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Abstract

WIT: Un sistema simbélico programado en Python para
calculos de teoria de intersecciones y geometria enumerativa

En este curso se entrelazan cuatro temas principales que aparecerdn,
en proporciones variables, en cada una de las sesiones:

(1) Repertorio de problemas de geometria enumerativa y el papel de
la geometria algebraica en el enfoque de su resolucién.

(2) Anillos de interseccién de variedades algebraicas proyectivas lisas.
Clases de Chern y su interpretacién geométrica. Descripcidn explicita
de algunos anillos de interseccién paradigmaticos.

(3) Enfoque computacional: Su interés y valor, principales sistemas
existentes. WIT (filosofia, estructura, potencial). Muestra de
ejemplos tratados con WIT.

(4) Perspectiva histérica: Galeria de héroes, hitos mas significativos,
textos y contextos, quo imus?
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Apollonius from Perga (-262 —-190), René Descartes (1596-1650),
Etienne Bézout (1730-1783), Jean-Victor Poncelet (1788-1867),
Jakob Steiner (1796-1863), Julius Pliicker (1801-1868), Victor
Puiseux (1820-1883), Hieronymus Zeuthen (1839-1920), Sophus
Lie (1842-1899), Hermann Schubert (1848-1911), Felix Klein
(1849-1925), Helmut Hasse (1898-1979), André Weil (1906-1998),
Max Deuring (1907-1984), Jean-Pierre Serre (1926-), Alexander
Grothendieck (1928-2014), William Fulton (1939-), Pierre Deligne
(1944-), Israel Vainsencher (1948-), Stein A. Strgmme
(1951-2014), Maxim Kontsevich (1964-).
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Michael Atiyah, in memoriam

The mysterious %. Bernoulli and Todd numbers.
Higher order Bernoulli numbers. Comments of .
A. Connes tribute.
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Michael Atiyah, in memoriam Pictures

Above: Atiyah at the ICM-2018 (Rio), center with |. Deaubechies, right with R.

Pandharipande. Below: In Barcelona, April 2008, with mathematics students and
DHC lecture.
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Michael Atiyah, in memoriam The mysterious X

In the preprint The fine structure constant (Atiyah 2018) we find
these two expressions for %, the supposed mathematical formula for
the inverse 1/« of the fine structure constant «:

w=lim 27"BJ,.  k(j) =207 k(0) =1,

n—o00, j—00

where Bj;) = B(n, k(j)) is a ‘higher order’ Bernoulli number, and
U PR
W == Tlog?2 nll_)n;on1 ﬁ(] logj —Jj+
Remark: Also called Sommerfeld constant, « is the dimensionless
physical quantity
1 e?
a=——
Areg hc’
Remark: k(j) is superexponential in j: k(0) =1, k(1) = 2,
k(2) = 22, k(4) = 2% =16, k(5) = 2'® = 65536, k(6) = 20°%3
(19729 decimal digits), ...
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Michael Atiyah, in memoriam Bernoulli and Todd numbers

The Bernoulli numbers B, (n > 0) by
t B,

et —1 n!
n=>0

Similarly, the Todd numbers T, (n > 0) are defined by

1 _Xeix = Z T.x".

n=0

Therefore, T, = (—1)"B,/n!, or B, = (—1)"n!T,.

Problem: To compute

t/(et —1) = 1/(1+x/2! + x2/30 4+ x"/(n+ 1)1 +---

to any prescribed order.
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Michael Atiyah, in memoriam Bernoulli and Todd numbers

Given a list or vector [cy, ..., ¢/], and an integer d > 0, this function
computes the list or vector of the first d coefficients, starting with
degree 1, of the power series (1 + ¢t + -+ + ¢, t")~!, which is
equivalent to find the inverse of 1 + ¢;t + --- + ¢,t" mod t9+1. By
default, d = r.

def invert_vector(c, d=’’):
if isinstance(c,Vector_type):
return vector (invert_vector(list(c),d))
if len(c)==0: return invert_vector([0],d)
if d==0: return []
if d==’’: d=len(c)

c = pad(c,d)
s = [-c[0]]
if d==1: return s

for k in range(1,d):
s += [-c[k]-convolution(s,c,k-1)]
return s
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Michael Atiyah, in memoriam Bernoulli and Todd numbers

def bernoulli_numbers(N) :
u = 1>>Q_
if N==0: return [u]
B = invert_vector([u/factorial (j+1)\
for j in range(1,N+1)])
return [u]+[factorial(k+1)*B[k] for k in range(N)]
BV_ = bernoulli_numbers

def bernoulli_number(N):
if N==0: return 1>>Q_
elif N==1: return -1/2>>Q_
else:
if odd(N): return 0>>Q_
else: return bernoulli_numbers(N) [-1]
B_=bernoulli_number

S. Xambé (UPC/BSC - IMUVA) UIT+WIT & N. Sayols & J.M. Miret 11/108



Michael Atiyah, in memoriam Higher order Benoulli numbers
vprod(x,y,d)

If vecctors x and y have lengths r and s, this fucntion returns the
first d components of the vector of coefficients, starting with degree
1, of the t-polynomial (14 xyt + -+ x,t")(1 + y1t + - - - + yst*). By
default, d = r + s.

vpower(x,m,d)

Returns the vector of the first d coefficients, starting with degree 1,
of the t-polynomial (1 + xyt + - -+ + x,t")™. By default, d = rm.
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Michael Atiyah, in memoriam Higher order Benoulli numbers

def high bernoulli_numbers(N,k):
u = 1>>Q_
if N==0: return [u]
B = invert_vector([u/factorial(j+1)\
for j in range(1,N+1)])
B = vpower (B,k,N)
return [u]+[factorial(j+1)*B[j] for j in range(N)]

HBs_=high_bernoulli_numbers

def HB_(n,k): return HBs_(n,k) [-1]
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Michael Atiyah, in memoriam

About x|

In [1] | find the formula (8.11) for x:

() = Jim 27 B

Jj—oo

Comments on X

From a message to MA, Sep 2018, Sat 22

with j coprime with 2n, k(1) = 1and k(j + 1) = 2¥U) for j > 0, and BY the “Bernouilli

numbers of higher order”.

Since there are several conventions to denote Bernoulli numbers, particularly for the ordinary
ones, does the definition of B} above coincide with the definition you use?

As | understand it, the first few higher orders to care about are, according to (*), the following:

1

2

3

a

5

6

J
k() 1

2

4

16

65536

265536

[1] M. Atiyah: “The fine structure constant”. Preprint 2018-09-22.

[2] M. Atiyah: “The Riemann Hypothesis”. Preprint 2018-09-22.

Answer Sun, 23 Sep: | will respond to your guestions and comments later...

