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Informal outline Terra incognita

The most promising words ever written on the maps of human
knowledge are terra incognita

Daniel J. Boorstin, The discoverers
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Informal outline Terra incongnita: Thinking machines?

John McCarthy first coined the term artificial intelligence in 1956
when he invited a group of researchers from a variety of disciplines to
discuss what would ultimately become the field of AI. At that time,
the researchers came together to clarify and develop the concepts
around “thinking machines” which up to this point had been quite
divergent.

The proposal for the conference said:
The study is to proceed on the basis of the conjecture that
every aspect of learning or any other feature of intelligence
can in principle be so precisely described that a ma-
chine can be made to simulate it.
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Informal outline Brains and minds

Reading: Jeff Hawkins, A thousand brains: a new theory of intelligence.
Basic books, 2021. See [1].
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Informal outline DL, RL, ML (AL), AI

Figure 2.1: Inclusion relations: DL ⊂ RL ⊂ ML (AL) ⊂ AI (cf. [2]).
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Informal outline AI Watch (EU)

Figure 2.2: Extracted from [3, page 11]
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Informal outline Data and supervised learners: A historical analogy

H = {h}
D

World – Observer1

1 Urbi et Orbi engraving (Flammarion). Tycho Brahe (observer model): He experienced the solar eclipse of 21 August
1560 [he was 15], and was greatly impressed by the fact that it had been predicted, although the prediction based on
current observational data was a day off. He realized that more accurate observations would be the key to making
more exact predictions. 2 Ephemeris: Tables of planet and comet positions over time.
3 Inductive bias. Greeks: circles around Earth. 4 Loss, risk, regret. How close are predictions to observations?
5 Learner model (Kepler): Ellipses with a focus at the Sun. Today: Learning algorithm. 6 Hopefully, h ≈ f∗.

Data, expert tables2

{(x1, y1), . . . , (xm, ym)}

Hypothesis space3

Error measure4
Learner/LA5

=⇒ y = h(x)

Prediction rule6

xj ∼ P, yj = f ∗(yj)
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Informal outline Data and supervised learners: a recent example

[4, Abstract] (but see also [5]):

“Neural networks have a reputation for being better at solving
statistical or approximate problems than at performing calculations or
working with symbolic data.

In this paper, we show that they can be surprisingly good at more
elaborated tasks in mathematics, such as symbolic integration and
solving differential equations.

We propose a syntax for representing mathematical problems, and
methods for generating large datasets that can be used to train
sequence-to-sequence models.

We achieve results that outperform commercial Computer Algebra
Systems such as Matlab or Mathematica.”

One dataset for learning symbolic integration is formed by a large
number of pairs (f ′, f ), where f is an expression and f ′ its derivative.
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Informal outline Unsupervised learning: non-parametric clustering

Aimed at finding hidden structure in data.

k-Means. This algorithm groups unlabeled data D in k classes:

(1) Select k vectors z1, · · · , zk ∈ D at random.

(2) Assign each x j ∈ D to the first z i nearest to x j (initial groups).

(3) Update each z i to the centroid (or mean) of the z i group.

(4) Iterate (2) and (3) until the z i are stable (up to a tolerance).

The associated cluster predictor assigns x to the first nearest z i .

k-NN (nearest neighbors). Let D = {(x1, y 1), · · · , (xm, ym)} be a
labeled set and k a positive integer. The label predictor of the k-NN
algorithm assigns a vector x to the mode of y j1 , · · · , y jk , where
x j1 , · · · , x jk are the nearest neighbors of x from among x1, · · · , xm.
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Informal outline Reinforcement learning

Algorithm learns to react to an environment

Environment

Agent

A
ct
io
n

R
ew

ar
d State
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Informal outline Reinforcement learning
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Informal outline Reinforcement learning in mathematical research

“We demonstrate how by using a reinforcement learning algorithm,
the deep cross-entropy method, one can find explicit constructions
and counterexamples to several open conjectures in extremal
combinatorics and graph theory.

Amongst the conjectures we refute are a question of Brualdi and Cao
about maximizing permanents of pattern avoiding matrices, and
several problems related to the adjacency and distance eigenvalues of
graphs.” [6, Abstract].

