A Clifford perspective
on

Klein’s Geometry




ABSTRACT

Klein's Erlangen Program provided an organizing principle for geometry
based on the notion of group of transformations and the study of its inva-
riants. It allowed, in particular, to think of projective geometry as a unify-
ing framework for affine, metric and hyperbolic geometries (or, in Cay-
ley's motto, “Projective geometry is all geometry”).

The impact of these ideas on the teacher's training was developed in de-
tail one century ago in the volume “Geometrie”, the second of "Elemen-
tarmathematik vom hoheren Standpunk aus".

In the talk we will present, after a brief outline of the main features of
the book and of how it can account for “newer” geometries, such as the
special theory of relativity, a proposal of guidelines for its updating using
“geometric algebra” (first introduced by Clifford, as a generalization of
Grassmann's algebra and Hamilton’s quaternions, it has developed into a
unified basis for geometry and its applications, not only across pure ma-
thematics, but also in physics, engineering and computation).
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CONTEXT AND MOTIVATIONS

» Teaching
=  Geometry (3" Semester)
= Mathematical models of physics (6™ Semester)
" Preparing a program for
Multilinear Algebra and Projective Geometry
(3rd Semester —after Linear Algebra, in 1* Semester, and
Affine and Euclidean Geometry in 2" Semester)
» Life and work of Sir Michael Francis Atiyah
(exponent of geometric innovation: deep results and
connections between geometry, analysis, topology and
mathematical physics; also concerned with education)
» The “Funchal challenge”
(how best to meet the needs of prospective teachers of
mathematics —ambitious, worthwhile)



KLEIN'S GEOMETRY

*
COSIMO CLASSICS

ELEMENTARY
MATHEMATICS FROM
AN ADVANCED
STANDPOINT:

| Arithmetic, Algebra Analysm
FELIX KLEIN
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ELEMENTARMATHEMATIK VOM HOHEREN STANDPUNKTE AUS
AAA

= Concern with the different ways in which the problem of instruction
can be presented to the mathematician.

= Subject matter of instruction: endeavor to put before the teacher, as
well as the maturing student, from the viewpoint of modern science,
but in a manner as simple, stimulating, and convincing as possible, both
the content and the foundations of the topics of instruction, with due
regard for the current methods of teaching.

= Mental spur, not a detailed handbook.

" Endeavor, as always, to combine geometric intuition with the precision
of arithmetic formulas, and ... following historical developments of the
various theories.
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= Appreciation of the growing significances of applied mathematics for
modern school instruction [physics and engineering]

®* Emphasize mutual connection between problems in the various fields,
a thing which is not brought out sufficiently in the usual lecture course,
and the relation of these problems to those of school mathematics.

" Function concept at the very center of instruction ... with constant use
of graphical method.

= Strong development of space perception, [...] will always be a prime
consideration.



GEOMETRY

Comprehensive view of the field of geometry, of such a range as | should
wish every teacher in a high school to have; the discussions about geo-
metric instruction were pushed into the background and were placed in
connected form at the end.

Unified presentation.

[Yaglom, in F. Klein and S. Lie] The basic principles expounded by Klein
were: more of the graphical element in teaching, greater attention to the
functional viewpoint in algebra and analysis, and application of geometric
transformations in the teaching of geometry.

I”

He called for the elimination of the “China wall” separating different ma-
thematical subjects, for taking into account the needs of related fields in
mathematics courses, and for decreasing the gap between mathematical

education and contemporary science.