S. Xambé (UPC/BSC - IMUVA)

UIT4+WIT

& N. Sayols & J.M. Miret

14 /108



def

N =

for

for

Michael Atiyah, in memoriam Comments on X

zhe(n,j):
if iged(j,2%n)!=1:
return ’zhe: coprime condition not satisfied’
k=0
for _ in range(j):
k=2*xk
return HB_(n,k)/(2%*x(2*n))

[n for n in range(1,20) if igcd(n,3)==1 and igcd(n,5)
n in N: print(abs(zhe(n,3)))

n in N: print(abs(zhe(n,5)))

Remark: Only for j = 3,5 (in which case n is required to be coprime
with 3 and 5) can we actually compute the numbers, and the values

you get are very small for j = 3 and very large for j = 5.
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Michael Atiyah, in memoriam Comments on X

What about the other formula?

from math import pi,log
euler_gamma=0.577215664901532
kappa = pi/euler_gamma/log(2)

def atiyah(n):
def t(j):
x = (j*log(j)-j+(Log(j)+1)/j)/Llog(2)
return (1-x)/2*%*(j+1)
s = sum([t(j) for j in range(1l,n+1)])
return s*kappa

print(atiyah(50)) => 0.23120602303795385
print (atiyah(100)) => 0.23120602303718477
print (atiyah(150)) => 0.23120602303718477
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Michael Atiyah, in memoriam  A. Connes tribute

On an idea of Michael Atiyah

Alain Connes
January 31, 2019

™

-
— In memoriam Michael Atiyah,
~ with admiration and gratitude

o

< "In the broad light of day mathematicians check their equations and their proofs, leaving no
. stone unturned in their search for rigour. But, at night, under the full moon, they dream, they
,f',fr float among the stars and wonder at the miracle of the heavens. They are inspired. Without

dreams there is no art, no mathematics, no life.”
(Michael Atiyah, Les Déchiffreurs 2008, Notices of the AMS, 2010).

1 Introduction

The Feit-Thompson theorem on the solvability of finite groups of odd order was very much on
Michael Atiyah’s mind during his participation in the 2017 Shanghai conference on noncom-
mutative geometry. Michael’s lively presence there, and his inexhaustible enthusiasm for all
mathematics —old, new and yet to be created- were highlights of the meeting,

61vIl [math.QA]

The goal of the present paper, as a tribute to a luminous mathematical imagination that never
dimmed, is to take seriously his proposal and to show that, understanding it in a broader
sense, one arrives at a very interesting idea.
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Practice Get started

0. Installation of PyM

1. Carlitz congruences

B(p+2,p+1)=0 mod p? p > 3,p prime.
Blp+2,p+1)=0 modp p =5, p prime.

B(p,p) = p> mod p* p > 3, p prime.
In the next congruences, p > 3:

Bpi1
B 1,p)= —p—P* —p? d pd
(p+1,p) Pt ogP mod P
B
B(p+2,p)5p2"—11 mod p*,
B,.. 1
B 1 )= P~ — d p?
(p+1,p+1) o1 2gP modp

B(p",p)=—3p""(p—1)Byr-1 mod p*?
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Practice Get started

2. Asymptotics of B,

2(2n)! n\?2n

_1 n+lB n"™ TS5 PR

(~1)™Bon ~ o ~ AV (=)

3. Euler numbers and Euler polynomials
2et tn )
et +1 =1+ ; Enm (E2n+1 = 07 (_1) E2n > 0)
u n Ek e
E"(X):Z <k)?(x_%) g
k=0

4. Continuous fractions. Check that the continuous fraction
development of ¢3, ¢ = (1++/5)/2, is [4,4,4,4,...]. Find the first
10 rational approximations of ¢>.
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Foreword

Materials and motivations. A short sample of
enumerative problems. General pattern for solving
enumerative problems: modauli, calculus of
geometric conditions, effective computations. Lines
meeting four lines in P3,
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Foreword Materials and motivations

Access to these slides:
https://mat-web.upc.edu/people/sebastia.xambo/ITEG/s-wit-pdf
or via
https://mat-web.upc.edu/people/sebastia.xambo/Talks.html
Access to PyM and related resources:
https://mat-web.upc.edu/people/sebastia.xambo/PyM.html

Main motivation:

A hands-on free computational support for UIT and UIT2 (see [33]
and [35]):

https://mat-web.upc.edu/people/sebastia.xambo/PyWIT.html

The link ITEG in PyWIT opens de file ITEG-Book.html, which
provides a way to access the witlets according to the context of the
UIT2 book.
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Foreword A short sample of enumerative problems

m Circles tangent to three given circles in the plane (Apollonius)
m Lines meeting 4 lines in P3

m Lines meeting 6 planes in P*

m Lines contained in a cubic in P3

m Lines contained in 5ic in P*

m Conics tangent to 5 conics in the plane

m Conics in P3 meeting 8 lines

m Conics contained in a 5ic in P*
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Foreword General pattern for solving enumerative problems

How many objects of a given type satisfy a given set of conditions,
provided the number is finite?

If this number is infinite, it is usually interesting to add other
conditions that allow us to get useful information about the space of
solutions.

m The moduli problem: Find a parameter space M for the objects of
the type we are interested in.

The moduli space is known by other names in other contexts, as for
example configuration space in physics or in robotics, in which case
the dimension of M is called (number of) degrees of freedom (DoF),
or simply freedom of the system.
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Foreword General pattern for solving enumerative problems

m Calculus of conditions: Interpret each condition in terms of the
geometry of M (such interpetations may still be called conditions)
and express the solution to the problem as some suitable operation
on them. In general, it may be necessary to find a compactification
M of M with some convenient properties.

m Effective computations: In general, getting the value of the
expressions may be achieved by a computer program capable of
encoding the formalism.
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Foreword General pattern for solving enumerative problems

Remark: The calculus of conditions may be some existing calculus on
some kind of spaces that has interest by itself, regardless of the
enumerative problems to which it may be applied. To a large extend,
this is the way we will follow here. This will include constructs and
results of what is loosely called intersection theory on smooth
algebraic varieties, but we will also be looking at examples that
require other frameworks.

It is healthy to be aware, nevertheless, that historically the unfolding
of intersection theory, or of algebraic geometry in general, has often
been driven by the demands of particular enumerative problems, and
that there has been a very broad interaction of these ideas with those
of other areas, like mathematical logic (ever since Boole), or topology
(ever since Poincaré), or differential geometry (ever since E. Cartan,
and G. de Rham). In the latter two cases, the ‘calculus of conditions’
is some suitable cohomology ring.
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Foreword General pattern for solving enumerative problems

On the other hand, once we have a calculus of conditions, there still

remain the questions about how to apply it to concrete problems and,
beyond that, about how to implement it in a computer system, which
in our view has its own independent interest —for its own sake, to be

sure, but also for the inspiration it can afford for other endeavors.
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Foreword Example: Lines meeting four lines in p3
m How many lines meet 4 given lines in P3?

Poncelet’s argument. By the ‘principle of continuity’, the problem is
reduced to the case in which the first and second lines meet, and the
same with the third and fourth. Then there are two lines solving the
problem, as depicted in the figure.

