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Summary

Sketches on convex optimization theory to have it handy for various
applications.

We will define what is meant by a constrained optimization problem,
introduce some relevant concepts (mainly the Lagrangian formalism)
and study some useful results on convex optimization, with the aim
to prove the Karush-Kuhn-Tucker theorem and, under suitable
assumptions, the equivalence of the primal and dual versions of a
convex optimization problem.

Main references: [1], [2], [3].
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Foreword

The historical unfolding of optimization techniques and their
significance on multiple fields are fascinating topics.

A good reference for the facts (researchers, results, impacts) is the
book [4], as it collects eighteen classical papers headed by an
extensive historical paper by the editors.

In particular, we can find the unpublished but celebrated master
thesis of W. Kurush (University of Chicago, 1939) and seminal papers
by J. Lagrange (1759), F. John (1948), W. Fenchel (1949), M. Slater
(1950) and the landmark paper by H. W. Kuhn and A. W. Tucker
(1951).

It also includes an historical overview up to 1976 by H. W. Kuhn.

The bibliography notes at the end of each chapter of the treatise [1]
are also an excellent source of facts and ideas about those topics.
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Notations

The space of real r × c matrices (r rows and c columns) will be
denoted by Rr

c ; the space of row vectors of length r , by Rr (it is
isomorphic to Rr

1); and the space of column vectors of length c , by
Rc (it is isomorphic to R1

c).

We have a bilinear map Rr
c × Rc

s → Rr
s given by the product of

matrices.

The square matrices of order k , R(k) = Rk
k , form an R-algebra.

The algebra R(1) is isomorphic to R.

Note that the map Rr × Rr → R, (x , y) 7→ xy is a duality: it allows
to identify Rr as the dual of Rr and Rr as the dual of Rr .

If m is a positive integer, [m] denotes the sequence 1, · · · ,m.
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Optimizations problems
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Optimizations problems

If X ⊆ Rn and we have functions f , gi : X → R (i ∈ [m]), then we
can consider the problem

p∗ = min
x∈X

f (x) ⋏ gi(x) ⩽ 0 (i ∈ [m]). (1)

(we use the symbol ⋏ instead of the locution “subject to”)

Such problems are said to be constrained optimization problems (in
primal form). If there are no constraints gi , the problem minx∈X f (x)
is said to be unconstrained.

The set X = {x ∈ X | g(x) ⩽ 0} is called the feasible set.

If X = ∅, the problem (1) is inconsistent, so we will assume that X is
non-empty.

The function f is called the cost or objective of the problem. Any
x∗ ∈ X such that f (x∗) = p∗ will be said to be an optimal solution
of (1).
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Optimizations problems

Other problems that are amenable to the form (1) are also called
optimization problems.

For example, conditions such as ai ⩽ gi(x) ⩽ bi (ai , bi constants) can
be expressed as gi(x)− bi ⩽ 0 and ai − gi(x) ⩽ 0.

Likewise, gi(x) = 0 is equivalent to gi(x) ⩽ 0 and −gi(x) ⩽ 0.

Note also that maxx∈X f (x) = −minx∈X −f (x), and hence max
problems are also optimization problems. In such cases, f is usually
called by names that are suggested by the context.
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Examples

minx∈Rn ||xA− b||, where x ∈ Rn, A ∈ Rn
k , and b ∈ Rk .

This unconstrained optimization problem is equivalent to

min
x∈Rn

||xA− b||2 = min
x∈Rn

(xA− b)(ATxT − bT )

= min
x∈Rn

(xAATxT − 2bATxT + bbT ).

If the linear system xA = b has solutions, then the minimum is 0 and
it is achieved for all points on the affine subset of solutions.

Otherwise, we have to minimize a quadratic equation in x whose
gradient with respect to x is twice xAAT − bAT . If AAT is invertible,
then there is a unique solution, namely x = (bAT )(AAT )−1.

Otherwise, the solutions of xAAT = bAT can be obtained by means
of the matrix (AAT )†, the pseudoinverse of AAT , as discussed in
numerical analysis texts (see, for example, [5, Lecture 11], and
Appendix SVD, page 53, for a synopsis).
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Examples Feature-based linear regression

A map ϕ : X → Rn′ is called a feature map.

Given a labeled dataset D = {(x i , y i) | i ∈ [m], x i ∈ X, y i ∈ R}, let
LD : R× Rn′ → R be defined by

LD(w0,w
′) =

m∑
i=1

(w ′ϕ(x i) + w0 − y i)2.

The quest for a solution w = (w0,w
′) to the optimization problem

minw LD(w) can be called a ϕ-based linear regression problem (this
generalizes the notion of linear regression discussed earlier). It can be
solved by means of least squares as follows.
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Examples Feature-based linear regression

If we let y = (y 1, · · · , ym) and

A =

[
1 · · · 1

ϕ(x1) · · · ϕ(xm)

]
∈ Rn′+1

m

then we have

LD(w) = ||wA− y ||2

= (wA− y)(ATwT − yT )

= wAATwT − 2yATwT + yyT .

Thus we can proceed much as in the previous example.
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Examples Ridge regression

With the notations of the previous example, ridge regression is the
unconstrained minimization problem of the form minw L(w) + λ||w ||2,
where λ is some positive constant.

Since the gradient of λ||w ||2 = λwwT is 2λw , we are led to solve

w(AAT + λIdn′+1) = yAT ,

which can be approached much as in the previous Example.

