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Preliminaries Heroes, Il

Michel Chasles (1793-1880), Hermann Grassmann (1809-1877),
Arthur Cayley (1821-1895), George-Henri Halphen (1844-1889),
Mario Pieri (1860-1913), Corrado Segre (1863-1924), Francesco
Severi (1879-1961);

Giovanni Giambelli (1879-1935), Emmy Noether (1882-1935),
Oscar Zariski (1899-1986), Beniamino Segre (1903-1977), John A.
Todd (1908-1994), Pierre Samuel (1921-2009), Friedrich
Hirzebruch (1927-2012);

Jakob Murre (1928-), David Mumford (1937-), Yuri Manin
(1937-), Steven Kleiman (1942-), Ragni Piene (1947-), Edward
Witten (1951-), Daniel R. Grayson (1952-);

Susan Colley (1959-), Paolo Aluffi (1960-) Josep M. Miret (1960-),
Lothar Gotsche (1961-), Francesc A. Rossell6 (1961-), Carel Faber
(1962-), Rahul Pandharipande (1969-), Ravi Vakil (1970-)
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Preliminaries Conventions

m Prerequisites. Basic concepts of algebraic geometry, say first two
chapters of Hartshorne's book [8], henceforth H77 (except sections 8
and 9 of chapter II). Shafarevich book [16] is another standard
reference (chapters | and Il, and §1 of chapter 3). A good survey of
the required notions can be found in appendix B of Fulton's book [5],
henceforth F98.

m References. [Ch. 1][12] (Murre-Nagel-Peters-2013, Lectures on the
theory of pure moitives). Note also the general references cited at
the beginning, particularly F98. We will also use parts of [17] (Using
intersection theory).

m Ground field: k, an algebraically closed field. Note: Most concepts
and results can be adapted when this hypothesis is not true.

m Varieties. k-schemes of finite type and separated (most of the
time, quasiprojective varieties, usually smooth and irreducible). The
structural sheaf of a variety X will be denoted Ox. Morphisms of

varieties will (also) be called maps.
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Preliminaries  Parameter spaces (moduli)

m A variety X whose points are in one-to-one correspondence with the
set {F} of figures F of some kind is a parameter space for those
figures.

m Projective space P = P(V/). It is a parameter space for the set of
linear subspaces of dimension 1 of V (a k-vector space). Usually
denoted simply by P” when dim(V) = n+ 1.

m Grassman variety Gr(k,P) = Gr(k + 1, V). It is a parameter space
for the set of linear varieties of dimension k in P (or of linear
subspaces of dimension k + 1 in V).

Instead of Gr(k, P") we just write Gr(k, n). Gr(k, P) is the closed
subvariety of P(Ak*1V) whose rational points have the form

[vo A -+ A vk], where v, ..., vk € V are linearly independent over k
(Pliicker embedding).
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Preliminaries  Parameter spaces (moduli)

m Flag varieties. The variety of complete flags of P = P(V), denoted
F = F(P), is the subvariety of

Gr(0,P) x Gr(1,P) x --- x Gr(n —1,P)

whose points are the n-tuples Lo, ..., L,_1 such that L;_; C L; for
i=1,...,n—1.

If0< kg < - < ky < n—1, the variety of partial flags of type

(kiy ..oy km), Fiy k,(P) or Fy, 4., is the subvariety of
Gr(ky, P) x Gr(ky, P) x - -+ x Gr(ky, P)
whose points are the m-tuples My, ..., M,, such that M;_; C M; for
I=2,...,m.
- \ i
Fo1 Foo Fi o Foq12
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Preliminaries  Parameter spaces (moduli)

Hypersurfaces. Hypersurfaces of degree d in P are parameterized, as
point sets, by P(S9V*).

m S'V* = V* and P* = P(V*), the dual projective space of P,
parameterizes the hyperplanes of P.

m Since by definition the quadric hypersurfaces are the degree 2
hypersurfaces, we see that quadric hypersurfaces are parameterized
by P(52V*).

m If dim(V) = n+ 1 then S?V* has dimension (") and so the
hypersurfaces of degree d in P form a projective space PV, where
N = (”Zd) — 1. In particular, quadric hypersurfaces in P” form a
projective space PN, N = n(n + 3)/2.

Veronese embedding. The mapping V* — S9V* such that w > w?
induces P(V*) < P(S9(V*)) that transforms a given hyperplane H
of P(V) (that is, a point of P(V*)) into the hypersurface of degree

d in P(V) that consists of H repeated d times.
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Preliminaries Conditions

The correspondence through a parameterization between points x of
a variety X and figures F in the set {F} should be natural, in the
folowing sense: the points x corresponding to figures F that satisfy
some specific projective relation (condition) with a given figure G
(datum) is a subvariety Xg of X.

m Fxample. The set of hypersurfaces of degree d that go through a
point of P is a hyperplane of the projective space PV,

N = (""9) — 1, that parameterizes hypersurfaces of degree d of P.
Here the condition is passing through a point and the datum is the

specified point.

In Gr(k, P), the points corresponding to linear varieties L of
dimension k in P that meet a given linear variety G form a closed
subvariety of Gr(k, P). Here the condition is the incidence of L and
G and the datum is the given linear variety G.
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Cycles

Vocabulary and examples. Pushforward.
Intersection product. Transversality. Functorialities.
Weil’s diagonal formula
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Cycles  Vocabulary and examples

m An algebraic cycle on a variety X is a formal finite integral linear
combination Z = > n;Z; of irreducible subvarieties Z; of X. If all the
Z; have the same codimension r we say that Z is a codimension r
cycle. These cycles form an abelian group that is denoted 2" X, or
Z4_,X if we want to emphasize the dimension d — r (for this to
make sense, X has to be pure dimensional).

m Codimension 1 cycles are called (Weil) divisors. The group Z1X is
also denoted by Div(X).

m Each hypersurface F = 0 of P” defines a positive divisor. lts
irreducible components and their multiplicities correspond to the
irreducible factors and their multiplicities in the complete
factorization of F.
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Cycles  Vocabulary and examples

m If X has pure dimension d, Z9X = ZoX is the group of 0-cycles.
Its elements are finite integral linear combinations of points. There is
a homomorphism deg : ZoX — Z such that deg(P) = 1 for each
point P (= [k(P) : k] when k is not algebraically closed).

m If Y is a subscheme of X with irreducible components Y; of
dimension d;, it defines the cycle [Y] = >".n;Y;, where

n; = len(Oy y.) (see F98, §1.5). If Y is irreducible and reduced, we
also say that Y is a prime cycle.

m Even if the variety X defined on page 10 is a prime cycle for
generic G, it may appear as a composite cycle for special G.
Poncelet's argument for the number of lines meeting four lines in P3
(WIT-1, page 27), or the relation /> = p + 7 we met there on page
29, provide examples.

