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Abstract

Training dynamics: Neural Tangent Kernel (NTK). Kernel gradient.
Lazy training. Convergence of the SGD.

References. The focus is on the topics studied in the papers [1] and
[2], but we will follow an adaptation of the exposition in [21], mainly
§4.2.

Other serviceable materials: the extensive treatise [3] (441 p), the
survey [4] (78 p), and the papers [5] (29 p) and [6].

See also [7, Ch. §]
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Neurons

Cajal. Biological model. Artificial model.
Activation functions
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Neurons Cajal

T A
a:

Santiago Ramon y Cajal: different types of neurons Cajal: circuitry of the cerebellum. The Cajal: Single Purkinje cell
in the optic tectum of a bird (Cajal Institute, CSIC) cell Fis the dendrite of a Purkinje cell.
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Neurons Cajal

In 1887, he moved to
Barcelona to occupy the
chair of Histology created
at the Faculty of Medicine
of the University of
Barcelona. It wasin
1888, defined by Cajal
himself as his 'peak year',
when he discovered the
mechanisms that govern
the morphology and
connective processes of
gray matter nerve cells of
the cerebrospinal nervous
system.

Santiago Ramén y Cajal (1882-1934). Nobel Prize of Physiology
and Anatomy (1906, shared with Camillo Golgi) for his
discoveries about the structure of the nervous system and the
role of the neuron.
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Neurons Biological model

D,
O\ 5 -

N

B: Body of a neuron. A: Axon. D: dendrites. S: synapsis.

Adapted from Fig. 9.1 in [8] (ertel-2017).
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Neurons  Artificial model

In AL, a useful model of a neuron is depicted in Fig. 2.1:

x1

Tn W+ T =Wy + W1x1 + ° + WpTy

Figure 2.1: Scheme of a neuron. The neuron's output depends on the
weights w and on o (activation function), and this functionality is
represented by the decorated circle.
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Neurons  Artificial model

To recap in mathematical terms: a neuron is a function
x = fu(x) = o(x - w), (1)
where w € R” (weights or parameters) and o is a sigmoid function

(called activation function), like for instance the logistic function

o(t) = (1 + e f)7!, in which case the neuron computes a logistic
regression.

Augmenting x with xo = 1 and providing an extra weight w; (called
the bias), the neuron computes o(wy + wixy + - - + X, W,).

To display separately the bias and the other weights, we may write
fw.w, Or some similar notation.
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Neurons  Activation functions
Linear: o(x) = x. Range: (—o0, +00).

Perceptron: o(x) =0if x <7, 1if x > 7 (7: threshold).
ReLU: max(0, x). Range: [0, 400).

Sigmoid: o(x) = 1/(1 + e ™). Range: (0,1).

Tanh: o(x) = tanh(x). Range: (—1,1).

softplus: o(x) = In(1 + €¥)

softplus

log(1 +€")
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Neural networks

Ground notions. The array model. Training.
Conventional training. Overparameterized training.
Training techniques
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Neural networks Ground notions
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Neural networks Ground notions

A neural network (NN) can be construed as a composition of neurons
according to a graph of connections called the architecture of the net.

Here we will consider the case of directed graphs and thus leaving
aside nets based on undirected graphs such as those of Hopfield
networks and Boltzmann machines. Nor will we discuss networks with
feedback (those having closed paths).

The standard architecture of a NN is a directed graph structured in
layers L;, as illustrated in Figure 4.1, and its functional signature can
be condensed as a chain:

f £ f
N: Input — Lg N Ly NN Ly %j Ly — Output  (2)

The integer d is the depth of the net. Conventionally, the net is deep
if d > 2, and shallow otherwise. The layers Ly,... Ly 1 are
considered to be hidden, while the input and output layers (Lo and
Ly), are visible.
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Neural networks Ground notions

(a) Output Z1 (b)
€2
L C D) 3
T4
Lo z5 [
Input Lo Ly Lo

Figure 4.1: (a) Neural network with no hidden neurons and fully
connected. (b) Network with a hidden layer L; of three neurons fully
connected to the two output neurons of Ly. The input layer, Lo, is only
partially connected to L;.
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Neural networks Ground notions

Remark. In Fig. 4.1, each hidden neuron receives the outputs of
three of the five input neurons. So the connections from Ly to L
require 9 weights.