Nl
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Foreword Example: Lines meeting four lines in p3

Analytical solution. The lines meeting three lines swap a quadric:
impose the condition that the line through a point x that meets the
first two lines also meets the third. Now a forth line meets this
quadric in two points, to which there correspond two lines meeting
the four given lines.

Pliicker-Klein solution. The lines in P2 form, through the Pliicker
embedding,! a quadric @ of P> and the lines meeting a given line ¢
form the section of @ by the tangent hyperplane T,Q. Therefore, the
lines meeting the four given lines ¢y, (>, (3, {4 form the section of the
line Ty, N Ty, N Ty, N Ty, of P° with @, so the solution is 2.

! The Pliicker coordinates (po1, Po2, Po3, P12, P13, P23) of the line £ joining the
points [xo, X1, 2, x3] and [yo, y1, y2, 3] are given by the formula p; j = x;y; — X;yi .
The vanishing of det(x, y, x, y) yields, using the Laplace rule, the quadratic

relation po1p23 — po2p13 + pospiz = 0 (Klein's quadric).
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Foreword Example: Lines meeting four lines in p3

Schubert calculus. Let | be the condition that a line meets a given
line, p that it goes through a given point, and 7 that it lies in a given
plane. Then /> = 7 + p (as in Poncelet’s argument, assume that the
two line are coplanary). Since pr = 0, * = p? + 72 and hence the
solution is 2: there is a unique line joining two points and a unique
line lying in two planes.

Hilbert's 15: To put Schubert’s enumerative calculus on a rigorous
foundation.
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Apollonius problem

Preliminary overview. Cartesian approach. Solution
by Lie’s circle geometry. Generalizations and
related systems.
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Apollonius problem Preliminary overview

Apollonius problem
m How many circles are tangent to 3 given circles?
Special cases

1) How many circles going through one given point are tangent to
two given circles?

2)How many circles going through two given points are tangent to
one given circle?

3) How many circles pass through three given points?

The solutions: (3) one, known since Euclid; (2) Known by Apollonius:
two if the points lie on the same side of the circle, none otherwise;
(1) the inversion with center at the point shows that there are as
many as common tangent lines to two circles, which is 4 if the circles
are disjoint or lower according to the relative position of the circles.
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Apollonius problem Preliminary overview
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Apollonius problem Preliminary overview

&

The three given circles are drawn in black. On the left, they are totally
disjoint, and on the right they overlap but no one is contained in another.
In both cases we see eight solutions to the problem: four pairs of
‘conjugate’ solutions (in the sense of next slide).
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Apollonius problem Preliminary overview

O (C): radical center (circle) of Cy, Ca, C3
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Apollonius problem Cartesian approach

Moduli. We can take the open set of R3 formed by the points
(a, b, c) such that a® + b?> — ¢ > 0, as suggested by the equation
fabc(x,y) = x>+ y? — 2ax — 2by + ¢ = 0 for the circle with center

at (a, b) and radius r = a> + b> — c.

(&

C:(z—aP+({y—b?=r?
22 +y* —2ax — 2y + ¢
c=ad>+b —rt<ad®+ ¥
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Apollonius problem Cartesian approach

Another view of the geometric discussion on pages 32-34.

Conditions. That the circle f,, . = 0 goes through the point (xo, yo)
is represented by the abc-plane 2xpa + 2ypb = ¢ + x¢ + y3. This
implies that through three non collinear points there goes a unique
circle.

The intersection of f, . = 0 with the line y = px + g is obtained by
solving the quadratic equation f, , (X, px + q) = 0, so the condition
for the circle to be tangent to the line is the vanishing of the
discriminant, which turns out to be a quadratic equation in a, b, c,
namely (a+ pb — pq)> — (1 + p?)(c + g*> — 2gb) = 0 (if the line is
vertical, say x = k, the condition is b> — 2ka + ¢ — k* = 0). This
implies that the condition for f, , . to be tangent to a given circle is
also quadratic in a, b, ¢, as it is equivalent to the tangency to the
radical axis of the two circles (2(a — a')x + 2(b— b')y = ¢ — ).
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Apollonius problem Cartesian approach

Calculus of conditions. Let us note that there are two circles that go
through two given points that are tangent to one given circle
(intersection of a quadric with a line), and that there are four circles
that go through one point and are tangent to two given circles
(common points of a plane with two quadrics, which amounts to the
intersection of two conics in one plane).

As we will see later (Bézout's theorem for P3), the intersection of
three quadrics has, if finite, at most 23 points, which is exactly 8 if
we take into account complex solutions and each to them is counted
with a suitable multiplicity. By what we saw before, in general the
solutions are real and have multiplicity 1.
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Apollonius problem Solution with Lie’s circle geometry

This is a nice example for the illustration of the general ideas
presented on pages 23-24.

A very useful reference for our purposes has been the book
Geometriekalkiile of Jirgen Richter-Gebert and Thorsten Orendt
(Springer, 2009), particularly Ch. 10 (Kreisgeometrie).

The Lie vector of the circle with center M = (a, b) (midpoint) and
radius R is the 5-vector

[w,1—w,a b R], w=(1+2a*+b*—-R?)/2.
In particular, points are encoded as circles of radius 0.
Comparing with the Cartesian equation:
(x—a)’+(y —b)?=R? or

x*+y?—2ax—2by +c, c=a+b - R
we see that w = (1+¢)/2, 1 —w = (1 —¢)/2.
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Apollonius problem Solution with Lie’s circle geometry

For nonzero R, the orientation of the circle is encoded as the sign of
R, a convention that is consistent with the customary parametric
representation of the circle:

(x,y) = (a+ Rcos(t), b+ Rsin(t)), te€[0,2).

The Lie vector of the line ax + by = d, where (a, b) is its normal
vector and d = au + bv for any given point on it, is the 5-vector

d,—d, a b Va1t b2|.

Lines can be considered as circles of radius co. In fact, it is a
straightforward exercise to show that the Lie vector of the circle
through the point R = (u, v) with center at the point

M = (u + ta, v + tb) becomes, when r — oo, the Lie vector of the
line through R with normal vector (a, b).

S. Xambé (UPC/BSC - IMUVA) UIT+WIT & N. Sayols & J.M. Miret 39 /108



Apollonius problem Solution with Lie’s circle geometry

def Lie_vector(M=(0,0),R=0):
a, b=MNM
if is_pair(R):
u,v = R
d = a*u+tb*v
return [d,-d,a,b,sqrt(ax*2+b**2)]
if is_real(R):
w = (1+a*x*2+b*x*2-R**2) /2
return [w,1-w,a,b,R]
return ’Lie_vector: wrong parameters’
LV = lie_vector=Lie_vector

def orientation(X):
r = X[4]
if r>0: return 1
elif r<0: return -1
else: return "orientation: object has no orientation"
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Apollonius problem Solution with Lie’s circle geometry

The Lie metric. It is defined on 5-vectors by the formula
L(X,Y) = —xay1 + X2 + Xsy3 + Xaya — X5 5.
Thus its signature is (—, +, +, +, —).

