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Abstract

Training dynamics: Neural Tangent Kernel (NTK). Kernel gradient.
Lazy training. Convergence of the SGD.

References. The focus is on the topics studied in the papers [1] and
[2], but we will follow an adaptation of the exposition in [21], mainly
§4.2.

Other serviceable materials: the extensive treatise [3] (441 p), the
survey [4] (78 p), and the papers [5] (29 p) and [6].

See also [7, Ch. 8]
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Neurons
Cajal. Biological model. Artificial model.

Activation functions
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Neurons Cajal
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Neurons Cajal
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Neurons Biological model
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B: Body of a neuron. A: Axon. D: dendrites. S: synapsis.

Adapted from Fig. 9.1 in [8] (ertel-2017).
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Neurons Artificial model

In AL, a useful model of a neuron is depicted in Fig. 2.1:

x1

x2

xn

σ

w1

w2

wn

x0 = 1

w0

...

...

...

σ(w · x)

w · x = w0 + w1x1 + · · ·+ wnxn

Figure 2.1: Scheme of a neuron. The neuron’s output depends on the
weights w and on σ (activation function), and this functionality is
represented by the decorated circle.
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Neurons Artificial model

To recap in mathematical terms: a neuron is a function

x 7→ fw (x) = σ(x · w), (1)

where w ∈ Rn (weights or parameters) and σ is a sigmoid function
(called activation function), like for instance the logistic function
σ(t) = (1 + e−t)−1, in which case the neuron computes a logistic
regression.

Augmenting x with x0 = 1 and providing an extra weight w0 (called
the bias), the neuron computes σ(w0 + w1x1 + · · ·+ xnwn).

To display separately the bias and the other weights, we may write
fw ,w0 or some similar notation.
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Neurons Activation functions

Linear: σ(x) = x . Range: (−∞,+∞).

Perceptron: σ(x) = 0 if x < τ , 1 if x ⩾ τ (τ : threshold).

ReLU: max(0, x). Range: [0,+∞).

Sigmoid: σ(x) = 1/(1 + e−x). Range: (0, 1).

Tanh: σ(x) = tanh(x). Range: (−1, 1).

softplus: σ(x) = ln(1 + ex)
softplus

ReLU

log(1 + ex)
max(0, x)
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Neural networks
Ground notions. The array model. Training.

Conventional training. Overparameterized training.
Training techniques
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Neural networks Ground notions
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Neural networks Ground notions

A neural network (NN) can be construed as a composition of neurons
according to a graph of connections called the architecture of the net.

Here we will consider the case of directed graphs and thus leaving
aside nets based on undirected graphs such as those of Hopfield
networks and Boltzmann machines. Nor will we discuss networks with
feedback (those having closed paths).

The standard architecture of a NN is a directed graph structured in
layers Lj , as illustrated in Figure 4.1, and its functional signature can
be condensed as a chain:

N : Input → L0
f1

−→ L1
f2

−→ · · · → Ld−1

fd
−→ Ld → Output (2)

The integer d is the depth of the net. Conventionally, the net is deep
if d > 2, and shallow otherwise. The layers L1, . . . , Ld−1 are
considered to be hidden, while the input and output layers (L0 and
Ld), are visible.

S. Xambó (UPC & IMTech) AL&DNN 19/10/2021 13 / 56



Neural networks Ground notions

(a)

L0

Input

Output

L1

(b)

L0 L1 L2

x1

x2

x3

x4

x5

Figure 4.1: (a) Neural network with no hidden neurons and fully
connected. (b) Network with a hidden layer L1 of three neurons fully
connected to the two output neurons of L2. The input layer, L0, is only
partially connected to L1.
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Neural networks Ground notions

Remark. In Fig. 4.1, each hidden neuron receives the outputs of
three of the five input neurons. So the connections from L0 to L1
require 9 weights.

There is the possibility that the three hidden neurons share the same
weights, thus reducing the number of weights from 9 to 3. This
possibility prefigures the convolutional neural networks (CNN, or
ConvNets) described later.

Notice that if the three shared weights are w = (w1,w2,w3), the
inputs of the hidden neurons are yj =

∑3
i=1 wixi+j−1, j = 1, 2, 3,

which we recognize as the cross correlation w ⋆ x of w with the input
vector x .

Width of Lj , nj : is the number of its neurons (also called nodes).
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Neural networks Ground notions

Functionally, the layer Lj takes an input x (the output of Lj−1) and
yields an output x ′.