CONTENTS

Part One: The simplest geometric manifolds
Part Two: Geometric transformations

Part Three: Systematic discussion of geometry and its foundations



10
Part One: The simplest geometric manifolds

1. Line-segment, area, volume, as relative magnitudes

2. The Grassmann determinant principle for the plane

3. The Grassmann principle for space
[system of magnitudes defines new geometric entity if its expression is
the same in all coordinate systems, i.e. x;y1 + X,V + X3Y3 Or

(X2Y3 — X3Y2,X3Y1 — X1¥3, X1Y2 — X2Y1) |

4. Classification of elementary configurations of space according to their
behavior under transformations of rectangular coordinates.
[geometric property < invariance under change of coordinates]

5. Derivative manifolds

Interesting points: discussion of Amsler’s Polar Planimeter; [one-sided]
surfaces with no area/volume; a [coordinate dependent] version of
Grassmann’s approach to extended geometrical quantities; applications
to statics (geometry of null systems, for example).



Table on page 46
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TRANSLATION ROTATION INVERSION | RESCALING
Free Vector X a X + b,Y + ¢ Z —X AX
Couple L a.L + b;M + ¢,N L A2L
Free Plane-Magnitude L a & + bW+ ¢ N 2 128

(X,Y,Z) polar vector, (L, M, N) couple, (£, M, ) free plane magnitude

(axial vector).

a, a; das
,41=(b1 b, bs

¢4 € (3

) orthogonal matrix.




12

The terminology which is usual today in vector calculation comes historical-
ly [...] from Hamilton’s quaternion calculus and from Grassmann’s theory
of extension. The developments of Grassmann were hard to read and re-
mained unknown to German physicists; for a long time they formed a sort
of esoteric doctrine for small mathematical groups. The ideas of Hamilton
[...] made their way into English physics, mainly through Maxwell. [...] in his
opinion it was desirable [...] to avoid the introduction of coordinates and to
draw attention instantly to a point in space instead of to its three coordi-
nates, and to the direction and magnitude of force rather than to its three
components. That which today is called vector calculus of the physicist is
derived from the work of [...] Heaviside and [...] Gibbs. Although [...] Hamil-
tonian at the start, they both took over Grassmann’s ideas into their calcu-
lus. [...] The first book that introduced the vector calculus into the circle of
German physicists, and that after the manner of Heaviside, was A. Foppl’s
Einftihrung in die Maxwell’sche Theorie, which appered in 1894. [pp. 52 &
53]
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= Unnatural way [through coordinates] of understanding Grassmann’s
principle. Certain ambivalence between “change of coordinates” and
“geometric transformations”.

= Lack of linear algebra does not favor proving formulas for area such as

€1°€61 €16

Aley, €2)* = €, €1 €€

= dete” - e = |e; A eyl?,

and similarly for volume, V (e, e5, €3) (generalizing |e|? = e - e).

= No reference to the seminal paper of W. K. Clifford (Exeter, 1845 — Fun-
chal, 1879), Applications of Grassmann’s Extensive Algebra: Amer. ).
Math. 1, No. 4 (1978), pp. 350-358. Under the name of geometric alge-
bra, Clifford proposes a synthesis of Grassmann and Hamilton systemes.

= Gibbs and Heaviside focused on the vector algebra of Grassmann, but
devoted little attention to the “extended magnitudes”.
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Part Two: Geometric transformations

1. Affine transformations
[relation of affine transformations to parallel projection; theory of
conjugate diameters for ellipses; applications to drawing (cf. p. 83)]
2. Projective transformations
[relation to affine transformations; cross-ratio; only one conic]
3. Higher point transformations
[inversions and Peaucellier inversor; map projections; topology]
4. Transformations with change of space element
[duality; contact transformations; applications to gear design]
5. Theory of the imaginary
[a circle is a conic through the cyclic points; geometric involutions]
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Part Three: Systematic discussion of geometry and its foundations

1. The systematic discussion
= Affine group = projective transformations that leave invariant the
improper line (case of plane) or plane (case of space);
= Euclidean group = affine transformations that leave invariant the
cyclic points (or the imaginary circle at infinity);
= The role of invariants and methods for finding them (all);
2. Foundations of geometry
" Many axiomatic systems are possible;
= Own system of axioms emphasizing transformations;
= Cayley-Klein model for hyperbolic geometry (pp. 180-184):