There is the possibility that the three hidden neurons share the same
weights, thus reducing the number of weights from 9 to 3. This
possibility prefigures the convolutional neural networks (CNN, or
ConvNets) described later.

Notice that if the three shared weights are w = (wy, ws, ws), the
inputs of the hidden neurons are y; = Z?:l Wixiyj—1, J = 1,2,3,
which we recognize as the cross correlation w x x of w with the input
vector Xx.

Width of L;, n;: is the number of its neurons (also called nodes).
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Neural networks Ground notions

= Functionally, the layer L; takes an input x (the output of L; 1) and
yields an output x’.

= The map f; : x — x’ depends on the weights connecting L; _; to L,
and on the o. Its particulars define the kind of the layer L; (the main
kinds are described later).

= The input x° to Ly is the signal to be processed (a sound or an
image, for example).

= The output of L, (output layer) is the transformation produced by
the net on x°. It is the result of applying progressively the maps
fi, ..., fy (that is, the composition fyofy 10 ---of;) to the input.

* The role of L is akin to the sensory organs of living beings. The
hidden layers, to the brain structure, and the output, to the signals
sent by the brain to the various organs involved in the behavior of the
being (like locomotion and phonation, for example).

S. Xambé (UPC & IMTech) AL&DNN 19/10/2021 16 /56



Neural networks Ground notions

The map f; : x — x" is parameterized by the set W of weights of the
connections of L;_i-neurons to L;-neurons, so that we can write

fi = fw.

Consequently, the map computed by the NN is parameterized by the
set W = UjVVjZ fW = deO - -OfWI.

Since the activation functions of the neurons are (most often)

non-linear, f,,, may be a highly non-linear map.

The number of parameters is generally large or very large, the more
so the wider and deeper the net is. At present the number of
parameters of the largest NNs are approaching 10*2.

In biological terms, these weights play the role of the synaptic
potentials of the neocortex, but these still outnumber by more than
two orders of magnitude the biggest number of artificial connections.
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Neural networks  The array model

——

ﬂ T
— Gs

YOF COURSE I1T'S FICTON. IV T WAS
NoN Fictiod, 1'D HAVE ALL SORTS OF REFEENCE
w’crw«t.ﬁvv | WOULDN'T NEED YOou.
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Neural networks  The array model

In general, x and x’ in x’ = f;(x), and the layer parameters W;, b;
(weights and biases), are multidimensional arrays whose nature is
chosen according to the processing that has to be achieved.

Write [ny, ny, ..., ny| to denote the type of a d-axial (real) array with
axis dimensions n, ..., ng.

Thus [n] is the type of n-dimensional vectors and [ny, n,| the type of
matrices with n; rows and n, columns.

Matrices are useful to represent monochrome images, but for RGB
images we need arrays of type [n1, o, 3], or [n1, no, n3] if it is required
that the image be represented by n3; channels.
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Neural networks  The array model

The parameters associated to fully connected and convolutional
layers are encoded by an array of weights, W, and a bias array, b.

In these cases, the expression of f has the form
f(x) = o (xxx W+ b) (3)
where . is a pairing specific of the layer and o an activation

function that is applied component-wise to arrays. The expression
fi(x) = x %, W + b is called the preactivation of the layer. Clearly,

fi(x) = o(f(x)).

Remark: Instead of a sigmoid activation, it has become practical to
use a rectified linear unit (ReLU), max(0, x). Its advantages are that
it is continuous and piecewise linear, that it is not bounded above,
and that it works fine when its derivative is needed (the jump
function x — 0 if x < 0, 1 if x > 0 (met earlier, on page 10, as
peceptron activation).
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Neural networks  The array model

For fully connected layers, x and x” are vectors, W is a matrix and *,
is matrix product (xW).