S. Xambé (UPC/BSC - IMUVA) UIT+WIT & N. Sayols & J.M. Miret 13 /101



Cycles  Pushforward

mf f: X — Y is a morphism of k-varieties, there is a natural
homomorphism f, : Z, X — Z, Y. For an irreducible subvariety Z of
X, f.Z =0if dimf(Z) < dim Z and otherwise s[f(Z)], where

s =[k(2) : k(f(2))].
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Cycles Intersection product

Assume X is smooth and let V, V' be subvarieties of codimensions
r,r', respectively. Let Z be an irreducible component of V N V',
Then it codimension s satisfies s > r + r’ and Z is said to be a
proper component of V N V' if equality holds, s = r + r’. Let, in this
case, A= Ox z be the local ring of X at Z, and 7,7’ the ideals of V
and V' in A. Then the intersection multiplicity iz(V, V') is defined
by the formula

iz(V, V') = (~1)Ylena(Tor(A/, A/T)).
J
Finally, the intersection product V - V' is defined as >, i»(V, V'),
where the sum runs over all proper components of V N V.

This definition is due to Serre [15, p. 144] and coincides with earlier
definitions due to Chevalley, van de Waerden, Weil and Samuel. In any
case, this formula can be seen as the zeroth term, namely

lena((A/T) @ (A/T) = lena(A/(T + 7)), which sufficies in some cases,
with ‘corrections’ expressed in terms of the higher Tor functors.
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Cycles  Transversality

It is important to have criteria that guarantee that an intersection is
transversal. One of the more useful is the following version of
Kleiman's transversality theorem (see [9, Kleiman 1974]). Let T be
an algebraic group and assume that it acts algebraically and
transitively on a variety X. Assume that Y and Z are locally closed
irreducible subvarieties of X. Then there exists a non-empty open set
U of T such that the intersection X N 7(Y) is proper for 7 € U, and
transversal if p =0, in which case all components in the intersection
have multiplicity one (this is proven, for example, in Hartshorne [8,
Hartshorne 1977, Theorem 10.5]). If p > 0, then U can be chosen in
such a way that the multiplicities of all components of X N 7(Y) are
equal, and this common value is a power of p.
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Cycles  Transversality

Remark. If we have a condition, expressed as the family of
subvarieties Xg, one for each datum G, then 7(Xg) = X;(¢) provided
that T also acts on {G} and that the condition is equivariant. In this
case, Y N7(X¢g) = Y N X-(c), and hence the generic condition X-(¢)
meets Y transversally.

But let's not forget the transitivity condition. Let X = P® is the space of
conics in P2. Then the condition of being tangent to a conic G, expressed
as Xg, is irreducible if G is non-degenerate, has three components if G is
a pair of distinct lines, and is all X if G is a double line. Since the
projective group acts transitively on the open set X° of non-degenerate
conics, the intersection of X¢ and the generic X;(¢) is transversal on X0,
but not on X, because any X contains the Veronese surface V5 of double
lines. These ideas were at the core of Halphen's approach to enumerative
geometry, with his distinction of proper solutions (those that move when
we move the datum) from the improper ones, that are insensitive to that
motion, like the double lines in the case conics. See, for example, [4, 3],
for a thourough analysis in terms of the singularities of the Xg along V5.
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Cycles  Functorialities

m There is a natural homomorphism ZX x Z"' X" — 2+ (X x X').

m Given a morphism of smooth varieties f : X — Y, there is a natural
homomorphism * : Z"Y — Z'X, which is called the pullback of f.

To define it, it suffices to define f*Z, where Z is a codimension r
subvariety of Y. In this case, the graph ' C X x Y of f and X x Z
intersect properly on X x Y, and f*Z is defined by the formula

. 7 = mx. (T - (X x 2)).

Zl

f*Z =2P+3Q+2R+ S
)
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Cycles  Weil's diagonal formula

Let A : X — X x X be the diagonal embedding of X. Let V, W be
subvarieties of X meeting properly. Then

VW =A%V x W).
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Equivalence relations

Adequate relations. Rational equivalence.
Computing Chow groups. Bézout’s theorem.
Byalinicki-Birula theorem. Axioms for intersection
theory. Uniqueness for smooth quasi-porjective
varieties. Serre’s positivity conjecture. A
conjecture of Diaz-Harris.
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Equivalence relations Adequate relations

An equivalence relation ~ on Z(X) = ®,2"X is called adequate if it
is compatible with grading and addition and satisfies the following
properties, which express compatibility with products, intersections
and projections:

1.IfZ~0on X, XxY~0inZ(XxY).

2. If Z ~ 0 and the intersection Z N Z’ is proper, then Z - Z' ~ 0.
3.1fZ~0on X x VY, mx.Z~0o0nX.

In addition it has to satisfy the following moving lemma:

4. Given Z, Wy, ..., W, € Z(X), there exists Z' ~ Z such that the
intersections Z’ N W; are proper for all j.

For such a relation, we have the groups 2/ X = {Z € Z/X : Z ~ 0},
© X = ZX/20.X, and €.X = ;¢ X.
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Equivalence relations Adequate relations

Theorem

1. C_.X is a commutative ring with the product induced from the
intersection of cycles. The total class 1x = [X] is its unit.

2. For any morphism f : X — Y, f, and f* induce (well defined)
group homomorphisms f, : C.X — C.Y and f*: C.Y — C_X and
in fact f* is a ring homomorphism.

Remark:
(V-W)=FfAL(V x W) =A%V x*W)=fV.-W.

Now we will look at the most relevant adequate relations.
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Equivalence relations Rational equivalence

m Given an irreducible divisor Z of X, consider the ring O = Ox 7.
Since it has dimension 1, there is a function ordz : O — Z given by
ordz(f) = leno(O/(f)). This function extends to the field of
fractions k(O) = k(X) and hence we have ord; : k(X) — Z.

m The divisor of a rational function f € k(X), div(f), is defined by
div(f) = >, ordz(f)Z, where the sum is extended to all irreducible
divisors Z of X.

m The group Z{atX is the group generated by the cicles div(f), where
f is a non-zero rational function on an irreducible subvariety Y of
codimension j — 1.

m The Chow groups of X are AX = 2//2), X = € X (they are also
denoted CH’X). The graded ring A(X) is the Chow ring, or
intersection ring, of X.
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Equivalence relations Rational equivalence

m Alternative definition of rational equivalence. A cicle Z € Z/ X is

rationally equivalent to 0 if and only if there exists W € Z/(X x P?)
and a, b € P! such that W(a) = 0 and W(b) = Z, where
W(t) = mx.(W- (X xt)).
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Equivalence relations Computing Chow groups

m The rational equivalence of divisors is linear equivalence, and hence
A'X = Pic(X), the Picard group of X (the group of isomorphism
classes of invertible sheaves on X with the operation induced by
tensor product).

So the methods for calculating A' may sometimes be of use for the
calculation of Pic groups.

Remark. On a smooth projective surface X, the intersection pairing
AL(X) x AY(X) — A%(X), composed with the degree map

deg : A%(X) — Z, yields the customary intersection pairing of
Pic(X). For this, see [11] (Mumford 1966) and H77.

m A(A") = Z[A"] = Z 1an =~ Z. So A°(A") = A,(A") = Z, generated
by the class [A"], is the only non-zero Chow group of A".