$1$2 + MMy — T4 T3

V& + i —TiVEE + g - 1
(k pure imaginary, [{1,11,71] and [£,, 175, T, ] two points in

r = k acos

homogeneous coordinates).
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GEOMETRY AFTER KLEIN

(|V|OSTLY IN RELATION TO TOPOLOGY, ANALYSIS, MATHEMATICAL PHYSICS, )
H. Weyl: Gravitation und Elektrizitat (Sitzber. Preuss. Akad. Wiss., 1918)

0. Klein: Quantentheorie und finfdimensionale Relativitatstheorie
(Z. Phys, 1926)

P. M. Dirac: The quantum theory of the electron (Proc. Royal Soc., 1928)
R. Brauer, H. Weyl: Spinors in n-dimensions (AJM, 1935)

E. Cartan: The theory of spinors (Hermann, 1937; Dover, 1981)

N. Steenrod: The topology of fiber bundles (Princeton Univ. Press, 1951)

R. Thom: Quelques propriétés globales des variétés différentiables
(L’Enseignement Math., 1954)

E. Artin: Geometric Algebra (Interscience, 1957)
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M. F. Atiyah, F. Hirzebruch: Riemann-Roch theorems for differentiable
manifolds (BAMS, 1959)

J. Milnor: Morse theory (Princeton Univ. Press, 1963)

M. F. Atiyah, I. Singer: The index of elliptic operators (BAMS, 1963)

M. F. Atiyah, R. Bott, A. Shapiro: Clifford modules (Topology, 1964)

M. F. Atiyah: Geometry of the Yang-Mills fields (1979)

M. Freedman: The topology of 4-manifolds (J. Diff. Geo., 1982)

R. Penrose, W. Rindler: Spinors and space-time, | & Il (CUP, 1984 & 1986)
B. Lawson, M-L. Michelson: Spin Geometry (Princeton Univ. Press, 1989)
M. F. Atiyah: The geometry and physics of knots (1990)

M. F. Atiyah: The Dirac equation and geometry (In Paul Dirac: the man
and his work, CUP, 1996)
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DESIDERATA FOR AN ENLIGHTENED PARADIGM

= To dissolve dichotomy between synthetic and analytic methods.

= Algebraic language should allow, favor and facilitate coordinate-free
representations and computations of objects and transformations.

=" The deep algebro-geometric nature of complex numbers and quater-
nions should emerge early in a natural way.

= Linear algebra, vector calculus, differential forms and spinors should be
naturally integrated in the paradigm. In particular, the geometric basis
of concepts such as polar and axial vectors should be easily clarified.

= The system should enhance and promote the connection of geometry
with the rest of mathematics, and with physics (mechanics, electro-
magnetism, relativity, qguantum theory) and engineering.

= The paradigm should facilitate discussion of the strengths and weak-
nesses of past and present trends. In particular, should throw light into
how to proceed with respect to elementary instruction.
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THE POTENTIAL OF GEOMETRIC ALGEBRA (GA)

The honing of GA (in the full sense of Grassmann and Clifford) as a viable
basis for a paradigm shift has been championed in the last 40 years by
David Hestenes, a physicist/mathematician at Arizona State University,
with important help and insights from others.

On the occasion of his being awarded the Oersted Medal (2002), he
wrote three very interesting papers that give an honest perspective of
the main developments and major applications, the philosophy that in-
spired them, and some views for the future:

Reforming the Mathematical Language of Physics (Oersted Medal
Lecture 2002, 43 pages)

Spacetime Physics with Geometric Algebra (Amer. J. Physics, 2003)

Gauge theory gravity with Geometric Calculus (Found. Phys, 2005)
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“Spacetime algebra (STA) simplifies, extends and integrates the mathe-
matical methods of classical, relativistic and quantum physics while eluci-
dating geometric structure of the theory”.