Explicitly: if x € R™-1 is the output of the layer L, 1, then
W € Ry, and x’ € R" is the output of the layer L, x' = o(xW).
In detail,

X = o(S05 W), j € [md.

i = o(z1wl + zow? + z3W3)
‘ / (

Ty =0

T1w3 + Tow3 + T3W3)

Li_1 Ly fr(@1, 22, 23) = (2], 25)
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Neural networks  The array model

For convolutional layers, x, = x is array cross-correlation.

T W B
1|2
4 5|6 | %
I 3|4
o[1]2 71819 56 | 72
3|45
>3 o112 104|120
6|78 01
3|45 %
213
6|78
[3,3,2] [2,2,2,1] [2,2,1]
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Neural networks  The array model

In the cross-correlation product y = x = W, x is an array of type
[n1, no, n3]; W (the filter, or mask) an array of type [wy, wa, n3, ms].

The pair (n1, ny) is the shape of the geometric dimensions of x and
ns the number of channels. The pair (wy, wy) denotes the window
dimensions of the filter and m3; the number of channels of the output
array y. The type of y is [n1 — wy + 1, mp — ws + 1, ms].
wi—1wy—1n3—1
Yl k=YY" xli+mj+nrW[mnrk (4
m=0 n=0 r=0

which can be expressed more compactly as
n3—1

y[i,j,k]:Zx[i:i+W1—1vj:j+W2—1,r]*W[:,r,k] (5)

r=0

where we use the standard slicing conventions for arrays and
denotes the ordinary scalar product of matrices.
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Neural networks  The array model

There is a downsampled cross-correlation y = x xs W by a stride s:
ylij kI =" xlis+ m,js+n, IW[m, n, r, k]

r,m,n

:Zx[is:is+w1—1,js:js+w2—1,r]* WT:; r, k]

The shape of the array x x; W is [n}, n,, m3], where n} and n} are the
greatest integers such that n < (n; — wy) /s and n} < (n — ws) /s.

Remark. When a NN has at least one convolutional layer, we qualify
it as a convolutional NN (CNN for short).
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Neural networks  The array model

For a maximum pooling (maxpool) layer, the parameters are
represented by a triple of positive integers (wy, wo, s = 1), where
(wy, wy) is the shape of the pooling window and s is the stride (1 by
default).
In this case x; = xm, is given by the rule

(X *mp Wi, J, k] = max(x[is : is + wy — 1,js : js + wp — 1, k]).
The shape of the array x xn,,, W is [n}, n}, n3], where n| and n} are the
greatest integers such that n} < (ny — wy)/s and n) < (n, — ws)/s.
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Neural networks  The array model

Input 1
FC Output
—
& 3 —— -
1 dog (0.01)
cat (0.03)
boat (0.94)
bird (0.02)
[ RSN
Convolution Pooling Convolution Pooling FC FC
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Neural networks  Training
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Neural networks  Training

A training algorithm for the network (2) using a labeled dataset D* is
any procedure to adjust the weights WW; and biases b; so that the
function fy, p,o - - ofy, b, computed by the net has a good balance
of the learning and generalization rates.

This is usually done by iterating two steps (which together form an
epoch):

= a forward pass, ending with a measure (/oss) of how close the
output is to what it should be, and

* a backward pass, to modify the parameters in order to decrease the
loss incurred in the forward step. This is mostly achieved by
(variations of ) gradient descent, particularly SGD.
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Neural networks

Conventional training

0.6

Error

0.4F

Optimal stop

Over-learning 4

Training error

0.0
0

10

1
40 50 60 70

When the number of parameters is less than the number of data
samples, there is an unavoidable trade-off : the learning (decreasing
of the learning error) and the generalization (decreasing of the
validation error) can both increase for a while, but there is a turning
point beyond which the learning keeps improving but the
generalization enters a steady degrading.
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Neural networks Conventional training

Before the turning point we have underfitting, in the sense that the
learning and the generalization rates can still improve.

