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Preliminaries Conventions

Prerequisites. Basic concepts of algebraic geometry, say first two
chapters of Hartshorne’s book [8], henceforth H77 (except sections 8
and 9 of chapter II). Shafarevich book [16] is another standard
reference (chapters I and II, and § 1 of chapter 3). A good survey of
the required notions can be found in appendix B of Fulton’s book [5],
henceforth F98.

References. [Ch. 1][12] (Murre-Nagel-Peters-2013, Lectures on the
theory of pure moitives). Note also the general references cited at
the beginning, particularly F98. We will also use parts of [17] (Using
intersection theory).

Ground field : k , an algebraically closed field. Note: Most concepts
and results can be adapted when this hypothesis is not true.

Varieties. k -schemes of finite type and separated (most of the
time, quasiprojective varieties, usually smooth and irreducible). The
structural sheaf of a variety X will be denoted OX . Morphisms of
varieties will (also) be called maps.
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Preliminaries Parameter spaces (moduli)

A variety X whose points are in one-to-one correspondence with the
set {F} of figures F of some kind is a parameter space for those
figures.

Projective space P = P(V ). It is a parameter space for the set of
linear subspaces of dimension 1 of V (a k -vector space). Usually
denoted simply by Pn when dim(V ) = n + 1.

Grassman variety Gr(k ,P) = Gr(k + 1,V ). It is a parameter space
for the set of linear varieties of dimension k in P (or of linear
subspaces of dimension k + 1 in V ).

Instead of Gr(k ,Pn) we just write Gr(k , n). Gr(k ,P) is the closed
subvariety of P(Λk+1V ) whose rational points have the form
[v0 ∧ · · · ∧ vk ], where v0, . . . , vk ∈ V are linearly independent over k
(Plücker embedding).
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Preliminaries Parameter spaces (moduli)

Flag varieties. The variety of complete flags of P = P(V ), denoted
F = F(P), is the subvariety of

Gr(0,P)× Gr(1,P)× · · · × Gr(n − 1,P)

whose points are the n-tuples L0, . . . , Ln−1 such that Li−1 ⊂ Li for
i = 1, . . . , n − 1.

If 0 6 k1 < · · · < km 6 n − 1, the variety of partial flags of type
(k1, ..., km), Fk1,...,km(P) or Fk1,...,km , is the subvariety of

Gr(k1,P)× Gr(k2,P)× · · · × Gr(km,P)

whose points are the m-tuples M1, . . . ,Mm such that Mi−1 ⊂ Mi for
i = 2, . . . ,m.

F0,1 F0,2 F1,2 F0,1,2
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Preliminaries Parameter spaces (moduli)

Hypersurfaces. Hypersurfaces of degree d in P are parameterized, as
point sets, by P(SdV ∗).

S1V ∗ = V ∗ and P∗ = P(V ∗), the dual projective space of P,
parameterizes the hyperplanes of P.

Since by definition the quadric hypersurfaces are the degree 2
hypersurfaces, we see that quadric hypersurfaces are parameterized
by P(S2V ∗).

If dim(V ) = n + 1 then SdV ∗ has dimension
(
n+d
d

)
and so the

hypersurfaces of degree d in Pn form a projective space PN , where
N =

(
n+d
d

)
− 1. In particular, quadric hypersurfaces in Pn form a

projective space PN , N = n(n + 3)/2.

Veronese embedding . The mapping V ∗ → SdV ∗ such that w 7→ wd

induces P(V ∗) ↪→ P(Sd(V ∗)) that transforms a given hyperplane H
of P(V ) (that is, a point of P(V ∗)) into the hypersurface of degree
d in P(V ) that consists of H repeated d times.
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Preliminaries Conditions

The correspondence through a parameterization between points x of
a variety X and figures F in the set {F} should be natural, in the
folowing sense: the points x corresponding to figures F that satisfy
some specific projective relation (condition) with a given figure G
(datum) is a subvariety XG of X .

Example. The set of hypersurfaces of degree d that go through a
point of P is a hyperplane of the projective space PN ,
N =

(
n+d
d

)
− 1, that parameterizes hypersurfaces of degree d of P.

Here the condition is passing through a point and the datum is the
specified point.

In Gr(k ,P), the points corresponding to linear varieties L of
dimension k in P that meet a given linear variety G form a closed
subvariety of Gr(k ,P). Here the condition is the incidence of L and
G and the datum is the given linear variety G .
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Cycles
Vocabulary and examples. Pushforward.

Intersection product. Transversality. Functorialities.
Weil’s diagonal formula
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Cycles Vocabulary and examples

An algebraic cycle on a variety X is a formal finite integral linear
combination Z =

∑
niZi of irreducible subvarieties Zi of X . If all the

Zi have the same codimension r we say that Z is a codimension r
cycle. These cycles form an abelian group that is denoted ZrX , or
Zd−rX if we want to emphasize the dimension d − r (for this to
make sense, X has to be pure dimensional).

Codimension 1 cycles are called (Weil) divisors. The group Z1X is
also denoted by Div(X ).

Each hypersurface F = 0 of Pn defines a positive divisor. Its
irreducible components and their multiplicities correspond to the
irreducible factors and their multiplicities in the complete
factorization of F .
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Cycles Vocabulary and examples

If X has pure dimension d , ZdX = Z0X is the group of 0-cycles.
Its elements are finite integral linear combinations of points. There is
a homomorphism deg : Z0X → Z such that deg(P) = 1 for each
point P (= [k(P) : k] when k is not algebraically closed).

If Y is a subscheme of X with irreducible components Yi of
dimension di , it defines the cycle [Y ] =

∑
i niYi , where

ni = len(OY ,Yi
) (see F98, §1.5). If Y is irreducible and reduced, we

also say that Y is a prime cycle.

Even if the variety XG defined on page 10 is a prime cycle for
generic G , it may appear as a composite cycle for special G .
Poncelet’s argument for the number of lines meeting four lines in P3

(WIT-1, page 27), or the relation l2 = p + π we met there on page
29, provide examples.
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Cycles Pushforward

If f : X → Y is a morphism of k -varieties, there is a natural
homomorphism f∗ : ZkX → ZkY . For an irreducible subvariety Z of
X , f∗Z = 0 if dim f (Z ) < dimZ and otherwise s[f (Z )], where
s = [k(Z ) : k(f (Z ))].
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Cycles Intersection product

Assume X is smooth and let V ,V ′ be subvarieties of codimensions
r , r ′, respectively. Let Z be an irreducible component of V ∩ V ′.
Then it codimension s satisfies s > r + r ′ and Z is said to be a
proper component of V ∩ V ′ if equality holds, s = r + r ′. Let, in this
case, A = OX ,Z be the local ring of X at Z , and I, I′ the ideals of V
and V ′ in A. Then the intersection multiplicity iZ (V ,V ′) is defined
by the formula

iZ (V ,V ′) =
∑
j

(−1)j lenA(TorAj (A/I,A/I′)).

Finally, the intersection product V · V ′ is defined as
∑

Z iZ (V ,V ′),
where the sum runs over all proper components of V ∩ V ′.