The role of the term λ||w ||2 is to favor solutions with small ||w ||. For
λ = 0, we have linear regression. The higher the value of the chosen
λ, the more it favors smaller ||w ||.

Ridge regression is also called penalized, or regularized, linear
regression.
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The Lagrangian formalism
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The Lagrangian

The Lagrangian associated to the problem

p∗ = min
x∈X

f (x) ⋏ gi(x) ⩽ 0 (i ∈ [m])

is the function L : X× Rm
+ → R defined by the formula

L(x , u) = f (x) + u · g(x) = f (x) +
∑
i∈[m]

uigi(x). (2)

The symbols u = u1, · · · , um are called Lagrange or dual variables.

Remark. For a short introduction to the Lagrange multipliers in
analysis and differential geometry, see Appendix C, page 56.
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The Lagrangian Dual variables for equalities

By definition, the dual variable ui of an inequality constraint
gi(x) ⩽ 0 is required to be non-negative.

Now recall that equality constraints h(x) = 0 can be handled as two
inequalities, h(x) ⩽ 0 and −h(x) ⩽ 0. To these inequalities there
correspond two dual (non-negative) variables, say u+ and u−,
respectively.

They contribute to the Lagrangian with the expression

u+h(x)− u−h(x) = (u+ − u−)h(x) = vh(x),

where v = u+ − u− ∈ R is free.

In general, if the constraints of a problem include equalities hj(x) = 0
(j ∈ [p]) in addition to the inequalities gi(x) ⩽ 0 (i ∈ [m]), then the
Lagrangian L(x , u, v) (u = u1, · · · , um non-negative real variables,
v = v1, · · · , vp free real variables) is expressed by the formula

L(x , u, v) = f (x) + u · g(x) + vh(x).
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The Lagrangian Dual variables for equalities

The function

f ∗(u, v) = inf
x∈X

L(x , u, v)

= inf
x∈X

(
f (x) +

m∑
i=1

uigi(x) +

p∑
j=1

ujhj(x)

)
is called the Lagrangian dual function.

The dual problem of the primal problem

p∗ = min
x∈X

f (x) ⋏ gi(x) ⩽ 0, hj(x) = 0 (i ∈ [m], j ∈ [p])

is
d∗ = max f ∗(u, v) ⋏ u ∈ Rm

+, v ∈ Rp.
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The Lagrangian Dual variables for equalities

In particular, the dual problem of (1) is

d∗ = max f ∗(u) ⋏ u ∈ Rm
+.

When there are only equality constraints h(x), we will simply write
L(x , v) = f (x) + v · h(x). In this case the dual function is
f ∗(v) = minx∈X L(x , v) and the dual problem is d∗ = maxv f

∗(v).

Remark. In what follows our focus will be mainly on Lagrangians
L(x , u) with only inequality constraints. This symplifies the
exposition and is not really restrictive, for all results are valid, with
straightfoward adaptation of their proofs, for the more general
Lagrangians L(x , u, v) (see Appendix D, page 58).
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The Lagrangian Weak duality

Theorem (Weak duality) d∗ ⩽ p∗.

Proof. For any feasible x (x ∈ X ) and u ⩾ 0, we have

f ∗(u) ⩽ L(x , u) = f (x) + u · g(x) ⩽ f (x),

as u · g(x) ⩽ 0. Thus f ∗(u) ⩽ infx∈X f (x) = p∗ and hence
d∗ = maxu⩾0 f

∗(u) ⩽ p∗.
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The Lagrangian Saddle points

A point (x̄ , ū) ∈ X× Rm
+ is said to be a saddle point of the

Lagrangian if it satisfies the inequalities:

L(x̄ , u) ⩽ L(x̄ , ū) ⩽ L(x , ū) (3)

for all x ∈ X and u ∈ Rm
+. See figure 7.1.

(x̄, ū)

(x̄, u)

(x, ū)

x̄

ū

Figure 7.1: Saddle point of the Lagrangian.
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The Lagrangian Strong duality

Theorem (Strong duality) Suppose (x̄ , ū) ∈ X× Rm
+ is a saddle point

of the Lagrangian. Then x̄ and ū solve the primal and dual problems,
respectively, and f (x̄) = f ∗(ū).

Proof. From the first inequality in (3), f (x̄) + u · g(x̄) ⩽ L(x̄ , ū),
which holds for all u ⩾ 0, we infer immediately that g(x̄) ⩽ 0, hence
that x̄ is feasible.

Still from that first inequality we get, setting u = 0, that
f (x̄) ⩽ f (x̄) + ū · g(x̄), which yields ū · g(x̄) ⩾ 0 and hence
ū · g(x̄) = 0 (this is called slack equation of the saddle point). Notice
that it is equivalent to ūigi(x̄) = 0 for all i ∈ [m] (slack relations).

Now look at the second inequality in (3). From f (x̄) = L(x̄ , ū) (by
slack equation), we get f (x̄) ⩽ L(x , ū) = f (x) + ū · g(x) ⩽ f (x) for
all x ∈ X , which shows that x̄ is optimal and f (x̄) ⩽ f ∗(ū). Thus
p∗ = f (x̄) ⩽ f ∗(ū) ⩽ d∗. By weak duality, these inequalities must be
equalities and this completes the proof.
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The Lagrangian Interlude

It is thus desirable to seek conditions insuring that the Lagrangian
has a saddle point.

For this to happen, the strategy is to find hypotheses on the
constraints (generally called constraint qualifications) that are
sufficient to guarantee that the Lagrangian has a saddle point.