After the turning point we have overfitting, in the sense that we are
forcing the net to have a higher learning rate at the expense of a
poorer generalization rate (under these circumstances, rote learning
of the data does not favor the generalization capacity).

This is the underparemeterized scenario (capacity, as measured by the
number of weights, below the number of data samples) and it was
the accepted wisdom until not long ago.
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Neural networks  Overparameterized training

The question of what happens with overparameterized networks, a
scenario favored by the increasing computing power, has been

addressed in the last few years and the answers so far are surprising
breakthroughs.
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Neural networks  Overparameterized training

Prominent among such discoveries is the double descent phenomenon
described in [9], which shows that for overparameterized NNs the
training follows the pattern explained above until reaching zero
training error, corresponding to a threshold of maximal testing error,
and then the test error starts decreasing steadily and becomes smaller
than the relative minimum achieved before the threshold.

Error

Conventional training phase

Double descent phase
for overparameterized models

2@8 I

Threshold
b = e e e e e e e o o= -

Underfitting

S. Xambé (UPC & IMTech)

— >
Overfitting Training time

Adapted from Fig. 1(b) in [9].
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Neural networks  Overparameterized training

To learn more about this fascinating behavior, see [10] (on the role of
kernel learning in deep learning), [11] (two models of double

descent), and also [12] (an important first step in understanding the
phenomenon of double-decent).

Further references for NNs: [13]* (overview of DL in NNs), [14] (DL
with SVM), [15] (mathematical underpinnings of CNN), [16] (deep
versus shallow performance of NNs), [17] (mathematics of DL), [18]
(universality of deep CNNs). And a quotation:

[19] (donoho-2000): “The blessings of dimensionality are less widely
noted, but they include the concentration of measure phenomenon
(so-called in the geometry of Banach spaces), which means that
certain random fluctuations are very well controlled in high
dimensions and the success of asymptotic methods, used widely in
mathematical statistics and statistical physics, which suggest that
statements about very high-dimensional settings may be made where

moderate dimensions would be too complicated.”
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Neural networks Training techniques

The goal is to minimize the empirical loss Z(W) = #ijﬂ ZJ(W),
where [;(w) only depends on j-th (labeled) data item, (x/, /).
Typically, L;(w) = (f,(x/) — y/)%.

= GD on L(w) (uses the entire data set):

w=w—nVLw)=

R v

= SGD: Relies on a stochastic approximation of the gradient.
Typically by using a random subset of the data (random minibatch).

3\3

In On-line GD a single data item is used:
w=w —nVL(w).

Several passes (epochs) may be needed for convergence. A variable
learning rate may speed up convergence.
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Neural networks  Training techniques

On-line learning procedure (one epoch)
[Randomly shuffle items in the data set]

Input: Initial w

for j € [m]:
w=w —nVi(w)
return w.
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Neural networks  Training techniques

Mini-batch learning procedure (one epoch)

Input: Initial w

split [m] into mini-batches Jy, ..., J;
for k=1,...,s:

w=w-— Uﬁ Zjejk VLj(w)
return w.

For adaptative policies on the learning rate, see [20].
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Neural Tangent Kernel
(NTK)

The setup. Relation to GD.

Gradient flux and the tangent kernel.
(After [1], as interpreted in [21, §4.2])
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NTK The setup

= FC NN of depth d and widths ng, ..., ny.

= Activation o(x): Twice differentiable with bounded second
derivative.

3.0

2.5 1

2.0 1

1.5

1.0+

0.5+

0.0 +
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NTK The setup
ZJ o+ (nj +1)n;.1: Dimension of the parameter space, R
(We/ght space).
= Instead of w, points in © = R" will be denoted 6. Note:
fp : R™ — R,
» Function space, : Maps fy : R™ — R"™.

»p: 0O — F 0 fy: parameterization of F.
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NTK Relation to GD

E : F — R: Cost functional. E(f) only depends on the values of f
on the data points. Here E stands for the empirical loss, previously
denoted by L.