This definition is due to Serre [15, p. 144] and coincides with earlier
definitions due to Chevalley, van de Waerden, Weil and Samuel. In any
case, this formula can be seen as the zeroth term, namely
lenA((A/I)⊗ (A/I′)) = lenA(A/(I + I′)), which sufficies in some cases,
with ‘corrections’ expressed in terms of the higher Tor functors.
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Cycles Transversality

It is important to have criteria that guarantee that an intersection is
transversal . One of the more useful is the following version of
Kleiman’s transversality theorem (see [9, Kleiman 1974]). Let T be
an algebraic group and assume that it acts algebraically and
transitively on a variety X . Assume that Y and Z are locally closed
irreducible subvarieties of X . Then there exists a non-empty open set
U of T such that the intersection X ∩ τ(Y ) is proper for τ ∈ U , and
transversal if p = 0, in which case all components in the intersection
have multiplicity one (this is proven, for example, in Hartshorne [8,
Hartshorne 1977, Theorem 10.5]). If p > 0, then U can be chosen in
such a way that the multiplicities of all components of X ∩ τ(Y ) are
equal, and this common value is a power of p.
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Cycles Transversality

Remark . If we have a condition, expressed as the family of
subvarieties XG , one for each datum G , then τ(XG ) = Xτ(G) provided
that T also acts on {G} and that the condition is equivariant. In this
case, Y ∩ τ(XG ) = Y ∩ Xτ(G), and hence the generic condition Xτ(G)

meets Y transversally.

But let’s not forget the transitivity condition. Let X = P5 is the space of
conics in P2. Then the condition of being tangent to a conic G , expressed
as XG , is irreducible if G is non-degenerate, has three components if G is
a pair of distinct lines, and is all X if G is a double line. Since the
projective group acts transitively on the open set X 0 of non-degenerate
conics, the intersection of XG and the generic Xτ(G) is transversal on X 0,
but not on X , because any XG contains the Veronese surface V2 of double
lines. These ideas were at the core of Halphen’s approach to enumerative
geometry, with his distinction of proper solutions (those that move when
we move the datum) from the improper ones, that are insensitive to that
motion, like the double lines in the case conics. See, for example, [4, 3],
for a thourough analysis in terms of the singularities of the XG along V2.
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Cycles Functorialities

There is a natural homomorphism ZrX × Zr ′X ′ → Zr+r ′(X × X ′).

Given a morphism of smooth varieties f : X → Y , there is a natural
homomorphism f ∗ : ZrY → ZrX , which is called the pullback of f .

To define it, it suffices to define f ∗Z , where Z is a codimension r
subvariety of Y . In this case, the graph Γf ⊆ X × Y of f and X × Z
intersect properly on X × Y , and f ∗Z is defined by the formula

f ∗Z = πX ,∗(Γf · (X × Z )).

X

Y
Γf

Z
X × Z2 3 2 1

f∗Z = 2P + 3Q + 2R + S

P Q R S
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Cycles Weil’s diagonal formula

Let ∆ : X → X × X be the diagonal embedding of X . Let V ,W be
subvarieties of X meeting properly. Then

V ·W = ∆∗(V ×W ).
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Equivalence relations
Adequate relations. Rational equivalence.

Computing Chow groups. Bézout’s theorem.
Byalinicki-Birula theorem. Axioms for intersection

theory. Uniqueness for smooth quasi-porjective
varieties. Serre’s positivity conjecture. A

conjecture of Diaz-Harris.
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Equivalence relations Adequate relations

An equivalence relation ∼ on Z(X ) = ⊕rZ
rX is called adequate if it

is compatible with grading and addition and satisfies the following
properties, which express compatibility with products, intersections
and projections:

1. If Z ∼ 0 on X , X × Y ∼ 0 in Z(X × Y ).

2. If Z ∼ 0 and the intersection Z ∩ Z ′ is proper, then Z · Z ′ ∼ 0.

3. If Z ∼ 0 on X × Y , πX ,∗Z ∼ 0 on X .

In addition it has to satisfy the following moving lemma:

4. Given Z ,W1, . . . ,Wm ∈ Z (X ), there exists Z ′ ∼ Z such that the
intersections Z ′ ∩Wj are proper for all j .

For such a relation, we have the groups Zj
∼X = {Z ∈ ZjX : Z ∼ 0},

Cj
∼X = ZjX/Zj

∼X , and C∼X = ⊕jC
j
∼X .

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 21 / 101



Equivalence relations Adequate relations

Theorem

1. C∼X is a commutative ring with the product induced from the
intersection of cycles. The total class 1X = [X ] is its unit.

2. For any morphism f : X → Y , f∗ and f ∗ induce (well defined)
group homomorphisms f∗ : C∼X → C∼Y and f ∗ : C∼Y → C∼X and
in fact f ∗ is a ring homomorphism.

Remark :
f ∗(V ·W ) = f ∗∆∗Y (V ×W ) = ∆∗X (f ∗V × f ∗W ) = f ∗V · f ∗W .

Now we will look at the most relevant adequate relations.
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Equivalence relations Rational equivalence

Given an irreducible divisor Z of X , consider the ring O = OX ,Z .
Since it has dimension 1, there is a function ordZ : O → Z given by
ordZ (f ) = lenO(O/(f )). This function extends to the field of
fractions k(O) = k(X ) and hence we have ordZ : k(X )→ Z.

The divisor of a rational function f ∈ k(X ), div(f ), is defined by
div(f ) =

∑
Z ordZ (f )Z , where the sum is extended to all irreducible

divisors Z of X .

The group Z
j
ratX is the group generated by the cicles div(f ), where

f is a non-zero rational function on an irreducible subvariety Y of
codimension j − 1.

The Chow groups of X are AjX = Zj/Zj
ratX = C

j
ratX (they are also

denoted CHjX ). The graded ring A(X ) is the Chow ring , or
intersection ring , of X .
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Equivalence relations Rational equivalence

Alternative definition of rational equivalence. A cicle Z ∈ ZjX is
rationally equivalent to 0 if and only if there exists W ∈ Zj(X × P1)
and a, b ∈ P1 such that W (a) = 0 and W (b) = Z , where
W (t) = πX ,∗(W · (X × t)).

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 24 / 101



Equivalence relations Computing Chow groups

The rational equivalence of divisors is linear equivalence, and hence
A1X = Pic(X ), the Picard group of X (the group of isomorphism
classes of invertible sheaves on X with the operation induced by
tensor product).

So the methods for calculating A1 may sometimes be of use for the
calculation of Pic groups.

Remark . On a smooth projective surface X , the intersection pairing
A1(X )× A1(X )→ A2(X ), composed with the degree map
deg : A2(X )→ Z, yields the customary intersection pairing of
Pic(X ). For this, see [11] (Mumford 1966) and H77.

A(An) = Z[An] = Z 1An ' Z. So A0(An) = An(An) = Z, generated
by the class [An], is the only non-zero Chow group of An.

More generally, if X is any smooth quasi-projective variety, then the
map π∗X : A∗(X )→ A∗(X × An) is an isomorphism (follows easily
from the proof of proposition 1.9 in F98).
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Equivalence relations Computing Chow groups

A basic exact sequence. If Y is a closed subvariety of a variety X
and U = X − Y , then there is a short exact sequence

Ak(Y )
i∗
−→ Ak(X )

j∗

−→ Ak(U)→ 0

(see F98, Proposition 1.8). Here i is the inclusion of Y in X , so i is
a proper map, and j is the inclusion of U in X .

The intersection ring of Pn. If h ∈ A1Pn denotes the class of a
hyperplane, then hr is the class of any linear variety of dimension r ,
Ar (Pn) = 〈hr〉Z ' Z and A(Pn) = Z[h]/(hn+1).

Note that the basic exact sequence, together with the intersection
ring of An, tell us that An(Pn) = An(An) = Z and
Ak(Pn−1) = Ak(Pn) for all r < n, and the claims follow easily by
induction.

Degree. If Z is dimension k cicle of Pn, then its degree is the
integer d such that [Z ] = dhn−k . Clearly, d is the degree of the
intersection of Z with a general linear variety of codimension k .
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Equivalence relations Computing Chow groups

Example. Let PN be the projective space that parameterizes quadric
hypersurfaces of Pn (so N = n(n + 3)/2) and let Wn be the open set
in PN corresponding to the non-singular ones. Then
Pic(Wn) ' Z/(n + 1).