An interesting feature is that in some cases the learning algorithm
does not produce directly a counterexample but graphs which are
close to refuting the conjecture; these graphs have a special structure
and give a very clear indication about where to search for
counterexamples. See IMTech NL01, p. 20
(https://imtech.upc.edu/en/communication/nesletter/nl01_web.pdf).
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Introductory problems
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Introductory problems Linear classifications

X ⊆ Rn, Y = {−1, 1}.

D = {(x1, y 1), . . . , (xm, ym)} (dataset, x j ∈ X, y j ∈ Y).

D is linearly separable if there is a hyperplane h(x) = w · x + b
(w ∈ Rn, b ∈ R)) such that y jh(x j) > 0 (j ∈ [m]).

In general, there are (if any) infinitely many separating hyperplanes.

Problem. Find the separating hyperplane such that the points on
either side are as far as possible from the hyperplane.

This idea leads to the notion of margin and the appearance of
support vectors.
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Introductory problems Linear classifications

w · x+ b = 0 w′ · x+ b′ = 0

Figure 4.1: Separation by hyperplanes and support vectors. On the left,
the white points (+1) and the black points (−1) are linearly separable.
On the right we see the same set of points and the greatest margin
separator, which is computed by the SVM algorithm described later.
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Introductory problems Linear classifications
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A simple geometric classification algorithm: given two classes of points (depicted by ‘o’ and
‘+’), compute their means c+, c− and assign a test pattern x to the one whose mean is closer.
This can be done by looking at the dot product between x− c (where c = (c+ + c−)/2) and
w = c+ − c−, which changes sign as the enclosed angle passes through π/2. Note that
the corresponding decision boundary is a hyperplane (the dotted line) orthogonal to w [the
perpendicular bisector of c+c−].

Adapted from [7, Fig. 1.1].
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Introductory problems Linear regression

X ⊆ Rn (n ⩾ 1), Y = R.

D = {(x1, y 1), . . . , (xm, ym)} (dataset, x j ∈ X, y j ∈ Y).

Problem. Find an affine linear map h : Rn → R,

h(x) = w · x + w0, w ∈ Rn, w0 ∈ R,

such that ŷ j = h(x j) are as close as possible to the y j (regression
hyperplane).

For n = 1, regression line; regression plane for n = 2.
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Introductory problems Linear regression

Figure 4.2: Regression line for a dataset in R× R. Image from
https://en.wikipedia.org/wiki/Linear_regression.
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Introductory problems Introductory problems: Polynomial fitting

D = {(x1, y 1), . . . , (xm, ym)} (x j , y j ∈ R).

Problem. Find a polynomial map p : R → R of degree r ,

p(x) = w0 + w1x + · · ·wr · x r , w0,w1, · · · ,wr ∈ R,

such that ŷ j = p(x j) are as close as possible to the y j (polynomial
approximation of degree r).

Figure 4.3: Cubic approximation of a dataset in R× R.
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Introductory problems Logistic regression

The logistic regression is linear regression of log p/(1− p).

p

1− p

p p

log
p

1− p

Figure 4.4: For probability values p ∈ [0, 1] it makes no sense to apply
linear regression procedures. Left: graph of the odds function, p/(1− p),
for p ∈ [0, 1]. Right: graph of log(p/1− p), with symmetry about the
point (1/2, 0), so linear regression of its values is in principle possible.

If log(p/1− p) = w · x (x ,w ∈ Rn), then p = p(x) = 1/(1 + e−w ·x)
estimates the probability of the observations x .
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Introductory problems Logistic regression

The function 1/(1 + e−t) is the logistic function. Its range is (0, 1).
A variation is the function (1− e−t)/(1 + e−t), with range (−1, 1).

y =
1

1 + e−t

y =
1− e−t

1 + e−t

Figure 4.5: Logistic (or sigmoid) functions.
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General references
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General references (current maps)

General: [8], [9]*, [2]*, [10], [11], [12], [13], [14].

Bayesian approaches: [15], [16], [17].

Applications: [18], [19], [20], [21], [22].

The many facets of the symbiosis Mathematics & Computation are
appraised in [23]* (in particular, Chapter 17 is devoted to
computational learning theory).

See also the extensive survey [24] and Marr’s blog [25].

Expository (in Catalan): [26]*.
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A model for supervised
learning

Data sources and experts/supervisors
Inductive hypotheses and their complexity

Loss functions
Empirical risk and the task of a supervised learner

Training and validation
Error decomposition and regret bound
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A model for supervised learning Data/input domain

X, the space (or set) from which data is extracted.

