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Abstract

WIT: Un sistema simbólico programado en Python para
cálculos de teoŕıa de intersecciones y geometŕıa enumerativa

En este curso se entrelazan cuatro temas principales que aparecerán,
en proporciones variables, en cada una de las sesiones:

(1) Repertorio de problemas de geometŕıa enumerativa y el papel de
la geometŕıa algebraica en el enfoque de su resolución.

(2) Anillos de intersección de variedades algebraicas proyectivas lisas.
Clases de Chern y su interpretación geométrica. Descripción expĺıcita
de algunos anillos de intersección paradigmáticos.

(3) Enfoque computacional: Su interés y valor, principales sistemas
existentes. WIT (filosof́ıa, estructura, potencial). Muestra de
ejemplos tratados con WIT.

(4) Perspectiva histórica: Galeŕıa de héroes, hitos más significativos,
textos y contextos, quo imus?
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Apollonius from Perga (-262 – -190), René Descartes (1596-1650),
Étienne Bézout (1730-1783), Jean-Victor Poncelet (1788-1867),
Jakob Steiner (1796-1863), Julius Plücker (1801-1868), Victor
Puiseux (1820-1883), Hieronymus Zeuthen (1839-1920), Sophus
Lie (1842-1899), Hermann Schubert (1848-1911), Felix Klein
(1849-1925), Helmut Hasse (1898-1979), André Weil (1906-1998),
Max Deuring (1907-1984), Jean-Pierre Serre (1926-), Alexander
Grothendieck (1928-2014), William Fulton (1939-), Pierre Deligne
(1944-), Israel Vainsencher (1948-), Stein A. Strømme
(1951-2014), Maxim Kontsevich (1964-).
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Michael Atiyah, in memoriam
The mysterious . Bernoulli and Todd numbers.
Higher order Bernoulli numbers. Comments of .

A. Connes tribute.
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Michael Atiyah, in memoriam Pictures

Above: Atiyah at the ICM-2018 (Rio), center with I. Deaubechies, right with R.
Pandharipande. Below: In Barcelona, April 2008, with mathematics students and
DHC lecture.
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Michael Atiyah, in memoriam The mysterious

In the preprint The fine structure constant (Atiyah 2018) we find
these two expressions for , the supposed mathematical formula for
the inverse 1/α of the fine structure constant α:

= lim
n→∞, j→∞

2−2nBn
k(j), k(j) = 2k(j−1), k(0) = 1,

where Bn
k(j) = B(n, k(j)) is a ‘higher order’ Bernoulli number, and

==
π

γ log 2
lim
n→∞

n∑
j=1

1

2j+1
(j log j − j +

log j + 1

j
).

Remark : Also called Sommerfeld constant, α is the dimensionless
physical quantity

α =
1

4πε0

e2

~c
, and 1/α = 137.035999084(21).

Remark : k(j) is superexponential in j : k(0) = 1, k(1) = 2,
k(2) = 22, k(4) = 222

= 16, k(5) = 216 = 65536, k(6) = 265536

(19729 decimal digits), ...
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Michael Atiyah, in memoriam Bernoulli and Todd numbers

The Bernoulli numbers Bn (n > 0) by

t

et − 1
=
∑
n>0

Bn

n!
tn.

Similarly, the Todd numbers Tn (n > 0) are defined by
x

1− e−x
=
∑
n>0

Tnx
n.

Therefore, Tn = (−1)nBn/n!, or Bn = (−1)nn!Tn.

Problem: To compute

t/(et − 1) = 1/(1 + x/2! + x2/3! + · · ·+ xn/(n + 1)! + · · ·
to any prescribed order.

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 9 / 108



Michael Atiyah, in memoriam Bernoulli and Todd numbers

Given a list or vector [c1, ..., cr ], and an integer d > 0, this function
computes the list or vector of the first d coefficients, starting with
degree 1, of the power series (1 + c1t + · · ·+ cr t

r )−1, which is
equivalent to find the inverse of 1 + c1t + · · ·+ cr t

r mod td+1. By
default, d = r .

def invert_vector(c, d=’’):

if isinstance(c,Vector_type):

return vector(invert_vector(list(c),d))

if len(c)==0: return invert_vector([0],d)

if d==0: return []

if d==’’: d=len(c)

c = pad(c,d)

s = [-c[0]]

if d==1: return s

for k in range(1,d):

s += [-c[k]-convolution(s,c,k-1)]

return s
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Michael Atiyah, in memoriam Bernoulli and Todd numbers

def bernoulli_numbers(N):

u = 1>>Q_

if N==0: return [u]

B = invert_vector([u/factorial(j+1)\

for j in range(1,N+1)])

return [u]+[factorial(k+1)*B[k] for k in range(N)]

BV_ = bernoulli_numbers

def bernoulli_number(N):

if N==0: return 1>>Q_

elif N==1: return -1/2>>Q_

else:

if odd(N): return 0>>Q_

else: return bernoulli_numbers(N)[-1]

B_=bernoulli_number
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Michael Atiyah, in memoriam Higher order Benoulli numbers

vprod(x,y,d)

If vecctors x and y have lengths r and s, this fucntion returns the
first d components of the vector of coefficients, starting with degree
1, of the t-polynomial (1 + x1t + · · ·+ xr t

r )(1 + y1t + · · ·+ yst
s). By

default, d = r + s.

vpower(x,m,d)

Returns the vector of the first d coefficients, starting with degree 1,
of the t-polynomial (1 + x1t + · · ·+ xr t

r )m. By default, d = rm.
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Michael Atiyah, in memoriam Higher order Benoulli numbers

def high_bernoulli_numbers(N,k):

u = 1>>Q_

if N==0: return [u]

B = invert_vector([u/factorial(j+1)\

for j in range(1,N+1)])

B = vpower(B,k,N)

return [u]+[factorial(j+1)*B[j] for j in range(N)]

#

HBs_=high_bernoulli_numbers

def HB_(n,k): return HBs_(n,k)[-1]
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Michael Atiyah, in memoriam Comments on
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Michael Atiyah, in memoriam Comments on

def zhe(n,j):

if igcd(j,2*n)!=1:

return ’zhe: coprime condition not satisfied’

k=0

for _ in range(j):

k=2**k

return HB_(n,k)/(2**(2*n))

N = [n for n in range(1,20) if igcd(n,3)==1 and igcd(n,5)==1]

for n in N: print(abs(zhe(n,3)))

for n in N: print(abs(zhe(n,5)))

Remark : Only for j = 3, 5 (in which case n is required to be coprime
with 3 and 5) can we actually compute the numbers, and the values
you get are very small for j = 3 and very large for j = 5.
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Michael Atiyah, in memoriam Comments on

What about the other formula?

from math import pi,log

euler_gamma=0.577215664901532

kappa = pi/euler_gamma/log(2)

def atiyah(n):

def t(j):

x = (j*log(j)-j+(log(j)+1)/j)/log(2)

return (1-x)/2**(j+1)

s = sum([t(j) for j in range(1,n+1)])

return s*kappa

print(atiyah(50)) => 0.23120602303795385

print(atiyah(100)) => 0.23120602303718477

print(atiyah(150)) => 0.23120602303718477
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Michael Atiyah, in memoriam A. Connes tribute
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Practice Get started

0. Installation of PyM

1. Carlitz congruences

B(p + 2, p + 1) ≡ 0 mod p2, p > 3, p prime.