Indeed, PN −Wn is the set of degenerate quadric hypersurfaces and
so it is equal to the hypersurface ∆n which is the zero locus of the
determinant of the symmetric matrix representing a quadric
hypersurface. Since A1(PN) = Pic(PN) = Z, generated by the class
h of a hyperplane, we see that A1(Wn) is the quotient of Z by the
image of A0(∆n) in A1(PN) = Z, which is (n + 1) because ∆n has
degree n + 1 in PN .

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 27 / 101



Equivalence relations Bézout’s theorem

Theorem. Let V1, . . . ,Vm be pure dimensional varieties of Pn of
degrees d1, . . . , dm. Assume that the intersection V1 ∩ · · · ∩ Vm is
proper. Then the degree of the cycle V1 · · ·Vm is the product
d = d1 · · · dm.

Indeed, if Vi has dimension ki , then [Vi ] = di [Lki ], where Lki is any
linear variety of dimension ki . Now the product of the right hand side
is d [L], where L is any linear space of dimension
k1 + · · ·+ km − n(m − 1), while the product on the left hand side is
[V1 · · ·Vm].

Note that if V1, . . . ,Vm are not assumed to intersect properly then it
is still true that the product of classes [V1] · · · [Vm] is d [L] (same
notations as above). At times this has originated some confusion.
Let us illustrate this with a couple of examples.
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Equivalence relations Bézout’s theorem

Plane conics are parameterized by a P5 and it is easy to see that the
conics that are tangent to a line L form a (rank 3) quadric
hypersurface QL ⊂ P5. Thus we see that if L1, . . . , L5 are lines then
the degree of

∏5
i=1[QLi ] is 32, while from elementary projective

geometry we know that there is a unique smooth conic which is
tangent to 5 lines if no three of them are concurrent. Here the point
is that QL contains the Veronese surface of double lines and so the
intersection ∩5

i=1QLi is far from proper.

The second example is about the number of conics that are tangent
to 5 conics in general position in P2. The correct number is 3264 (for
p 6= 2, determined by Chasles), but the first ‘determination’ was done
by De Jonquières and Steiner through an incorrect application of
Bézout’s theorem that led to the number 65 = 7776 (much as if they
had concluded that the number of conics that are tangent to five
lines is 32).

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 29 / 101



Equivalence relations Bézout’s theorem

Actually it is not hard to see that the conics that are tangent to a
given non-singular conic C form a sextix hypersurface HC in the P5

that parameterizes conics. Therefore if C1, . . . ,C5 are 5 non-singular
conics in general position in P2 then the product of the classes [HCi

]
is 7776[c], where c is a point in P5. But the hypersurfaces HCi

do
not intersect properly on P5, for all of them contain the Veronese
surface of double lines, and so the product of the classes [HCi

] does
not give any information about the intersection of the HCi

.

For the case of n divisors D1, . . . ,Dn in Pn whose intersection is
finite, Bézout’s theorem just says that the number of intersection
points, each counted according to the corresponding intersection
multiplicity, is the product of the degrees of the divisors.
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Equivalence relations Bialynicki-Birula theorem

Assume that X is a complete variety/C and that the multiplicative
group T = C∗ acts on X in such a way that only finitely many points
x1, . . . , xs are fixed. Let

Xi = {x ∈ X | lim
t→0

tx = xi} . (1)

Note that Xi contains xi . Then the following holds (see [1, 2],
Bialynicki-Birula 1973, 1976]):

a) Xi is T invariant, locally closed and isomorphic to an affine space
Ani .

b) X is the disjoint union of the Xi .

c) The classes ξi ∈ Ani (X ) of the closure of Xi in X form a free
basis of A∗(X ).
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Equivalence relations Bialynicki-Birula theorem

Example. The relation

t[x0, x1, x2, x3] = [x0, tx1, t
2x2, t

4x3]

defines an action of G on P3. The fixed points are the coordinate
points P0 = [1, 0, 0, 0], P1 = [0, 1, 0, 0], P2 = [0, 0, 1, 0] and
P3 = [0, 0, 0, 1]. The corresponding locally closed sets are L3 − L2,
L2 − L1, L1 − L0 and L0, where L0 = {P0}, L1 = P0 ∨ P1,
L2 = P0 ∨ P1 ∨ P2 and L3 = P3.

The action in question induces an action on Gr(1, 3) which is given
by the following relation:

t[p01, p02, p03, p12, p13, p23] = [p01, tp02, t
3p03, t

2p12, t
4p13, t

5p23] ,

where the pij are the Plücker coordinates of lines. So there are 6
fixed points, the coordinate points of P5. The corresponding locally
closed sets are the Schubert cells of Gr(1, 3).

Further reading: Rosselló [1986, 88, 90], Rosselló–Xambó [1987, 91].
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Equivalence relations Axioms for intersection theory

A few properties of the intersection product are enough to make it
unique. To see how this happens, and also as a summary of the
properties we have seen so far, let us introduce the notion of
intersection theory (see Grothendieck [1958 b] or the appendix A in
H77).

Let V be a given class of varieties which is closed under products.
Assume that we have a pairing

Ar (X )× As(X )→ Ar+s(X ) , (α, β) 7→ α · β (∗)
for each X ∈ V and for all integers r and s. We say that (∗) is an
intersection theory for V if properties (1)-(6) below hold.

(1) For any X ∈ V the product (∗) makes A∗(X ) into a
commutative associative graded ring with a multiplicative unit.
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Equivalence relations Axioms for intersection theory

(2) Given varieties X ,X ′ ∈ V and a map f : X → X ′, the map
f ∗ : A∗(X )→ A∗(X ′) defined by the formula

f ∗(α′) = p∗ ([Γf ] · ([X ]× α′)) ,

where Γf ⊂ X × X ′ is the graph of f and p : X × X ′ → X is the
projection, is a homomorphism of rings. Moreover, if X ′′ ∈ V

and g : X ′ → X ′′ is a map, then f ∗g ∗ = (gf )∗.

(3) Projection formula: If X ,X ′ ∈ V and f : X → X ′ is a proper
map, then

f∗(α · f ∗α′) = f∗(α) · α′ .
(4) Reduction to the diagonal: If X ∈ V and α, β ∈ A∗(X ), then

α · β = δ∗(α× β) ,

where δ : X → X × X is the diagonal map.
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Equivalence relations Axioms for intersection theory

(5) Local nature: If X ∈ V and W ,W ′ are subvarieties of X that
intersect properly (that is, every irreducible component of
W ∩W ′ has codimension equal to codim(W ) + codim(W ′)),
then

[W ] · [W ′] =
∑

C jC (W ,W ′)[C ] ,
where the sum runs over all irreducible components C of
W ∩W ′ and where jC (W ,W ′) is an integer which only depends
on the ideals of W and W ′ in OX ,C .