More generally, if X is any smooth quasi-projective variety, then the
map 7y : A*(X) — A*(X x A") is an isomorphism (follows easily
from the proof of proposition 1.9 in F98).
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Equivalence relations Computing Chow groups

m A basic exact sequence. If Y is a closed subvariety of a variety X
and U = X — Y, then there is a short exact sequence

[ J*
(see F98, Proposition 1.8). Here i is the inclusion of Y in X, so i is
a proper map, and J is the inclusion of U in X.

m The intersection ring of P". If h € A'P" denotes the class of a

hyperplane, then h" is the class of any linear variety of dimension r,
A"(P") = (h")z ~ Z and A(P") = Z[h]/(h"T).

Note that the basic exact sequence, together with the intersection
ring of A", tell us that A,(P") = A,(A") = Z and

Ac(P™1) = Al (P™) for all r < n, and the claims follow easily by
induction.

m Degree. If Z is dimension k cicle of P”, then its degree is the
integer d such that [Z] = dh"~*. Clearly, d is the degree of the

intersection of Z with a general linear variety of codimension k.
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Equivalence relations Computing Chow groups

Example. Let PV be the projective space that parameterizes quadric
hypersurfaces of P" (so N = n(n+ 3)/2) and let W, be the open set
in PV corresponding to the non-singular ones. Then

Pic(W,) ~Z/(n+1).

Indeed, PN — W, is the set of degenerate quadric hypersurfaces and
so it is equal to the hypersurface A, which is the zero locus of the
determinant of the symmetric matrix representing a quadric
hypersurface. Since A'(PN) = Pic(PN) = Z, generated by the class
h of a hyperplane, we see that A'(W,) is the quotient of Z by the
image of A°(A,) in AY(PV) = Z, which is (n+ 1) because A, has
degree n+ 1 in PV,
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Equivalence relations Bézout’s theorem

Theorem. Let V4,...,V,, be pure dimensional varieties of P" of
degrees di, ..., d,. Assume that the intersection V; N ---NV,, is
proper. Then the degree of the cycle V; ---V,, is the product
d=d;- - dn.

Indeed, if V; has dimension k;, then [V;] = dj[Lk], where Ly, is any
linear variety of dimension k;. Now the product of the right hand side
is d [L], where L is any linear space of dimension

ki + - -+ ky, — n(m — 1), while the product on the left hand side is
Vi V]

Note that if V4,..., V,, are not assumed to intersect properly then it
is still true that the product of classes [V4] - [Vn] is d[L] (same
notations as above). At times this has originated some confusion.
Let us illustrate this with a couple of examples.
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Equivalence relations Bézout’s theorem

Plane conics are parameterized by a P> and it is easy to see that the
conics that are tangent to a line L form a (rank 3) quadric
hypersurface @, C P°. Thus we see that if Ly, ..., Ls are lines then
the degree of []._,[@v,] is 32, while from elementary projective
geometry we know that there is a unique smooth conic which is
tangent to 5 lines if no three of them are concurrent. Here the point
is that @, contains the Veronese surface of double lines and so the
intersection M?_, Q. is far from proper.

The second example is about the number of conics that are tangent
to 5 conics in general position in P2, The correct number is 3264 (for
p # 2, determined by Chasles), but the first ‘determination’ was done
by De Jonquieres and Steiner through an incorrect application of
Bézout's theorem that led to the number 6° = 7776 (much as if they
had concluded that the number of conics that are tangent to five
lines is 32).
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Equivalence relations Bézout’s theorem

Actually it is not hard to see that the conics that are tangent to a
given non-singular conic C form a sextix hypersurface Hc in the P°
that parameterizes conics. Therefore if Cy, ..., Cs are 5 non-singular
conics in general position in P? then the product of the classes [Hc]
is 7776[c], where ¢ is a point in P>, But the hypersurfaces Hc, do
not intersect properly on P®°, for all of them contain the Veronese
surface of double lines, and so the product of the classes [Hc,] does
not give any information about the intersection of the Hc,.

For the case of n divisors Dy, ..., D, in P" whose intersection is

finite, Bézout's theorem just says that the number of intersection
points, each counted according to the corresponding intersection

multiplicity, is the product of the degrees of the divisors.
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Equivalence relations Bialynicki-Birula theorem

Assume that X is a complete variety/C and that the multiplicative
group T = C* acts on X in such a way that only finitely many points
Xy, ...,Xs are fixed. Let

X;:{X€X|lmtX:X,'}. (].)

Note that X; contains x;. Then the following holds (see [1, 2],
Bialynicki-Birula 1973, 1976]):

a) X;is T invariant, locally closed and isomorphic to an affine space
A"

b) X is the disjoint union of the X;.

¢) The classes & € A,,(X) of the closure of X; in X form a free
basis of A.(X).
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Equivalence relations Bialynicki-Birula theorem

Example. The relation
t[xo, X1, %2, X3] = [x0, tx1, t°x2, t*x3]

defines an action of G on P3. The fixed points are the coordinate
points Py = [1,0,0,0], P, =[0,1,0,0], P, =[0,0,1,0] and
P; =[0,0,0,1]. The corresponding locally closed sets are L3 — Ly,
[_2 — 1_1, Ll — LO and Lo, where [_0 = {Po}, [_1 = Po\/ Pl,
L2:P0\/P1\/P2 and L3:P3.
The action in question induces an action on Gr(1, 3) which is given
by the following relation:

t[Po1, Po2, Pos, P12, P13, P23] = [Pot, tPoz, t>pos, t2p12, t*p1s, tp23]

where the p; are the Pliicker coordinates of lines. So there are 6
fixed points, the coordinate points of P°. The corresponding locally
closed sets are the Schubert cells of Gr(1,3).

Further reading: Rossell6 [1986, 88, 90], Rossellé—Xambdé [1987, 91].
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Equivalence relations Axioms for intersection theory

A few properties of the intersection product are enough to make it
unique. To see how this happens, and also as a summary of the
properties we have seen so far, let us introduce the notion of
intersection theory (see Grothendieck [1958 b] or the appendix A in
H77).

Let V be a given class of varieties which is closed under products.
Assume that we have a pairing

A(X) x A(X) = A(X), (. B8) = - (*)

for each X € 'V and for all integers r and s. We say that (x) is an
intersection theory for 'V if properties (1)-(6) below hold.

(1) For any X € 'V the product (x) makes A*(X) into a

commutative associative graded ring with a multiplicative unit.
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Equivalence relations Axioms for intersection theory

(2) Given varieties X, X' € V and a map f : X — X’, the map

f*: A*(X) — A*(X') defined by the formula

F(a) = p ([F¢] - ([X] x &)
where s C X x X' is the graph of f and p: X x X’ — X is the
projection, is a homomorphism of rings. Moreover, if X" € V
and g : X’ — X" is a map, then f*g* = (gf)*.
Projection formula: If X, X" € V and f : X — X’ is a proper
map, then

f(la- )= f(a) o .
Reduction to the diagonal: If X € V and «, 8 € A*(X), then
a-f=06axp),

where 6 : X — X x X is the diagonal map.
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Equivalence relations Axioms for intersection theory

(5) Local nature: If X € V and W, W’ are subvarieties of X that
intersect properly (that is, every irreducible component of
W N W' has codimension equal to codim(W) + codim(W’)),
then

W]- W] = S eic(W. wcl,

where the sum runs over all irreducible components C of
W N W’ and where jc(W, W’) is an integer which only depends
on the ideals of W and W’ in Ox c.