B(p + 2, p + 1) ≡ 0 mod p3, p > 5, p prime.
B(p, p) ≡ 1

2
p2 mod p3, p > 3, p prime.

In the next congruences, p > 3:

B(p + 1, p) ≡ −p Bp+1

p + 1
+

1

24
p2 mod p3,

B(p + 2, p) ≡ p2 Bp+1

p + 1
mod p4,

B(p + 1, p + 1) ≡ Bp+1

p + 1
− 1

24
p mod p2,

B(pr , p) ≡ −1
2
pr+1(p − 1)Bpr−1 mod pr+2.
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Practice Get started

2. Asymptotics of Bn

(−1)n+1B2n ∼
2(2n)!

(2π)2n
∼ 4
√
πn
( n

πe

)2n

.

3. Euler numbers and Euler polynomials
2et

e2t + 1
= 1 +

∑
n>1

En
tn

n!
(E2n+1 = 0, (−1)nE2n > 0).

En(x) =
n∑

k=0

(
n

k

)
Ek

2k
(x − 1

2
)n−k .

4. Continuous fractions. Check that the continuous fraction
development of φ3, φ = (1 +

√
5)/2, is [4, 4, 4, 4, ...]. Find the first

10 rational approximations of φ3.
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Foreword
Materials and motivations. A short sample of

enumerative problems. General pattern for solving
enumerative problems: moduli, calculus of

geometric conditions, effective computations. Lines
meeting four lines in P3.
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Foreword Materials and motivations

Access to these slides:

https://mat-web.upc.edu/people/sebastia.xambo/ITEG/s-wit-pdf

or via

https://mat-web.upc.edu/people/sebastia.xambo/Talks.html

Access to PyM and related resources:

https://mat-web.upc.edu/people/sebastia.xambo/PyM.html

Main motivation:

A hands-on free computational support for UIT and UIT2 (see [33]
and [35]):

https://mat-web.upc.edu/people/sebastia.xambo/PyWIT.html

The link ITEG in PyWIT opens de file ITEG-Book.html, which
provides a way to access the witlets according to the context of the
UIT2 book.
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Foreword A short sample of enumerative problems

Circles tangent to three given circles in the plane (Apollonius)

Lines meeting 4 lines in P3

Lines meeting 6 planes in P4

Lines contained in a cubic in P3

Lines contained in 5ic in P4

Conics tangent to 5 conics in the plane

Conics in P3 meeting 8 lines

Conics contained in a 5ic in P4
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Foreword General pattern for solving enumerative problems

How many objects of a given type satisfy a given set of conditions,
provided the number is finite?

If this number is infinite, it is usually interesting to add other
conditions that allow us to get useful information about the space of
solutions.

The moduli problem: Find a parameter space M for the objects of
the type we are interested in.

The moduli space is known by other names in other contexts, as for
example configuration space in physics or in robotics, in which case
the dimension of M is called (number of) degrees of freedom (DoF),
or simply freedom of the system.
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Foreword General pattern for solving enumerative problems

Calculus of conditions: Interpret each condition in terms of the
geometry of M (such interpetations may still be called conditions)
and express the solution to the problem as some suitable operation
on them. In general, it may be necessary to find a compactification
M̄ of M with some convenient properties.

Effective computations: In general, getting the value of the
expressions may be achieved by a computer program capable of
encoding the formalism.
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Foreword General pattern for solving enumerative problems

Remark : The calculus of conditions may be some existing calculus on
some kind of spaces that has interest by itself, regardless of the
enumerative problems to which it may be applied. To a large extend,
this is the way we will follow here. This will include constructs and
results of what is loosely called intersection theory on smooth
algebraic varieties, but we will also be looking at examples that
require other frameworks.

It is healthy to be aware, nevertheless, that historically the unfolding
of intersection theory, or of algebraic geometry in general, has often
been driven by the demands of particular enumerative problems, and
that there has been a very broad interaction of these ideas with those
of other areas, like mathematical logic (ever since Boole), or topology
(ever since Poincaré), or differential geometry (ever since E. Cartan,
and G. de Rham). In the latter two cases, the ‘calculus of conditions’
is some suitable cohomology ring.
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Foreword General pattern for solving enumerative problems

On the other hand, once we have a calculus of conditions, there still
remain the questions about how to apply it to concrete problems and,
beyond that, about how to implement it in a computer system, which
in our view has its own independent interest –for its own sake, to be
sure, but also for the inspiration it can afford for other endeavors.
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Foreword Example: Lines meeting four lines in P3

How many lines meet 4 given lines in P3?

Poncelet’s argument. By the ‘principle of continuity’, the problem is
reduced to the case in which the first and second lines meet, and the
same with the third and fourth. Then there are two lines solving the
problem, as depicted in the figure.
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Foreword Example: Lines meeting four lines in P3

Analytical solution. The lines meeting three lines swap a quadric:
impose the condition that the line through a point x that meets the
first two lines also meets the third. Now a forth line meets this
quadric in two points, to which there correspond two lines meeting
the four given lines.

Plücker-Klein solution. The lines in P3 form, through the Plücker
embedding,1 a quadric Q of P5 and the lines meeting a given line `
form the section of Q by the tangent hyperplane T`Q. Therefore, the
lines meeting the four given lines `1, `2, `3, `4 form the section of the
line T`1 ∩ T`2 ∩ T`3 ∩ T`4 of P5 with Q, so the solution is 2.

1 The Plücker coordinates (p01, p02, p03, p12, p13, p23) of the line ` joining the
points [x0, x1, x2, x3] and [y0, y1, y2, y3] are given by the formula pi,j = xiyj − xjyi .
The vanishing of det(x , y , x , y) yields, using the Laplace rule, the quadratic
relation p01p23 − p02p13 + p03p12 = 0 (Klein’s quadric).
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Foreword Example: Lines meeting four lines in P3

Schubert calculus. Let l be the condition that a line meets a given
line, p that it goes through a given point, and π that it lies in a given
plane. Then l2 = π + p (as in Poncelet’s argument, assume that the
two line are coplanary). Since pπ = 0, l4 = p2 + π2 and hence the
solution is 2: there is a unique line joining two points and a unique
line lying in two planes.

Hilbert’s 15: To put Schubert’s enumerative calculus on a rigorous
foundation.
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Apollonius problem
Preliminary overview. Cartesian approach. Solution

by Lie’s circle geometry. Generalizations and
related systems.
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Apollonius problem Preliminary overview

Apollonius problem

How many circles are tangent to 3 given circles?

Special cases

1) How many circles going through one given point are tangent to
two given circles?

2)How many circles going through two given points are tangent to
one given circle?

3) How many circles pass through three given points?