(6) Normalization: If W is a subvariety of X ∈ Z and D is a Cartier
divisor on X which intersects W properly, then

[D] · [W ] = [D ∩W ] .
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Equivalence relations Uniqueness for quasi-projective varieties

The intersection product for the category of smooth quasi-projective
varieties is an intersection theory. Let us see now that it is unique.
Indeed, let α, β ∈ A∗(X ), where X is smooth and quasi-projective.
We want to see that if (∗) is an intersection theory for
quasi-projective varieties then α · β is necessarily the intersection
product. To that end, we may assume, by the moving lemma, that α
and β are represented by cycles z and w that intersect properly on
X . We may even assume, without loss of generality, that z and w are
irreducible cycles. Now reduction to the diagonal and the definition
of δ∗ reduce the question to the product [∆] · [z × w ]. Now ∆ is a
local complete intersection and so the local nature of an intersection
theory allows us to assume that ∆ is a complete intersection of
divisors. Finally the claim results from repeated application of the
normalization axiom.
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Equivalence relations Serre’s positivity conjecture

Serre’s Tor formula makes sense in more generality than the geometric
context we studied above and here we will describe the simplest of such
generalizations. Let A be a regular local ring and M and M ′ finitely
generated A-modules. Let n, d and d ′ be the dimensions of A, supp(M)
and supp(M ′), respectively. Assume that supp(M) ∩ supp(M ′) = {m},
where m is the closed point of Spec(A), in which case d + d ′ 6 n (Serre
[1965]). Then the A-modules TorAi (M,M ′) have finite length, because its
support is contained in {m}, and are zero if i > n, because the projective
dimension of any A-module is bounded above by n. Serre’s positivity
conjecture states that the Tor-characteristic of M and M ′, defined as

χ(M,M ′) =
∑

i>0(−1)i`
(

TorAi (M,M ′)
)
,

is positive if and only if d + d ′ = n (` denotes the length function). This
conjecture is a major one in the foundations of intersection theory and
arithmetic algebraic geometry. It is known to be true when A is unramified
(Serre [1965]) and a graded version of the conjecture is also known
(Peskine–Szpiro [1974]). Moreover, it turns out that χ(M,M ′) = 0 if
d + d ′ < n (Roberts [1985], Gillet–Soulé [1985, 87]).
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Equivalence relations A conjecture of Diaz-Harris

Let Vd ,δ be the Severi variety of irreducible plane curves of degree d
with exactly δ nodes as singularities. Diaz and Harris [1986, 88]
conjectured that Pic(Vd ,δ) is a torsion group. The case δ = 0 is easy:
if PN is the projective space parameterizing plane curves of degree d
(N = d(d + 3)/2), then PN − Vd ,0 is the hypersurface of singular
curves (the discriminant locus), which has degree 3(d − 1)2, and
from this it follows that Pic(Vd ,0) is a cyclic group of order
3(d − 1)2. The case δ = 1 has been established in Miret–Xambó
[1992]: the order of Pic(Vd ,1) is 6(d − 2)(d2 − 3d + 1), the group
being cyclic if d is odd and the product of Z2 and a cyclic group of
order 3(d − 2)(d2 − 3d + 1) if d is even. The methods of proof here
are an elaboration of some of the ideas used in Miret–Xambó [1990,
89, 91], but they do not dependent on them.
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Chern classes
Axiomatics. Top Chern class. Calculating Chern
classes. The splitting principle and applications.
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Chern classes Conventions

Sources. The essential ideas are taken from [6, 7] (Grothendieck
1958), but we have also used [10] (Kleiman 1977, section II.B) and
H77 (Appendix A).

Variety means non-singular irreducible quasi-projective variety.

Locally free sheaves and vector bundles. On a variety X , the category
of locally free sheaves of rank r is equivalent to the category of
vector bundles of rank r . If E is a vector bundle, we will write OX (E )
to denote its associated locally free sheaf, which by definition is the
sheaf of sections of E .

If D is a divisor on X , we will write OX (D) to denote the invertible
sheaf associated to D, and LD to denote the corresponding line
bundle, so that OX (LD) = OX (D).

The trivial vector bundle on X whose fiber is the vector space V will
be denoted V |X .
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Chern classes Axiomatics

We will assume that for any variety X , any vector bundle E on X and
any integer k we have classes ck(E ) ∈ Ak(X ) . Thus ck(E ) = 0 if
k 6∈ [0, n], n = dim(X ), for Ak(X ) = 0 for such indices k . For a
locally free sheaf E , we will write ck(E) = ck(E ) if OX (E ) = E .

The classes c0(E ), . . . , cn(E ) will be called Chern classes of E , and

c(E ) = c0(E ) + c1(E ) + . . . + cn(E ) ∈ A∗(X )

the total Chern class of E , if the properties below (normalization,
functoriality , additivity) are satisfied (and we have a similar definition
for a locally free sheaf).
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Chern classes Axiomatics

Normalization

If L is a line bundle, and D is a divisor such that L ' LD , where LD
denotes the line bundle associated to D, then

c(L) = 1 + [D] .

In particular we have c0(L) = 1, c1(L) = [D] ∈ A1(X ) and ck(L) = 0
for k > 1. Note that [D] only depends on L, for if D ′ is another
divisor such that L ' LD′ then D and D ′ are linearly equivalent and
hence [D] = [D ′].

The vanishing of c1(L) is equivalent to say that L is trivial, for if
L ' LD and [D] = [0 ], then L ' L0 .
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Chern classes Axiomatics

Note that since L−D is the dual of LD we have

c1(Lv) = −c1(L) (2)

for any line bundle L on X . Similarly, since LD ⊗ LD′ ' LD+D′ , D
′

another divisor, we have that if L′ is another line bundle then

c1(L⊗ L′) = c1(L) + c1(L′) .

In terms of invertible sheaves we have that c1(OX (D)) = 1 + [D].

For example, in Pn the sheaf OPn(m), m an integer, is the invertible
sheaf associated to the divisor mH , where H is a hyperplane. Hence

c1(OPn(m)) = m[H] .
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Chern classes Axiomatics

A last point is that the map c1, with values in A1(X ), is the same as
the map cl , with values in Pic(X ), when we identify A1(X ) and
Pic(X ) via the canonical map A1(X )→ Pic(X ). Indeed, given an
invertible sheaf L, cl(L) ∈ Pic(X ) is, by definition, the isomorphism
class of L, while c1(L) = [D] for any divisor D such that
L ' OX (D), and so the claim follows because [D] ∈ A1(X ) is
mapped to the isomorphism class of OX (D).
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Chern classes Axiomatics

Functoriality

If X and X ′ are varieties, f : X → X ′ is a map, and E ′ is a vector
bundle on X ′, then

ck(f ∗E ′) = f ∗(ckE
′) (3)

for all k . Equivalently,

c(f ∗E ′) = f ∗(c(E ′)) .

Note that this property is consistent with normalization, for if L′ is a
line bundle on X ′ and L′ ' LD′ , D

′ a divisor on X ′, which we may
assume to satisfy f (X ) 6⊆ D ′, then

c1(f ∗L′) = c1(f ∗LD′) = c1(Lf ∗D′) = [f ∗D ′] = f ∗[D ′] = f ∗(c1L
′) .

Note that f ∗D ′ is defined because f (X ) is not contained in (the
support of) D ′.

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 45 / 101



Chern classes Axiomatics

Additivity

If 0→ E ′ → E → E ′′ → 0 is an exact sequence of vector bundles on
a variety X , then

c(E ) = c(E ′)c(E ′′) .
This relation is also called Whitney formula and is equivalent to the
relations

ck(E ) =
∑k

j=0cj(E
′)ck−j(E

′′) (k ∈ Z) .

In particular we see that c(E ) = c(E ′)c(E ′′) if E = E ′ ⊕ E ′′. From
this it follows that c(E ) = 1 if E is a trivial bundle.
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Chern classes Top Chern class

It turns out that ck(E ) = 0 if k > r , r = rank(E ). Because of this,
cr (E ) is called the top Chern class of E . For a line bundle L, the top
Chern class is c1(L), which by normalization is equal to [D], D any
divisor such that L ' LD . But D can be recovered from LD as the
zero scheme V (σ) of some section σ of LD . This description also
holds for the top Chern class, in the following sense. Let σ be a
non-zero section of E , a vector bundle of rank r . Then the zero
scheme of σ, V (σ), has codimension at most r , because locally V (σ)
is given as the vanishing of r functions. The top Chern class formula
holds for any section σ of E such that V (σ) has codimension r and it
says that

cr (E ) = [V (σ)] .
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Chern classes Calculating Chern classes

If X is a variety, the classes ck(TX ), TX the tangent bundle of X , will
be called Chern classes of X , and to simplify notation we will write
ck(X ) instead of ck(TX ). The total Chern class of X , c(X ), is the
class c(TX ). If X is projective of dimension n, then the Euler
characteristic of X , χ(X ), is given by the Gauss–Bonet formula

χ(X ) =
∫
X
cn(X ) .
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Chern classes Calculating Chern classes

Chern classes of Pn

Since there is an exact sequence

0→ OPn → OPn(1)⊕(n+1) → TPn → 0 ,

the so called Euler exact sequence, the additivity formula implies that

c(Pn) = (1 + h)n+1 ,

where h = [H] is the class of a hyperplane H . Hence

ck(Pn) =

(
n + 1

k

)
hk .

