltonian

Legendre transformation
Hamilton’s equations
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Hamilton’s formalism The Hamiltonian

The Hamiltonian of a Lagrange system is the observable

H =
∑

kpqq̇k − L.

Lemma. H = T2 − T0 + V = E − (T1 + 2T0).

Proof. First note that∑
kpk q̇k =

∑
k(∂̇kL)q̇k = 2T2 + T1 (by Euler’s lemma).

Therefore,

H = 2T2 + T1 − (T2 + T1 + T0 − V ) = T2 − T0 + V ,

which is the first expression. Now T2 − T0 = T − (T1 + 2T0), hence

T2 − T0 + V = T + V − (T1 + 2T0) = E − (T1 + 2T0),

which is the second expression.

Corollary. If T = T2, which happens if the constraints do not
depend on t, then H = E .
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Hamilton’s formalism Legendre transformations

The Legendre transformation is the map

(q, q̇, t) 7→ (q,p, t), p = ∂q̇L.

Example. The Lagrangian of a harmonic multioscillator is

L =
∑

j
1
2
mj q̇

2
j −

∑
j
1
2
κjq

2
j .

In this case ∂q̇L = (m1q̇1, . . . ,mnq̇n) and hence the Legendre
transformation is

(q1, . . . , qn, q̇1, . . . , q̇n, t) 7→ q1, . . . , qn,m1q̇1, . . . ,mnq̇n, t).

If the Legendre transformation is a diffeomorphism (as for example in
the harmonic multioscillator), we say that the mechanical system is
hamiltonian.
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Hamilton’s formalism Hamilton’s equations

Theorem. The evolution of a Hamiltonian system is governed by
Hamilton’s equations:

q̇ = ∂pH , ṗ = −∂qH .

Moreover, the following relations hold: dtH = ∂tH = −∂tL.

Proof. dH =
∑

k(∂kH)dqk +
∑

k(∂
′
kH)dpk + (∂tH)dt (∂′

k = ∂pk ).

Using the definition H =
∑

kpqq̇k − L, we get

dH =
∑

k q̇kdpk +
∑

kpkdq̇k −
∑

k(∂kL)dqk −
∑

k(∂̇kL)dq̇k − (∂tL)dt

=
∑

k q̇kdpk −
∑

k ṗkdqk − (∂tL)dt.

We have used that the second and forth term cancel, as ∂̇kL = pk ,
and that, by the E-L equations, ∂kL = dt ∂̇kL = dtpk = ṗk .

On equating the coefficients of dpk , and then of dqk , we get
q̇k = ∂′

kH = ∂pkH and ṗk = −∂kH = −∂qkH , respectively. And
∂tH = −∂tL is the the equality of the coefficients of dt .
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Hamilton’s formalism Hamilton’s equations

Finally, dtH =
∑

k(∂kH)q̇k +
∑

k(∂
′
kH)ṗk + ∂tH , which is equal to

∂tH because the other two terms cancel (∂kH = −ṗk and
∂′
kH = q̇k).

Corollary. If L does not depend on t, then H is a conserved quantity.

Remark. Hamilton’s equations form a system of 2n first-order
ordinary differential equations in the variables q1, . . . , qn and
p1, . . . , pn, while the Lagrange equations form a system of n
second-order ordinary differential equations in the q1, . . . , qn. Thus
Hamilton’s equations can be thought of as an example of
transforming a system of n second order ordinary differential
equations into an equivalent system of 2n first order equations, with
p1, . . . , pn in the role of “auxiliary variables”.
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Symmetries of the physical
systems
Definitions
Examples

Noether’s theorem
Examples
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Definitions

Let X be the configuration space (the space of the q’s) of a
lagrangian system Σ with lagrangian L.

A symmetry of Σ is a diffeomorphism φ : X → X such that

L(φq,∂φ · q̇, t) = L(q, q̇, t),

where ∂φ is the (jacobian) gradient of φ.

A (uniparametric) family of symmetries is a set {φs} of symmetries
(s ∈ (−α, α), α ∈ R++) such that the map

(−α, α)× X → X, (s,q) 7→ φs(q)

is differentiable and φ0 = Id.

If in addtion we have

φs′◦φs = φs+s′ when s, s ′, s + s ′ ∈ (−α, α) ,

then we say that family is a uniparametric group of symmetries.
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Definitions

Example. If the system Σ is composed of free particles (no
constraints) subject to interaction forces given by a potential V that
only depends on the distances between the particles (Newton’s
gravitational potential satisfies this), then any rigid motion is a
symmetry of the system.

Let φ be a rigid motion, say φ(r) = φ̃(r) + τ , where φ̃ is a linear
rotation and τ a translation vector. Then we have

V (φr 1, . . . , φrN , t) = V (r 1, . . . , rN , t),

because φ preserves distances and V only depends on distances.