(6) Normalization: If W is a subvariety of X € Z and D is a Cartier
divisor on X which intersects W properly, then

[D]- (W] = [DnW].
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Equivalence relations Uniqueness for quasi-projective varieties

The intersection product for the category of smooth quasi-projective
varieties is an intersection theory. Let us see now that it is unique.
Indeed, let o, 5 € A*(X), where X is smooth and quasi-projective.
We want to see that if () is an intersection theory for
quasi-projective varieties then « - 3 is necessarily the intersection
product. To that end, we may assume, by the moving lemma, that «
and (3 are represented by cycles z and w that intersect properly on
X. We may even assume, without loss of generality, that z and w are
irreducible cycles. Now reduction to the diagonal and the definition
of 6* reduce the question to the product [A] - [z x w]. Now A is a
local complete intersection and so the local nature of an intersection
theory allows us to assume that A is a complete intersection of
divisors. Finally the claim results from repeated application of the
normalization axiom.
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Equivalence relations  Serre’s positivity conjecture

Serre's Tor formula makes sense in more generality than the geometric
context we studied above and here we will describe the simplest of such
generalizations. Let A be a regular local ring and M and M’ finitely
generated A-modules. Let n, d and d’ be the dimensions of A, supp(M)
and supp(M’), respectively. Assume that supp(M) Nsupp(M’) = {m},
where m is the closed point of Spec(A), in which case d + d’ < n (Serre
[1965]). Then the A-modules Tor?(M, M’) have finite length, because its
support is contained in {m}, and are zero if i > n, because the projective
dimension of any A-module is bounded above by n. Serre's positivity
conjecture states that the Tor-characteristic of M and M’, defined as

(M, M) = 31o(=1)'¢ (Torf (M, M) )

is positive if and only if d + d’ = n (¢ denotes the length function). This
conjecture is a major one in the foundations of intersection theory and
arithmetic algebraic geometry. It is known to be true when A is unramified
(Serre [1965]) and a graded version of the conjecture is also known
(Peskine-Szpiro [1974]). Moreover, it turns out that x(M, M’) = 0 if

d + d’ < n (Roberts [1985], Gillet-Soulé [1985, 87]).
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Equivalence relations A conjecture of Diaz-Harris

Let Vy s be the Severi variety of irreducible plane curves of degree d
with exactly d nodes as singularities. Diaz and Harris [1986, 88]
conjectured that Pic(V, ) is a torsion group. The case § = 0 is easy:
if PV is the projective space parameterizing plane curves of degree d
(N =d(d +3)/2), then PN — V,; is the hypersurface of singular
curves (the discriminant locus), which has degree 3(d — 1)?, and
from this it follows that Pic(Vy o) is a cyclic group of order

3(d — 1)%. The case § = 1 has been established in Miret-Xambé
[1992]: the order of Pic(Vy 1) is 6(d — 2)(d? — 3d + 1), the group
being cyclic if d is odd and the product of Z, and a cyclic group of
order 3(d — 2)(d*> —3d + 1) if d is even. The methods of proof here
are an elaboration of some of the ideas used in Miret—-Xambé [1990,
89, 91], but they do not dependent on them.
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Chern classes

Axiomatics. Top Chern class. Calculating Chern
classes. The splitting principle and applications.
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Chern classes Conventions

Sources. The essential ideas are taken from [6, 7] (Grothendieck
1958), but we have also used [10] (Kleiman 1977, section 11.B) and
H77 (Appendix A).

Variety means non-singular irreducible quasi-projective variety.

Locally free sheaves and vector bundles. On a variety X, the category
of locally free sheaves of rank r is equivalent to the category of
vector bundles of rank r. If E is a vector bundle, we will write Ox(E)
to denote its associated locally free sheaf, which by definition is the
sheaf of sections of E.

If D is a divisor on X, we will write Ox(D) to denote the invertible
sheaf associated to D, and Lp to denote the corresponding line
bundle, so that Ox(Lp) = Ox(D).

The trivial vector bundle on X whose fiber is the vector space V will
be denoted V|X.
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Chern classes  Axiomatics

We will assume that for any variety X, any vector bundle E on X and
any integer k we have classes ¢, (E) € AX(X). Thus cx(E) =0 if

k & [0, n], n = dim(X), for AX(X) = 0 for such indices k. For a
locally free sheaf £, we will write ¢, (£) = c(E) if Ox(E) = €.

The classes ¢y(E), ..., c,(E) will be called Chern classes of E, and
c(E)=c(E)+ c(E)+ ...+ ci(E) € A(X)
the total Chern class of E, if the properties below (normalization,

functoriality, additivity) are satisfied (and we have a similar definition
for a locally free sheaf).
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Chern classes  Axiomatics

Normalization
If Lis a line bundle, and D is a divisor such that L ~ Lp, where Lp
denotes the line bundle associated to D, then

c(l)y=1+[D].
In particular we have ¢y(L) =1, ¢;(L) = [D] € A*(X) and c(L) =0
for k > 1. Note that [D] only depends on L, for if D" is another

divisor such that L ~ Lp, then D and D’ are linearly equivalent and
hence [D] = [D’].

The vanishing of ¢;(L) is equivalent to say that L is trivial, for if
L~ Lp and [D] = [0], then L ~ L,.

S. Xambé (UPC/BSC - IMUVA) UIT+WIT & N. Sayols & J.M. Miret 42 /101



Chern classes  Axiomatics

Note that since L_p is the dual of Lp we have
a(L’) = —al(l) (2)

for any line bundle L on X. Similarly, since Lp ® Lpr ~ Lp,p/, D’
another divisor, we have that if L’ is another line bundle then

C]_(L & L,) = C]_(L) + C]_(L/) .
In terms of invertible sheaves we have that ¢;(Ox (D)) = 1+ [D].

For example, in P" the sheaf Ops(m), m an integer, is the invertible
sheaf associated to the divisor mH, where H is a hyperplane. Hence

c1(Opn(m)) = m[H] .
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Chern classes  Axiomatics

A last point is that the map ¢;, with values in A}(X), is the same as
the map c/, with values in Pic(X), when we identify A*(X) and
Pic(X) via the canonical map A*(X) — Pic(X). Indeed, given an
invertible sheaf £, c/(£) € Pic(X) is, by definition, the isomorphism
class of £, while ¢;(£) = [D] for any divisor D such that

L ~ Ox(D), and so the claim follows because [D] € A'(X) is
mapped to the isomorphism class of Ox(D).
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Chern classes  Axiomatics

Functoriality

If X and X' are varieties, f : X — X’ is a map, and E’ is a vector
bundle on X’, then

Ck(f*E/) = f*(CkE/) (3)
for all k. Equivalently,

c(FFE") = f*(c(E)) .

Note that this property is consistent with normalization, for if L" is a
line bundle on X" and L' ~ Lp,, D’ a divisor on X’, which we may
assume to satisfy f(X)  D’, then

Cl(f*L/) = Cl(f*LD/) = C]_(Lf*D/) = [f*D/] = f*[D,] = f*(ClL/) .
Note that f*D’ is defined because f(X) is not contained in (the
support of ) D’.
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Chern classes  Axiomatics
Additivity

If0 - E' - E — E” — 0 is an exact sequence of vector bundles on
a variety X, then

c(E) = c(E")c(E") .
This relation is also called Whitney formula and is equivalent to the
relations

(E) = Yj0G(E)aj(E") (ke Z).