In particular, cn(Pn) = (n + 1)hn and so χ(Pn) = n + 1, because
deg(hn) = 1.
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Chern classes Calculating Chern classes

Euler characteristic of a curve

If X is a projective curve of genus g , then χ(X ) = 2− 2g , for
c1(X ) = c1(TX ) = −c1(ωX ) = −[K ], [K ] the canonical class on X ,
and deg(K ) = 2g − 2.

Adjunction formula

Let i : X → Y be a closed embedding of codimension r , where X
and Y are varieties, and let N = NX/Y be the corresponding normal
bundle. Then, by the definition of N , we have an exact sequence

0→ TX → i∗TY → N → 0 .

Additivity and functoriality yield that

c(X ) = i∗(c(Y ))/c(N) .

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 50 / 101



Chern classes Calculating Chern classes

Assume now that X is the complete intersection of r divisors,
X = D1 ∩ . . . ∩ Dr . Then, setting Li = LDi

,

N = i∗(L1 ⊕ . . .⊕ Lr )

and so
c(N) = i∗((1 + [D1]) . . . (1 + [Dr ])) .

Using the preceding formulas, pushing forward with i and using
projection formula, we get the following adjunction formula:

i∗(c(X )) = c(Y )
r∏

i=1

[Di ]

1 + [Di ]
.

(Note that [Di ]/(1 + [Di ]) = [Di ]− [Di ]
2 + . . . ) .

For example, if Y = Pn and deg(Di) = di , then

c1(X ) = (n + 1−∑di)h ,

where h is the class of a hyperplane section of X .
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Chern classes Calculating Chern classes

In case r = 1, so that X is a (smooth) divisor in Y , the preceding
formula is equivalent to the relations

i∗(ck(X )) =
∑

j(−1)jck−j(Y ) · [X ]j+1 (k ∈ Z) . (4)

Taking Y = Pn+1 and X a smooth hypersurface of degree d , it is
straightforward to show that

χ(X ) =
∑n

j=0(−1)j
(
n + 2

n − j

)
d j+1 . (5)
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Chern classes Calculating Chern classes

More generally, taking Y = Pn+r and X a smooth complete
intersection of hypersurfaces D1, . . . ,Dr of degrees d1, . . . , dr , let σj
(0 6 j 6 n) be the j-th symmetric polynomial in d1, . . . , dr (notice
that σr = d1 · · · dr is the degree of X and that, by convention, σj = 0
for r < j 6 n), and let s0, s1, . . . , sn be the sequence determined
recursively by s0 = 1 and

sj + sj−1σ1 + . . . + s1σj−1 + σj = 0 .

Then

χ(X ) = d
∑n

j=0

(
n + r + 1

n − j

)
sj .
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Chern classes Calculating Chern classes

Self-intersection formula

Again let i : X → Y be a codimension r embedding of varieties and
set N = NX/Y to denote the corresponding normal bundle. Then (see
Lascu–Mumford–Scott [1975])

i∗i∗[X ] = cr (N) .

Pushing forward with i and using the projection formula we get the
‘self-intersection formula’

[X ]2 = i∗cr (N) .

Applying the self-intersection formula to the diagonal inclusion
δ : X → X × X and taking into account that TX is isomorphic to
NX/X×X , we get:∫

[∆]2 =
∫
cn(NX/X×X ) =

∫
cn(TX ) =

∫
cn(X ) = χ(X ) ,

which is Lefschetz formula for the Euler characteristic of X .
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Chern classes Calculating Chern classes

Chern classes of a filtered bundle

Assume
0 = E0 ⊆ E1 ⊆ . . . ⊆ Er = E

is a filtration of E by subbundles Ei and set Qi = Ei/Ei−1

(1 6 i 6 r). Then

c(E ) = c(Q1) · . . . · c(Qr ) .

Indeed, by definition of Qi and additivity, c(Ei) = c(Ei−1)c(Qi), and
by induction c(Ei) = c(Q1) · . . . · c(Qi) (1 6 i 6 r).
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Chern classes Calculating Chern classes

Assume now that the Qi are line bundles, in which case we say that
E splits into line bundles. Then if we set αi = c1(Qi) we have

c(E ) = (1 + α1) · · · (1 + αr ) .

This relation is equivalent to the relations

ci(E ) = σi(α1, . . . , αr ) (i ∈ Z)

where σi(α1, . . . , αr ) is the i -th symmetric polynomial in α1, . . . , αr .
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Chern classes Calculating Chern classes

Virtual bundles

If E and F are vector bundles on a variety X , the total Chern class
c(E − F ) of the ‘virtual’ bundle E − F (this is a just formal
difference) is defined as follows:

c(E − F ) = c(E )/c(F ) .

Hence c1(E − F ) = c1(E )− c1(F ),
c2(E − F ) = c2(E )− c1(E )c1(F ) + c1(F )2 − c2(F ), and so on.

This is better understood using the Grothendieck group K 0(X ) of the
category VectX of vector bundles on X , that is, the quotient of the
free abelian group generated by the isomorphism classes e of vector
bundles E by the subgroup generated by the elements e− e ′− e ′′, one
for each exact sequence 0→ E ′ → E → E ′′ → 0 of vector bundles.
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Chern classes Calculating Chern classes

Indeed, since the total Chern class c is an additive function from
VectX with values in the abelian group 1 + A+(X ), where
A+(X ) = A1X + . . . + AnX (n = dim(X )), it extends to a unique
group homomorphism c : K 0X → 1 + A+X , and it is clear that
c(e − f ) = c(E − F ).

Note that K 0 is a contravariant functor with values in the category of
associative commutative rings with unit: the product in K 0(X ) is
induced by the tensor product of vector bundles and the
contravariant map f ∗ : K 0(X ′)→ K 0(X ) corresponding to a map
f : X → X ′ is induced by the pullback of vector bundles E ′ on X ′ to
vector bundles f ∗(E ′) on X .
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Chern classes Calculating Chern classes

Chern classes of coherent sheaves

Let K0(X ) denote the Grothendieck group of the category CohX of
coherent sheaves on the variety X . By definition it is the quotient of
the free abelian group generated by the isomorphism classes f of
coherent sheaves F by the subgroup generated by the elements
f − f ′ − f ′′, one for each exact sequence 0→ F′ → F → F′′ → 0.

Note that K0 is a covariant functor of the category of (smooth and
quasi-projective) varieties with proper maps with values in the
category of abelian groups: the covariant map f! : K0(X )→ K0(X ′)
corresponding to a proper map f : X → X ′ is induced by mapping
the isomorphism class f of a coherent sheaf F to the alternating sum
of the isomorphism classes r i f∗(F) of the higher direct images
R i f∗(F) of F. Here the key points are that the higher direct images
R i f∗(F) are coherent sheaves on X ′ and the cohomology exact
sequence of the higher direct images associated to a short exact
sequence 0→ F′ → F → F′′ → 0 of coherent sheaves.
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Chern classes Calculating Chern classes

Now we have a canonical map of abelian groups K 0(X )→ K0(X ),
induced by mapping the isomorphism class of a vector bundle E to
the isomorphism class of the locally free sheaf OX (E ). The wonderful
fact about this map is that it is an isomorphism, the reason being
that on a smooth quasi-projective variety any coherent sheaf admits a
finite homological resolution by locally free sheaves. This means that
we have a total Chern class homomorphism c : K0X → 1 + A+X ,
just by composing the isomorphism K 0(X ) ' K0(X ) with the total
Chern class homomorphism c : K 0X → 1 + A+X . This yields, in
particular, Chern classes for coherent sheaves.