The map fj : x 7→ x ′ depends on the weights connecting Lj−1 to Lj ,
and on the σ. Its particulars define the kind of the layer Lj (the main
kinds are described later).

The input x0 to L0 is the signal to be processed (a sound or an
image, for example).

The output of Ld (output layer) is the transformation produced by
the net on x0. It is the result of applying progressively the maps
f1, . . . , fd (that is, the composition fd◦ fd−1◦ · · · ◦ f1) to the input.

The role of L0 is akin to the sensory organs of living beings. The
hidden layers, to the brain structure, and the output, to the signals
sent by the brain to the various organs involved in the behavior of the
being (like locomotion and phonation, for example).
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Neural networks Ground notions

The map fj : x 7→ x ′ is parameterized by the set Wj of weights of the
connections of Lj−1-neurons to Lj -neurons, so that we can write
fj = fWj

.

Consequently, the map computed by the NN is parameterized by the
set W = ∪jWj : fW = fWd

◦ · · · ◦ fW1 .

Since the activation functions of the neurons are (most often)
non-linear, fW may be a highly non-linear map.

The number of parameters is generally large or very large, the more
so the wider and deeper the net is. At present the number of
parameters of the largest NNs are approaching 1012.

In biological terms, these weights play the role of the synaptic
potentials of the neocortex, but these still outnumber by more than
two orders of magnitude the biggest number of artificial connections.
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Neural networks The array model

HOW TO ENJOY WRITING 

Dreams cannot be hoarded selfishly in the mind, lying piled 
one upon the other, getting dog-eared and faded, but must 
be generously spilt out into the world. 

-ELIZABETH GOUDGE

The crucial thing for a writer is the ability to make up 
coherent worlds. 

-PETER DICKINSON

. . . [S]uccessful fiction writing . . . depends on privacy, 
secrecy, and a writer's occasional ability to take himself by 
surprise. 

-JOHN MORTIMER

For in art, life is present in all its immediate brilliance; it 
has been rescued from the twofold oblivion which threatens 
it, and yet it preserves intact the transitory substance of 
time. Through art, the narrator can rise above his own 
death. 

-GERMAINE BREE ON PROUST

Don't forget, and don't let your reader forget, that the small 
world in which you have held him for the last hour or two 
hasn't ended. Be aware, and make him aware, that tomor­
row all of its remaining inhabitants will pick up the broken 
fragments of their lives, and carry on. 

-JOSEPH HANSEN

Much of what we see in the universe . . . starts out as 
imaginary. Often you must imagine something before you 
can come to terms with it. 

-CLIFFORD D. SIMAK

Man consists of body, mind, and imagination. His body is 
faulty, his mind untrustworthy, but his imagination has 
made him remarkable. In some centuries, his imagination 
has made life on this planet an intense practice of all the 
lovelier energies. 

-JOHN MASEFIELD
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Neural networks The array model

In general, x and x ′ in x ′ = fj(x), and the layer parameters Wj , bj
(weights and biases), are multidimensional arrays whose nature is
chosen according to the processing that has to be achieved.

Write [n1, n2, . . . , nd ] to denote the type of a d-axial (real) array with
axis dimensions n1, . . . , nd .

Thus [n] is the type of n-dimensional vectors and [n1, n2] the type of
matrices with n1 rows and n2 columns.

Matrices are useful to represent monochrome images, but for RGB
images we need arrays of type [n1, n2, 3], or [n1, n2, n3] if it is required
that the image be represented by n3 channels.
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Neural networks The array model

The parameters associated to fully connected and convolutional
layers are encoded by an array of weights, W , and a bias array, b.

In these cases, the expression of f has the form

f (x) = σ (x ⋆π W + b) (3)

where ⋆π is a pairing specific of the layer and σ an activation
function that is applied component-wise to arrays. The expression
f̃j(x) = x ⋆π W + b is called the preactivation of the layer. Clearly,
fj(x) = σ(f̃j(x)).

Remark: Instead of a sigmoid activation, it has become practical to
use a rectified linear unit (ReLU), max(0, x). Its advantages are that
it is continuous and piecewise linear, that it is not bounded above,
and that it works fine when its derivative is needed (the jump
function x 7→ 0 if x < 0, 1 if x ⩾ 0 (met earlier, on page 10, as
peceptron activation).
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Neural networks The array model

For fully connected layers, x and x ′ are vectors, W is a matrix and ⋆π
is matrix product (xW ).