And to solve this in a setting that is suitable for our purposes we
need some background notions to which we turn next.
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Convex sets and functions
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Convex sets

x

x′
x

x′

Figure 9.1: Left: Convex set. Right: Nonconvex set.

Theorem (Convex domains) A set X ⊆ Rn is said to be convex if
λx + (1− λ)x ′ ∈ X for all x , x ′ ∈ X and λ ∈ [0, 1].

Example: If gi : Rn → R are affine, then X = {x ∈ Rn | g(x) ⩽ 0} is
convex, for in this case, for all i ∈ [m],

gi(λx + (1− λ)x ′) = λgi(x) + (1− λ)gi(x
′) ⩽ 0

if gi(x), gi(x
′) ⩽ 0.

S. Xambó (UPC) AL&DNN 5/10/2021 22 / 73



Convex sets Convex functions

Theorem (Convex functions) If X ⊆ Rn, a function f : X → R is said
to be convex if X is convex and

f (λx + (1− λ)x ′) ⩽ λf (x) + (1− λ)f (x ′) (4)

for all x , x ′ ∈ X and λ ∈ [0, 1].

If the inequality is strict when x ̸= x ′ and λ ∈ (0, 1), then f is said to
be strictly convex.

S. Xambó (UPC) AL&DNN 5/10/2021 23 / 73



Convex sets Convex functions

x x′

(x, f(x))

(x′, f(x′))

xλ

(xλ, f(xλ))

(xλ, c(xλ))

xλ = λx+ (1− λ)x′

c(xλ) = λf(x) + (1− λ)f(x′)

Figure 9.2: Geometric illustration of the convexity condition for a function
f : X → R , X ⊆ R an interval: The chord segment joining (x , f (x)) and
(x ′, f (x ′)) lies above the graph of f .

If X and f : X → R are convex, and L is a line intersecting X, then the
restriction f : X ∩ L → R is convex. Conversely, if for any x ∈ X and
v ∈ Rn the function t 7→ f (x + tv) is convex (on the intersection X∩ Lx ,v ,
Lx ,v = {x + tv}t∈R), then f is convex.
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Convex sets Convex functions

x x′

(x, f(x))

(x′, f(x′))

Lx(x
′) = f(x) +∇f(x) · (x′ − x)

Lx(x
′)

Figure 9.3: The tangent (a line in the illustration) at any point of the
graph of a differentiable convex function f lies below the graph of f . This
property is also sufficient to ensure that f is convex.
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Convex sets Convex functions

Theorem Assume that X is convex and let f : X → R be
differentiable. Then f is convex if and only if

f (x ′)− f (x) ⩾ ∇f (x) · (x ′ − x). (5)

for all x , x ′ ∈ X (see Fig. 9.3).

If f is twice differentiable, then f is convex if and only if

∇2f (x) ⩾ 0. (6)

for all x ∈ X (in words, the Hessian of f is semi-positive).

Proof. See [1, §§3.1.3, 3.1.4].

Example. If A ∈ R(n) is symmetric and semi-positive (A ⩾ 0), then
the quadratic function q(x) = xAxT is convex.

Indeed, ∇q(x) = 2xA, ∇2q(x) = 2A ⩾ 0, and (6) proves the claim.

The criterion also yields that q(x) is not convex if A is not
semi-positive.
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Convex sets Separating hyperplane

Theorem (Separating hyperplane) If X ⊆ Rn is convex, and 0 ̸∈ X,
then there exists u ∈ Rn such that u · x > 0 for all x ∈ X.

Proof. See [1, §2.5.1], which actually establishes a more general
result for two disjoint convex non-empty sets X and X′, namely that
there is a hyperplane H such that X ⊆ H+ and X′ ⊆ H−, where H+

and H− are the two closed half-spaces defined by H .
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Constraint qualifications
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Constraint qualifications Slater condition

Let X ⊆ Rn be a convex set, g = g1, · · · , gm : X → R convex
functions, and

X = {x ∈ X | g(x) ⩽ 0},
the feasible set of the constraints gi(x) ⩽ 0.

Definition. The constraints g(x) ⩽ 0 satisfy the Slater condition (or
qualification) if there exists x̄ ∈ X such that g(x̄) < 0 (meaning that
gi(x̄) < 0 for all i ∈ [m]).

For other useful constraint qualifications, see Appendix E, page 61.
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Constraint qualifications Slater condition

Theorem
Assume that the functions f and g in (1) are convex and that x̄ ∈ X
is a solution. If the constraints satisfy the Slater condition, then there
exits ū ∈ Rm

+ such that (x̄ , ū) is a saddle point of the Lagrangian. In
particular, in this context we have strong duality (page 19).

Proof. See [1], §5.3.2. Since in this text the proof is developed only
under special assumptions, we have included a proof in Appendix E,
page 65.
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Constraint qualifications Examples

Quadratic example. Let A ∈ R(n) be symmetric and positive, and
b ∈ Rn. Then f (x) = xAxT + 2xbT is (strictly) convex. Therefore
p∗ = min f (x) ⋏ xxT ⩽ 1 is a convex problem.

The value of minx f (x) is achieved when ∇f (x) = 0, which yields
x = −bA−1. So we will assume that xxT = bA−2bT ⩽ 1 holds, and
hence p∗ = −bA−1bT .