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 60 / 101



Chern classes Calculating Chern classes

According to the definitions, if F is a coherent sheaf, then

c(F) =
m∏
i=0

c(Ei)(−1)i , (6)

the alternating product of the total Chern classes of the locally free
sheaves Ei of a projective resolution

0→ Em → . . .→ E1 → E0 → F → 0

of F.

Of course, the formula also works if F is a locally free sheaf, thus
providing a means of calculating its Chern classes if it happens that
we know the Chern classes of the locally free sheaves Ei of the
resolution.
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Chern classes The splitting principle and applications

The Chern classes satisfy the following ‘splitting principle’:

Given a vector bundles E1, . . . ,Em on a variety X , there exists a
variety P and map f : P → X such that f ∗ : A∗X ′ → A∗X is
injective and so that f ∗Ei splits into line bundles for all i .

In this section we will use this principle to calculate the Chern classes
of various bundles that appear in rather concrete geometrical
questions. The idea is this: if f : P → X is a map such that f ∗E
splits into line bundles, say L1, . . . , Lr , then

f ∗c(E ) = c(f ∗E ) = (1 + α1) . . . (1 + αr ) ,

where αi = c1(Li). In other words,

f ∗ck(E ) = σk(α1, . . . , αr ) .
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Chern classes The splitting principle and applications

If in addition f ∗ : A∗X → A∗P is injective, the last relation
determines ck(E ). Actually it says that σk(α1, . . . , αr ) lies in
f ∗(A∗X ) and hence if we identify A∗X with f ∗(A∗X ) via f ∗, the
relation in question can be written ck(E ) = σk(α1, . . . , αr ). This just
says that to handle the Chern classes of any given finite number of
vector bundles we can just pretend that they split into line bundles.

If E splits into line bundles L1, . . . , Lr , then the Li will be called root
bundles of E and the αi = c1(Li) the Chern roots of E .

Chern classes of E v

If E has Chern roots α1, . . . , αr , then it is clear that E v has Chern
roots −α1, . . . ,−αr and so

ck(E v) =σk(−α1, . . . ,−αr ) = (−1)kck(E ) .
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Chern classes The splitting principle and applications

Chern classes of E ⊗ F

Let α1, . . . , αr and β1, . . . , βs be the Chern roots of vector bundles E
and F , respectively. Then by the bilinearity of the tensor product it
follows that the Chern roots of E ⊗ F are αi + βj
(1 6 i 6 r , 1 6 j 6 s). Hence

c(E ⊗ F ) =
∏

16i6r
16j6s

(1 + αi + βj)

and so we can find the partial Chern classes by expressing the right
hand side, which is symmetric in the α’s and in the β’s, as a
polynomial in the elementary symmetric functions σi(α1, . . . , αr ) and
σj(β1, . . . , βs), that is, as a polynomial in the ci(E ) and cj(F ).

An explicit expression for the resulting polynomial was found by
Lascoux (see F98, example 14.5.2).
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Chern classes The splitting principle and applications

Here we only look at the case when F is a line bundle L. If
c1(L) = β, then

c(E ⊗ L) = (1 + α1 + β) . . . (1 + αr + β)

=
∑r

i=0(1 + β)r−ici(E ) .

For the partial Chern classes we find:

ck(E ⊗ L) =
∑k

i=0

(
r − i

k − i

)
ci(E )βk−i .

In particular the first and top Chern classes of E ⊗ L is

c1(E ⊗ L) = rβ + c1(E ) and cr (E ⊗ L) =
∑

cr−i(E )β i .
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Chern classes The splitting principle and applications

Chern classes of ΛpE and SpE

If 0→ L→ E → E ′ → 0 is an exact sequence of vector bundles, L a line
bundle, then there is a derived short exact sequence

0→ (Λp−1E ′)⊗ L→ ΛpE → ΛpE ′ → 0 .

Using this fact inductively, we see that if L1, . . . , Lr are the root line
bundles of E , then the root line bundles of ΛpE are of the form
Li1 ⊗ · · · ⊗ Lip , where 1 6 i1 < . . . < ir 6 r . Hence the Chern roots of
ΛpE are αi1 + . . .+ αir , with the same conditions on the indices and
α1, . . . , αr being the Chern roots of E . So

c(ΛpE ) =
∏

16i1<...<ir6r

(1 + αi1 + . . .+ αir ) ,

which allows us to find the Chern classes of ΛpE by writing the
polynomial on the right hand side, which is symmetrical in the α1, . . . , αr ,
as a polynomial in the σi (α1, . . . , αr ) = ciE . Note, for example, that

c1(ΛrE ) = c1E . (7)
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Chern classes The splitting principle and applications

In a similar way we find that

c(SpE ) =
∏

m1+...+mr=p
m1,...,mr>0

(1 + m1α1 + · · ·+ mrαr ) .

(see F98, example 3.2.6).
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Riemann Roch
Segre classes. Chern character and the Todd class.

Hirzebruch Riemann-Roch formula. Grothendick
Riemann-Roch. Porteous formula.
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Riemann-Roch Segre classes

The total Segre class s(E ) of a vector bundle E on a variety X is
defined as the inverse of c(E ):

s(E ) = c(E )−1 or s(E )c(E ) = 1 .

If X has dimension n, then s(E ) = s0(E ) + s1(E ) + · · ·+ sn(E ),
where sk(E ) ∈ Ak(X ). From the definition we see that s0(E ) = 1 and
that for k > 0

sk(E ) + sk−1c1(E ) + . . . + s1(E )ck−1(E ) + ck(E ) ,

which allows us to calculate sk(E ) recursively. Thus s1(E ) = −c1(E ),
s2(E ) = −s1(E )c1(E )− c2(E ) = c1(E )2 − c2(E ), and so on.
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Riemann-Roch The Chern character and the Todd class

Any symmetrical polynomial with integer coefficients f(α1, . . . , αr ) in
the Chern roots α1, . . . , αr of a vector bundle E can be written as a
polynomial in the Chern classes of E . If we write f(E ) to denote this
polynomial, f(E ) ∈ A∗(X ), then we can write

f(E ) = f0(E ) + f1(E ) + . . . + fn(E )

with fk(E ) ∈ Ak(X ) and n = dim(X ). We will also set f(X ) and
fk(X ) to denote the classes f(TX ) and fk(TX ), respectively.

If instead f has rational coefficients, fk(E ), fk(X ) ∈ Ak(X )⊗Q.
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Riemann-Roch The Chern character and the Todd class

Two important examples of this procedure for constructing classes
associated to a vector bundle are the Chern character , ch(E ), and
the Todd class, td(E ):

ch(α1, . . . , αr ) = eα1 + . . . + eαr ,

td(α1, . . . , αr ) =
r∏

i=1

αi

1− e−αi
.

Note that if α is a Chern root, then both eα and α/(1− e−α) are
polynomials in α with rational coefficients, the reason being that
αN = 0 for sufficiently large N .

From the definitions it is clear that

ch(E ⊕ E ′) = ch(E ) + ch(E ′) and ch(E ⊗ E ′) = ch(E ) · ch(E ′)

and that
td(E ⊕ E ′) = td(E ) · td(E ′) .
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Riemann-Roch The Chern character and the Todd class

These relations, together with the fact that

tdn(Pn) = hn

(h the hyperplane class) are sufficient to determine the polynomials
ch and td (see Hirzebruch [1966]; below we check the cases n = 2
and n = 3).