The solutions: (3) one, known since Euclid; (2) Known by Apollonius:
two if the points lie on the same side of the circle, none otherwise;
(1) the inversion with center at the point shows that there are as
many as common tangent lines to two circles, which is 4 if the circles
are disjoint or lower according to the relative position of the circles.
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Apollonius problem Preliminary overview
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Apollonius problem Preliminary overview

The three given circles are drawn in black. On the left, they are totally
disjoint, and on the right they overlap but no one is contained in another.
In both cases we see eight solutions to the problem: four pairs of
‘conjugate’ solutions (in the sense of next slide).
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Apollonius problem Preliminary overview

C1

C2

C3 O

C

O (C): radical center (circle) of C1, C2, C3
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Apollonius problem Cartesian approach

Moduli . We can take the open set of R3 formed by the points
(a, b, c) such that a2 + b2 − c > 0, as suggested by the equation
fa,b,c(x , y) = x2 + y 2 − 2ax − 2by + c = 0 for the circle with center
at (a, b) and radius r =

√
a2 + b2 − c .

a

b

c

(a, b, c) ≡ C ′

(a, b, a2 + b2)

r

c = a2 + b2 − r2 < a2 + b2

C

C : (x− a)2 + (y − b)2 = r2

x2 + y2 − 2ax− 2by + c
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Apollonius problem Cartesian approach

Another view of the geometric discussion on pages 32-34.

Conditions. That the circle fa,b,c = 0 goes through the point (x0, y0)
is represented by the abc-plane 2x0a + 2y0b = c + x2

0 + y 2
0 . This

implies that through three non collinear points there goes a unique
circle.

The intersection of fa,b,c = 0 with the line y = px + q is obtained by
solving the quadratic equation fa,b,c(x , px + q) = 0, so the condition
for the circle to be tangent to the line is the vanishing of the
discriminant, which turns out to be a quadratic equation in a, b, c ,
namely (a + pb − pq)2 − (1 + p2)(c + q2 − 2qb) = 0 (if the line is
vertical, say x = k , the condition is b2 − 2ka + c − k2 = 0). This
implies that the condition for fa,b,c to be tangent to a given circle is
also quadratic in a, b, c , as it is equivalent to the tangency to the
radical axis of the two circles (2(a − a′)x + 2(b − b′)y = c − c ′).
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Apollonius problem Cartesian approach

Calculus of conditions. Let us note that there are two circles that go
through two given points that are tangent to one given circle
(intersection of a quadric with a line), and that there are four circles
that go through one point and are tangent to two given circles
(common points of a plane with two quadrics, which amounts to the
intersection of two conics in one plane).

As we will see later (Bézout’s theorem for P3), the intersection of
three quadrics has, if finite, at most 23 points, which is exactly 8 if
we take into account complex solutions and each to them is counted
with a suitable multiplicity. By what we saw before, in general the
solutions are real and have multiplicity 1.
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Apollonius problem Solution with Lie’s circle geometry

This is a nice example for the illustration of the general ideas
presented on pages 23-24.

A very useful reference for our purposes has been the book
Geometriekalküle of Jürgen Richter-Gebert and Thorsten Orendt
(Springer, 2009), particularly Ch. 10 (Kreisgeometrie).

The Lie vector of the circle with center M = (a, b) (midpoint) and
radius R is the 5-vector

[w , 1− w , a, b,R], w = (1 + a2 + b2 − R2)/2.

In particular, points are encoded as circles of radius 0.

Comparing with the Cartesian equation:

(x − a)2 + (y − b)2 = R2, or

x2 + y 2 − 2ax − 2by + c , c = a2 + b2 − R2,
we see that w = (1 + c)/2, 1− w = (1− c)/2.
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Apollonius problem Solution with Lie’s circle geometry

For nonzero R , the orientation of the circle is encoded as the sign of
R , a convention that is consistent with the customary parametric
representation of the circle:

(x , y) = (a + R cos(t), b + R sin(t)), t ∈ [0, 2π).

The Lie vector of the line ax + by = d , where (a, b) is its normal
vector and d = au + bv for any given point on it, is the 5-vector[

d ,−d , a, b,
√
a2 + b2

]
.

Lines can be considered as circles of radius ∞. In fact, it is a
straightforward exercise to show that the Lie vector of the circle
through the point R = (u, v) with center at the point
M = (u + ta, v + tb) becomes, when r →∞, the Lie vector of the
line through R with normal vector (a, b).
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Apollonius problem Solution with Lie’s circle geometry

def Lie_vector(M=(0,0),R=0):

a, b = M

if is_pair(R):

u,v = R

d = a*u+b*v

return [d,-d,a,b,sqrt(a**2+b**2)]

if is_real(R):

w = (1+a**2+b**2-R**2)/2

return [w,1-w,a,b,R]

return ’Lie_vector: wrong parameters’

LV = lie_vector=Lie_vector

def orientation(X):

r = X[4]

if r>0: return 1

elif r<0: return -1

else: return "orientation: object has no orientation"
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Apollonius problem Solution with Lie’s circle geometry

The Lie metric. It is defined on 5-vectors by the formula

L(X ,Y ) = −x1y1 + x2y2 + x3y3 + x4y4 − x5y5.

Thus its signature is (−,+,+,+,−).

In the implementations, we add a definition for 4-vectors identified
with the 5-vectors whose last component is 0.

def Lie_metric(X,Y):

if len(X)==len(Y)==4: # make them 5-vectors

X[4] = Y[4] = 0

x1,x2,x3,x4,x5 = X

y1,y2,y3,y4,y5 = Y

lm = -x1*y1 + x2*y2 + x3*y3 + x4*y4 - x5*y5

if nil(lm): return 0

return lm

#

LM = lie_metric = Lie_metric
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Apollonius problem Solution with Lie’s circle geometry

Theorem. If X and Y are Lie vectors, the relation L(X ,Y ) = 0 is
satisfied if and only if the corresponding circles have an oriented
contact.

Remarks. Two distinct circles that touch intersect at a single point.
The contact is internal (external) if they have the same (distinct)
orientation.

If one of the circles is a line, the distinction is whether the normal
vector to the line is pointing outwards or inwards of the circle.

If X is a point, the notion of oriented contact just means that the
circle or line corresponding to Y goes through the point
corresponding to X . If in addition Y is a point, it means that the
points coincide.
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Apollonius problem Solution with Lie’s circle geometry

If the three circles are positively oriented (counterclockwise by convention)
and the line orientation is upwards, the oriented contacts occur for the
blue and black circles and for the black circle and the line. The contacts of
the red circle with the black circle and the line are not oriented contacts.
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Apollonius problem Solution with Lie’s circle geometry

Lie quadratic form

It is the quadratic form of the Lie metric. It defines a non-degenerate
quadric C̄ in P4. The points of this quadric are precisely those
represented by the Lie vectors of circles, lines and points of the plane,
together with the point ∞ = [1,−1, 0, 0, 0]. In other words, it is a
compactification of the space C of oriented circles in the Euclidean
plain obtained by adding points (as circles of radius 0) and lines (as
circles of radius ∞ or, equivalently, circles going through ∞).

def Lie_form(X): return Lie_metric(X,X)

Lie-Gram matrix

def lie_gram_matrix(*S):

M = [[Lie_metric(X,Y) for X in S] for Y in S]

return M
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Apollonius problem Solution with Lie’s circle geometry