We are going to show directly that this problem satisfies strong
duality.
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Constraint qualifications Examples

The Lagrangian of the problem is

L(x , u) = f (x) + u(xxT − 1) = x(A+ uIn)x
T + 2xbT − u.

Since L(x , u) is (strictly) convex for each u, minx L(x , u) is achieved
when

∇x(x , u) = 2x(A+ uIn) + 2b = 0, or x = −b(A+ uIn)
−1.

On substituting this value in L(x , u), we get the following expression
for the dual function f ∗(u):

f ∗(u) = −b(A+ uIn)
−1bT − u.

Then we have p∗ = −bA−1bT = f ∗(0) ⩽ d∗, which together with
weak duality establishes that p∗ = m∗.
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Constraint qualifications Examples

Remark. Strong duality in this example is valid even when A is not
semi-positive (and hence f (x) is not convex), but the argument is
more delicate, already for the case in which A is semi-positive but not
positive, mainly because the pseudo-inverses A† and (A+ uIn)

† have
to replace A−1 and (A+ uIn)

−1 in the arguments. See, for example,
[1, p. 229].
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Constraint qualifications Examples

Quadratic minimization with linear constraints

Consider the problem min xxT ⋏ xA = b, where x ∈ Rn, A ∈ Rn
k ,

b ∈ Rk , and assume rank(A) = k , so that the k linear constraints are
feasible.

The solucion p∗ of this problem is the square of the distance of the
origin to the linear affine set {x | xA = b}, which by analytic
geometry turns out to be bATAbT .

Now we can reproduce this result by solving the optimization problem
(and its dual). The Lagrangian is

L(x , v) = xxT + v · (xA− b) = xxT + v(ATxT − bT ).

Since ∇xL(x , v) = 2x + vAT , the dual Lagrangian is obtained by
replacing x = −1

2
vAT in L(x , v), which yields

f ∗(v) = −1
4
vATAvT − vbT .
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Constraint qualifications Examples

The maximum d∗ of this quadratic equation in v is attained for
v = −2b(ATA)−1, and this yields

d∗ = −b(ATA)−1(ATA)(ATA)−1bT + 2b(ATA)−1bT

= b(ATA)−1bT = p∗.
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Constraint qualifications The Karush-Kuhn-Tucker theorem

Theorem (Karush-Kuhn-Tucker, KKT)
Assume that f and the gi in (1) are convex and differentiable, and
that the constraints satisfy the Slater condition. Then x̄ ∈ X is a
solution of (1) if and only if there exists ū ∈ Rm

+ such that

(1) ∇xL(x̄ , ū) = ∇x f (x) + ū · ∇xg(x) = 0

(2) ∇uL(x̄ , ū) = g(x̄) ⩽ 0

(3) ū · g(x̄) = 0 ⇔ ∀i , ūigi(x̄) = 0 (slack equation/conditions)

Proof. Let x̄ be a solution of (1). By the theorem on page 30, there
exists ū ⩾ 0 such that (x̄ , ū) is a saddle point of the Lagrangian and
this implies the three conditions: (1) follows from the definition of a
saddle point, as L(x̄ , ū) is minimum if we only move x ∈ X; (2) is
obvious; and (3) follows from the proof of strong duality, page 19.
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Constraint qualifications The Karush-Kuhn-Tucker theorem

Conversely:

f (x)− f (x̄)⩾ ∇x f (x̄) · (x − x̄) (f convex)

= −
m∑
i=1

ūi∇xgi(x̄) · (x − x̄) (by (1))

⩾ −
m∑
i=1

ūi(gi(x)− gi(x̄)) (gi convex)

= −
m∑
i=1

ūigi(x) (by (3))

⩾ 0 (by (2)),

and this ends the proof.

Corollary. For an unconstrained problem (with f differentiable and
convex), x̄ ∈ X is a solution of (1) if and only if ∇x f (x) = 0.
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Support Vector Machines
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SVM Prelude

We will look more closely at the problem of linear classification
defined earlier by means of support vector techniques.

These techniques, usually known as support vector machines (SVM),
were introduced by Vapnik and his school in 1992 (see [6], no doubt
a classic of algorithmic learning, where they were actually called
Support-Vector Networks).

An early application was the recognition of hand-written digits with
an accuracy not less than the best systems available at the time.
Excellent treatments of this topic can be found in [3, Ch. 5] and [7,
Ch. 14].
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SVM Linearly separable data

Assume that the input space X is a subset of Rn (n ⩾ 1) and that
the output space is Y = {−1, 1}.

A dataset of the form D = {(x1, y 1), . . . , (xm, ym)}, with x j ∈ X and
y j ∈ Y, is linearly separable if there is a hyperplane h(x) = w · x + b
(w ∈ Rn, b ∈ R)) such that h(x j) > 0 or h(x j) < 0 according to
whether y j = +1 or y j = −1.

These conditions are equivalent to say that y jh(x j) > 0 for j ∈ [m].

Geometrically, the points x j with y j = 1 lie on the positive half-space
defined by h and those with y j = −1 lie on the negative half-space
(see Fig. 13.1).

In general, there are (if any) infinitely many separating hyperplanes,
so that we can envisage to impose additional constraints, like the
condition that the points on either side are as far as possible from the
hyperplane.
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SVM Linearly separable data

w · x+ b = 0 w′ · x+ b′ = 0

Figure 13.1: Separation by hyperplanes and support vectors. On the left,
the white points (+1) and the black points (−1) are linearly separable.
On the right we see the same set of points and the greatest margin
separator, which is computed by the SVM.
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SVM Reduction to an optimization problem

Given a separating hyperplane h(x) = w · x + b, let

s = minj∈[m] |w · x j + b| > 0.