In particular we see that c¢(E) = c(E')c(E") if E=E' @ E”. From
this it follows that c(E) =1 if E is a trivial bundle.
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Chern classes Top Chern class

It turns out that cx(E) = 0 if k > r, r = rank(E). Because of this,
¢,(E) is called the top Chern class of E. For a line bundle L, the top
Chern class is ¢;(L), which by normalization is equal to [D], D any
divisor such that L ~ Lp. But D can be recovered from Lp as the
zero scheme V(o) of some section o of Lp. This description also
holds for the top Chern class, in the following sense. Let o be a
non-zero section of E, a vector bundle of rank r. Then the zero
scheme of o, V(o), has codimension at most r, because locally V(o)
is given as the vanishing of r functions. The top Chern class formula
holds for any section o of E such that V(o) has codimension r and it
says that
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Chern classes Calculating Chern classes

If X is a variety, the classes cx(Tx), Tx the tangent bundle of X, will
be called Chern classes of X, and to simplify notation we will write
ck(X) instead of cx(Tx). The total Chern class of X, c(X), is the
class ¢(Tx). If X is projective of dimension n, then the Euler
characteristic of X, x(X), is given by the Gauss—Bonet formula

X(X) = [xen(X) -
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Chern classes Calculating Chern classes

Chern classes of P”

Since there is an exact sequence
0 — Opr — Opn(1)HY) 5 Tpn -0,
the so called Euler exact sequence, the additivity formula implies that
c(P") = (1+h)"",
where h = [H] is the class of a hyperplane H. Hence

c(P") = (” Jkr 1) B |

In particular, ¢,(P") = (n+ 1)h" and so x(P") = n+ 1, because
deg(h") = 1.
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Chern classes Calculating Chern classes

Euler characteristic of a curve

If X is a projective curve of genus g, then x(X) =2 — 2g, for
a(X) = a(Tx) = —ca(wx) = —[K], [K] the canonical class on X,
and deg(K) =2g — 2.

Adjunction formula

Let i : X — Y be a closed embedding of codimension r, where X
and Y are varieties, and let N = Nx,y be the corresponding normal
bundle. Then, by the definition of N, we have an exact sequence

0> Tx—=>i"Ty == N—=0.
Additivity and functoriality yield that

c(X) =i"(c(Y))/e(N) .
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Chern classes Calculating Chern classes

Assume now that X is the complete intersection of r divisors,
X =D;N...ND,. Then, setting L; = Lp,,
N=i"(Li®...®L,)
and so
c(N)=i*((L+[D])...(1+[D])) -
Using the preceding formulas, pushing forward with / and using
projection formula, we get the following adjunction formula:

(X)) = e [[ -2

o LHID]

(Note that [D;]/(1+ [D}]) = [Di] = [D:)? +...) .
For example, if Y = P" and deg(D;) = d;, then
C]_(X) = (n + 1-— Zd,)h s

where h is the class of a hyperplane section of X.
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Chern classes Calculating Chern classes

In case r = 1, so that X is a (smooth) divisor in Y, the preceding
formula is equivalent to the relations

i(c(X)) = (e (V) - XV (ke Z). (4)
Taking Y = P™! and X a smooth hypersurface of degree d, it is
straightforward to show that

) = S (02 )
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Chern classes Calculating Chern classes

More generally, taking Y = P"*" and X a smooth complete
intersection of hypersurfaces Dy, ..., D, of degrees di, ..., d,, let o;
(0 <j < n) be the j-th symmetric polynomial in di, ..., d, (notice
that o, = d; - - - d, is the degree of X and that, by convention, o; =0
for r <j < n), and let sy, 51, ..., s, be the sequence determined
recursively by s = 1 and

5j+5j,10'1+...—|-510'j,1+0'j:0.

Then
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Chern classes Calculating Chern classes

Self-intersection formula

Again let i : X — Y be a codimension r embedding of varieties and
set N = Nx/,y to denote the corresponding normal bundle. Then (see
Lascu-Mumford—Scott [1975])

i [X] = ¢(N) .

Pushing forward with / and using the projection formula we get the
‘self-intersection formula’

[(X]? = ivc,(N) .

Applying the self-intersection formula to the diagonal inclusion
0 : X = X x X and taking into account that Tx is isomorphic to
Nx/xxx, we get:

JIAP = Jea(Nxxxx) = [ea(Tx) = [ea(X) = x(X) ,
which is Lefschetz formula for the Euler characteristic of X.
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Chern classes Calculating Chern classes

Chern classes of a filtered bundle
Assume

0O=FCEC...CE =E
is a filtration of E by subbundles E; and set Q; = E;/E;_;
(1<i<r). Then

c(E)=c(@) ... - c(Q) .
Indeed, by definition of Q; and additivity, c(E;) = c(E;_1)c(Q;), and
by induction c(E;) = c(@1) - ... - c(Q;) (L <i<r).
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Chern classes Calculating Chern classes

Assume now that the Q; are line bundles, in which case we say that
E splits into line bundles. Then if we set o; = ¢1(Q;) we have

c(E)=1+a1) - (14+a).
This relation is equivalent to the relations
c¢(E)=oi(oa,...,a,) (i€Z)

where o;(aq, ..., ,) is the i-th symmetric polynomial in a1, ..., a,.
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Chern classes Calculating Chern classes

Virtual bundles

If E and F are vector bundles on a variety X, the total Chern class
c(E — F) of the ‘virtual' bundle E — F (this is a just formal
difference) is defined as follows:

c(E—F)=c(E)/c(F).
Hence ci(E — F) = c1(E) — a1(F),
&(E — F) = (E) — c1(E)ci(F) + ci(F)? — c(F), and so on.

This is better understood using the Grothendieck group K°(X) of the
category Vectx of vector bundles on X, that is, the quotient of the
free abelian group generated by the isomorphism classes e of vector
bundles E by the subgroup generated by the elements e — &’ — €”, one
for each exact sequence 0 — E’ — E — E” — 0 of vector bundles.
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Chern classes Calculating Chern classes

Indeed, since the total Chern class ¢ is an additive function from
Vectx with values in the abelian group 1 4+ At (X), where

AT(X) = AX + ...+ A"X (n=dim(X)), it extends to a unique
group homomorphism ¢ : K°X — 1+ A* X, and it is clear that
cle—f)=c(E—F).

Note that K° is a contravariant functor with values in the category of
associative commutative rings with unit: the product in K°(X) is
induced by the tensor product of vector bundles and the
contravariant map f* : K%(X’) — K°(X) corresponding to a map

f . X — X' is induced by the pullback of vector bundles E’ on X’ to
vector bundles f*(E’) on X.
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Chern classes Calculating Chern classes

Chern classes of coherent sheaves

Let Ko(X) denote the Grothendieck group of the category Cohx of
coherent sheaves on the variety X. By definition it is the quotient of
the free abelian group generated by the isomorphism classes f of
coherent sheaves J by the subgroup generated by the elements

f — f"— " one for each exact sequence 0 - & — F — F”" — 0.