Cutting the Lie quadric with a line

Given three linearly independent 5-vectors A,B ,C , which may or may
not belong to the Lie quadric, the next function finds the
(normalized) intersections with the Lie isotropic cone of the plane
Lie-orthogonal to 〈A,B ,C 〉. This amounts to cut the Lie quadric
with the line represented by 〈A,B ,C 〉⊥L .
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Apollonius problem Solution with Lie’s circle geometry

def Lie_section(A,B,C):

X = A[:]; X[0]=-X[0]; X[4]=-X[4]

Y = B[:]; Y[0]=-Y[0]; Y[4]=-Y[4]

Z = C[:]; Z[0]=-Z[0]; Z[4]=-Z[4]

import sympy

M = sympy.Matrix([X,Y,Z])

K = M.nullspace()

if len(K)>2: return ’lie_section: Infinite solutions’

else: [v,w] = K

G = lie_gram_matrix(v,w)

st = solve_quadratic(G[0][0],2*G[0][1],G[1][1])

if st==0:

print(’lie_section: imaginary Lie objects’)

return 0

s,t = st

s1,s2 = s; t1,t2=t

S = list(s1*v + s2*w); T = list(t1*v + t2*w)

return normalize(S), normalize(T)
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Apollonius problem Solution with Lie’s circle geometry

Examples

There are two circles (possibly imaginary) that properly touch three
given circles X ,Y ,Z . These circles are delivered by
Lie section(X,Y,Z) and we may denote them by the expression
◦◦(X ,Y ,Z ).

Changing the orientations of X ,Y ,Z simultaneously, (X̄ , Ȳ , Z̄ ) yields
the same pair of circles, but with exchanged roles with respect to the
kind of oriented tangency.

It follows that we get four pairs of circles touchig the three given
ones: ◦◦(X ,Y ,Z ), ◦◦(X ,Y , Z̄ ), ◦◦(X , Ȳ ,Z ), and ◦◦(X , Ȳ , Z̄ ).
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Apollonius problem Solution with Lie’s circle geometry
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Apollonius problem Generalizations and related systems

The Apollonius problem and its effective solutions have occupied the
minds of many prominent mathematicians since Apollonius
contributions.

General survey: [31] (Wikipedia)

[16, Ch. 10, Kreisgeometrie] (RichterGebert-Orendt-2009,
Geometriekalküle)

[4, §III.2] (Courant-Robbins-1996, What is Mathematics?)

[1] (Behnke-et-al-1974, Fundamentals of mathematics, II:
Geometry): An excellent pedagogical introduction to Lie circle
geometry and subordinated geometries (notably Laguerre and Möbius
geometries).

[5] (Coxeter-Greitzer-1967, Geometry revisited)

[15, Chapter IV] (Pedoe-1970, Geometry, a comprehensive course)
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Apollonius problem Generalizations and related systems

As it is to be expected, there have been many generalizations of the
Apollonius problem, which often have interesting connections with
other areas.

[3] (Cecil-2008, Lie Sphere Geometry. With Applications to
Submanifolds): A thourough treatment of Lie sphere geometry.

[36] (Zlobec-Kosta-2001, Configurations of circles and the
Apollonius problem): this paper frames the generalization of
Apolonius problems for spheres in Rn and uses the formalism of Lie’s
geometry to interpret and solve them.

[14, §2.7, Möbius geometry] (Onishchik-Sulanke-2006, Projective
and Cayley-Klein geometries)
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Apollonius problem Generalizations and related systems

[24] (Sulanke-2019, Differential Geometry of the Möbius Space I)

[8] (HertrichJeromin-2003, Introduction to Möbius Differential
Geometry)

[9] (Kisil-2018, Lectures on Moebius-Lie Geometry and its
Extension): “review the classical Möbius-Lie geometry and recent
work on its extension”. Interesting computational treatment in C++
and an “interactive Python wrapper”.
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Apollonius problem Generalizations and related systems

Lie sphere geometry is very closely connected with Conformal
Geometric Algebra and Oriented CGA. See [Ch. 2][11]
(Lavor-Xambo-Zaplana-2018, A geometric algebre invitation to
space-time physics, robotics and molecular geometry) and [2]
(Cameron-JLasenby-2008, Oriented conformal geometric algebra),
respectively, and the references therein. For CGA, see also [34]
(Xambo-2016, talk at IMUVA).

The method used to parametrize circles in the plane and lines in P3

by means of the Lie quadric in P4 and the Klein quadric in P5,
respectively, was applied by Study to parametrize Euclidean proper
displacements (moduli of the positions of a rigid body) by points of a
quadric in P7. This approach, combined with geometric algebra
techniques, is widely used in robot kinematics.

[13] (Mumford-Series-Wright-2002, Indra’s pearls)

.
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Apollonius problem Practice

1. PyM structure. Examples.

2. Work on wit lie. Work out some the solution for three specific
non-overlapping circles. Similarly, when one or more circles are lines
or points.
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Plane curves
Geometric features and numerical charaters.

Tangents. Intersection multiplicity and Fulton’s
algorithm. Polars, dual curve and Plücker formulas.
Bézout’s theorem and the resultant. Rational plane

curves and Kontsevich numbers.
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Plane curves Geometric features and numerical charaters

Plane curves: Let C̄ = Z (F ) ⊂ P2 be a (projective) plane curve,
where F ∈ K [x0, x1, x2]− {0} is homogeneous. Unless declared
otherwise, K is an algebraically closed field of characteristic 0 (say C).

The polynomial f = F (1, x , y) ∈ K [x , y ] is the dehomogenization
of F (with respect to x0). If F is not divisible by x0, we have
F = xd0 f (x1/x0, x2/x0), which is the homogenization of f . Explicitly,
if f = f0(x , y) + f1(x , y) + · · ·+ fd(x , y), where fj is the
homogeneous component of degree j of f , then
F = xd0 f0 + xd−1

0 f1 + · · ·+ x0fd−1 + fd .

In practice, we can deal with C̄ by means of C = Z (f ) ⊂ A2 (affine
curve) for proper points together with the analysis of the improper
points of C̄ , namely Z (fd(x1, x2), x0).
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Plane curves Geometric features and numerical charaters

Components: If F = F r1
1 · · · F rm

m is the factorization of F into
irreducible homogeneous polynomials F1, . . . ,Fm, C̄i = Z (Fi) are the
irreducible components of C̄ and r1, . . . , rm are their multiplicities.

Degree d : Algebraically, the total degree of F ; geometrically, the
maximum number of intersection points of C with a line L (count
points on Ci ∩ L with multiplicity ri). Curves of degree
d = 2, 3, 4, 5, . . . are called conics, cubics, quartics, quintics, . . .

Moduli : PNd , Nd = (d + 2)(d + 1)/2− 1 = d(d + 3)/2.

Remark : The above definitions are valid for any number of
variables x0, x1, . . . , xn, except that for n > 2 the locus Z (F ) is called
a hypersurface and ‘conic’ is replaced by quadric for n > 3 and
(often) by hyperquadric for n > 3. The moduli space is PNn,d ,
Nn,d =

(
n+d
d

)
− 1.