On dividing h by s, an artifice that does not change the hyperplane,
we may assume the normalization condition

minj∈[m] |w · x j + b| = 1.

In this case, 1/|w | is the distance from the hyperplane of any x j at
minimum distance from it, for this distance is |w · x j + b|/|w |.

The quantity 1/|w | is the margin of the hyperplane and the x j at a
margin distance are its support vectors.

Thus it is clear that to maximize the margin of h ⇔ to minimize |w |,
or, more conveniently, 1

2
|w |2, which is strictly convex, as its gradient

and hessian are w and the identity, respectively. This shows that the
problem is equivalent to minimizing |w | under the constraints

y j(w · x j + b) ⩾ 1.
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SVM Solution of the optimizing problem

So the optimization problem to solve is

minw ,b
1
2
||w ||2 ⋏ y j(w · x j + b) ⩾ 1, j ∈ [m].

The constraints gj(w , b) = 1− y j(w · x j + b) ⩽ 0 are affine in w , b,
hence qualified. So the problem has a unique solution.

The Lagrangian of the problem is

L(w , b, u) = 1
2
||w ||2 −

∑
j∈[m] uj

(
y j(w · x j + b)− 1

)
.

The KKT conditions for this case yield the following:

(1) ∇wL = w −
∑

j∈[m] ujy
jx j = 0, or w =

∑
j∈[m] ujy

jx j

(2) ∇bL = −
∑

j∈[m] ujy
j = 0, or

∑
j∈[m] ujy

j = 0.

(3) For all j ∈ [m], uj(w · x j + b)− 1 = 0, or
uj = 0 ∨ y j(w · x j + b) = 1.
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SVM Properties of the solution

The solution w is a linear combination of the x j such that uj ̸= 0.
They belong to the marginal hyperplanes, as w · x j + b = y j = ±1,
and are called support vectors (they suffice to construct the
maximal-margin hyperplane).

Duality. On plucking the expression w =
∑

j∈[m] ujy
jx j into the

Lagrangian we find, after some algebra with the KKT conclusions,
that

L =
∑

j∈[m] uj −
1
2

∑
j ,j ′ ujuj ′y

jy j ′(x j · x j ′)

Thus the dual problem, which we know is equivalent to the primal
problem, is:

d∗ = maxu∈Rm
+

(∑
j∈[m] uj −

1
2

∑
j ,j ′ ujuj ′y

jy j ′(x j · x j ′)
)

⋏ u ⩾ 0 ∧
∑

j∈[m] ujy
j = 0.

S. Xambó (UPC) AL&DNN 5/10/2021 44 / 73



SVM Properties of the solution

The classifier h returned by the SVM algorithm can be expressed in
terms of the solution u to the dual problem:

h(x) = sgn(w · x + b) = sgn
(∑

j∈[m] ujy
j(x j · x) + b

)
.

Since any support vector x j
′
satisfies w · x j ′ + b = y j ′ , b can also be

obtained from u:

b = y j ′ −
∑

j∈[m] ujy
j(x j · x j ′).

Remark. The predictor h provided by the SVM algorithm shows that
it only needs the scalar products of vectors, not on the vectors
themselves. The significance of this fact is related to the kernel
methods studied later.

For the study of the non-separable case, see Appendix
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Appendix A PCA: Principal Component Analysis

Let X ∈ Rm
n . We regard X as the result of observing m

characteristics of n objects, so that row X j contains the n
observations (x j1, . . . , x

j
n) of the j-th characteristic (j ∈ [m]).

Equivalently, the column Xk = (x1k , . . . , x
m
k )

T (k ∈ [n]) contains the
values of the m characteristics of the k-th object.

In any case, with the obvious meaning of the expressions,
X = [X1, . . . ,Xn] = [X 1, . . . ,Xm].

See Fig. 15.1 for an example os such a matrix.
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Appendix A PCA: Principal Component Analysis

Figure 15.1: A Dataset derived from information collected by the U.S.
Census Service concerning housing in the area of Boston Mass. It has 14
features or attibutes and 506 cases.
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Appendix A PCA: Principal Component Analysis

Set µj = E [X j ] = (
∑

X j)/n, the mean of X j , and
σjk = Cov(X j ,X k) = E [X jX k ]− µjµk , the covariance of X j and X k .

The symmetric matrix Σ = Cov(X ) = (σjk) ∈ R(m) is semi-positive
and is called the covariance matrix of X . Let us note that
σjj = Var(X j) (variance of X j), and that Var(X j) = σ2

j , where σj ⩾ 0
is the standard deviation of X j .

S. Xambó (UPC) AL&DNN 5/10/2021 49 / 73



Appendix A PCA: Principal Component Analysis

Given a unit vector u ∈ Rm, it turns out that Var(uX ) = uΣuT , and
that this value is maximum precisely when u is an eigenvector of Σ
with maximum eigenvalue.

Under these conditions, u1 = u is said to be the main component
of X . Note that uX is the vector formed with the projections of the
columns of X on u, so that these projections pick up the maximum
variability of X in one direction.

The second main component of X is the unit eigenvector u2
corresponding to the second eigenvalue (in non-ascending order)
of Σ. This vector maximizes Var(uX ) = uΣuT for unit vectors u
perpendicular to u1.