A straightforward computation yields the following expressions, where
to simplify notation we set ck = ck(E ):

ch0(E ) = rank(E ) td0(E ) = 1

ch1(E ) = c1 td1(E ) =
1

2
c1

ch2(E ) =
1

2
(c2

1 − 2c2) td2(E ) =
1

12
(c2

1 + c2)

ch3(E ) =
1

6
(c3

1 − 3c1c2 + 3c3) td3(E ) =
1

24
c1c2 .
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Riemann-Roch The Chern character and the Todd class

Let us check that td2(P2) = h2 and that td3(P3) = h3. If c1 and c2

are the Chern classes of P2, then td2(P2) = (c2
1 + c2)/12. But

c(P2) = (1 + h)3 = 1 + 3h + 3h2 and so

td2(P2) = (9h2 + 3h3)/12 = h2.

As for P3, c(P3) = (1 + h)4 = 1 + 4h + 6h2 + · · · and so
td3(P3) = (c1c2)/24 = (4h · 6h2)/24 = h3.

Note that the properties of ch say that it induces a ring
homomorphism

ch : K 0X → A∗X .
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Riemann-Roch Hirzebruch–Riemann–Roch formula

Given a vector bundle E on a smooth projective variety X of
dimension n, the Euler characteristic of E , χ(E ), is defined as follows:

χ(E ) =
∑n

i=0(−1)ih i(X ,E ) ,

where h i(X ,E ) is the dimension over k of the cohomology space
H i(X ,E ). Then

χ(E ) =
∫
X

ch(E ) · td(X ) .
Here if α ∈ A∗(X ) we set

∫
X
α =

∫
X
αn .

For example, if D is a divisor on X and we set χ(D) = χ(LD), then

χ(D) =
∫
X

(
1 + [D] + [D]2/2 + . . .

)
·
(
1 + c1/2 + (c2

1 + c2)/12 + . . .
)
,

where ci = ci(X ). Since c1 = −[K ], on a curve (n = 1) of genus g
we get

χ(D) =
∫
X

([D]− [K ]/2) = deg(D) + 1− g .
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Riemann-Roch Hirzebruch–Riemann–Roch formula

On a surface of arithmetic genus pa

χ(D) =
∫
X

(
[D]2/2− ([D] · [K ])/2 + ([K ]2 + c2)/12

)
=

1

2

∫
X

[D] · ([D]− [K ]) +
1

12

∫
X

([K ]2 + c2)/12 .

In particular
∫
X

([K ]2 + c2)/12 = χ(0) = χ(OX ) = 1 + pa.

Another example is the case of an abelian variety X of dimension n.
In this case TX is trivial and so td(X ) = 1. Thus we have, for any
divisor D on X ,

χ(D) =
1

n!

∫
X

[D]n .

Reference: Hirzebruch [1966].
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Riemann-Roch Grothendieck–Riemann–Roch theorem

Let f : X → X ′ be a smooth projective morphism of non-singular
projective varieties and Tf the relative tangent bundle. Then for any
α ∈ K0(X ) = K 0(X ) the following relation holds in A∗(X ′)⊗Q:

ch(f!α) = f∗ (ch(α) · td(Tf )) .

This relation yields, when applied to the structural constant map
π : X → Spec(k ) and with α (the class of) a vector bundle E , the
Hirzebruch–Riemann–Roch formula, for on one hand π!α = χ(E ) and
ch is the identity of Z, and on the other Tπ = TX .

References: Borel–Serre [1958], Grothendieck [1971 a], Fulton [1984].
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Examples of intersection rings
Projective bundle P(E ). Grassmanians. Flags.

Blowups.
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Examples of intersection rings Projective bundles P(E)

Tautological line bundle on P(E )

Let E be a vector bundle of rank r on a variety X . Let P = P(E )
and p : P → X the projection.

Given a non-zero v ∈ Ex , the fiber of p∗E over the point [v ] ∈ P is
Ex ,

(p∗E )[v ] = Ex .
But Ex contains the line 〈v〉 spanned by v and so we can consider the
line subbundle of p∗E = E |P whose fiber over [v ] is 〈v〉.
The dual of this line bundle is called the tautological line bundle of P
and is denoted L = LE and so p∗E contains the line subbundle
Lv = Lv

E . The quotient bundle Q = QE = p∗E/Lv will be called the
tautological quotient of P . Thus we have, by definition, a
tautological exact sequence

0→ Lv → E |P → Q → 0 .
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Examples of intersection rings Projective bundles P(E)

The invertible sheaf OP(L) is denoted OP(1), or just O(1), and is
also called the tautological invertible sheaf on P .

The hyperplane class. The first Chern class ξ = ξE of L will be
called the hyperplane class, or the characteristic class, of P . Note
that if E is trivial, say E = V |X , then P = X ×P(V ). Moreover, the
tautological line bundle is LX×H , where H is a hyperplane of P(V ).
Hence ξ = [X × H]. When X is a point, we see that the ξ = [H].

Since p∗ drops codimension by r − 1, we see that

p∗(ξ
i) = 0 for 0 6 i 6 r − 2 .
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Examples of intersection rings Projective bundles P(E)

On the other hand it is clear that

p∗(ξ
r−1) = [X ]

for over a non-empty open set U of X on which E is trivial, say
U × V (V a k -vector space of dimension r), we can represent ξ by
the cycle [U]× [H], H a hyperplane of P(V ), and so ξr−1 is
represented by [U]× [pt], where pt is a point of P(V ). Since
U × {pt} has degree 1 over U , the claim follows.

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 80 / 101



Examples of intersection rings Projective bundles P(E)

Functoriality

The tautological data defined so far are functorial in the following
sense. Let f : X → X ′ be a map of varieties, let E ′ be a vector
bundle on X ′ and set P ′ = P(E ′), ξ′ = ξE ′ , Q

′ = QE ′ , E = f ∗E ′,
P = P(E ), ξ = ξE and Q = QE . Then P is the inverse image of P ′

under f , so that there is a unique map g : P → P ′ making the
diagram  P

g

−→ P ′

p ↓ ↓p′

X
f

−→ X ′


a fiber square, and the inverse image of the tautological exact
sequence for P ′ under the map g is the tautological exact sequence
for P . In particular we have that g ∗(ξ′) = ξ. When X is a point of
X ′ we get that the restriction of the hyperplane class to a fiber of P
is the class of the hyperplane of that fiber.
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Examples of intersection rings Projective bundles P(E)

Intersection ring of P = P(E )

The classes 1, ξ, . . . , ξr−1 are linearly independent over A∗(X ), where
A∗(P) is considered as an A∗(X )-module via the ring homomorphism
p∗ : A∗X → A∗P .

Indeed, assume ∑r−1
i=0p

∗(αi)ξ
i = 0 , αi ∈ AiX .

Applying p∗ to this relation, and using the projection formula,
together with (3.2.a) and (3.2.b), we get αr−1 = 0. So the claim
follows upon multiplying the displayed relation repeatedly by ξ. Note
that this implies that p∗ is injective.
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Examples of intersection rings Projective bundles P(E)

Now it turns out that the classes 1, ξ, . . . , ξr−1 also span A∗(P) as an
A∗(X )-module (see Grothendieck [1958 b], § 6, corollaire 2; the idea
is that the classes 1, ξ, . . . , ξr−1 restricted to any fiber of P(E )
generate, by Bézout’s theorem, the intersection ring of that fiber
considered as an abelian group; see also Fulton [1984], theorem 3.3).
So we see that there are unique classes ci = ci(E ) ∈ AiX such that

ξr + p∗(c1)ξr−1 + . . . + p∗(cr ) = 0 (8)

and consequently (Grothendieck’s theorem)

A∗(P(E )) = A∗(X )[T ]/ (fE (T )) ,

where T is an indeterminate and

fE (T ) = T r + p∗(c1)T r−1 + . . . + p∗cr = 0 .
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Examples of intersection rings Projective bundles P(E)

Interpretation of the Segre classes

From Whitney formula we have, with the same notations as before,
that

c(E |P) = (1− ξ)c(Q) .
Hence c(Q) = (

∑
i>0ξ

i)p∗(c(E )). Since cr (Q) = 0 because Q has
rank r − 1, this relation implies that

ξr+`−1 + ξr+`−2p∗(c1) + . . . + ξ`−1p∗(cr ) = 0

for any ` > 1. Applying p∗ and using the projection formula we get,
defining

si = p∗(ξ
i+r−1) ,

that
s` + s`−1c1 + . . . + s`−rcr = 0

for any ` > 1. Since s0 = 1, these relations just say that the si are
the Segre classes of E .
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Examples of intersection rings Grassmannians

Let Γ = Gr(k , n) be the Grassmannian of k-planes in Pn = P(V ) and
d = dim(Γ) = (k + 1)(n − k).