Note also that the condition of passing through a point is linear.
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Plane curves Geometric features and numerical charaters

The case n = 1 is special: The irreducible factors of F can be
written in the form Fi = bix0− aix1 and hence C̄i = Z (Fi) is the point
[ai , bi ] ∈ P1, which is [1, bi/ai ] if ai 6= 0 and ∞ = [0, 1] if ai = 0.

Thus Z (F ) has d points (when counted with their multiplicities ri).
These points are all proper if x0 is not a factor of F ; otherwise, ∞
appears with the multiplicity of x0 as a factor of F .

This result was used by Poncelet to justify what he called the
principle of continuity and later (Severi, [23]) the principle of
conservation of number . See [32] for a historical overview.
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Plane curves Geometric features and numerical charaters

Multiplicity of point O on C , m = mO(C ): The maximum m such
that all partial derivatives of F of order < m vanish at O. We see
that mO(C ) is 0 for any point O not on C and mO(C ) > 1 for all
O ∈ C .

mO(C ) is also the minimum of iO(C , L) for L a line through O.
Note that the points O ∈ C ∩ L correspond to the roots of the
restriction of F to L, and iO(C , L) is the multiplicity of the root
corresponding to O. The sum of these multiplicities is d , and they
are all equal to 1 for generic L if the curve is reduced (i.e., has no
multiple factors).

A point O ∈ C is simple or smooth (multiple or singular) if m = 1
(m > 1). For m = 2, m = 3 and m = 4 we say double, triple and
quadruple points, respectively.
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Plane curves Geometric features and numerical charaters

Tangents: The tangents to C at O are the lines given by the linear
factors of fm(x , y), where f (x , y) = fm(x , y) + · · ·+ fd(x , y) is the
equation of C in affine coordinates x , y with origin at O. Each
tangent has a multiplicity and the sum of these multiplicities is m. A
multiple point (m > 1) is ordinary if its tangents have multiplicity 1,
i.e., if they are all distinct.

A node (cusp) is a double point with two distinct (coincident)
tangents. The origin is a cusp, with double tangent y = 0, for
y 2 − x3 = 0 and a node, with tangents y ± x = 0, for y 2 = x2 + x3.

Intersection multiplicity of C and C ′ at a point O, iO(C ,C ′):
dimOP,O(f , g), the dimension of the quotient of the local ring of the
plane at O by the ideal generated by the local equations f and g of
C and C ′ at O.

We will also write iO(F ,F ′) instead of iO(C ,C ′)).
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Plane curves Geometric features and numerical charaters

If O = [a, b, 1] = (a, b) is a proper point (i.e. a point in
A2 = P2 − {Z = 0}, iO(F ,F ′) only depends on f (x , y) = F (x , y , 1),
g(x , y) = G (x , y , 1) and (a, b), and is denoted iO(f , g) = i(a,b)(f , g).

If O = [a, 1, 0], then iO(F ,G ) = i(a,0)(F (x , 1, z),G (x , 1, z)), and if
O = [1, 0, 0], then iO(F ,G ) = i(0,0)(F (1, y , z),G (1, y , z)).

Since i(a,b)(f , g) = i(0,0)(f (x + a, y + b), g(x + a, y + b)), we can
assume that a = b = 0, i.e. O = (0, 0).

iP(C ,C ′) > eP(C )eP(C ′), = if and only if C and C ′ do not have
common tangents at P . In particular iP(C ,C ′) = 1 if and only if P is
a smooth point on both C and C ′ and C and C ′ are not tangent at P .

Bézout’s theorem: If C and C ′ have degrees d and d ′ and no
common component, then the number of intersection points of C
and C ′, counted with their intersection multiplicities, is dd ′. See [30,
§5.2] (Waker-1950, Algebraic curves).
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Plane curves Intersection multiplicities and Fulton’s imult algorithm

The function imult(f , g) computes the intersection multiplicity of the
plane curves f (x , y) = 0 and g(x , y) = 0 at the point O = [a, b],
which by default is taken to be the origin O = [0, 0]. The algoritm is
extracted from Fulton’s book Algebraic Curves (see
http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf,
Section 3.3). Two instances of Fulton’s example (loc. cit., page 40):

F = Q_ # in this case it yields 14

# F = Zn(5) # in this case it yields 18

[Fxy,x,y] = polynomial_ring(F,’x’,’y’,’Fxy’)

f = (x**2 + y**2)**3 - 4*x**2 * y**2

g = (x**2 + y**2)**2 + 3*x**2 * y - y**3

show(imult(f,g))
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Plane curves Intersection multiplicities and Fulton’s imult algorithm

The algorith works as follows. We may assume f 6= 0 and g 6= 0, as
otherwise the i(f , g) =∞. Write

f = f0 + f1y + · · ·+ fmy
m, g = g0 + g1y + · · ·+ gny

n, fm, gn 6= 0.

If f0 = 0, then f = f ′y , f ′ = f1 + · · ·+ fmy
m−1, and hence

i(f , g) = i(f ′y , g) = i(y , g) + i(f ′, g) = i(y , g0) + i(f ′, g). We can
assume that g0 6= 0, as otherwise i(y , g0) =∞, and then i(y , g0) is
equal to the trailing degree of g0, that is, the degree of the lowest
non-zero monomial appearing in g0, which is positive, and so we can
proceed recursively with i(f ′, g). If g0 = 0, we can proceed likewise.
Thus we can assume that f0, g0 6= 0. Let r , s be the degrees of these
polynomials, and assume r > s (this is no loss of generality). If c0, d0

are the leading coefficients of f0 and g0, respectively, then
i(f , g) = i(d0f − c0x

r−sg , g), which reduces the problem to a case
with lower r and same s, and so we can proceed recursively.
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Plane curves Intersection multiplicities and Fulton’s imult algorithm

def imult(f,g,O=[0,0]):

if f==0 or g==0: return ’Infinity’

if evaluate(f,[x,y],O)!= 0 or evaluate(g,[x,y],O)!=0: return 0

a = O[0]; b = O[1]

if a!=0 or b!=0:

f = evaluate(f,[x,y],[x+a,y+b])

g = evaluate(g,[x,y],[x+a,y+b])

f0 = constant_coeff(f); r = degree(f0)

g0 = constant_coeff(g); s = degree(g0)

if f0==0:

if g0==0: return ’Infinity’

else: return trailing_degree(g0) + imult(f/y,g)

else: # f0!=0

if g0==0: return trailing_degree(f0)+imult(f,g/y)

else: # g0!=0

c0 = leading_coeff(f0); d0 = leading_coeff(g0)

if r<=s: return imult(f,c0*g-d0*x**(s-r)*f)

else: return imult(d0*f-c0*x**(r-s)*g,g)

return ’Error’
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Plane curves Polars, dual curve, and Plücker formulas

Conjugate points. Let C = Z (F ). Given points
X = [x0, x1, x2] = [x ] and Y = [y0, y1, y2] = [y ], we say that they are
conjugate with respect to C if

y · ∂F (x) = y0∂0F (x) + y1∂1F (x) + y2∂2F (x) = 0.