Note that Kj is a covariant functor of the category of (smooth and
quasi-projective) varieties with proper maps with values in the
category of abelian groups: the covariant map f; : Ko(X) — Ko(X')
corresponding to a proper map f : X — X’ is induced by mapping
the isomorphism class f of a coherent sheaf J to the alternating sum
of the isomorphism classes r'f,(F) of the higher direct images
Rf.(F) of F. Here the key points are that the higher direct images
R'f,(F) are coherent sheaves on X’ and the cohomology exact
sequence of the higher direct images associated to a short exact
sequence 0 -+ F — F — F” — 0 of coherent sheaves.
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Chern classes Calculating Chern classes

Now we have a canonical map of abelian groups K°(X) — Ko(X),
induced by mapping the isomorphism class of a vector bundle E to
the isomorphism class of the locally free sheaf Ox(E). The wonderful
fact about this map is that it is an isomorphism, the reason being
that on a smooth quasi-projective variety any coherent sheaf admits a
finite homological resolution by locally free sheaves. This means that
we have a total Chern class homomorphism ¢ : KoX — 1+ AT X,
just by composing the isomorphism K°(X) ~ Ky(X) with the total
Chern class homomorphism ¢ : KX — 1+ AT X. This yields, in
particular, Chern classes for coherent sheaves.
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Chern classes Calculating Chern classes

According to the definitions, if F is a coherent sheaf, then
() = [[ (&) (6)
i=0

the alternating product of the total Chern classes of the locally free
sheaves &; of a projective resolution
0—=&n— ... 2 & —2E—F—0

of F.
Of course, the formula also works if F is a locally free sheaf, thus
providing a means of calculating its Chern classes if it happens that

we know the Chern classes of the locally free sheaves &; of the
resolution.
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Chern classes  The splitting principle and applications
The Chern classes satisfy the following ‘splitting principle’:

Given a vector bundles Eq, ..., E, on a variety X, there exists a
variety P and map f : P — X such that f* : A*X' — A*X is
injective and so that f*E; splits into line bundles for all i.

In this section we will use this principle to calculate the Chern classes
of various bundles that appear in rather concrete geometrical
questions. The idea is this: if f : P — X is a map such that f*E
splits into line bundles, say Ly,...,L,, then
ffc(E)=c(fFE)=140a1)...(1+a,),
where a; = ¢i(L;). In other words,
f*ee(E) = ok, ..., ;) .
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Chern classes  The splitting principle and applications

If in addition f*: A*X — A*P is injective, the last relation
determines cx(E). Actually it says that o (aq,...,a,) liesin
f*(A*X) and hence if we identify A*X with f*(A*X) via f*, the
relation in question can be written ¢k (E) = ok, ..., a,). This just
says that to handle the Chern classes of any given finite number of
vector bundles we can just pretend that they split into line bundles.

If E splits into line bundles Ly, ..., L,, then the L; will be called root
bundles of E and the «o; = ¢1(L;) the Chern roots of E.

Chern classes of EV

If E has Chern roots g, ..., «,, then it is clear that EY has Chern
roots —ay, ..., —a, and so
c(EY) =0k(—an,...,—a,) = (—1)*c(E) .
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Chern classes  The splitting principle and applications

Chern classes of E® F

Let ay,...,a, and [, ..., s be the Chern roots of vector bundles E
and F, respectively. Then by the bilinearity of the tensor product it
follows that the Chern roots of E ® F are «; + [3;
(1<i<r,1<j<s). Hence

c(E®F)= H (1+a; + f;)

1<igr
1<<s

and so we can find the partial Chern classes by expressing the right
hand side, which is symmetric in the a's and in the ('s, as a
polynomial in the elementary symmetric functions o;(cy, ..., «,) and
0j(B1, ..., Bs), that is, as a polynomial in the c;(E) and ¢;(F).

An explicit expression for the resulting polynomial was found by
Lascoux (see F98, example 14.5.2).
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Chern classes  The splitting principle and applications

Here we only look at the case when F is a line bundle L. If
cai(L) = f, then

cExl)=1+a1+0)...1+a,+p)
=Y o(1+B) " a(E) .
For the partial Chern classes we find:
r

1) = Sho( e

In particular the first and top Chern classes of E ® L is

a(E@L)=rB+c(E) and c(E®L)=>c (E)3 .
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Chern classes  The splitting principle and applications

Chern classes of APE and SPE

If0— L— E — E'— 0is an exact sequence of vector bundles, L a line
bundle, then there is a derived short exact sequence

0— (WP EY® L —NE - NE 0.

Using this fact inductively, we see that if L, ..., L, are the root line
bundles of E, then the root line bundles of APE are of the form

Ly ®---®Lj;, where 1 <ip <...<i <r. Hence the Chern roots of
APE are aj; + ...+ «j, with the same conditions on the indices and
ai,...,q, being the Chern roots of E. So

c(\PE) = H (14+a;+...+q;),
1<ll<<lr<r

which allows us to find the Chern classes of APE by writing the

polynomial on the right hand side, which is symmetrical in the a1, ..., a;,
as a polynomial in the o;(a1,...,a,) = ¢;E. Note, for example, that
Cl(/\rE) = C1E. (7)
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Chern classes The splitting principle and applications

In a similar way we find that
c(SPE) = H (L+ may+ -+ ma,).

mi+...4+my=p
m17-~-smr>0

(see F98, example 3.2.6).
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Riemann Roch

Segre classes. Chern character and the Todd class.
Hirzebruch Riemann-Roch formula. Grothendick
Riemann-Roch. Porteous formula.
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Riemann-Roch Segre classes

The total Segre class s(E) of a vector bundle E on a variety X is
defined as the inverse of c(E):

s(E)=c(E)™* or s(E)c(E)=1.
If X has dimension n, then s(E) = so(E) + s1(E) + - - - + s,(E),
where s, (E) € AX(X). From the definition we see that s5(E) = 1 and
that for k > 0

Sk(E) + sk,lcl(E) + ...+ Sl(E)Ckfl(E) + Ck(E) s

which allows us to calculate s, (E) recursively. Thus s(E) = —c1(E),
(E) = —s1(E)c1(E) — @(E) = a1(E)? — o(E), and so on.
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Riemann-Roch The Chern character and the Todd class

Any symmetrical polynomial with integer coefficients f(ay, ..., a,) in
the Chern roots aq, ..., a, of a vector bundle E can be written as a
polynomial in the Chern classes of E. If we write f(E) to denote this
polynomial, f(E) € A*(X), then we can write

f(E) = fo(E) + f1(E) + ...+ fu(E)
with fi(E) € AK(X) and n = dim(X). We will also set f(X) and
fk(X) to denote the classes f( Tx) and fx(Tx), respectively.