Information theory allows to assume, in important cases, that this
data is represented by vectors of some Rn.

For N pixel monochrome images, X is (a region of) RN .

For RGB images, a region of R3N .

The dimension of these spaces for images of interest (N or 3N) is
very large.

In general, then, we must be prepared to have to deal with input
spaces X of very large dimension, a scenario in which the
mathematical methods that work for low dimensions are no longer
valid.
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A model for supervised learning Data generation

It is governed by the random selection of elements x of X according
to a probability distribution P over X, x ∼ P in symbols.

Generally, P is very far from the uniform distribution.

For example, the images we usually run into have regularities that
markedly distinguish them from those formed by randomly and
independently selected pixels according to the uniform distribution.

And a similar observation holds true for other forms of data, such as
voice or music signals.
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A model for supervised learning Expert or supervisor

A function f ∗ : X → Y.

For each x ∈ X, x ∼ P , the expert produces an example:

(x , y) with y = f ∗(x).

To deal with ‘uncertainties’ and ‘noise’, we may allow f ∗(x) to be a
probability distribution Px on Y, which amounts to a probability
distribution, still denoted by P , on X× Y:

P(x , y) = P(x)Px(y).
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A model for supervised learning Hypotheses space

It is a space H of functions h : X → Y.

The selection of such a space is known as inductive bias, as it usually
transcribes a priori heuristics about the expected form of the solution.

The space H is often specified as a parameterized set of functions:

H = {hw (x) = H(w , x)}w∈W ,

where W is a set and H : W × X → Y.

In the case of linear regression, H is the space of linear affine maps,
or multivariate polynomials of degree 1. The same space is involved
in the linearly separable binary classification.

As we will see, a neural network can be seen as a parameterized
family of nonlinear functions, a feature on which rests their resilience
in algorithmic learning. In this context, the parameters are usually
called weights of the network.

In case the expert belongs to H, we say that it is realizable.
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A model for supervised learning Hypothesis space: Complexity

The measure of the complexity of the hypotheses is a function
γ : H → R+.

Example: γ(h) = ||h|| (the norm of h) when H has this resource.

For all δ ∈ R+, we set Hδ = {h ∈ H : γ(h) ⩽ δ}.

In the case of the norm, it is the (closed) ball of H of radius δ,
which has the advantage of being a convex set.

The sets Hδ provide a means for grading the search effort within H

according to increasing complexity.
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A model for supervised learning Loss functions

The loss of h ∈ H is an indicator, denoted by L(h), of the separation
between h i f ∗.

Example. The expectation L(h) = EP |h(x)− f ∗(x)|2.

More generally, we can choose L(h) = EP ℓ(h(x), f ∗(x)), where
ℓ : Y× Y → R is a non-negative function with ℓ(y , y ′) = 0 if and only
if y = y ′ (we say ℓ is a point-wise loss function).

The minimum loss achievable by functions h ∈ H, minh∈H L(h), will
be denoted by LH.

If f ∗(x) is a probability distribution Px on Y, ℓ(h(x), f ∗(x)) has to be
replaced by EPx ℓ(h(x), y).

In some application domains, the loss is called risk, and still in others,
error.
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A model for supervised learning Training datasets and the task of a supervised learner

A training data set is a set of examples

D = {(x i , y i = f ∗(x i)) : x i ∈ X)}i∈[m]

produced by the expert, where x i ∼ P independently.

In general terms, the goal of the learner is to approximate the
expert f ∗.

In terms of the ingredients available to the learner (D, H, L), this
goal can be specified as

the production of an estimator f̂ ∈ H, using only D, such
that L(f̂ ) ≈ LH = minh∈H L(h).
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A model for supervised learning Empirical risk

The estimator f̂ is constructed by minimizing the empirical risk L̂D(h)
(for h ∈ H), which is defined by the formula

L̂D(h) =
1

m

m∑
i=1

|h(x i)− y i |2.

This minimization problem is called empirical risk minimization
(ERM).

The expression |h(x i)− y i |2 has to be replaced by ℓ(h(x i), y i) if the
loss function L is defined in terms of the point-wise loss ℓ.