In the implementations, we add a definition for 4-vectors identified
with the 5-vectors whose last component is 0.

def Lie_metric(X,Y):
if len(X)==len(Y)==4: # make them 5-vectors
X[4] =Y[4] =0
x1,x2,x3,x4,x5 = X
v1,y2,y3,y4,y5 = Y
Im = -x1*xyl + x2*%y2 + x3%y3 + x4*y4 - xb*xyb
if nil(Ilm): return O

return 1m
#
LM = lie_metric = Lie_metric
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Apollonius problem Solution with Lie’s circle geometry

Theorem. If X and Y are Lie vectors, the relation L(X,Y) =0 is
satisfied if and only if the corresponding circles have an oriented
contact.

Remarks. Two distinct circles that touch intersect at a single point.
The contact is internal (external) if they have the same (distinct)
orientation.

If one of the circles is a line, the distinction is whether the normal
vector to the line is pointing outwards or inwards of the circle.

If X is a point, the notion of oriented contact just means that the
circle or line corresponding to Y goes through the point
corresponding to X. If in addition Y is a point, it means that the
points coincide.
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Apollonius problem Solution with Lie’s circle geometry

1.0 ~

0.5 1

0.0 1

—0.5 4

—1.0 4

T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
If the three circles are positively oriented (counterclockwise by convention)
and the line orientation is upwards, the oriented contacts occur for the
blue and black circles and for the black circle and the line. The contacts of
the red circle with the black circle and the line are not oriented contacts.
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Apollonius problem Solution with Lie’s circle geometry

Lie quadratic form

It is the quadratic form of the Lie metric. It defines a non-degenerate
quadric C in P*. The points of this quadric are precisely those
represented by the Lie vectors of circles, lines and points of the plane,
together with the point oo = [1,—1,0,0,0]. In other words, it is a
compactification of the space C of oriented circles in the Euclidean
plain obtained by adding points (as circles of radius 0) and lines (as
circles of radius oo or, equivalently, circles going through o).

def Lie_form(X): return Lie_metric(X,X)
Lie-Gram matrix
def lie_gram_matrix(*S):

M = [[Lie_metric(X,Y) for X in S] for Y in S]
return M
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Apollonius problem Solution with Lie’s circle geometry

Cutting the Lie quadric with a line

Given three linearly independent 5-vectors A, B, C, which may or may
not belong to the Lie quadric, the next function finds the
(normalized) intersections with the Lie isotropic cone of the plane
Lie-orthogonal to (A, B, C). This amounts to cut the Lie quadric
with the line represented by (A, B, C)t.
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Apollonius problem Solution with Lie’s circle geometry

def Lie_section(A,B,C):
X = A[:]; X[0]=-X[0]; X[4]=-X[4]
Y = B[:]; Y[0]l=-Y[0]; Y[4]=-Y[4]
Z = C[:]1; Z[0]=-Z[0]; Z[4]=-Z[4]
import sympy
M = sympy.Matrix([X,Y,Z])
K = M.nullspace()
if len(K)>2: return ’lie_section: Infinite solutions’
else: [v,w] =K
G = lie_gram_matrix(v,w)
st = solve_quadratic(G[0] [0],2*G[0] [1],G[1][1])

if st==0:
print(’lie_section: imaginary Lie objects’)
return O

s,t = st

sl,s2 = s; tl1,t2=t
S = list(sl*v + s2%w); T = list(tl*v + t2*w)
return normalize(S), normalize(T)
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Apollonius problem Solution with Lie’s circle geometry

Examples

There are two circles (possibly imaginary) that properly touch three
given circles X, Y, Z. These circles are delivered by
Lie_section(X,Y,Z) and we may denote them by the expression
oo(X,Y,2).

Changing the orientations of X, Y, Z simultaneously, (X, Y, Z) yields
the same pair of circles, but with exchanged roles with respect to the
kind of oriented tangency.

It follows that we get four pairs of circles touchig the three given
ones: oo(X,Y,Z), co(X,Y,Z), co(X,Y,Z), and oo(X, Y, Z).
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Apollonius problem Solution with Lie’s circle geometry
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Apollonius problem Generalizations and related systems

The Apollonius problem and its effective solutions have occupied the
minds of many prominent mathematicians since Apollonius
contributions.

m General survey: [31] (Wikipedia)

m [16, Ch. 10, Kreisgeometrie] (RichterGebert-Orendt-2009,
Geometriekalkiile)

m [4, §111.2] (Courant-Robbins-1996, What is Mathematics?)

m [1] (Behnke-et-al-1974, Fundamentals of mathematics, l:
Geometry): An excellent pedagogical introduction to Lie circle
geometry and subordinated geometries (notably Laguerre and Mobius
geometries).

m [5] (Coxeter-Greitzer-1967, Geometry revisited)

m [15, Chapter IV] (Pedoe-1970, Geometry, a comprehensive course)
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Apollonius problem Generalizations and related systems

As it is to be expected, there have been many generalizations of the
Apollonius problem, which often have interesting connections with
other areas.

m [3] (Cecil-2008, Lie Sphere Geometry. With Applications to
Submanifolds): A thourough treatment of Lie sphere geometry.

m [36] (Zlobec-Kosta-2001, Configurations of circles and the
Apollonius problem): this paper frames the generalization of
Apolonius problems for spheres in R” and uses the formalism of Lie's
geometry to interpret and solve them.

m [14, §2.7, Mobius geometry| (Onishchik-Sulanke-2006, Projective
and Cayley-Klein geometries)
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Apollonius problem Generalizations and related systems

m [24] (Sulanke-2019, Differential Geometry of the Mébius Space |)

m [8] (HertrichJeromin-2003, Introduction to Mébius Differential
Geometry)

m [9] (Kisil-2018, Lectures on Moebius-Lie Geometry and its
Extension): “review the classical Mobius-Lie geometry and recent
work on its extension”. Interesting computational treatment in C4++
and an ‘“interactive Python wrapper”.
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Apollonius problem Generalizations and related systems

m |ie sphere geometry is very closely connected with Conformal
Geometric Algebra and Oriented CGA. See [Ch. 2][11]
(Lavor-Xambo-Zaplana-2018, A geometric algebre invitation to
space-time physics, robotics and molecular geometry) and [2]
(Cameron-JLasenby-2008, Oriented conformal geometric algebra),
respectively, and the references therein. For CGA, see also [34]
(Xambo-2016, talk at IMUVA).

m The method used to parametrize circles in the plane and lines in P3
by means of the Lie quadric in P* and the Klein quadric in P5,
respectively, was applied by Study to parametrize Euclidean proper
displacements (moduli of the positions of a rigid body) by points of a
quadric in P7. This approach, combined with geometric algebra
techniques, is widely used in robot kinematics.

m [13] (Mumford-Series-Wright-2002, Indra’s pearls)
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Apollonius problem Practice

1. PyM structure. Examples.

2. Work on wit_lie. Work out some the solution for three specific
non-overlapping circles. Similarly, when one or more circles are lines

or points.
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Plane curves

Geometric features and numerical charaters.
Tangents. Intersection multiplicity and Fulton’s
algorithm. Polars, dual curve and Pliicker formulas.
Bézout’s theorem and the resultant. Rational plane
curves and Kontsevich numbers.
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Plane curves Geometric features and numerical charaters

m Plane curves: Let C = Z(F) C P? be a (projective) plane curve,
where F € K|[xo, x1, x2] — {0} is homogeneous. Unless declared
otherwise, K is an algebraically closed field of characteristic 0 (say C).