If instead f has rational coefficients, fx(E), fi(X) € AK(X) ® Q.
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Riemann-Roch The Chern character and the Todd class

Two important examples of this procedure for constructing classes
associated to a vector bundle are the Chern character, ch(E), and
the Todd class, td(E):

ch(ag,...,a,) = €™+ ...+ e,

r

td(al,...,a,):H il

1—e i’

Note that if o is a Chern root, then both e* and /(1 — e ) are
polynomials in « with rational coefficients, the reason being that

N'—= 0 for sufficiently large N.
From the definitions it is clear that

ch(E® E') = ch(E) + ch(E') and ch(E ® E") = ch(E) - ch(E")
and that

td(E & E') = td(E) - td(E") .
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Riemann-Roch The Chern character and the Todd class

These relations, together with the fact that
td,(P") = h"
(h the hyperplane class) are sufficient to determine the polynomials

ch and td (see Hirzebruch [1966]; below we check the cases n = 2
and n = 3).

A straightforward computation yields the following expressions, where
to simplify notation we set ¢, = ¢ (E):

cho(E) = rank(E) tdo(E) =1

ehn(E) = tdy(E) %cl

cha(E) = %(cf ~26) td>(E) = 1—12(c12 + o)
chs(E) = é(cf _3¢6 +36) tds(E) = %(:1@ |
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Riemann-Roch The Chern character and the Todd class

Let us check that td>(P?) = h? and that td3(P3) = k3. If ¢; and &
are the Chern classes of P2, then td,(P?) = (¢ + ¢;)/12. But
c(P?)=(1+h)>* =1+ 3h+ 3h* and so

tdy(P?) = (9h* + 3h%) /12 = K.
As for P3, c(P3) = (1+h)*=1+4h+6h>+--- and so
td3(P3) = (c1)/24 = (4h - 6h?) /24 = h3.
Note that the properties of ch say that it induces a ring

homomorphism
ch: KX — A*X .
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Riemann-Roch Hirzebruch—Riemann—-Roch formula

Given a vector bundle E on a smooth projective variety X of
dimension n, the Euler characteristic of E, x(E), is defined as follows:

X(E) = 2io(=1)'n' (X, E)
where h'(X, E) is the dimension over k of the cohomology space
H(X,E). Then
X(E) = [xch(E) - td(X) .
Here if v € A*(X) we set [,a = [,a,.

For example, if D is a divisor on X and we set x(D) = x(Lp), then
X(D)= [y 1+ [D]+[DP/2+...)-(1+a/2+ (¢ +a)/12+...)
where ¢; = ¢;(X). Since ¢; = —[K], on a curve (n = 1) of genus g

we get
X(D) = [x([D] - [K]/2) = deg(D) +1 —g.
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Riemann-Roch Hirzebruch—Riemann—-Roch formula

On a surface of arithmetic genus p,
=[x ([DP*/2 = ([D] - [K])/2 + (K + c2)/12)
= 2D (1D] — [KD) + = [ (K + e)/12.
In particular [, ([K]* + c2)/12 = x(0) = x(Ox) = 1+ p,.

Another example is the case of an abelian variety X of dimension n.

In this case Tx is trivial and so td(X) = 1. Thus we have, for any
divisor D on X,

1 n
D) = FIX[D]
Reference: Hirzebruch [1966].
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Riemann-Roch Grothendieck—Riemann—Roch theorem

Let f : X — X’ be a smooth projective morphism of non-singular
projective varieties and Tr the relative tangent bundle. Then for any
a € Ko(X) = K°(X) the following relation holds in A*(X') @ Q:

ch(fia) = £, (ch(a) - td(T¥)) .
This relation yields, when applied to the structural constant map
7 X — Spec(k ) and with « (the class of) a vector bundle E, the

Hirzebruch—Riemann—Roch formula, for on one hand ma = x(E) and
ch is the identity of Z, and on the other T, = Tx.

References: Borel-Serre [1958], Grothendieck [1971 a], Fulton [1984].
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Examples of intersection rings

Projective bundle P(E). Grassmanians. Flags.
Blowups.
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Examples of intersection rings  Projective bundles P(E)

Tautological line bundle on P(E)

Let E be a vector bundle of rank r on a variety X. Let P = P(E)
and p : P — X the projection.

Given a non-zero v € E,, the fiber of p*E over the point [v] € P is
EX1

(p*E)[V] = EX .
But E, contains the line (v) spanned by v and so we can consider the
line subbundle of p*E = E|P whose fiber over [v] is (v).

The dual of this line bundle is called the tautological line bundle of P
and is denoted L = Lg and so p*E contains the line subbundle

LY = LY. The quotient bundle @ = Qg = p*E/L" will be called the
tautological quotient of P. Thus we have, by definition, a
tautological exact sequence

0—-LY—-EP—>Q—0.
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Examples of intersection rings  Projective bundles P(E)

The invertible sheaf Op(L) is denoted Op(1), or just O(1), and is
also called the tautological invertible sheaf on P.

m The hyperplane class. The first Chern class £ = £ of L will be
called the hyperplane class, or the characteristic class, of P. Note
that if E is trivial, say E = V|X, then P = X x P(V). Moreover, the
tautological line bundle is Lxp, where H is a hyperplane of P(V).
Hence £ = [X x H]. When X is a point, we see that the £ = [H].

Since p, drops codimension by r — 1, we see that
p*(gi):O for 0<i<r—2.
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Examples of intersection rings  Projective bundles P(E)

On the other hand it is clear that

p(671) = [X]
for over a non-empty open set U of X on which E is trivial, say
U x V (V a k-vector space of dimension r), we can represent £ by
the cycle [U] x [H], H a hyperplane of P(V), and so £ is
represented by [U] x [pt], where pt is a point of P(V). Since
U x {pt} has degree 1 over U, the claim follows.
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Examples of intersection rings  Projective bundles P(E)

Functoriality

The tautological data defined so far are functorial in the following
sense. Let f: X — X’ be a map of varieties, let E’ be a vector
bundle on X’ and set P’ = P(E’), ' = &g, Q' = Qg E = f*E/,
P=P(E), £ =& and Q@ = Qg. Then P is the inverse image of P’
under f, so that there is a unique map g : P — P’ making the
diagram
g
P — F
P L

X ;> X'
a fiber square, and the inverse image of the tautological exact
sequence for P’ under the map g is the tautological exact sequence
for P. In particular we have that g*(¢’) = £&. When X is a point of
X’ we get that the restriction of the hyperplane class to a fiber of P
is the class of the hyperplane of that fiber.
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Examples of intersection rings  Projective bundles P(E)

Intersection ring of P = P(E)

The classes 1,&,...,£ 1 are linearly independent over A*(X), where
A*(P) is considered as an A*(X)-module via the ring homomorphism
p* i A*X — A*P.
Indeed, assume

S opt(a)E =0, a;€ AX.
Applying p. to this relation, and using the projection formula,
together with (3.2.a) and (3.2.b), we get a,_; = 0. So the claim

follows upon multiplying the displayed relation repeatedly by £&. Note
that this implies that p* is injective.
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Examples of intersection rings  Projective bundles P(E)

Now it turns out that the classes 1,¢,...,£! also span A*(P) as an
A*(X)-module (see Grothendieck [1958 b], § 6, corollaire 2; the idea
is that the classes 1,¢, ..., &7 restricted to any fiber of P(E)
generate, by Bézout's theorem, the intersection ring of that fiber
considered as an abelian group; see also Fulton [1984], theorem 3.3).
So we see that there are unique classes ¢; = ¢;(E) € A'X such that

E+p(a) 4. +p(c)=0 (8)
and consequently (Grothendieck's theorem)
A*(P(E)) = A (X)[T]/ (fe(T))
where T is an indeterminate and
fe(T)=T +p(c)T" ' +...+pc,=0.
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Examples of intersection rings  Projective bundles P(E)

Interpretation of the Segre classes

From Whitney formula we have, with the same notations as before,
that
c(EIP) = (1 -¢)c(Q) .