As we will see later, the empirical risk minimization is carried out by
methods that are generically known as gradient descend algorithms.
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A model for supervised learning Empirical risk

Since there is a (random) discrepancy between the functional we
would like to minimize (L(h), which is unknown to the learner) and
the functional available to the learner (the empirical risk L̂D(h)), it is
necessary to introduce some kind of restriction or regularization in
order to be able to handle these fluctuations.

For example, we can consider the δ-restricted empirical risk,

L̂D,δ = min
h∈Hδ

L̂D(h) , (1)

or the λ-regularized, or λ-penalized, empirical risk,

min
h∈H

(
L̂D(h) + λγ(h)

)
, (2)

where γ(h) is the complexity of h (introduced on page 31) and λ is a
fixed positive constant.

The role of the term λγ(h) is to penalize high complexity
hypothesis.
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A model for supervised learning Error decomposition

H

Hδ

F

f ∗

fH
fHδ

f̂D,δ

ϵa

ϵo

ϵs

Approximation error

Optimization error Statistical error

Figure 8.1: F denotes the (large) unknown universe to which the supervisor f ∗

belongs (thus F is a subset of the set of all maps X → Y). We also depict the
hypotheses space H as a subset of F (in general f ∗ ̸∈ H) and Hδ (a ball of
radius δ if the complexity is a norm). fH ∈ H and fHδ

∈ Hδ denote functions
achieving the least cost LH and LHδ

for functions in H and in Hδ, respectively.

And f̂ = f̂D,δ ∈ Hδ denotes the function returned by an ERM algorithm selected

so that L̂D(f̂ )− L̂D,δ ⩽ ϵ. It depends on D, δ and ϵ and its computation cost
increases when δ increases or ϵ decreases.
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A model for supervised learning Error decomposition

Given an estimator f̂ ∈ H supplied by ERM, now we seek to bound
the difference L(f̂ )− LH, an amount that some authors call regret (of
having chosen f̂ ), as it expresses the discrepancy that would be
reported by an orable that knew L(f̂ ) and LH.

This regret can be decomposed as follows ([27], [28], [13]):

L(f̂ )− LH = L(f̂ )− LHδ
+ LHδ

− LH.

The significance of LHδ
− LH is described below under the name of

approximation error and is denoted ϵa (cf. Fig. 8.1).

On the other hand we can write

L(f̂ )− LHδ
= L(f̂ )− L̂D(f̂ ) + L̂D(f̂ )− L̂D,δ + L̂D,δ − LHδ

.

The difference ϵo = L̂D(f̂ )− L̂D,δ is analyzed below under the label of
optimization error (cf. Fig. 8.1).
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A model for supervised learning Error decomposition

It remains to consider the sum L(f̂ )− L̂D(f̂ ) + L̂D,δ − LHδ
, which we

proceed to bound above.

On one hand, it is clear that L(f̂ )− L̂D(f̂ ) ⩽ ϵs, where
ϵs = suph∈Hδ

|L(h)− L̂D(h)| and studied below under the name
statistical error, or also fluctuation error.

And on the other hand we also have L̂D,δ − LHδ
⩽ ϵs, because if

h ∈ Hδ satisfies LHδ
= L(h), then

L̂D,δ − LHδ
⩽ L̂D(h)− L(h) ⩽ |L(h)− L̂D(h)| ⩽ ϵs.

These considerations can be summarized as follows (cf. Fig. 8.1):

Theorem (Regret bound)

L(f̂ )− LH ⩽ ϵa + ϵo + 2ϵs.
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A model for supervised learning Approximation error

It has been defined as the difference ϵa = LHδ
− LH.

It is non-negative and decreases when δ increases;

It does not depend on the data D;

It measures the approximation of the minimum loss LH of H that
can be achieved with functions from Hδ.
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A model for supervised learning Optimization error

For h ∈ Hδ, ϵo = L̂D(h)− L̂D,δ, where L̂D,δ is the least empirical loss
of functions from Hδ.

In practice, a tolerance ϵ > 0 is fixed and an ERM algorithm is run to
produce f̂ ∈ Hδ such the the optimization error is ⩽ ϵ, that is,

L̂D(f̂ )− L̂D,δ ⩽ ϵ. (3)

The main effort to achieve (3) is computational, and it increases
when ϵ decreases.
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A model for supervised learning Statistical error

For h ∈ Hδ, |L(h)− L̂D(h)| is the error produced on substituting the
loss L(h) by the empirical loss L̂D(h).