Let T ⊂ Γ× V be the tautological subbundle, so that the fiber
Tγ ⊂ V is the subspace of vectors representing points of γ ∈ Γ. Thus
T has rank k + 1.

Similarly, let Q = (V |Γ)/T , the tautological quotient bundle. Its
rank is d − k − 1.

Let c1, c2, . . . , ck+1 be the Chern classes of T and
C = [c1, c2, . . . , ck+1]. The A∗(Γ) is isomorphic to the ring
Z[c1, . . . , ck+1]/R , where R is the ideal generated by the polynomials
in the list

R = invert vector(C , n + 1)[−k − 1 :].

Remark : cn−kk+1 is a point.
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A sample of solutions
Lines meeting 4 lines in P3, 6 planes in P4,...

Lines in a cubic in P3. Lines in a quintic in P4.
Conics meeting 8 lines in P3. Conics tangent to 5

conics in P2. Conics in a quintic in P4.
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Solutions Lines meeting 4 lines in P3

Moduli : X = Gr(1, 3), d = dim(X ) = (1 + 1)(3− 1) = 4.

Setting : N = deg(XL1 · XL2 · XL3 · XL4), Lj generic lines.

Intersection ring : A∗(X ).

Relevant condition: XL, lines meeting a line L, and
` = [XL] ∈ A1(X ) (the same for all L!).

Theoretical solution: N = deg(`4) =
∫
X
`4 (because the projective

group acts transitively on X ).

Algebra: A∗(X ) = Z[c1, c2]/R , R the ideal generated by c3
1 − 2c1c2,

c4
1 − 3c2

1c2 + c2
2 .

Geometry : ` = c1 and c2 = π = [Xplane ].

Effective solution: `4 = c4
1 = 3c2

1c2 − c2
2 = 3`2π − π2, so

N =
∫
X
`4 = 3

∫
X
`2π −

∫
X
π2 = 3− 1 = 2.
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Solutions Lines meeting 6 planes in P4

Moduli : X = Gr(1, 4), d = dim(X ) = (1 + 1)(4− 1) = 6.

Setting : N = deg(XL1 · XL2 · XL3 · XL4 · XL5 · XL6), Lj generic planes.

Intersection ring : A∗(X ).

Relevant condition: XL, lines meeting a plane L, and

` = [XL] ∈ A1(X ) (the same for all L!).

Theoretical solution: N = deg(`6) =
∫
X
`6 (because the projective

group acts transitively on X ).

Algebra: A∗(X ) = Z[c1, c2]/R , R the ideal generated by

c4
1 − 3c2

1c2 + c2
2 and −c5

1 + 4c3
1c2 − 3c1c

2
2

Geometry : ` = c1 and c2 = π = [X3−plane ].

Effective solution: `6 = 4(3c2
1c

2
2 − c3

2 )− 3c2
1c

2
2 = 9c2

1c
2
2 − 4c3

2 , so

N =
∫
X
`6 = 9

∫
X
`2π2 − 4

∫
X
π3 = 9− 4 = 5.
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Solutions Lines in a cubic in P3 = P(V )

Moduli : X = Gr(1, 4), d = dim(X ) = (1 + 1)(4− 1) = 6.

Setting : A generic cubic f lives in S3V ∗. If we let T be the
tautological subbundle of X ×V , the locus we are looking at is Z (σ),
where σ = f̄ is the image in S3T ∗ of the constant section f of
X × S3V ∗ (σ(x) is the restriction of f to the vector subspace of V
representing the points of the line x). Therefore, N = deg(Z (σ)).

Intersection ring : A∗(X ).

Theoretical solution: [Z (σ)] = cmax(S3T ∗) = c4(S3T ∗) ∈ A4(X ).

Computation of c4: Using the expression on page 67,

c4 = (3α1)(2α1 + α2)(α1 + 2α2)(3α2) = 18c2
1c2 + 9c2

2 .

Geometry : c1 = −c1(T ) = −` and c2 = c2(T ) = π.

Effective solution: N = 27.

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 89 / 101



Solutions Lines in a quintic in P4

Moduli : X = Gr(1, 4), d = dim(X ) = (1 + 1)(4− 1) = 6.

Setting : A generic quintic f lives in S5V ∗. If we let T be the
tautological subbundle of X ×V , the locus we are looking at is Z (σ),
where σ = f̄ is the image in S5T ∗ of the constant section f of
X × S3V ∗ (σ(x) is the restriction of f to the vector subspace of V
representing the points of the line x). Therefore, N = deg(Z (σ)).

Intersection ring : A∗(X ).

Theoretical solution: [Z (σ)] = cmax(S3T ∗) = c6(S5T ∗) ∈ A6(X ).

Computation of c6: Using the expression on page 67,

c6 = 25c2(4α1 + α2)(3α1 + 2α2)(2α1 + 3α2) = 25c2(...) = ...

Geometry : c1 = −c1(T ) = −` and c2 = c2(T ) = π.

Effective solution: N = 2875.
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Solutions Conics meeting 8 lines in P = P3 = P(V ).

Moduli : C = P(S2T ∗), where T is the (rank 3) tautological
subbundle of P∗ × S2V ∗.

Setting : N = deg(∩16j68CLj ), the Lj lines in general position.

Intersection ring : A∗(C).

Relevant condition: CL, lines meeting a line L, and

λ = [CL] ∈ A1(C) (the same for all L!).

Theoretical solution: N =
∫
C
λ8 =

∫
P∗
π∗(λ

8).

Algebra: A∗(C) = A∗(P∗)[
∑6

0c
∗
j ξ

6−j ], ξ = c1(LC), LC the
tautological subbundle of C, c∗j = π∗cj(T

∗) ∈ Aj(C). A1(C) = 〈c∗1 , ξ〉.
Geometry : A∗(P∗) = Z[p]/(p4), c1 = p, c2 = p2, c3 = p3 (p the

condition that the plane of the conic is incident with a given point).
It turns out that λ = 2c∗1 + ξ.
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Solutions Conics meeting 8 lines in P = P3 = P(V ).

The computation of π∗(2c∗1 + ξ)8 is reduced to the computation of
π∗((c∗1 )jξ8−j) = c j1π∗(ξ

8−j). This vanishes if j > 3 and otherwise
c j1π∗(ξ

8−j) = pjs3−j(S
2T ∗) (sk Segre classes).

Result: N = 92.
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Solutions Conics tangent to 5 conics in P2

This is solved by blowing up the Veronese surface of double lines in
the space X = P5 of plane conics.

By Bézout, the hypersurface XC of conics tangent to a given conic C
has class 6H in X , where H is the class of a hyperplane in P5. The
class of the strict transform of XC on X̃ turns out to be 6H − 2D,
where D is the class of the exceptional divisor. Thus
N =

∫
X̃

(6H − 2D) = 3264.
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