Hence c(Q) = (D 20&')p*(c(E)). Since ¢,(Q) = 0 because @ has
rank r — 1, this relation implies that

§H T P (a) o+ TP () =0
for any ¢ > 1. Applying p, and using the projection formula we get,
defining

Y

s = p*(£i+r71)
that

Ss+si—1c1+...+s_,¢,=0
for any £ > 1. Since sp = 1, these relations just say that the s; are

the Segre classes of E.
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Examples of intersection rings Grassmannians

Let I = Gr(k, n) be the Grassmannian of k-planes in P" = P(V) and
d =dim(l') = (k+ 1)(n — k).

Let T C T x V be the tautological subbundle, so that the fiber

T, C V is the subspace of vectors representing points of v € I'. Thus
T has rank k + 1.

Similarly, let Q = (V|I')/ T, the tautological quotient bundle. lts
rank is d — k — 1.

Let ¢1, ¢, ..., ckr1 be the Chern classes of T and
C=|a,c,...,ck1]. The A*(I') is isomorphic to the ring

Z[cy, ..., ckr1]/R, where R is the ideal generated by the polynomials
in the list

R = invert_vector(C,n + 1)[—k — 1 :].

Remark: c,f;f is a point.

S. Xambé (UPC/BSC - IMUVA) UIT+WIT & N. Sayols & J.M. Miret 85 /101



A sample of solutions

Lines meeting 4 lines in P3, 6 planes in P%,...
Lines in a cubic in P3. Lines in a quintic in P*,
Conics meeting 8 lines in P3. Conics tangent to 5
conics in P2, Conics in a quintic in P*.
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Solutions  Lines meeting 4 lines in P>
m Moduli: X = Gr(1,3), d =dim(X) =(1+1)(3—1) = 4.
m Setting: N = deg(Xy, - X1, - X1, - X1,), Lj generic lines.
m Intersection ring: A*(X).

m Relevant condition: X;, lines meeting a line L, and
(= [X.] € AY(X) (the same for all L!).

m Theoretical solution: N = deg((*) = [, £* (because the projective
group acts transitively on X).
m Algebra: A*(X) = Z[c1, &]/R, R the ideal generated by ¢ — 2¢1 0,
ci —3ctc + 3.
m Geometry: { = ¢; and ¢ = T = [Xplane]-
m Effective solution: (* = ¢} = 3c?c, — 2 = 30?7 — 72, so

N=[ =3[ lr— [(m®=3-1=2
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Solutions  Lines meeting 6 planes in P*
m Moduli: X = Gr(1,4), d =dim(X)=(1+1)(4—1) =6.
m Setting: N = deg(Xy, - X1, - Xt - X1, - Xis - X1,), Lj generic planes.
m Intersection ring: A*(X).
m Relevant condition: X|, lines meeting a plane L, and
¢ =[X.] € AL(X) (the same for all L!).

m Theoretical solution: N = deg((°) = [, (° (because the projective
group acts transitively on X).

m Algebra: A*(X) = Z[c1, 2] /R, R the ideal generated by
cf — 3¢t +c3 and — ¢ +4cic — 3¢5
m Geometry: { = ¢; and ¢ = T = [X3_plane]-
m Effective solution: (° = 4(3cic3 — c3) — 3cics = 9cics — 4¢3, so

N= [ =9[Cr*—4[ 7=9—-4=5
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Solutions  Lines in a cubic in P> = P(V)
m Moduli: X = Gr(1,4), d = dim(X) = (1 +1)(4 — 1) = 6.

m Setting: A generic cubic f lives in S3V*. If we let T be the
tautological subbundle of X x V/, the locus we are looking at is Z(o),
where o = f is the image in S3T* of the constant section f of

X x §3V* (o(x) is the restriction of f to the vector subspace of V
representing the points of the line x). Therefore, N = deg(Z(0)).

m Intersection ring: A*(X).
m Theoretical solution: [Z(c)] = cmax(S3T*) = c(S3T*) € A*(X).
m Computation of c;: Using the expression on page 67,
cs = (3a1)(2a1 + az) (o + 202)(3az) = 18¢2c, + 9¢3.
m Geometry: ¢, = —¢1(T) = —Cand ¢ = o(T) = .
m Effective solution: N = 27.
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Solutions  Lines in a quintic in P*
m Moduli: X = Gr(1,4), d = dim(X) = (1 +1)(4 — 1) = 6.

m Setting: A generic quintic f lives in S°V*. If we let T be the
tautological subbundle of X x V/, the locus we are looking at is Z(o),
where o = f is the image in S°T* of the constant section f of

X x §3V* (o(x) is the restriction of f to the vector subspace of V
representing the points of the line x). Therefore, N = deg(Z(0)).

m Intersection ring: A*(X).
m Theoretical solution: [Z(c)] = cmax(S3T*) = c6(S°T*) € A%(X).
m Computation of cg: Using the expression on page 67,

c6 = 25c(4an + a2)(3a1 + 202) (201 + 3a2) = 25¢(...) = ...
m Geometry: ¢, = —¢1(T) = —Cand ¢ = o(T) = .

m Effective solution: N = 2875.

S. Xambé (UPC/BSC - IMUVA) UIT+WIT & N. Sayols & J.M. Miret 90 /101



Solutions  Conics meeting 8 lines in P = P> = P(V).

m Moduli: €@ = P(S?T*), where T is the (rank 3) tautological
subbundle of P* x S2V*.

m Setting: N = deg(Mi<j<sCy;), the L; lines in general position.
m Intersection ring: A*(C).
m Relevant condition: €, lines meeting a line L, and
= [C.] € AY(€) (the same for all L!).
m Theoretical solution: N = [,\® = [, m.()\®).

m Algebra: A*(€) = A*(P*)[>0¢¢%7], € = ci(Le), Le the
tautological subbundle of C, ¢; = 7*¢;(T*) € A(€). AY(C) = (¢, &).

m Geometry: A*(P*) = Z[p]/(p*), c1 = p, &2 = p?, c3 = p° (p the
condition that the plane of the conic is incident with a given point).
It turns out that A\ = 2¢; + &.
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Solutions  Conics meeting 8 lines in P = P> = P(V).

The computation of 7, (2¢; + &)? is reduced to the computation of
T ((cfYE8) = . (€877). This vanishes if j > 3 and otherwise
alm(E87) = plss_;(S2T*) (sk Segre classes).

m Result: N = 92.
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Solutions Conics tangent to 5 conics in p2

This is solved by blowing up the Veronese surface of double lines in
the space X = P® of plane conics.

By Bézout, the hypersurface X of conics tangent to a given conic C
has class 6H in X, where H is the class of a hyperplane in P5. The
class of the strict transform of Xc on X turns out to be 6H — 2D,
where D is the class of the exceptional divisor. Thus

N = [;(6H —2D) = 3264.
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