® The polynomial f = F(1,x,y) € K[x, y]| is the dehomogenization
of F (with respect to xp). If F is not divisible by xo, we have

F = x¢f(x1/x0, x2/x0), which is the homogenization of f. Explicitly,
if f="fh(x,y)+ fi(x,y)+ -+ fa(x,y), where f; is the
homogeneous component of degree j of f, then

F:ngé—FXg_lﬂ +"'+Xofd,1—|— fd.

m In practice, we can deal with C by means of C = Z(f) C A? (affine
curve) for proper points together with the analysis of the improper
points of C, namely Z(fy(x1,x2), Xo).
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Plane curves Geometric features and numerical charaters

m Components: If F = F*--- F/™ is the factorization of F into
irreducible homogeneous polynomials Fi, ..., F,, C; = Z(F;) are the
irreducible components of C and rq, ..., r, are their multiplicities.

m Degree d: Algebraically, the total degree of F; geometrically, the
maximum number of intersection points of C with a line L (count
points on C; N L with multiplicity r;). Curves of degree
d=2,3,45,... are called conics, cubics, quartics, quintics, . ..

m Moduli: PN, Ny = (d +2)(d +1)/2—1=d(d +3)/2.

m Remark: The above definitions are valid for any number of
variables xgp, x1, . . ., X,, except that for n > 2 the locus Z(F) is called
a hypersurface and ‘conic’ is replaced by quadric for n > 3 and
(often) by hyperquadric for n > 3. The moduli space is P"ne,

Nog = ("59) — 1.

Note also that the condition of passing through a point is linear.
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Plane curves Geometric features and numerical charaters

m The case n = 1 is special: The irreducible factors of F can be
written in the form F; = bixop — a;x; and hence C; = Z(F;) is the point
[a,-, b,] € Pl, which is [1, b,-/a,-] if a; 7& 0 and oo = [O, 1] if a; =0.
Thus Z(F) has d points (when counted with their multiplicities r;).

These points are all proper if xg is not a factor of F; otherwise, oo
appears with the multiplicity of xq as a factor of F.

m This result was used by Poncelet to justify what he called the
principle of continuity and later (Severi, [23]) the principle of
conservation of number. See [32] for a historical overview.
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Plane curves Geometric features and numerical charaters

m Multiplicity of point O on C, m = mo(C): The maximum m such
that all partial derivatives of F of order < m vanish at O. We see
that mo(C) is 0 for any point O not on C and mo(C) > 1 for all
OecC.

m mo(C) is also the minimum of ip(C, L) for L a line through O.
Note that the points O € C N L correspond to the roots of the
restriction of F to L, and ip(C, L) is the multiplicity of the root
corresponding to O. The sum of these multiplicities is d, and they
are all equal to 1 for generic L if the curve is reduced (i.e., has no
multiple factors).

m A point O € C is simple or smooth (multiple or singular) if m =1
(m>1). For m=2, m= 3 and m = 4 we say double, triple and
quadruple points, respectively.
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Plane curves Geometric features and numerical charaters

m Tangents: The tangents to C at O are the lines given by the linear
factors of f,(x,y), where f(x,y) = fn(x,y) + - - - + fa(x, y) is the
equation of C in affine coordinates x, y with origin at O. Each
tangent has a multiplicity and the sum of these multiplicities is m. A
multiple point (m > 1) is ordinary if its tangents have multiplicity 1,
i.e., if they are all distinct.

m A node (cusp) is a double point with two distinct (coincident)
tangents. The origin is a cusp, with double tangent y = 0, for
y? — x*> =0 and a node, with tangents y &= x = 0, for y? = x? + x°.

m Intersection multiplicity of C and C’ at a point O, io(C, C'):

dim Op o(f, g), the dimension of the quotient of the local ring of the
plane at O by the ideal generated by the local equations f and g of
C and C’ at O.

We will also write ip(F, F') instead of io(C, C')).
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Plane curves Geometric features and numerical charaters

mIf O =[a,b,1] = (a,b) is a proper point (i.e. a point in

A? = P? — {Z =0}, io(F, F') only depends on f(x,y) = F(x,y,1),
g(x,y) = G(x,y,1) and (a, b), and is denoted ip(f,g) = ian)(f,g)-
mlf O =[a,1,0], then io(F,G) = i.0)(F(x,1,2),G(x,1,2)), and if
O = [1,0,0], then io(F, G) = i00)(F(1,y,2),G(1,y,2)).

m Since i55)(f, &) = i0,0)(f(x + a,y + b),g(x 4+ a,y + b)), we can
assume that a= b =0, i.e. O =(0,0).

mip(C,C") = ep(C)ep(C'), = if and only if C and C’ do not have

common tangents at P. In particular ip(C, C') = 1 if and only if P is
a smooth point on both C and C’ and C and C’ are not tangent at P.

m Bézout's theorem: If C and C’ have degrees d and d’ and no
common component, then the number of intersection points of C
and C’, counted with their intersection multiplicities, is dd’. See [30,
§5.2] (Waker-1950, Algebraic curves).
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Plane curves  Intersection multiplicities and Fulton’s imult algorithm

The function imult(f, g) computes the intersection multiplicity of the
plane curves f(x,y) = 0 and g(x,y) = 0 at the point O = [a, b],
which by default is taken to be the origin O = [0,0]. The algoritm is
extracted from Fulton's book Algebraic Curves (see
http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf,
Section 3.3). Two instances of Fulton's example (loc. cit., page 40):

F=0Q_ # in this case it yields 14
# F = Zn(b) # in this case it yields 18

[Fxy,x,y] = polynomial_ring(F,’x’,’y’,’Fxy’)

f = (x*%%2 + y**2)**k3 — 4kx**2 * yx*2
= (x**k2 + yxk2)*k*k2 + Bkxk*k2 * y - y*k*3
show (imult (f,g))
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Plane curves  Intersection multiplicities and Fulton’s imult algorithm