If we fix X ∈ C , then the conjugate points of X are those of the
tangent line TXC to C at X , if X is smooth, and all points of the
plane otherwise.

Polar curves. If we fix Y , then the points X conjugate to Y form
the curve CY = Z (y0∂0F (x) + y1∂1F (x) + y2∂2F (x)), which is called
the (first) polar of Y with respect to C . This curve has degree
d − 1, passes through all singular points of C , and if X ∈ C ∩ CY is
smooth on C , then Y lies on TXC .
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Plane curves Polars, dual curve, and Plücker formulas

Dual curve. If C is irreducible of degree d > 1, the set of tangents
at smooth points of C is an open set of an irreducible curve in Pv.
This curve is called the dual curve of C and is denoted C v. The
degree of C v, denoted d v, is also called the class of C . Thus d v is
the number of proper tangents of C passing through a general point
of P.

Plücker’s class formula. Let C be an irreducible plane curve of
degree d and class d v. Assume that the only singularities of C are δ
ordinary nodes and κ ordinary cusps. Then Plücker’s formula for the
class is the following:

d v = d(d − 1)− 2δ − 3κ . (1)

In other words, a node counts with multiplicity 2 in the intersection
of C and CP , and a cusp with multiplicity 3.
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Plane curves Polars, dual curve, and Plücker formulas

Expression of d v in terms of the genus. Let g be the geometric
genus of a curve C . If C satisfies the same hypothesis as in the
preceding paragraph, then, as proved by Clebsch in 1864,

g =
(d − 1)(d − 2)

2
− (δ + κ) . (2)

This formula, and Plücker’s first formula, imply that

d v = 2d + (2g − 2)− κ . (3)
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Plane curves Polars, dual curve, and Plücker formulas

Plücker’s dual formula. The nodes of C v are the bitangent lines of
C , that is, the lines that are simply tangent to C at exactly two
smooth points, and the cusps of C v are the inflexional tangents of C ,
that is, lines that are doubly tangent to C at one point (such point is
called a flex of C ) and that are transversal to C elsewhere.

Now it turns out that C is the dual of C v (this is the so called
biduality theorem; for a nice proof see [10] (Kleiman-1977, The
enumerative theory of singularities). So if the only multiple tangents
of C are δ v bitangent lines and κv inflexional tangents, then

d = d v(d v − 1)− 2δ v − 3κv . (4)

Furthermore, since C and C v have the same genus, for C and C v are
birationally equivalent, we get that

d = 2d v + (2g − 2)− κv . (5)
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Plane curves Polars, dual curve, and Plücker formulas

Other Plücker formulas: Eliminating g and d v between (7), (5) and
(4), one obtains

k v = 3d(d − 2)− 6δ − 8κ .

Dually,
k = 3d v(d v − 2)− 6δ v − 8κv .

Similarly one obtains that

δ v =
d(d − 2)(d2 − 9)

2
.

Hence a smooth quartic has 28 bitangent lines.
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Plane curves Bézout’s theorem and the resultant

If the base field is algebraically closed, two reduced plane curves of
degrees m and n with no common components have exactly mn
intersection points provided that the points at infinity are taken into
account and that each point is counted with its intersection
multiplicity.

In the classical theory, the standard proof of Bézout’s theorem relies
on the properties of the resultant R = Ry (f , g) of the curves, which
include a definition of the intersection multiplicities at the common
points. Van der Waerden’s book [27] features the first presentation
using the algebraic methods developed by the E. Nother’s school that
crystallized in [28]. For an historical account, see for instance [29].
Nowadays, the best treatment is provided in [6, Ch. 1]: Examples
1.1.1, 1.2.1, 1.2.5 and 1.4.1 address, respectively, the definition and
properties of iP(f , g); the relation of the resultant with the
intersection multiplicities; Zeuthen’s rule (see also [30, IV,§5]); and a
proof of Bézout’s theorem that vindicates Poncelet’s approach.
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Plane curves Bézout’s theorem and the resultant

Example

−8/7

4/7 1

1

This figure is adapted from Fig 5.1 on page 112 of
Walker’s book Algeraic curves. It depicts two cubics,
f and g, having a cusp and a node at O, respectively:

f = x3 + y3 − 2xy, g = 2x3 − 4x2y + 3xy2 + y3 − 2y2.

The imult algorithm gives iO(f, g) = 5. Besides O, it
is immediate that the point P (1, 1) also lies on f and g,
and we find that iP (f, g) = 3. By Bzout’s theorem, there
must be another intersection point with multiplicity 1.
This point can be found with the resultant R = R(f, g),
which is, up to a cancelled factor 8x5(x − 1)3, −4 + 7x,
which vanishes at x0 = 4/7. It follows that the poly-
nomials f(x0, y) and g(x0, y) have a common root. Now
their difference is a quadratic polynomial whose roots
turn out to be −8/7 and 4/7. Then if we set Q =
(4/7,−8/7) and Q′ = (4/7, 4/7) , we get iQ(f, g) = 1
and iQ′(f, g) = 0. Therefore the intersection of the two
curves is 5O + 3P + Q. Note that the values of f and
g at Q′, which are nonzero, must be the same because
their difference vanishes at Q′.

f

g

O

P

Q
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Plane curves Rational plane curves

Consider the set (variety) of plane rational curves of degree d . If we
consider curves with no other singularities than δ nodes, we get a
variety Vd ,δ of dimension d(d + 3)/2− δ. If we want rational curves
(g = 0), than δ = (d − 1)(d − 2)/2 and hence Rd = Vd ,(d−1)(d−2)/2

has dimension d(d + 3)/2− (d − 1)(d − 2)/2 = 3d − 1.

Let Nd be the number of curves in Rd that pass through 3d − 1
points in general position.

N1 = 1: one line going through 2 distinct points.

N2 = 1: one conic going through 5 points if no four of them are
collinear.

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 71 / 108



Plane curves Rational plane curves

N3 = 12: number of nodal cubics going through 8 points (Steiner
1848 & 1853, Maillard 1871, Zeuthen 1872).

N4 = 620: number of rational quartics (3 nodes) going through 11
points (Zeuthen 1873).

N5 = 87304: number of rational quintics (6 nodes) going through
14 points (Ran 1989, Vainsencher 1995).
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Plane curves Kontsevich numbers

Theorem (Kontsevich 1995). Given d > 2, for each j ∈ [1, d − 1] let
k = d − j . Then Nd satisfies the recursive relation

Nd +
∑
j

(
3d−4
3j−1

)
j2NjNk jk =

(
3d−4
3j−2

)
jNjkNk jk .