Explicitly: if x ∈ Rnk−1 is the output of the layer Lk−1, then
W ∈ R

nk−1
nk , and x ′ ∈ Rnk is the output of the layer Lk , x

′ = σ(xW ).
In detail,

x ′j = σ(
∑nk−1

i=1 xiW
i
j ), j ∈ [nk ].

Lk−1 Lk

x′
1 = σ(x1w

1
1 + x2w

2
1 + x3w

3
1)

w1
1

x1

x2

x3

w1
2

w2
1

w2
2

w3
1

w3
2

Σ/σ

Σ/σ
x′
2 = σ(x1w

1
2 + x2w

2
2 + x3w

3
2)

fk(x1, x2, x3) = (x′
1, x

′
2)
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Neural networks The array model

For convolutional layers, ⋆π = ⋆ is array cross-correlation.

⋆

⋆

⋆

[3,3,2] [2,2,2,1]

x W

[2,2,1]
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Neural networks The array model

In the cross-correlation product y = x ⋆W , x is an array of type
[n1, n2, n3]; W (the filter, or mask) an array of type [w1,w2, n3,m3].

The pair (n1, n2) is the shape of the geometric dimensions of x and
n3 the number of channels. The pair (w1,w2) denotes the window
dimensions of the filter and m3 the number of channels of the output
array y . The type of y is [n1 − w1 + 1, n2 − w2 + 1,m3].

y [i , j , k] =
w1−1∑
m=0

w2−1∑
n=0

n3−1∑
r=0

x [i +m, j + n, r ]W [m, n, r , k] (4)

which can be expressed more compactly as

y [i , j , k] =
n3−1∑
r=0

x [i : i + w1 − 1, j : j + w2 − 1, r ] ∗W [:, r , k] (5)

where we use the standard slicing conventions for arrays and ∗
denotes the ordinary scalar product of matrices.
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Neural networks The array model

There is a downsampled cross-correlation y = x ⋆s W by a stride s:

y [i , j , k] =
∑
r ,m,n

x [is +m, js + n, r ]W [m, n, r , k]

=
∑
r

x [is : is + w1 − 1, js : js + w2 − 1, r ] ∗W [:; r , k]

The shape of the array x ⋆s W is [n′1, n
′
2,m3], where n′1 and n′2 are the

greatest integers such that n′1 ≤ (n1 − w1) /s and n′2 ≤ (n2 − w2) /s.

Remark. When a NN has at least one convolutional layer, we qualify
it as a convolutional NN (CNN for short).
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Neural networks The array model

For a maximum pooling (maxpool) layer, the parameters are
represented by a triple of positive integers (w1,w2, s = 1), where
(w1,w2) is the shape of the pooling window and s is the stride (1 by
default).

In this case ⋆π = ⋆mp is given by the rule

(x ⋆mp W )[i , j , k] = max(x [is : is + w1 − 1, js : js + w2 − 1, k]).

The shape of the array x ⋆mpW is [n′1, n
′
2, n3], where n

′
1 and n′2 are the

greatest integers such that n′1 ≤ (n1 − w1)/s and n′2 ≤ (n2 − w2)/s.
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Neural networks The array model

dog (0.01)
cat (0.03)
boat (0.94)
bird (0.02)

Input

Output

Convolution Pooling Convolution Pooling FC FC

FC
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Neural networks Training
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Neural networks Training

A training algorithm for the network (2) using a labeled dataset D∗ is
any procedure to adjust the weights Wj and biases bj so that the
function fWd ,bd

◦ · · · ◦ fW1,b1 computed by the net has a good balance
of the learning and generalization rates.

This is usually done by iterating two steps (which together form an
epoch):

a forward pass, ending with a measure (loss) of how close the
output is to what it should be, and

a backward pass, to modify the parameters in order to decrease the
loss incurred in the forward step. This is mostly achieved by
(variations of) gradient descent, particularly SGD.
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Neural networks Conventional training

Training error
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When the number of parameters is less than the number of data
samples, there is an unavoidable trade-off : the learning (decreasing
of the learning error) and the generalization (decreasing of the
validation error) can both increase for a while, but there is a turning
point beyond which the learning keeps improving but the
generalization enters a steady degrading.

S. Xambó (UPC & IMTech) AL&DNN 19/10/2021 29 / 56



Neural networks Conventional training

Before the turning point we have underfitting, in the sense that the
learning and the generalization rates can still improve.