On the other hand, ∂φ = φ̃ and

T (φ̃ṙ1, . . . , φ̃ṙN , t) = T (ṙ1, . . . , ṙN , t),

because φ̃ is a linear isometry and hence (φ̃ṙ)2 = ṙ 2.
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Examples

With the same notations as in the preceding example, fix a ∈ E3 and
consider the family of translations φs(r) = r + sa (s ∈ R). This
family is a uniparametric group of symmetries of Σ.

Similarly, if we let φs(r) = ρsa(r), where ρsa is the rotation about
the axis ⟨a⟩ of amplitude sa = s|a|, then {φs} is an uniparametric
group os symetries of Σ.
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Noether’s theorem

If φs is a family of symmetries,
its associated vector field x
is defined by the formula

xq = ds |s=0(φs(q)).

In other words, xq is the
tangent vector to the curve

s 7→ φs(q) at q.

Examples. Let q = (r 1, . . . , rN) ∈ EN
3 and let φs = tsa be the

uniparametric group of translations defined before. Then it is clear
that

xq = (a, . . . , a).

For the uniparametric group of rotations φs = ρsa, we have

xq = (a × r 1, . . . , a × rN).

This requires a justification:
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Noether’s theorem

We may choose the coordinate system so that a = (0, 0, a),
a = |a| > 0. Then the matrix of ρsa iscos(sa) − sin(sa) 0

sin(sa) cos(sa) 0
0 0 1


The result os applying it to r = (x , y , z), followed by the derivative
with respect to s at s = 0, yields the vector (−ay , ax , 0), which is
equal to a × r . From this the claim follows immediately.
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Noether’s theorem Statement and proof

Theorem. Let φs be a family of symmetries of Σ and x its
associated vector field. Let p = ∂̇L be the canonical momenta. Then
I = p · x is a conserved quantity.

Proof. By definition of symmetry, L(φsq, φs q̇, t) = L(q, q̇, t). Hence

0= ds=0L(φsq, φs q̇, t)
= ds=0L(φsq, dtφsq, t)
= ds=0L(q + sx + · · · , q̇ + s ẋ + · · · , t)
= ds=0

(
L(q, q̇, t) + s(∂qL · x + ∂q̇L · ẋ) + · · ·

)
= ∂qL · x + ∂q̇L · ẋ
= dt(∂q̇L) · x + ∂q̇L · ẋ (by E-L)

= dt(p · x).
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Noether’s theorem Examples

(1) We have seen that the momentum pj of a cyclic qj is a conserved
quantity. Now we can prove this again as follows. In the q-space, let
ϵj = (0, . . . , 0, 1, 0, . . . , 0), with 1 in the j-th place. Then
φs(q) = q + sϵj is clearly a uniparametric group of symmetries, as L
does not depend on qj . The associated vector field is ϵj and
Noether’s conserved quantity is p · ϵj = pj .

(2) Conservation of linear momentum. Let a be a unit vector and
assume that the translations φs = tsa are symmetries of Σ. We know
that the conjugate momentum of qj = r j is pj = mjv j and that the
vector field associated to φs is x = (a, . . . , a). Noether’s conserved
quantity is

∑
jpj · a = (

∑
j pj) · a, which is the projection of the total

momentum P =
∑

j pj on a. This implies that if all translations are
symmetries of Σ, then P itself is a conserved quantity.
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Noether’s theorem Examples

Remark. The center of mass, R, of the mj is defined by
mR =

∑
jmjr j , where m =

∑
mj (total mass). Its velocity V

satisfies mV =
∑

jmjv j = P. So V is constant whenever P is a
conserved quantity.

In any case, the acceleration R̈ of the center of mass satisfies
mR̈ =

∑
jF j .
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Noether’s theorem Examples

(3) Conservation of angular momentum. Let a be a unit vector and
assume that the rotations ρsa are symmetries of the system Σ. We
know that the vector field x associated to this uniparametric group is
given by, at q = (r 1, . . . , rN), by xq = (a × r 1, . . . , a × rN). The
corresponding Noether conserved quantity is∑

jpj · (a × r j) = a · (
∑

jr j × pj), which is the projection of the
angular momentum L =

∑
jr j × pj on the direction ⟨a⟩.

This implies that if all the rotations are symmetries, then L itself is a
conserved quantity.
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Noether’s theorem Intrinsic formulations

The Lagrange and Hamilton equations, as well as Noether’s results,
can be phrased intrinsically in the realm of differential geometry. Our
presentation with q’s and q̇’s is the local treatment of the theory.

The following may be suitable texts to pursue coordinate-free
approaches and delving into a myriad of related concepts and
structures:

[9] (arnold-1989)
[10] (agricola-friedrich-2002)
[11] (rudolph-schmidt-2013)
[12] (rudolph-schmidt-2017).
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[3] C. Lavor, S. Xambó-Descamps, and I. Zaplana, A Geometric Algebra
Invitation to Space-Time Physics, Robotics and Molecular Geometry.

SBMA/Springerbrief, Springer, 2018.

[4] T. Frankel, The geometry of physics: an introduction.

Cambridge University Press, 2011.
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