Since N1 = 1, the relation allows us to compute Nd for all d > 1:
setting n = 3d − 4 and m = 3j − 2, and using

(
n

m+1

)
=
(
n
m

)
n−m
m+1

, we
have

Nd =
∑
j

j2kNjNk

(
n
m

) (
k − j n−m

m+1

)
.

d 1 2 3 4 5 6 7
Nd 1 1 12 620 87304 26312976 14616808192

Remark: N100 has 520 digits and N200, 1227.
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Plane curves Kontsevich numbers

## Number of rational plane curves of degree d >= 1

## going through 3d-1 points in general position

def K_(d):

L = [1]

for j in range(1,d):

L = update(L)

return L

def update(L):

d = len(L)+1

K = 0

for j in range(1,d):

k = d-j

n = 3*d-4; m = 3*j-2

B = binom(n,m)

K += j**2 * k * L[j-1] * L[k-1] * ( B*k - j*B*(n-m)//(m+1) )

return L + [K]
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Counting rational points on
curves/Fq

The zeta function. Basic algorithm. Improved
algorithm. The function XN. Elliptic curves over F2.

The Klein quartic.
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Counting rational points on curves The zeta function

We will follow [12] (Molina-Sayols-Xambo-2017, and references
therein). Here X denotes a (smooth absolutely irreducible) curve/Fq,
and g = g(X ) its genus. The aim of this part is to explain an
implementarion of a fast algorithm that finds, for any given r , the
number νr of Fqr -rational points on X assuming ν1, . . . , νg are known.

Ingredients

The Hasse-Weil-Serre upper bound . Nq(g) = q + 1 + gb2√qc
(upper bound for the number of Fq-rational points of X/Fq): [19]
(Serre-1983), [20] (Serre-1983), [21] (Serre-1984).

For historical aspects and background: [25] (Torres-2008), [26] (van
der Geer-2015), and the many references provided there. The general
context provided by the Weil conjectures is outlined in [7]
(Hartshorne, Algebraic geometry), Appendix C.
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Counting rational points on curves The zeta function

νr = νr (X ) #X (Fqr )

Z = Z (T ) = exp
(∑∞

r=1 νr
T r

r

)
Weil zeta function of X

νr = 1
(r−1)!

d r

dT r log Z (T )|T=0.

Z (T ) = P(T )
(1−T )(1−qT )

, P(T ) ∈ Z[T ] rationality

P(T ) = qgT 2gP(1/qT ) functional equation

deg(P) = 2g

P(T ) =
∏2g

j=1(1− αjT ), |αj | =
√
q ‘Riemann hypothesis’ for X

νr = qr + 1− Sr , Sr =
∑2g

j=1 α
r
j

Notations. c0 = 1 and cj = (−1)jσj(α1, . . . , α2g ) for j = 1, . . . , 2g .
Thus P(T ) = c0 + c1T + · · ·+ c2gT

2g and c2g = qg .
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Counting rational points on curves Basic algorithm

Input: ν1, . . . , ν2g and r > 2g .

Output: ν2g+1, . . . , νr .

For j = 1, . . . , 2g , set Sj = qj + 1− νj .
Use the Girard-Newton formulas to recursively compute
c1, . . . , c2g :

cj = −(Sj + c1Sj−1 + · · ·+ cj−1S1)/j .

Use the Girard-Newton relation

Sj = −
(
c1Sj−1 + · · ·+ c2g−1Sj−(2g−1) + c2gSj−2g

)
to successively get Sj and νj = qj + 1− Sj for j = 2g + 1, . . . , r .
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Counting rational points on curves Improved algorithm

Proposition. cg+l = qlcg−l .

Proof. If αj is a root, ᾱj = q/αj is a root (P has real coefficients).
Possible real roots of P : ±√q (an even number). The multiplicity of
−√q is even (the coefficient of T 2g is qg , by the functional
equation). Index the roots of P so that α2g−j+1 = ᾱj = q/αj ,
j = 1, . . . , g . Now αj 7→ q/αj exchanges α1, . . . , αg and
α2g , . . . , αg+1. If we set

f (T ) =

2g∏
j=1

(T − αj) = c0T
2g + c1T

2g−1 + · · ·+ c2g−1T + c2g ,

then T 2g f (q/T ) has the same roots as f (T ) and therefore
T 2g f (q/T ) = c2g f (T ) = qg f (T ). Now the claim follows by
equating the coefficients of T g+l on both sides: on the right we get
qgcg−l and on the left qg−lcg+l .
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Counting rational points on curves Improved algorithm

Input: ν1, . . . , νg and r > g .

Output: νg+1, . . . , νr .

For j = 1, . . . , g , set Sj = qj + 1− νj .
For j = 1, . . . , g ,

cj = −(Sj + c1Sj−1 + · · ·+ cj−1S1)/j .

For j = g + 1, . . . ,min(r , 2g), set cj = qj−gc2g−j , get

Sj = −(c1Sj−1 + · · ·+ cj−1S1 + jcj),

and set νj = qj + 1− Sj .

If r > 2g , proceed as in the basic algorithm: for j = 2g + 1, . . . , r ,

Sj = −(c1Sj−1 + · · ·+ c2gSj−2g )

and set νj = qj + 1− Sj .
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Counting rational points on curves The function XN

The parameter X of the function XN denotes the list [ν1, . . . , νg ].

def XN(q,X,k):

g = len(X)

if k<=g: return X[:k]

X = [0]+X # trick so that X[j] refers to F_{q^j}

X = [x>>Q_ for x in X]

S = [q**(j)+1-X[j] for j in range(1,g+1)] # Newton sums

S = [0]+S # similar trick

# Computation of c1,...,cg; set c0=1

c = [1>>Q_]

for j in range(1,g+1):

cj = S[j]

for i in range(1,j):

cj += c[i]*S[j-i]

c += [-cj/j]
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Counting rational points on curves The function XN

#

# Add c_{g+i}, for i=1,...,g

for i in range(1,g+1):

c += [q**i*c[g-i]]

# Find Sj for j = g+1,...,k

for j in range(g+1,k+1):

if j>2*g:

Sj=0

else:

Sj = j*c[j]

for i in range(1,j):

if i>2*g: break

Sj += c[i]*S[j-i]

S += [-Sj]

# Find X[i] for i = g+1,...,k

for i in range(g+1,k+1): X += [q**i+1-S[i]]

return vector(X[1:])
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Counting rational points on curves Elliptic curves over Z2

Nq(g): maximum of #X (Fq) taken over all curves X of genus g .
By the HWS upper bound,

Nq(g) 6 Nq(g) = q + 1 + gb2√qc.

X of genus g is maximal if #X (Fq) = Nq(g).