The algorith works as follows. We may assume f # 0 and g # 0, as
otherwise the i(f, g) = co. Write

f=fo+hy+ - +fy”, g=8g+&y+---+8&y", fn & #0.
If 5 =0, then f = f'y, f' = fi +- -+ £,y L, and hence
i(f.g)=i(f'y.g) =i(y,g) +i(f'.g) = i(y,8) + i(f',g). We can
assume that go # 0, as otherwise i(y, go) = oo, and then i(y, go) is
equal to the trailing degree of gy, that is, the degree of the lowest
non-zero monomial appearing in gy, which is positive, and so we can
proceed recursively with i(f', g). If go = 0, we can proceed likewise.
Thus we can assume that fy, go # 0. Let r, s be the degrees of these
polynomials, and assume r > s (this is no loss of generality). If ¢y, do
are the leading coefficients of fy and gy, respectively, then

i(f,g) = i(dof — cox"~°g, g), which reduces the problem to a case
with lower r and same s, and so we can proceed recursively.
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Plane curves  Intersection multiplicities and Fulton’s imult algorithm

def imult(f,g,0=[0,0]1):
if £f==0 or g==0: return ’Infinity’
if evaluate(f, [x,y],0)!= 0 or evaluate(g,[x,y],0)!=0: return O
a = 0[0]; b =0[1]
if a!=0 or b!=0:
f = evaluate(f, [x,y], [x+a,y+b])
g = evaluate(g, [x,y], [x+a,y+b])
fO = constant_coeff(f); r = degree(£0)
g0 = constant_coeff(g); s = degree(g0)
if £0==0:
if g0==0: return ’Infinity’
else: return trailing_degree(g0) + imult(f/y,g)
else: # £0!=0
if g0==0: return trailing_degree(f0)+imult(f,g/y)
else: # g0!=0
c0 = leading_coeff(f0); d0 = leading_coeff (g0)
if r<=s: return imult(f,cO*g-dO*x**(s-r)*f)
else: return imult(dO*f-cOxx*x(r-s)*g,g)
return ’Error’
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Plane curves Polars, dual curve, and Pliicker formulas

m Conjugate points. Let C = Z(F). Given points
X = [x0,x1,x2] = [x] and Y = [yo, y1, y2] = [y], we say that they are
conjugate with respect to C if

y - OF(x) = yo0oF (x) + y101F(x) + y20,F (x) = 0.
If we fix X € C, then the conjugate points of X are those of the
tangent line TxC to C at X, if X is smooth, and all points of the
plane otherwise.

m Polar curves. If we fix Y, then the points X conjugate to Y form
the curve Cy = Z(yo0oF (x) + y101F(x) + y202F(x)), which is called
the (first) polar of Y with respect to C. This curve has degree

d — 1, passes through all singular points of C, and if X € C N Cy is
smooth on C, then Y lies on TxC.
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Plane curves Polars, dual curve, and Pliicker formulas

m Dual curve. If C is irreducible of degree d > 1, the set of tangents
at smooth points of C is an open set of an irreducible curve in P.
This curve is called the dual curve of C and is denoted CY. The
degree of CV, denoted d", is also called the class of C. Thus dV is

the number of proper tangents of C passing through a general point
of P.

m Pliicker’s class formula. Let C be an irreducible plane curve of
degree d and class d". Assume that the only singularities of C are 0
ordinary nodes and k ordinary cusps. Then Pliicker’s formula for the
class is the following:

d'=d(d—1)—26—3k. (1)
In other words, a node counts with multiplicity 2 in the intersection
of C and Cp, and a cusp with multiplicity 3.
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Plane curves Polars, dual curve, and Pliicker formulas

Expression of dV in terms of the genus. Let g be the geometric
genus of a curve C. If C satisfies the same hypothesis as in the
preceding paragraph, then, as proved by Clebsch in 1864,

d—1)(d -2
g= =D 2)
This formula, and Pliicker’s first formula, imply that
d"=2d+(2g —2)— k. (3)
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Plane curves Polars, dual curve, and Pliicker formulas

m Pliicker’s dual formula. The nodes of CV are the bitangent lines of
C, that is, the lines that are simply tangent to C at exactly two
smooth points, and the cusps of CV are the inflexional tangents of C,
that is, lines that are doubly tangent to C at one point (such point is
called a flex of C) and that are transversal to C elsewhere.

Now it turns out that C is the dual of CV (this is the so called
biduality theorem; for a nice proof see [10] (Kleiman-1977, The
enumerative theory of singularities). So if the only multiple tangents
of C are ¢¥ bitangent lines and x" inflexional tangents, then

d=d"(d"—1)—20" —3k". (4)
Furthermore, since C and C" have the same genus, for C and CV are
birationally equivalent, we get that

d=2d"+(2g —2) — r". (5)
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Plane curves Polars, dual curve, and Pliicker formulas

m Other Pliicker formulas: Eliminating g and dV between (7), (5) and
(4), one obtains
k¥ =3d(d —2) — 65 — 8k .
Dually,
k =3d*(d" —2) — 66" — 8k" .
Similarly one obtains that

d(d —2)(d*—9)
5 .
Hence a smooth quartic has 28 bitangent lines.

0" =
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Plane curves Bézout’s theorem and the resultant

If the base field is algebraically closed, two reduced plane curves of
degrees m and n with no common components have exactly mn
intersection points provided that the points at infinity are taken into
account and that each point is counted with its intersection
multiplicity.

In the classical theory, the standard proof of Bézout's theorem relies
on the properties of the resultant R = R,(f, g) of the curves, which
include a definition of the intersection multiplicities at the common
points. Van der Waerden's book [27] features the first presentation
using the algebraic methods developed by the E. Nother's school that
crystallized in [28]. For an historical account, see for instance [29].
Nowadays, the best treatment is provided in [6, Ch. 1]: Examples
1.1.1, 1.2.1, 1.2.5 and 1.4.1 address, respectively, the definition and
properties of ip(f, g); the relation of the resultant with the
intersection multiplicities; Zeuthen's rule (see also [30, 1V,85]); and a
proof of Bézout's theorem that vindicates Poncelet’'s approach.
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Plane curves Bézout’s theorem and the resultant

Example

This figure is adapted from Fig 5.1 on page 112 of
Walker’s book Algeraic curves. It depicts two cubics,
f and g, having a cusp and a node at O, respectively:

f=a 44— 22y, g=22%— 42+ 327 +9° — 2%

The imult algorithm gives io(f,g) = 5. Besides O, it
is immediate that the point P(1,1) also lies on f and g,
and we find that ip(f, g) = 3. By Bzout’s theorem, there
must be another intersection point with multiplicity 1.
This point can be found with the resultant R = R(f, g),
which is, up to a cancelled factor 82°(z — 1)%, —4 + Tz,
which vanishes at zp = 4/7. It follows that the poly-
nomials f(zg,y) and g(zo,y) have a common root. Now
their difference is a quadratic polynomial whose roots
turn out to be —8/7 and 4/7. Then if we set Q =
(4/7,=8/7) and Q' = (4/7,4/7) , we get ig(f,g) = 1
and i¢g/(f,g) = 0. Therefore the intersection of the two
curves is 50 + 3P + (). Note that the values of f and
g at @', which are nonzero, must be the same because
their difference vanishes at Q.

—8/7
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Plane curves Rational plane curves

Consider the set (variety) of plane rational curves of degree d. If we
consider curves with no other singularities than ¢ nodes, we get a
variety Vy s of dimension d(d + 3)/2 — 4. If we want rational curves
(g =0), than 6 = (d — 1)(d — 2)/2 and hence Ry = Vy (d-1)(d—2)/2
has dimension d(d +3)/2 — (d —1)(d —2)/2 =3d — 1.