“The entire physics curriculum can be unified and simplified by adopting
STA as the standard mathematical language”.

Glimpses into the essence of GA

If a and b are vectors (say in the plane or
space), its inner product is a - b = |a||b]| cos «,

where a € [0, ] is the angle a, b.

The outer or exterior product of Grassmann,

the bivector a A b, represents the oriented parallelogram defined by a
and b. It is bilinear, associative, and vanishes if a and b are parallel. In
particular bAa = —aAb.
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Clifford defined the geometric product, ab, by
ab =a-b 4+ aAb(Yes, ascalar plus a bivector!)

It is bilinear, associative, and

a-b = ba ifaand b are parallel

ab = { a/Ab = —baifaand b are orthogonal

1

In particular, a> = aa = |a|?, and soa~! = a/|a|? (Yes, non-zero vectors

are invertible!). Moreover,a-b = %(ab + ba)andaAb = %(ab — ba)

Example. In the plane, if u;, u, is an orthonormal basis, the elements of
the geometric algebra have the form x = a + Au; + uu, + i, where
[ = u,u; = U, A uy. This bivector, which is often called the pseudoscalar
unit, satisfies i*> = —1, and rotates vectors by m/2: u, = iu; and
—u, = iu,. So we may write x = (a + i) + (A + ui)u,. Thus the geo-
metric algebra of the Euclidean plane contains the complex numbers (as
{a + Bi|a, B € R}). Note: ab = |a||b|(cos a + isina) = |a||b|e®.
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Proposition. If a is a unit vector, the map X —» —axa is the symmetry with
respect to a* (a line in the plane or a plane in space).

Proof. It is linear,a =» —aaa = —a, and if x € at, x » xaa = x.

Corollary. If a and b are two unit vectors with @ = a, b, and we let
R = ba, then the map x = RxR?, where Rt = ab, is a rotation of ampli-
tude 2a (we say that R is the rotor defined by a and b).

Graphical representation of rotations in Euclidean 3-space and interpre-
tation of the composition of rotations R = R,R;:

U, = ca
U2=bC
U = ba
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Example. In the Euclidean 3-space, if u, u,, us is an orthonormal basis, a
basis of the geometric algebra is

1 {w;} [{wu; =u;Au}|l=uuyu;
1 scalar|3 vectors| 3 bivectors 1 trivector
Note that I* = —1 and w;u; = Iuy, if {i, ], k} is a cyclic permutation of

{1,2,3}. So I gives an isomorphism between the space of vectors (polar
vectors) and the space of bivectors (axial vectors). Setting

i=1u1,j=1u2,k=1u3,

we see that i, j, k are rotors that rotate space with respect to the axes
u;, U,, U3 by a straight angle (axial symmetries), and that

i =j?=k*=ijk=-1.
Thus the even subalgebra {a + fi+ +yj+ 6k | a,[,v,5 € R} of the
geometric algebra of 3-space is the quaternion algebra of Hamilton.

[Pauli notations: o; instead of u; (1926)]
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Example. Consider an orthonormal basis {Vu} of a space-time (Dirac no-
tations), that is, a real 4-space of signature (1,3): n,,, = diag(+, —, —, —).
In this case the geometric algebra satisfies that y¢ = 1 and y# = —1 for
k = 1,2,3. More generally,

2 Yu Vv =YuVv T WYu = me :

These are the defining relations of the Dirac matrix algebra, which, there-
fore, provide a representation of the geometric algebra of the spacetime
(STA algebra). Letting I = y,Y1Y2Y3 (unit pseudo-scalar), and 6, = Y« Yo,
it is an exercise to check that [? = —1, that

20/ -0, =0;0,+0,0; =205

(the geometric algebra of Euclidean 3-space, in Pauli’s notation), and that
I = 0,0,03. Moreover, Iy, = —y,I (I anticommutes with all vectors).