Deuring algorithm: Yields the list of all possible #E (Fq) for
elliptic curves E/Fq.
q m

2 2 [1, 2, 3, 4, 5]

3 3 [1, 2, 3, 4, 5, 6, 7]

4 4 [1, 2, 3, 4, 5, 6, 7, 8, 9]

5 4 [2, 3, 4, 5, 6, 7, 8, 9, 10]

7 5 [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

8 5 [4, 5, 6, 8, 9, 10, 12, 13, 14]*

9 6 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

11 6 [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
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Counting rational points on curves Elliptic curves over Z2

Missing values in the HWS range for elliptic curves. Here q is a prime
power up to 53, m = b2√qc and d is the length of the Deuring list
when less than 2m + 1.

q 2m+1 d

8 11 9 [7, 11]

16 17 13 [11, 15, 19, 23]

25 21 20 [26]

27 21 17 [22, 25, 31, 34]

32 23 15 [23, 27, 29, 31, 35, 37, 39, 43]

49 29 27 [43, 57]

64 33 21 [51, 53, 55, 59, 61, 63, 67, 69, 71, 75, 77, 79]

81 37 29 [67, 70, 76, 79, 85, 88, 94, 97]

125 45 37 [106, 111, 116, 121, 131, 136, 141, 146]
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Counting rational points on curves Elliptic curves over Z2

Over F2 = Z2 there are 32 cubic polynomials in normal form

E = y 2 + a1xy + a3 + x3 + a2x
2 + a4x + a6

of which precisely 16 are non-singular. For these cases, g = 1, the
HWS bound is q + 1 + m = 5 (as m = b2

√
2c = 2) and we have seen

that all the integers in the HWS interval [1, 5] occur as ν1(E ) for
some E . Now a straighforward computation yields the following
distribution:
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Counting rational points on curves Elliptic curves over Z2

ν1 E

1 y2 + y + x3 + x + 1, y2 + y + x3 + x2 + 1

2 y2 + xy + x3 + x2 + 1, y2 + xy + x3 + x2 + x ,

y2 + (x + 1)y + x3 + 1, y2 + (x + 1)y + x3 + x + 1

3 y2 + y + x3, y2 + y + x3 + 1

y2 + y + x3 + x2 + x , y2 + y + x3 + x2 + x + 1

4 y2 + xy + x3 + 1, y2 + xy + x3 + x

y2 + (x + 1)y + x3 + x2, y2 + (x + 1)y + x3 + x2 + x

5 y2 + y + x3 + x , y2 + y + x3 + x2

The sequences of values returned by XN with inputs q = 2 and [ν1], for
ν1 = 1, . . . , 5, and r = 20 are the following (the top row S is the
maximum value Nq(1) of #E (Fq) supplied by “Serre’s procedure”:
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Counting rational points on curves Elliptic curves over Z2

r 1 2 3 4 5 6 7 8 9 10
S(2r ) 5 9 14 25 44 81 150 289 558 1089

νr 1 5 13 25 41 65 113 225 481 1025
2 8 14 16 22 56 142 288 518 968
3 9 9 9 33 81 129 225 513 1089
4 8 4 16 44 56 116 288 508 968
5 5 5 25 25 65 145 225 545 1025

r 11 12 13 14 15 16 17 18 19 20

S 2139 4225 8374 16641 33131 66049 131797 263169 525737 1050625

νr 2113 4225 8321 16385 32513 65025 130561 262145 525313 1050625
1982 4144 8374 16472 32494 65088 131174 263144 525086 1047376
2049 3969 8193 16641 32769 65025 131073 263169 524289 1046529
2116 4144 8012 16472 33044 65088 130972 263144 523492 1047376
1985 4225 8065 16385 33025 65025 131585 262145 523265 1050625
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Counting rational points on curves Elliptic curves over Z2

Remark. XN(q, [ν1, . . . , νg ],∞) = {νj(X/Fq)}j>1. Given a positive
integer s, the subsequence {νsj(X/Fq)}j>1 is {νj(X/Fqs )}j>1 and
therefore it must agree with XN(qs , [νs , . . . , νsg ],∞).

Summary. The tables above show that the elliptic curves Ei

(i = 1, ..., 5) are maximal in 12 occasions over F2r in the range
r = 1, ..., 20, and that they are close to the maximal value in the
remaining cases:

E1 is maximal for r = 4, 12, 20, and is submaximal for r = 19.

E2 is maximal for r = 3, 13, and is submaximal for r = 16.

E3 is maximal for r = 2, 6, 10, 14, 18.

E4 is maximal for r = 5, and is submaximal for r = 8, 11, 15, 16
(the first and last tie with E2).

E5 is maximal for r = 1, and is submaximal for r = 7, 9, 16.
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Counting rational points on curves The Klein quartic

The Klein quartic C/F2 (g = 3) is given by the equation

F (x , y , z) = x3y + y 3z + z3x . (6)

In this case ν1 = 3, ν2 = 5, ν3 = 24.

Indeed, [1, 0, 0], [0, 1, 0] and [0, 0, 1] are the only points of C that
satisfy xyz = 0 (the first two are at infinity). If xyz 6= 0, then we can
look at the affine curve Cz = x3y + y 3 + x . Over F2 it is clear that
there are no more points, hence ν1 = 3. Over F4, there are two more
points: (α, α2, 1) and (α2, α, 1), where α2 = α + 1, and so ν2 = 5.
To get ν3, let F8 be generated by β with β3 = β + 1. Since y 3 = y 10,
on dividing Cz by y 3 we get (x/y 3)3 + 1 + x/y 3 = 0. Since
ξ3 + ξ + 1 = 0 has three solutions in F8 (β, β2, β4), we conclude that
Cz has 7× 3 = 21 poins other than (0, 0) that are F8-rational and
therefore ν3 = 24. With this, the values for νr supplied by XN (for
r 6 12) are the following:

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 89 / 108



Counting rational points on curves The Klein quartic

r 1 2 3 4 5 6 7 8 9 10 11 12
νr 3 5 24 17 33 38 129 257 528 1025 2049 4238

Over F5, one finds that ν1 = 6, ν2 = 26 and ν3 = 126. With this, we
get a similar table (for r = 1, . . . , 9):

r 1 2 3 4 5 6 7 8 9
νr 6 26 126 626 3126 16376 78126 390626 1953126
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Counting rational points on curves Implementation of Deuring’s algorithm

def Deuring_offsets(q):

P = prime_factors(q) # prime_factors(12) => [2, 2, 3]

p = P[0]; n = len(P)

m = int(2*sqrt(q))

D = [t for t in range(-m,m+1) if gcd(p,t)==1]

if n%2==0:

r = p**(n//2)

D += [-2*r,2*r]

if p%3 != 1:

D += [-r,r]

if n%2 and (p==2 or p==3):

r = p**((n+1)//2)

D += [-r,r]

if n%2 or (n%2==0 and p%4!=1):

D += [0]

return sorted([t for t in D])
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Counting rational points on curves Implementation of Deuring’s algorithm

def Deuring_set(q):

D =Deuring_offsets(q)

return [t+q+1 for t in D]

Practice: Experience with the notebook wit ratpoints.
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Annuaire du Collège de France, pages 79–83, 1984.

Included in [22], number 132, 701-705.

[22] J.-P. Serre.

Oeuvres, III (1972-1984).

Springer-Verlag, 1985.

S. Xambó (UPC/BSC · IMUVA) UIT+WIT & N. Sayols & J.M. Miret 102 / 108



References

References XI

[23] F. Severi.

Sul principio della conservazione del numero.

Rendiconti del Circolo Matematico di Palermo (1884-1940),
33(1):313–327, 1912.

Included in Memorie Scelte, 117-136.

[24] R. Sulanke.

Differential Geometry of the Möbius Space, I, 2019.
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Francesco Severi and the principle of conservation of number.

Rendiconti del Circolo Matematico di Palermo, Serie II, 36:255–277,
1994.

This issue of the Rendiconti collects papers presented at the
conference Algebra e Geometria (1860-1940): Il contibuto italiano
held in Cortona, 4-8 May, 1992.
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