Continuing this process, we obtain an orthonormal basis u1, . . . , um of
Rm such that Var(urX ) = urΣu

T
r is maximum for unit vectors

perpendicular to u1, . . . , ur−1.
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Appendix A PCA: Principal Component Analysis

If we put Ur ∈ Rr
m to denote the matrix formed by the vectors

u1, . . . , ur , the matrix UrX is of type r × n and incorporates the
variability of X attributable to the first r eigenvalues (in
non-ascending order) of Σ.

The technique of the main components is a first example of
dimensional reduction. It can be understood as a form of
unsupervised learning.

It should also be noted that UrX can be used as a form of
preprocessing applicable to the data X before it is subjected to a
supervised learning procedure. The value of r is chosen so that
ur+1, . . . , um play a negligible role in explaining the variability of X .
See Figure 15.2 for an illustration.
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Appendix A PCA: Principal Component Analysis

Figure 15.2: PCA of 150 cases of iris flowers with four metrical features
and one label for the species. It reproduces the computations in a 1936
paper by R. A Fisher (The use of multiple measurements in taxonomic
problems). The first principal compoent explains 72.77% of the variation
in the data, while the second explains 23.03%. Note that the units on the
vertical axis are longer than on the horizontal axis.
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Appendix B SVD: Singular Value Decomposition

Let X ∈ Rm
n , which we think of as data in the style of what we saw

for PCA (page 47), and let r be its rank.

The SVD theorem establishes that there are real values
λ1 ⩾ λ2 ⩾ · · · ⩾ λr > 0 and orthonormal matrices U ∈ R(m) and
V ∈ R(n) such that A = UΛV T , where the only non-zero vectors of
Λ are Λii = λi for i ∈ [r ].

Note that ΛΛT ∈ R(m) and ΛTΛ ∈ R(n) are diagonal and that their
only non-zero elements are the same: λ21, · · · , λ2r down the main
diagonal.

S. Xambó (UPC) AL&DNN 5/10/2021 53 / 73



Appendix B SVD: Singular Value Decomposition

The equality XXT = (UΛV T )(VΛTUT ) = U(ΛΛT )UT shows that
λ21, · · · , λ2r are the only non-zero eigenvectors of XXT and that U is
the corresponding matrix of orthonormal eigenvectors.

Denote by uj the eigenvector corresponding to λ2j , j ∈ [r ].

Similarly, the relation XTX = (VΛTUT )(UΛV T ) = V (ΛTΛ)V T

yields that λ21, · · · , λ2r are the only non-zero eigenvectors of XTX and
that V is the corresponding matrix of orthonormal eigenvectors.

Denote by vj the eigenvector corresponding to λ2j , j ∈ [r ].

Notice that the relation Avj = λjuj holds.

Now UΛ = [λ1u1, · · · , λrur , 0,m−r. . . , 0], so

A = UΛV T = λ1u1v
T
1 + · · ·+ λrurv

T
r ,

which expresses A as a linear combination of the rank-one matrices
ujv

T
j .
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Appendix B SVD: Singular Value Decomposition

In fact, it turns out that for k = 1, . . . , r , the matrix

Mk = λ1u1v
T
1 + · · ·+ λrukv

T
k

is the optimal approximation of X by rank k matrices (Eckart-Young
theorem).

This result is then also a form of dimensional reduction. The value of
k is chosed so that X −Mk is negligible in the context where it is
applied.

An important application of the singular decomposition is that the
solution a of Xa = b by least-squares is a = X †b, where X † is the
Moore-Penrose pseudoinverse of X , namely X † = VΛ†UT , with
Λ†
jj = λ−1

j for j = 1, . . . , r and all other entries zero.

For other dimensional reduction procedures, see [8, Ch. 6]:
(Fischer’s) Linear Discriminant Analysis (LDA), PCA, kernel PCA,
Independent Components Analysis (ICA), Multidimensional Scaling
(MDS), ...
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Appendix C Classical Lagrange multipliers

Let X be an open set in Rn and f , g1, · · · , gr : X → R differentiable
functions. Let X = {x ∈ X | g1(x) = · · · = gr (x) = 0}.

The question is to find necessary conditions for f |X (the restriction of
f to X ) to have an extremum at a point x0 ∈ X .

For this, assume that dx0g1, · · · , dx0gr are linearly independent. Then
X is a manifold of dimension n− r around x0 and the usual necessary
condition is that dx0(f |X ) = 0. But since dx0(f |X ) = (dx0f )|X , the
condition becomes (dx0f )|X = 0. This means that (dx0f ) has to be in
the kernel Kx0 of the restriction map DX,x0 → DX ,x0 , where DX,x0 is
the vector space of differentials of X at x0, with a similar meaning for
DX ,x0 .

S. Xambó (UPC) AL&DNN 5/10/2021 56 / 73



Appendix C Classical Lagrange multipliers

Now dx0gj ∈ Kx0 (j = 1, · · · , r), because (dx0gj)|X = dx0(gj |X ) = 0.

Under our assumptions, it turns out that actually

Kx0 = ⟨dx0g1, · · · , dx0gr⟩.
Consequently, the necessary condition we are looking for is that there
exist real numbers λ1, · · · , λr such that

dx0f = λ1dx0g1 + · · ·+ λrdx0gr .