Let Ny be the number of curves in Ry that pass through 3d — 1
points in general position.

m ; = 1: one line going through 2 distinct points.

m N, = 1: one conic going through 5 points if no four of them are
collinear.
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Plane curves Rational plane curves

m N3 = 12: number of nodal cubics going through 8 points (Steiner
1848 & 1853, Maillard 1871, Zeuthen 1872).

m N, = 620: number of rational quartics (3 nodes) going through 11
points (Zeuthen 1873).

m N5 = 87304: number of rational quintics (6 nodes) going through
14 points (Ran 1989, Vainsencher 1995).
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Plane curves Kontsevich numbers

Theorem (Kontsevich 1995). Given d > 2, for each j € [1,d — 1] let
k = d —j. Then Ny satisfies the recursive relation

/vd+z ()2 NiNigk = (57 73)iNikNigk.

Since N; = 1, the relation allows us to compute Ny for all d > 1:
setting n = 3d — 4 and m = 3j — 2, and using (m”H) = (") =1 we

have e
Ng =Y 2kNiNe(p) (k -

J

m+1)

d 1 2 3 4 5 6 7
Ny 1 1 12 620 87304 26312976 14616808192

Remark: NlOO has 520 dIgItS and N200r 1227.
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Plane curves Kontsevich numbers

## Number of rational plane curves of degree d >= 1
## going through 3d-1 points in general position

def K_(d):
L = [1]
for j in range(1,d):
L = update(L)
return L

def update(L):

d = len(L)+1

K=0

for j in range(1,d):
k = d-j
n = 3*%d-4; m = 3%j-2
B = binom(n,m)

K += j**2 * k * L[j-1] * L[k-1] * ( Bxk - j*B*(n-m)//(m+1)
return L + [K]
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Counting rational points on
curves/Fg

The zeta function. Basic algorithm. Improved
algorithm. The function XN. Elliptic curves over F,.
The Klein quartic.
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Counting rational points on curves  The zeta function

We will follow [12] (Molina-Sayols-Xambo-2017, and references
therein). Here X denotes a (smooth absolutely irreducible) curve/ Fy,
and g = g(X) its genus. The aim of this part is to explain an
implementarion of a fast algorithm that finds, for any given r, the
number v, of Fg--rational points on X assuming v4, ..., Vg are known.

Ingredients

m The Hasse-Weil-Serre upper bound. No(g) = q+ 1+ g[2,/q]
(upper bound for the number of F-rational points of X/F,): [19]
(Serre-1983), [20] (Serre-1983), [21] (Serre-1984).

For historical aspects and background: [25] (Torres-2008), [26] (van
der Geer-2015), and the many references provided there. The general
context provided by the Weil conjectures is outlined in [7]
(Hartshorne, Algebraic geometry), Appendix C.

S. Xambé (UPC/BSC - IMUVA) UIT+WIT & N. Sayols & J.M. Miret 76 /108



Counting rational points on curves  The zeta function

= v, = v,(X) #X(Fqr)

w7 =7 T) =exp (302, v D) Weil zeta function of X
v, = minar 108 Z(T)l 7=o.

n Z(T) = %, P(T) € Z[T] rationality
» P(T)=q8T%P(1/qT) functional equation
deg(P) = 2g

P(T) = H?gl(l —«a;T), |ojl =+/q ‘Riemann hypothesis’ for X

J

"y, =q +1-5,5 =% o

j=
Notations. cg =1 and ¢; = (=1Yoj(cu,...,az) for j=1,...,2g.
Thus P(T)=co+ T+ + g T?€ and ¢ = gE.
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Counting rational points on curves Basic algorithm

Input: v1,... 15 and r > 2g.
Output: vogi1,...,Vr.
mForj=1,....2g,setS=¢ +1—.
m Use the Girard-Newton formulas to recursively compute
Ci,...,Cp!
G=—(S+ada++ga%)/
= Use the Girard-Newton relation

5= - (Clsj—l o+ Qgo15-(2g-1) + ngsj_zg)

to successively get S;and v; = ¢ +1— S, for j=2g+1,...
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Counting rational points on curves Improved algorithm

Proposition. ¢,/ = q'cg—/.

Proof. If a; is a root, &; = q/a; is a root (P has real coefficients).
Possible real roots of P: £,/q (an even number). The multiplicity of
—,/q is even (the coefficient of T2 is g€, by the functional
equation). Index the roots of P so that ap,_j11 = &; = g/,

Jj=1,...,g8. Now a; — g/a; exchanges a, ..., a, and
Qog, ..., 0g11. If we set
2g
f(T) = H(T — Oéj) = C0T2g + C1T2g71 + -+ C2g71T+ Cog)
j=1

then T26f(q/T) has the same roots as f(T) and therefore
T%f(q/T) = cf(T) = q8f(T). Now the claim follows by
equating the coefficients of T8+ on both sides: on the right we get
gécg—; and on the left g8 'c, ). n
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Counting rational points on curves Improved algorithm

Input: v1,...,vg and r > g.
Output: Vgi,...,Vr.
mForj=1...,g,setS=¢ +1—v;.
mForj=1...,g,
G=—(S+ada++ga%h)/
» Forj=g+1,...,min(r,2g), set ¢; = ¢ €cp,_;, get
S5p=—(a$-a+ - +¢gaS+jg),
andset v;=¢ +1-5;.

m If r > 2g, proceed as in the basic algorithm: for j = 2g+1,...

Sj=—(aS-1+ "+ @2gSj2)
andsetv;=¢ +1—5;.
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Counting rational points on curves  The function XN

The parameter X of the function XN denotes the list [v1,. .., 1]

def XN(q,X,k):

g = len(X)

if k<=g: return X[:k]

X = [0]+X # trick so that X[j] refers to F_{q"j}
X = [x>>Q_ for x in X]

S = [g**(j)+1-X[j] for j in range(l,g+1)] # Newton sums
S = [0]+S # similar trick

# Computation of cl,...,cg; set cO=1

c = [1>>Q_]

for j in range(l,g+1):

cj = S[j]

for i in range(1,j):
cj += clil=*S[j-1i]

c += [-cj/j]
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Counting rational points on curves  The function XN

#
# Add c_{g+i}, for i=1,...,g
for i in range(l,g+1):
c += [g**ixc[g-il]
# Find Sj for j = g+1,...,k
for j in range(g+l,k+1):
if j>2xg:
$§=0
else:
Sj = j*clj]
for i in range(1,j):
if i>2*g: break
Sj += clil=*s[j-il
S += [-Sj]
# Find X[i] for i = g+1,...,k
for i in range(g+1l,k+1): X += [g**i+1-S[i]]
return vector(X[1:1)
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Counting rational points on curves Elliptic curves over Z;

» Ny(g): maximum of #X(F,) taken over all curves X of genus g.
By the HWS upper bound,

No(g) < Nq(g) = g+ 1+g[2V4].
» X of genus g is maximal if #X(F,) = N,(g).