In the worst case, this error is ϵs = suph∈Hδ
|L(h)− L̂D(h)|, a quantity

introduced before as statistical error, or fluctuation error. It is also
generalization error.
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Appendices
The Vapnik-Chervonenkis capacity

The Pollard dimension
The Rademacher complexity
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Appendix A The Vapnik-Chervonenkis capacity

Assume that H is a space binary hipothesis h : X → {0, 1}, which we
can identify with subsets of X: h ↔ h−1(1) = 1h(x)=1.

We say that H shatters a finite subset Z ⊂ X when any binary
function of Z is the restriction to Z of some h ∈ H.

The Vapnik-Chervonenkis dimension (or capacity) of H, denoted by
VC(H), is the maximum cardinal of a finite subset Z ⊂ X shattered
by H, if this maximum exists, and ∞ otherwise.

To determine that VC(H) = k < ∞, if suffices to exhibit a subset Z
of cardinal k shattered by H and to show that no subset of cardinal
k + 1 can be shattered by H.

In the case of infinite capacity, it is required to establish that for any
k ∈ N there is a subset of cardinal k that is shattered by H.
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Appendix A The Vapnik-Chervonenkis capacity

Example (1). Let X = R and let H be the set of positive semilines
[a,∞), a ∈ R. Then VC(H) = 1. Indeed, given Z = {z}, z ∈ X,
there are semilines that contain z and others that do not, which says
that Z is shattered by F. On the other hand, if Z = {z , z ′} ⊂ R,
z < z ′, any semiline containing z also contains z ′, which shows that
Z is not shattered by F.

Example (2). Still in R, consider the set H of closed intervals. Then
VC(H) = 2. Indeed, if Z = {z , z ′} as in the previous example, there
are closed intervals that are disjoint from Z , others that contain Z ,
and others that contain z and not z ′ or that contain z ′ and not z .
But if Z = {z , z ′, z ′′}, z < z ′ < z ′′, there is no closed interval
containing z and z ′′ that does not contain z ′, which shows that no Z
of cardinal 3 can be shattered by H. Notice that in the example (1)
we would also have capacity 2 if we had considered positive and
negative semilines.
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Appendix A The Vapnik-Chervonenkis capacity

Example (3). Let H be the space of half-planes in the plane X = R2.
A set Z of three non-colinear points of X is shattered by F, as for
any subset Z ′ of Z there are half-planes h such that h ∩ Z = Z ′. On
the other hand, no subset of X of cardinal 4 can be shattered by H.
To see this, first note that we may assume that Z does not contain
three colinear points, for a half-plane that contains the endpoints of a
segment in fact contains the whole segment. We can also assume
that none of the four points lies in the interior of the triangle formed
by the other three, for this point would automatically belong to any
half-plane containing the triangle. So we may assume that the four
points form a convex quadrilateral. But in this case no half-plane
that contains the endpoints of one diagonal can exclude the
endpoints of the other diagonal. In conclusion, VC(H) = 3.
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Appendix A The Vapnik-Chervonenkis capacity

Example (4). Example (3) is valid in any dimension d ⩾ 2, in the
sense that the capacity of the set H of half-spaces of X = Rd is
d +1. To see this, the easiest part is to find a set Z of cardinal d +1
that is shattered by H. Let Z = {z0, z1, . . . , zd}, where z0 is the
origin and zj , j = 1, · · · , d , the unit point on j-th coordinate axis.
Let {0, 1, . . . , d} = A ⊔ B be an arbitrary partition of {0, 1, . . . , d}
and set wj = 1 if j ∈ A and wj = −1 if j ∈ B . Then the half-space
defined by the hyperplane h(x) = w0/2 + w1x1 + · · ·+ wdxd = 0
contains (excludes) the points zj for j ∈ A (j ∈ B). Indeed, we have
h(z0) = w0/2 and h(zj) = w0/2 + wj for j > 0, which imply that
h(zj) has the same sign as wj for any j . Thus Z is shattered by H.
To conclude, we need to show that no subset Z of cardinal d + 2 can
be shattered by H. This is a consequence of the fact that there
exists (Radon lemma) a partition Z = Z ′ ⊔ Z ′′ such that
[Z ′] ∩ [Z ′′] ̸= ∅, where [Z ′] and [Z ′′] denote the convex hulls of Z ′

and Z ′′. Indeed, if there were a half-space separating Z ′ and Z ′′, it
would also separate [Z ′] and [Z ′′], which is impossible.
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Appendix A The Vapnik-Chervonenkis capacity