In conclusion, the search for extrema points of f |X leads to the
Lagrange conditions:

dx f = λ1dxg1 + · · ·+ λrdxgr , g1(x) = · · · = gr (x) = 0,

where the unknowns are x ∈ X and λ1, · · · , λr ∈ R.
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Appendix D On the Lagrangian L(x, u, v)

Primal problem:
p∗ = minx∈X f (x) ⋏ gi(x) ⩽ 0, hj(x) = 0 (i ∈ [m], j ∈ [p]).

Feasible set: X = {x ∈ X | g(x) ⩽ 0, h(x) = 0}, so that
p∗ = minx∈X f (x).

Lagrangian: L(x , u, v) = f (x) + u · g(x) + v · h(x),
u = u1, · · · , um, v = v1, · · · , vp.

Dual Lagrangian: f ∗(u, v) = minx∈X L(x , u, v).

Dual problem: d∗ = max f ∗(u, v) ⋏ u ⩾ 0.

Weak duality: d∗ ⩽ p∗ (in general they are not equal).

Dual gap: The difference p
∗ − d∗.

Strong duality: When d∗ = p∗.
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Appendix D On the Lagrangian L(x, u, v)

Theorem (Saddle point implies strong duality) Assume f , g , h
smooth. Suppose there exist x̄ ∈ X , ū ∈ Rm

+ and v̄ ∈ Rp such that
for all x ∈ X, u ∈ Rm

+, v ∈ Rp we have (saddle condition)

L(x̄ , u, v) ⩽ L(x̄ , ū, v̄) ⩽ L(x , ū, v̄). (7)

Then x̄ and (ū, v̄) solve the primal and dual problems, respectively,
and f (x̄) = f ∗(ū, v̄).

Proof. From the first inequality in (7), namely

f (x̄) + u · g(x̄) + v · h(x̄) ⩽ L(x̄ , ū, v̄),

which holds for all u ⩾ 0 and all v , we infer immediately that
g(x̄) ⩽ 0 and h(x̄) = 0, which show that x̄ is feasible.
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Appendix D On the Lagrangian L(x, u, v)

Still from the first inequality we get, setting u = 0 and using that
v · h(x̄) = 0 for any v , that f (x̄) ⩽ f (x̄) + ū · g(x̄), which yields
ū · g(x̄) ⩾ 0. Since ū ⩾ 0 and g(x̄) ⩽ 0, we must have ū · g(x) = 0,
which actually is equivalent to ūigi(x̄) = 0 for all i ∈ [m] (these
relations are called complementary slack conditions).

Now look at the second inequality in (7). Using that
f (x̄) = L(x̄ , ū, v̄), we get f (x̄) ⩽ L(x , ū, v̄) = f (x) + ū · g(x) ⩽ f (x)
for all x ∈ X , which shows that x̄ is optimal and f (x̄) ⩽ f ∗(ū, v̄).
Thus p∗ = f (x̄) ⩽ f ∗(ū, v̄) ⩽ d∗. By weak duality, the inequalities
must be equalities and this completes the proof.

S. Xambó (UPC) AL&DNN 5/10/2021 60 / 73



Appendix E Other constraint qualifications

Karlin condition. For all u ∈ Rm
+, u ̸= 0, there exists x ∈ X such that

u · g(x) < 0.

The negation of this condition is that there exists u ∈ Rm
+, u ̸= 0,

such that for all x ∈ X we have u · g(x) ⩾ 0.

Theorem The Slater and Karlin conditions are equivalent.

Proof. Assume that x ∈ X satisfies gi(x) < 0 for all i ∈ [m]. Then
for all u ∈ Rm

+ we have u · g(x) < 0 if u ̸= 0.

This shows that Slater ⇒ Karlin.

For the converse, namely that Karlin ⇒ Slater, we will show that the
Karlin condition cannot be satisfied if the Slater condition is not
satisfied.

We will proceed in several steps.
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Appendix E Other constraint qualifications

Suppose then that the Slater condition is not satisfied. This means
that for all x ∈ X there is an index i such that gi(x) ⩾ 0.

Let Z = {z ∈ Rm | ∃x ∈ X with z > g(x)}.

It is clear that Z ̸= ∅ and 0 ̸∈ Z .

Moreover, it is easy to see, using that the gi are convex, that Z is
convex.

So 0 and Z can be separated by a hyperplane (page 27): there is
u ∈ Rm, u ̸= 0, such that u · z ⩾ 0 for all z ∈ Z . This implies that
u ⩾ 0 (if we had ui < 0, we would find a z ′ ∈ Z with u · z ′ < 0 by
letting zi ↑ ∞ starting with any z ∈ Z ).

Now let δ = infx∈X u · g(x) and δ′ = infz∈Z u · z ⩾ 0. We will see
that δ = δ′, and so δ ⩾ 0, which means that the Karlin condition is
not satisfied.
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Appendix E Other constraint qualifications

To finish, we will show first that δ′ ⩾ δ and then that δ ⩾ δ′.

Indeed, for any z ∈ Z , there is x ∈ X such that z > g(x), so
u · z ⩾ u · g(x) ⩾ δ, hence δ′ ⩾ δ.

On the other hand, for any x ∈ X and any arbitrarily small positive
vector ϵ ∈ Rm, we have that z = g(x) + ϵ ∈ Z , and for this z

δ′ ⩽ u · z = u · g(x) + u · ϵ,

which implies that δ′ ⩽ δ + u · ϵ. Since u · ϵ ⩾ 0 is arbitrarily small,
we conclude that δ′ ⩽ δ.
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Appendix E Other constraint qualifications

Strict constraint qualification. It is satisfied if |X | > 1 and there is
x ∈ X such that the gi are strictly convex at x within X (this means
that for any x ′ ∈ X , x ′ ̸= x , and any λ ∈ (0, 1), we have
λgi(x) + (1− λ)gi(x

′) > gi(λx + (1− λ)x ′)).