In this setup, training amounts to optimizing f, in & with respect to
the cost E.

E = Eo¢: © — R. Generally non-convex, even if E is convex (cf.
[22]).

GD for E, starting at 0, reads:

Ori1 = Ok — NV E(6)). (6)

S. Xambé (UPC & IMTech) AL&DNN 19/10/2021 40/56



NTK Relation to GD

Eq. (6) can be reinterpreted geometrically from the linear
approximation of £ around 6. Assuming that E is S-regular and
n < B!, we have
E(0) < E(0i) + VE(0) - (0 = 0) + 7|0 — 041 ,
which allows us to rewrite (6) in variational form:
01 = argming E(0,) + VE(0) - (0 — 0) + 070 — 0> (7)

This method allows to find local minima of £ with no curse of
dimensionality: for an error ¢ > 0, O(e?) iterations suffice to find an
e-approximation of a local minimum (see [23]). Here O() is like
O(+), but ignoring logarithmic factors.
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NTK Gradient flux and the tangent kernel

The GD (6) can be regarded as an Euler discretization of the ODE
0 =—VE(@®),

with a random initial condition #(0) sampled from a certain

probability distribution on the parameter space ©.

This equation, known as gradient flux, defines a continuous dynamic
0(t) € ©, t > 0. The corresponing dynamics on the function space
Fis h(t) = ¢(0(t)). Now the chain rule implies that

h=—K(t)- VE(h(t)) , (8)
with K(t) = Do(0(t)) " Dp(6(t)) (tangent kernel), where Do (0) is
the differential of ¢ at 6 (a linear map from Ty© = R" to T, F).

The difficulty of the mathematical analysis of Eq. (8) is
understanding the dependency of the tangent kernel /C(t) with
respect to t.
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NTK Gradient flux and the tangent kernel

Figure 6.1: lllustration on the GD and the tangent kernel: Geometric and
analytic relations between the weight space © and the function space F.
In general, the expert or supervisor f* does not belong to ¥F.
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NTK Gradient flux and the tangent kernel

In fact, the temporal variation of K(t) can be understood
geometrically as the curvature of the function space J at the point
h(t). In the case of a FC NN as in Eq. (2), an important result is (cf.
[1, 2, 24, 25]) that this curvature tends to 0 when the net widths
tend to oo, with a suitable weight normalization, and () — K(0)
uniformly in finite time (cf. [1]).
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NTK Gradient flux and the tangent kernel

For example, in the case of a shallow net, consider

»(0,x) = \FZXQX,

where x (0. x) is the neuron defined by (1). If the parameters ¢; are
sampled iid according to a distribution /i, the tangent kernel turns
out to be

(t)x, X]= — ZVGX x)Vox(0;(t), x')

— EHN/LO [VGX(QJ X)VQX(07 X/)]
= K(x,x") (width — 00) .
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NTK Gradient flux and the tangent kernel

Under fairly general conditions (cf. [26]), the tangent kernel of a finite
width net concentrates uniformly toward K, with fluctuacions of order

~ ﬁ In the asymptotic regime of width tending to co, and considering

for simplicity the loss E£(h) = %||h — f*||?, the training dynamics gets
simplified to _
f=—-KVE(f(t)) = —-K(f(t) — f*),

which corresponds to the linear dynamics associated to a linear regression
model in the RKHS associated to the K. This space allows a more precise
study of questions concerning approximation, generalization and
optimization.

With this parameterization, the wide NNs behave as linear models,
characterized by a tangent kernel that remains constant after initialization
(lazy training). If it is true that this phenomenon allows to understand the
reason of the good behavior of GD, it does not explain mathematically the
advantages of the non-linear models defined by NNs. This will be studied
in next session.
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NTK Gradient flux and the tangent kernel

"IWE GOTEN QUITE A AT 0uT OF HAT
CREATWE WR\TING CLASS. | TEHWAIK 'Ll BEGmE
A LVERARY AGENT.™
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