Example (5). Consider the family H of convex polygons in R2 with r
sides at most. We are going to see that the VC capacity of this
family is 2r + 1 (for the discussions that follow, see the illustrations
in Fig. 10.1). Indeed, let Z be a set of 2r + 1 points on a
circumference C and form an arbitrary partition Z = Z ′ ⊔ Z ′′. Since
either |Z ′| ⩽ r or |Z ′′| ⩽ r , we will deal with each case separately. If
|Z ′| ⩽ r , the convex polygon P ′ whose vertices are Z ′ satisfies
P ′ ∩ C = Z ′ and hence P ′ ∩ Z = Z ′. If instead we have |Z ′′| ⩽ r , the
polygon P ′′ whose sides are the tangents to C at the points of Z ′′,
displaced (the tangents) infinitesimally toward the center of C ,
satisfies P ′′ ∩ Z = Z ′.
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1

2

3
4

5

6

7

8

9

Z = {1, 2, . . . , 9}

Z ′ = {2, 3, 6, 9}

Z ′′ = {1, 4, 5, 7, 8}

r = 4; 2r + 1 = 9 1

2

3
4

5

6

7

8

9

Z ′′ = {2, 4, 6, 9}

Z ′ = {1, 3, 5, 7, 8}

Figure 10.1: The VC capacity of convex 4-gons is 9. Left: the convex hull
[{2, 3, 6, 9}] excludes {1, 4, 5, 7, 8}. Right: construction of a convex 4-gon
including {1, 3, 5, 7, 8} and excluding {2, 4, 6, 9}.
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Now we have to show that no set Z of 2r + 2 points can be
shattered by H. Assume first that the points are the vertices of a
convex 2r + 2-gon, and number them consecutively around with
j = 1, · · · , 2r +2. Let Z ′ (Z ′′) be the subset of Z whose index is odd
(even). Then there is no convex r -gon P such that P ∩ Z = Z ′

because the r sides of P ought to separate the r + 1 pairs of vertices
with indices 2j − 1, 2j , j = 1, · · · , r + 1 (see Fig. 10.2). To end, note
that if the points Z are not the vertices of a convex 2r + 2-gon, then
one of the points, say z , lies in the convex hull of the remaining
points, which implies that there is no convex r -gon P such that
P ∩ Z = Z − {z}.

The reasoning so far can be easily modified in order to show that the
family of convex polygons with exactly r sides also has capacity
2r + 1. Finally, note that the family of all convex polygons, with any
number of sides, has capacity ∞.
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Figure 10.2: The VC capacity of triangles is 7. The image illustrates that
no triangle can contain the four red dots and exclude the four blue dots.
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Appendix A The Vapnik-Chervonenkis capacity

The role of VC capacity with respect to the generalization problem is
encapsulated in the following statement.

Theorem. Let k = VC(H) and assume that k < ∞. Then we have:

(1) L(h) ⩽δ L̂D(h) + O

(√
k+ln(1/δ)

n

)
.

Alternatively, n ⩾ O
(

1
ϵ2
(k + ln(1/δ)

)
guarantees that

|L(h)− L̂D(h)| ⩽δ ϵ.

(2) If h ∈ H satisfies LD(h) = 0, then n ⩾ 8
ϵ
(k ln(16/ϵ) + ln(2/δ))

guarantees that L(h) ⩽δ ϵ. Remark: the expression of the lower
bound on n is O

(
k
ϵ
ln(1/ϵ) + 1

ϵ
ln(1/δ)

)
.

In terms of loss, L(h) ⩽δ O
(
1
n
(k ln(n/k) + ln(1/δ)

)
if LD(h) = 0.
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To end, let us also take notice of what happens when VC = ∞ (cf.
[9, Th 6.6].

Theorem For a class of binary hypothesis H such that VC(H) = ∞,
there exist oracles that no algorithm can learn.
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Appendix B The Pollard dimension

This notion amounts to an extension of the VC capacity to the case
of real-valued functions.