We cannot go further here, but today Klein would most certainly explain
the GPS systems as an application of this example.
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For an interesting and novel application of this algebra, see the following
paper by A. N. Lasenby and C. J. L. Doran, of the Cavendish Laboratory:

Geometric Algebra, Dirac Wavefunctions and Black Holes

In P.G. Bergmann and V. de Sabbata (eds.): Advances in the Interplay
Between Quantum and Gravity Physics, 251-283, Kluwer (2002).

For a broad range of other developments and applications, see the addi-

tional references at the end.
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ENDING REMARKS

= GA permits reasoning about scalars, segments, areas, volumes,... in a
consistent, unified framework. Interesting geometric transformations
are produced by the geometric product.

= GA allows to see multidimensional analogies and phenomena hidden
to the direct intuition.

= Just as F. Klein does not mention Clifford, the descendants of Clifford
seldom mention Klein (exception: Hestenes and Sobczyk, on page xi
of Clifford Algebra to Geometric Calculus).

= The phrasing of Klein’s Geometry in present day terms is quite stan-
dard, but the thorough presentation with GA does not seem to be
available in full.

= GA yields, by its very nature, invariants of the relevant groups. The
guestion of how to get all the invariants has to be translated from
Klein’s coordinate approach to a coordinate-free formulation.



= Advantages of GA (after Hestenes):

L o N O Uk WN R

Coordinate-free formulation and computation.

Simple algebraic composition.

Geometric depiction of rotors as directed arcs.

Rotor products depicted as addition of directed arcs.
Integration of rotations and reflections in a single method.
Efficient parameterizations.

Smooth articulation with matrix methods.

Rotational kinematics without matrices.

The approach generalizes directly to Lorentz transformations.

27
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“The picture of mathematics that emerges from Klein’s book
does not so much resemble the unified perspective that he had
achieved in his own mind as a precarious journey from bridge
to bridge over the cracks and crevasses of mathematical
thought. For he was limited in his ability to express his cocep-
tions by the heterogeneous mathematical formalisms of his
age. To adequately represent Klein’s vision of mathematics as
a seamless whole and make his hard-earned insights common
property of the mathematical community, the diverse symbolic
systems of mathematics must be modified, coordinated and
ultimately united in a single mathematical language.”

Hestenes & Sobczyk,
Clifford Algebra and Geometric Calculus (p. xi)
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To finish, | would like to point out explicitly that | am not saying
whether elementary geometric algebra has to be taught at the
secondary level, and if it had to, | am not saying how (all this
ought to be discussed in detail by taking into account the more
relevant points of view). But | am certainly asserting that it
would be positive, in the spirit of “elementary mathematics
from an advanced viewpoint”, that mathematics teachers had
a reasonable knowledge of its basic ideas and applications.



30

ADDITIONAL REFERENCES

Lounesto, Pertti: Clifford algebras and spinors. London Math. Soc. LN Series
239, Cambridge University Press, 1997.

Baylis, William E.: Electrodynamics: A Modern Geometric Approach. Progress in
Mathematical Physics, 17. Birkhauser, 1999.

Sommer, Gerald (ed.): Geometric Computing with Clifford Algebras: Theoretical
Foundations and Applications in Computer Vision and Robotics. Springer-Verlag,
2001.

Dorst, Leo — Doran, Chris — Lasenby, Joan (eds.): Applications of Geometric Al-
gebra in Computer Science and Engineering. Birkhauser 2002.

Doran, Chris — Lasenby, Anthony: Geometric Algebra for Physicists. Cambridge
University Press, 2003.

Dorst, Leo — Fontaijne, Daniel — Mann, Stephen: Geometric Algebra for Com-
puter Science: An Object-Oriented Approach to Geometry (Revised Edition). The
Morgan Kaufmann Series in Computer Graphics, Elsevier, 2007.

Li, Hongbo: Invariant algebras and geometric reasoning. World Scientific, 2008.