» Deuring algorithm: Yields the list of all possible #E(F,) for
elliptic curves E/F,,.

g m
2 2 [1, 2, 3, 4, 5]

3 311, 2, 3, 4, 5, 6, 7]

4 4 [1, 2, 3, 4, 5, 6, 7, 8, 9]

5 4 [2, 3, 4, 5, 6, 7, 8, 9, 10]

7 5 1[3, 4,5,6,7,8,9, 10, 11, 12, 13]

8 5[4, 5, 6, 8, 9, 10, 12, 13, 14]%

9 6 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
11 6 [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
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Counting rational points on curves Elliptic curves over Z;

Missing values in the HWS range for elliptic curves. Here g is a prime
power up to 5%, m = |2,/q] and d is the length of the Deuring list
when less than 2m + 1.

q 2m+l1 d
8 11 9 [7, 11]
16 17 13 [11, 15, 19, 23]
25 21 20 [26]
27 21 17 [22, 25, 31, 34]
32 23 15 [23, 27, 29, 31, 35, 37, 39, 43]
49 29 27 [43, 57]
64 33 21 [51, 53, 55, 59, 61, 63, 67, 69, 71, 75, 77, 79]
81 37 29 [67, 70, 76, 79, 85, 88, 94, 97]
125 45 37 [106, 111, 116, 121, 131, 136, 141, 146]
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Counting rational points on curves Elliptic curves over Z;

Over [F, = Z; there are 32 cubic polynomials in normal form
E:y2—|—alxy—i—a3—|—x3—|—agx2—|—a4x—i—36

of which precisely 16 are non-singular. For these cases, g = 1, the

HWS bound is g +1+ m =5 (as m = [21/2] = 2) and we have seen

that all the integers in the HWS interval [1, 5] occur as v4(E) for

some E. Now a straighforward computation yields the following
distribution:
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Counting rational points on curves Elliptic curves over Z;

+y+x°+x+1, Y4y + X+ 57 +1
+xy+ X0+ X7 +1, Y4 xy+ X0+ X+ x,
+(x+Dy+x*+1, Y+ (x+1L)y+x>+x+1
+y+x3, Y Hy+xP+1

+y+x0+x%+x, YAy +C+ X+ x+1
+xy+xXC+1, Y 4xy+ x> +x
+(x+)y+x3+x3 P (x+ 1)y +x3 X2 +x
+y+x3+x, Y y+x3+x

The sequences of values returned by XN with inputs ¢ = 2 and [v1], for
v1 =1,...,5, and r = 20 are the following (the top row S is the
maximum value Ng(1) of #E(Fq) supplied by “Serre's procedure”:
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Counting rational points on curves

Elliptic curves over Z;

r |1 2 3 4 5 6 7 8 9 10
S(2)[5 9 14 25 44 81 150 289 558 1089
v, |1 5 13 25 41 65 113 225 481 1025
2 8 14 16 22 56 142 518 968
39 9 9 33 81 129 225 513 1089
4 8 4 16 44 56 116 288 508 968
5 5 5 25 25 65 225 1025
r| 11 12 13 14 15 16 17 18 19 20

S| 2139 4225 8374 16641 33131 66049 131797 263169 525737 1050625

v | 2113 4225 8321 16385 32513 65025 130561 262145
1982 4144 8374 16472 32494

4144 8012 16472
1985 4225 8065 16385 33025 65025

131174 263144 525086 1047376
2049 3969 8193 16641 32769 65025 131073 263169 524289 1046529
65088 130972 263144 523492 1047376
262145 523265 1050625

1050625
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Counting rational points on curves Elliptic curves over Z;

Remark. XN(q, [v1, ..., vg],00) = {v;(X/Fq)}j=1. Given a positive
integer s, the subsequence {vg;(X/Fq)}j>1 is {vj(X/Fg)}j>1 and
therefore it must agree with XN(q°, [vs, . . ., Vsg], 00).

Summary. The tables above show that the elliptic curves E;
(i=1,...,5) are maximal in 12 occasions over F,- in the range
r=1,...,20, and that they are close to the maximal value in the
remaining cases:

m £ is maximal for r = 4,12, 20, and is submaximal for r = 19.
» F, is maximal for r = 3,13, and is submaximal for r = 16.
» 3 is maximal for r = 2,6, 10, 14, 18.

» F, is maximal for r =5, and is submaximal for r = 8,11,15,16
(the first and last tie with Ej).

» 5 is maximal for r = 1, and is submaximal for r = 7,9, 16.
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Counting rational points on curves The Klein quartic

The Klein quartic C/F, (g = 3) is given by the equation
F(x,y,2) =X’y +y’z + 2°x. (6)

In this case v; = 3, v, = 5, 13 = 24.

Indeed, [1,0,0], [0,1,0] and [0, 0, 1] are the only points of C that
satisfy xyz = 0 (the first two are at infinity). If xyz # 0, then we can
look at the affine curve C, = x3y + y3 + x. Over [, it is clear that
there are no more points, hence 1y = 3. Over [, there are two more
points: (o, a?,1) and (a?,«a,1), where o® = a + 1, and so v, = 5.
To get v3, let Fg be generated by 3 with 32 = 3+ 1. Since y3 = y1°,
on dividing C, by y* we get (x/y*)® + 1+ x/y® = 0. Since

£+ €+ 1 =0 has three solutions in Fg (3, 3%, %), we conclude that
C, has 7 x 3 = 21 poins other than (0,0) that are Fg-rational and
therefore 3 = 24. With this, the values for v, supplied by XN (for

r < 12) are the following:
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Counting rational points on curves The Klein quartic

rl12 3 4 5 6 7 8 9 10 11 12
v, |3 5 24 17 33 38 129 257 528 1025 2049 4238

Over Fs5, one finds that v; = 6, 1, = 26 and 3 = 126. With this, we
get a similar table (for r =1,...,9):

rl1 2 3 4 5 6 7 8 9
v |6 26 126 626 3126 16376 78126 390626 1953126
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Counting rational points on curves  Implementation of Deuring’s algorithm

def Deuring_offsets(q):

P = prime_factors(q) # prime_factors(12) => [2, 2, 3]
p = P[0]; n = len(P)

m = int(2*sqrt(q))

D = [t for t in range(-m,m+1) if gcd(p,t)==1]

if n%2==0:

r = p*xx(n//2)
D += [-2%r,2%*r]
if p%3 !'= 1:
D += [-r,r]
if n%2 and (p==2 or p==3):
r = px*x((n+1)//2)

D += [-r,r]
if n%2 or (n%2==0 and pk4!=1):
D += [0]

return sorted([t for t in D])
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Counting rational points on curves  Implementation of Deuring’s algorithm

def Deuring_set(q):
D =Deuring_offsets(q)
return [t+q+1 for t in D]

Practice: Experience with the notebook wit_ratpoints.
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