After the turning point we have overfitting, in the sense that we are
forcing the net to have a higher learning rate at the expense of a
poorer generalization rate (under these circumstances, rote learning
of the data does not favor the generalization capacity).

This is the underparemeterized scenario (capacity, as measured by the
number of weights, below the number of data samples) and it was
the accepted wisdom until not long ago.
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Neural networks Overparameterized training

The question of what happens with overparameterized networks, a
scenario favored by the increasing computing power, has been
addressed in the last few years and the answers so far are surprising
breakthroughs.
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Neural networks Overparameterized training

Prominent among such discoveries is the double descent phenomenon
described in [9], which shows that for overparameterized NNs the
training follows the pattern explained above until reaching zero
training error, corresponding to a threshold of maximal testing error,
and then the test error starts decreasing steadily and becomes smaller
than the relative minimum achieved before the threshold.

E
rr
o
r

Training time

Training

Te
st

T
h
re
sh

o
ld

Conventional training phase Double descent phase
for overparameterized models

Test

Underfitting Overfitting

Adapted from Fig. 1(b) in [9].
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Neural networks Overparameterized training

To learn more about this fascinating behavior, see [10] (on the role of
kernel learning in deep learning), [11] (two models of double
descent), and also [12] (an important first step in understanding the
phenomenon of double-decent).

Further references for NNs: [13]* (overview of DL in NNs), [14] (DL
with SVM), [15] (mathematical underpinnings of CNN), [16] (deep
versus shallow performance of NNs), [17] (mathematics of DL), [18]
(universality of deep CNNs). And a quotation:

[19] (donoho-2000): “The blessings of dimensionality are less widely
noted, but they include the concentration of measure phenomenon
(so-called in the geometry of Banach spaces), which means that
certain random fluctuations are very well controlled in high
dimensions and the success of asymptotic methods, used widely in
mathematical statistics and statistical physics, which suggest that
statements about very high-dimensional settings may be made where
moderate dimensions would be too complicated.”
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Neural networks Training techniques

The goal is to minimize the empirical loss L̂(w) = 1
m

∑m
j=1 L̂j(w),

where L̂j(w) only depends on j-th (labeled) data item, (x j , y j).

Typically, L̂j(w) = (fw (x
j)− y j)2.

GD on L̂(w) (uses the entire data set):

w = w − η∇L̂(w) = w − η

m

m∑
j=1

∇L̂j(w).

SGD: Relies on a stochastic approximation of the gradient.
Typically by using a random subset of the data (random minibatch).

In On-line GD a single data item is used:

w = w − η∇L̂i(w).

Several passes (epochs) may be needed for convergence. A variable
learning rate may speed up convergence.
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Neural networks Training techniques

On-line learning procedure (one epoch)

[Randomly shuffle items in the data set]

Input: Initial w

for j ∈ [m]:

w = w − η∇L̂j(w)

return w .
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Neural networks Training techniques

Mini-batch learning procedure (one epoch)

Input: Initial w

split [m] into mini-batches J1, . . . , Js

for k = 1, . . . , s:

w = w − η 1
|Jk |

∑
j∈Jk ∇L̂j(w)

return w .

For adaptative policies on the learning rate, see [20].
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Neural Tangent Kernel
(NTK)

The setup. Relation to GD.
Gradient flux and the tangent kernel.
(After [1], as interpreted in [21, §4.2])
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NTK The setup

FC NN of depth d and widths n0, . . . , nd .

Activation σ(x): Twice differentiable with bounded second
derivative.

σ(x) = log(1 + ex) = softplus(x)

σ′(x) = 1/(1 + e−x)

σ′′(x) = ex/(1 + ex)2
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NTK The setup

N =
∑d−1

j=0 (nj + 1)nj+1: Dimension of the parameter space, RN

(weight space).

Instead of w , points in Θ = RN will be denoted θ. Note:
fθ : Rn0 → Rnd .

Function space, F: Maps fθ : Rn0 → Rnd .

ϕ : Θ → F, θ 7→ fθ: parameterization of F.
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NTK Relation to GD

E : F → R: Cost functional. E (f ) only depends on the values of f
on the data points. Here E stands for the empirical loss, previously
denoted by L̂.

In this setup, training amounts to optimizing fθ in F with respect to
the cost E .

Ẽ = E ◦ϕ : Θ → R. Generally non-convex, even if E is convex (cf.
[22]).