Theorem
The strict constraint qualification implies the Slater (and hence also
the Karlin) condition.

Proof. With the notations on page 64, if x̄ = λx + (1− λ)x ′ then

gi(x̄) < λgi(x) + (1− λ)gi(x
′) ⩽ 0.
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Appendix E Optimality and Slatter imply existence of a saddle point

Theorem
Let X ⊂ Rn be convex. Let f , gi : X → R (i ∈ [m]) be convex
functions and set X = {x ∈ X | gi(x) ⩽ 0} (feasible set). Assume
that the gi satisfy the Slater condition (⇔ ∃ x ∈ X such that
gi(x) < 0, i ∈ [m]) and that x̄ is an optimal solution of the problem
minx∈X f (x) ⋏ g(x) ⩽ 0. Then there exists ū ∈ Rm

+ such that (x̄ , ū)
is a saddle point of the Lagrangian.

Proof. For x ∈ X, consider the conditions

f (x)− f (x̄) ⩽ 0, g1(x) ⩽ 0, · · · , gm(x) ⩽ 0.

These conditions do not satisfy Slater’s condition, as f (x)− f (x̄) ⩾ 0
(by the optimality of x̄). Therefore they do not satisfy the Karlin
condition. This means that we can find (ū0, ū) ∈ Rm+1

+ such that

ū0(f (x)− f (x̄)) +
m∑
i=1

ūigi(x) ⩾ 0. (8)
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Appendix E Optimality and Slatter imply existence of a saddle point

In particular, for x = x̄ we get
∑m

i=1 ūigi(x̄) ⩾ 0. Since ūigi(x̄) ⩽ 0
for i ∈ [m], we actually have

∑m
i=1 ūigi(x̄) = 0. Together with (8),

we can write

ū0f (x) +
m∑
i=1

ūigi(x) ⩾ ū0f (x̄) = ū0f (x̄) +
m∑
i=1

ūigi(x̄).

If we had ū0 = 0, then we would also have
∑m

i=1 ūigi(x) ⩾ 0, which
contradicts the Karlin qualification, hence also the Slater qualification
of the gi(x). On dividing by ū0, and redefining ūi as ūi/ū0, we obtain
that L(x̄ , ū) ⩽ L(x , ū), which is the second inequality in the definition
of a saddle point.

On the other hand, for all u ∈ Rm
+, we have

∑m
i=1 uigi(x̄) ⩽ 0, for

gi(x̄ ⩽ 0 for all i ∈ [m]. Therefore

L(x̄ , u) = f (x̄) + u · g(x̄) ⩽ f (x̄) = f (x̄) +
∑m

i=1 ūigi(x̄) = L(x̄ , ū),

and this ends the proof.
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Appendix F Linear predictors, the non-separable case

Deviation variables. If the data are not linearly separable, we cannot
assume that y j(w · x j + b) ⩾ 1 for all j ∈ [m].

In view of applying optimization tools, introduce non-negative
deviation variables t1, . . . , tn and consider the relaxed constraints
y j(w · x j + b) ⩾ 1− tj .

In this situation, a convenient modification of the function to be
minimized is

1
2
||w ||2 + λ

∑
tj ,

where λ ∈ R+ is a constant.

The hyperplane produced with this minimization separates correctly
the x j with margin 1/|w | except the outliers, points that fall either
on the incorrect half-space or within the ribbon
−1 < w · x j + b < +1 (see, for example, [9, Ch. 9]).

Another extension is to multi-class classifications (ibidem).
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Appendix F Linear predictors, the non-separable case

Feature mappings. Finally, let us mention the very useful device
consisting of applying linear separation after mapping the input space
to a higher dimension by means of a non-linear map. Roughly, it
works as follows.

A feature map of the space X is a map ψ : X → Rn′ , where n′ can be
arbitrary. Usually n′ and ψ are chosen to facilitate that the data ψ(x)
appear to be linearly separable in Rn′ when this condition is not
satisfied in X.

If we manage to obtain a linear separator h′ of the ψ(x i) ∈ Rn′ , then
h(x) = h′(ψ(x)) is a non-linear separator of the x i in Rn and the
hypersurface {h(x) = 0} is the decision boundary.
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Appendix F Linear predictors, the non-separable case

A relevant point is that these techniques lead naturally to the notion
kernels (see, for example, [7, Ch. 14]), which rely on the pairing
k(x , x ′) = ψ(x) · ψ(x ′) or, more specifically, on the kernel matrix
k(x i , x j), which is sufficient, as remarked before, to run the support
vector algorithms (in Rn′), and the kernel trick amounts to the
realization that often the values k(x i , x j) can be judiciously specified
with no reference to ψ (see [7, §14.6] for examples, and in particular
for the polynomial and radial kernels).

A closer study of these questions will be pursued in the session on
RKHS (reproducing kernal Hilbert spaces).

One more point is that there are also interesting cases in which
n′ < n, and then we speak of dimension reduction. As noted, the
PCA and SVD mentioned earlier fall under this notion. A quite
interesting achievement is the t-SNE separation algorithm developed
in [10] and [11] mapping images of hand-written digits (dimension
n = 282) to R2.
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