Assume that Y = [0,K ] ⊂ R, so that H is a set of functions
h : X → [0,K ]. Let X = {x1, . . . , xm} be a subset of X. We say that
H shatters X with witnesses t1, . . . , tm ∈ R if for any subset X ′ of X
there is a function h ∈ H such that h(x j) ⩽ tj or h(xj) > tj
according to whether xj ∈ X ′ or xj ̸∈ X ′.

The Pollard capacity (or dimension) of H, which we will denote
Pol(H), is the greatest cardinal of a subset X of X that H can
shatter. In the binary case, Y = {0, 1}, we clearly have
Pol(F) = VC(F). Another example is the equality Pol(H) = dim(H)
when H is a vector space of real functions of finite dimension.

With the notations introduced above, let p = Pol(H) and D ∼ Pm,
that is, a subset of m elements of X drawn independently according
to the probability P . Then we have:
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Theorem (Pollard, 1984) For any h ∈ H,∣∣∣L̂D(h)− Ex∼P [h(x)]
∣∣∣ ⩽δ K

√
2p

m
ln
em

p
+ K

√
1

2m
ln
1

δ
.

Alternatively,∣∣∣L̂D(h)− Ex∼P [h(x)]
∣∣∣ ⩽δ ϵ for m ⩾ 8K2

ϵ2

(
p ln 8K2

ϵ2
+ 1

4
ln 1

δ

)
.
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This notion can be defined for any family H̃ of functions
h̃ : Z → [a, b] ⊂ R, where (Z,P) is a probability space, and its

purpose is to gauge the capacity of H̃ to accommodate a certain
kind of binary random noise.

In the application to the basic model, we will have Z = X× Y, with
P(z) = P(x , y) = P(y |x)P(x) = Px(y)P(x), and H̃ will be the
family of functions h̃ : X× Y → R, h ∈ H, defined by the relation:

h̃(x , y) = ℓ(h(x), y), (4)

where ℓ is a point-wise loss function.
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In fact, it is convenient to cosider two notions of Rademacher
complexity: Radz(H̃), where z = {z1, . . . , zm} is a sample (zj ∼ P),

and Radm(F̃).

The latter is the Rademacher complexity (for samples of length m)
and the former the empirical Rademacher complexity (relative to the
sample z).

To define them, we need to introduce the Rademacher variables
σ = σ1, . . . , σm to represent a binary random noise. These are
independent random variables, one for each item in the sample, with
equiprobable values {−1, 1}.
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The correlation of a sample of this noise and the values
h̃(z) = h̃(z1), . . . , h̃(zm) is expressed by the sample mean of the dot
product σ · h̃(z), namely σ · h̃(z)/m.

With this notion we are ready to define the two flavors of the
Rademacher complexity:

Radz(H̃) = Eσ

[
sup
h̃∈F̃

σ · h̃(z)
m

]
and Radm(H̃) = Ez∼Pm [Radz(F̃)]. (5)

Theorem For all δ > 0 and h̃ ∈ H̃, the following inequalities hold:

E z∼P [h̃(z)] ⩽δ L̂z(h̃) + 2Radz(H̃) + 3

√
ln 2

δ

2n
(6)

E z∼P [h̃(z)] ⩽δ L̂z(h̃) + 2Radn(F̃) +

√
ln 1

δ

2n
. (7)
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Translating these results to the basic model, via the space H̃

associated to H described at the beginning of this section, we obtain:

Theorem (Rademacher bound) Let H a hypothesis space and D a
dataset of length m. Then, for all h ∈ H, the following inequality
holds:

L(h) ⩽δ L̂D(h) + 2Radm(H) +

√
ln(1/δ)

2m
. (8)

If we regard h̃(z) ∈ Rm as an abstract vector a ∈ Rm, we can define
Rad(A) = Eσ[supa∈A

σ·a
m
] for any A ⊆ Rn, a notion that facilitates

the study of the Rad properties.
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Theorem (Rad bound) Let A ⊂ Rm be finite, and let
L = sup

a∈A ∥a − ā∥, where ā is the centroid of A. Then

Rad(A) ⩽
L
√

2 ln |A|
m

. (9)

If H is a hypothesis class such that VC(H) = k , and D ∼ Pm, then

RadD(H) ⩽

√
2k lnm

m
. (10)
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