GD for Ẽ , starting at θ0, reads:

θk+1 = θk − η∇Ẽ (θk). (6)
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NTK Relation to GD

Eq. (6) can be reinterpreted geometrically from the linear
approximation of Ẽ around θk . Assuming that Ẽ is β-regular and
η < β−1, we have

Ẽ (θ) ≤ Ẽ (θk) +∇Ẽ (θk) · (θ − θk) + η−1∥θ − θk∥2 ,

which allows us to rewrite (6) in variational form:

θk+1 = argminθ Ẽ (θk) +∇Ẽ (θk) · (θ − θk) + η−1∥θ − θk∥2. (7)

This method allows to find local minima of Ẽ with no curse of
dimensionality: for an error ϵ > 0, Õ(ϵ−2) iterations suffice to find an
ϵ-approximation of a local minimum (see [23]). Here Õ(·) is like
O(·), but ignoring logarithmic factors.
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NTK Gradient flux and the tangent kernel

The GD (6) can be regarded as an Euler discretization of the ODE

θ̇ = −∇Ẽ (θ) ,

with a random initial condition θ(0) sampled from a certain
probability distribution on the parameter space Θ.

This equation, known as gradient flux, defines a continuous dynamic
θ(t) ∈ Θ, t ≥ 0. The corresponing dynamics on the function space
F is h(t) = ϕ(θ(t)). Now the chain rule implies that

ḣ = −K(t) · ∇E (h(t)) , (8)

with K(t) = Dϕ(θ(t))⊤Dϕ(θ(t)) (tangent kernel), where Dϕ(θ) is
the differential of ϕ at θ (a linear map from TθΘ = RN to Tϕ(θ)F).

The difficulty of the mathematical analysis of Eq. (8) is
understanding the dependency of the tangent kernel K(t) with
respect to t.
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NTK Gradient flux and the tangent kernel

Θ

θ(t)

(Dϕ)T (∇E)

F = ϕ(Θ)ϕ

Dϕ(θ(t))

Dϕ(θ(t))T h(t)
∇E(h(t)) f ∗

K(t) · ∇E(h(t))

θ0
h0 = ϕ(θ0)

Figure 6.1: Illustration on the GD and the tangent kernel: Geometric and
analytic relations between the weight space Θ and the function space F.
In general, the expert or supervisor f ∗ does not belong to F.

S. Xambó (UPC & IMTech) AL&DNN 19/10/2021 43 / 56



NTK Gradient flux and the tangent kernel

In fact, the temporal variation of K(t) can be understood
geometrically as the curvature of the function space F at the point
h(t). In the case of a FC NN as in Eq. (2), an important result is (cf.
[1, 2, 24, 25]) that this curvature tends to 0 when the net widths
tend to ∞, with a suitable weight normalization, and K(t) → K(0)
uniformly in finite time (cf. [1]).
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NTK Gradient flux and the tangent kernel

For example, in the case of a shallow net, consider

ϕ(θ, x) =
1√
m

m∑
j=1

χ(θj , x) ,

where χ(θ, x) is the neuron defined by (1). If the parameters θj are
sampled iid according to a distribution µ0, the tangent kernel turns
out to be

K(t)[x , x ′]=
1

m

m∑
j=1

∇θχ(θj(t), x)∇θχ(θj(t), x
′)

→ Eθ∼µ0[∇θχ(θ, x)∇θχ(θ, x
′)]

:= K(x , x ′) (width → ∞) .
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NTK Gradient flux and the tangent kernel

Under fairly general conditions (cf. [26]), the tangent kernel of a finite
width net concentrates uniformly toward K, with fluctuacions of order
∼ 1√

m
. In the asymptotic regime of width tending to ∞, and considering

for simplicity the loss E (h) = 1
2∥h − f ∗∥2, the training dynamics gets

simplified to
ḟ = −K∇E (f (t)) = −K(f (t)− f ∗) ,

which corresponds to the linear dynamics associated to a linear regression
model in the RKHS associated to the K. This space allows a more precise
study of questions concerning approximation, generalization and
optimization.

With this parameterization, the wide NNs behave as linear models,
characterized by a tangent kernel that remains constant after initialization
(lazy training). If it is true that this phenomenon allows to understand the
reason of the good behavior of GD, it does not explain mathematically the
advantages of the non-linear models defined by NNs. This will be studied
in next session.
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