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1. Introduction '

In this paper we prove two results concerning Chow groups. The first gives information about the
Chow groups of schemes (see the conventions below) that have a "sufficiently nice” filtration (see
Theorem 1). This theorem implies, in particular, that the Chow groups of a scheme that possesses a
celiular decomposition are free with basis the closures of the cells (see Corollary to Theorem 1)
This result seems to be well known in characteristic 0; we include a proof in general because we have
not found one in the literature (see, for instance, Fulton [1984], 1.9 1, where it is proved that the
cells generate the Chow groups)

The second result (Theorem 2) gives information about the Chow groups of "nice fibrations™ in
terms of the Chow groups of the base and the Chow groups of the fiber. Part (i) of this theorem
generalizes substantially the statement 1 10.2 in Fulton [1984], while part (ii) gives a tool for
computing Chow groups that seems to be more effective than alternative methods that are available,
such as those derived from the results of Bialynicki-Birula [1973,1976] about actions of the
multiplicative group on complete smooth schemes with finitely many fixed points. These methods
have been used by Ellingsrud and Stromme [1984] to compute the Chow groups of Hilb¥PZ, the
Hilbert scheme of k-tuples of P2, for all integers k (for the case of Hilb3P?2 see Elencwaijg and Le
Barz [1985a])

* The authors were partially supported by the CAICYT
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One of the motivations of the present work was the study of CopP" (and in particular Hilb3P?),
the scheme which parametrizes, in the sense of Hilbert scheme, k-tuples of coplanary points in P?
The aim of such an study is to establish enumerative formulae for multisecant planes similar to the
multisecant formulae for lines, especially those obtained by Le Barz. But it turns out that Cop*P®, for
k>3, among other pathologies, is singular, and that a'ﬁkl’“. the scheme that parametrizes pairs
formed by a k-tuple of points in P?and a plane that contains it, is a natural desingularization of
Coka“, and so many of the formulae we are seeking can already be obtained from the knowledge of
the Chow groups of Ec';'f,k'pn

The computation of these groups using the method of Bialynicki-Birula [1973,1976] appears to be
much more intricate than for the case treated by Ellingsrud and Stremme, which makes it desirable to
have a more convenient method at hand. This computation has been done, using the methods
introduced in this paper, by Rossellé [1986], regarding E'&Skpn as a fibration over the Grassmannian
of ‘planes. In this paper we give an independent computation of the Chow groups of Hilb3P? (see
Theorem 3) which has interest in itself As far as the determination of the multiplicative structure of
A.(Hilb3P3) goes, as well as enumerative applications of it, they will appear elsewhere.

For the relevance in enumerative geometry of knowing that certain Chow groups are finitely
generated and free, we refer to the articles of Kleiman [1976,1979],

2. Notations and conventions

By scheme we shall understand an algebraic k-scheme of finite type which can be embedded as a
closed subscheme of a smooth k-scheme of finite type, where k is an algebraically closed field. The
hypothesis of finite type for the schemes is in order to apply the intersection theory as developed in
Fulton {1984] OQur restriction to a field k comes from the fact that in our arguments we use an
homology theory satisfying properties (a) to (d) below. In the characteristic O case, it is the
homology with locally finite supports, or the Borel-Moore homology (see Fulton [1584], Ch. 19;
Fulton-MacPherson [1981], Ch. UI; Iversen [1986], Ch. 10}, and if k has positive characteristic p
then the homology theory is defined as some suitable relative / -adic cohomology, { a prime number
different from p (see Iversen {1986], Ch. 9 and Laumon [1976]). If the quoted properties of
intersection and homology theories could be guaranteed under more general hypothesis, then our
proofs would be also valid in such a generality. Notice also that (i) of Theorem 2 does not involve
any homology arguments

By a closed filtration of a scheme we shall understand a finite filtration by closed subschemes.

We shall let H; denote an homology theory, that is, a functor from schemes to abelian groups that

is covariant for proper maps and contravariant for open embeddings, and which, moreover, satisfies
the following statements (see [F], Ch. 19):
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(a) Let X be a scheme, Y a closed subscheme and U = X-Y Then there exists a long exact sequence
- Hm(t}) - H(Y) = H(X) = H(U) -

(b) For any finite disjoint union of schemes UX;, and for all k,

Hi(UX;) = ® Hy(X,))

(e) For all schemes X and all integers k there exists a map
cly t AX) = Hy (X)
that commutes with push-forward by proper morphisms and with restrictions to open sets.
In characteristic O we shall say c/y that is an isomorphism if cly is an isomorphism and
H2k+i(X)xO for all k. In characteristic p > O we shall say that cly isan isomorphism if
cly: Ak(X) ®Z, - sz(X)
is an isomorphism for all k, and H2k+s(x) =0 for all k.

(We do not know whether "cly is an isomorphism for all k " implies "H,, (X} =0forallk™)

(d) If X is a scheme such that cly is an isomorphism, then given any projective bundle

PoX

the map clp is an isomorphism.

For convenience of the exposition we shall first develop in detail the characteristic 0 case and in
Section 6 we will explain the slight modifications of the proofs that are required in characteristic
p>0.

Now combining properties (a)-(d) we prove a simple lemma which plays a key role in the proof
of our theorems.

Lemma

Let X be a scheme such that cly is an isomorphism . Then for any fiber bundle

E-X

we have that clg is an isomorphism .
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Proof

We shall use induction on n. The case n = 0 is a direct consequence of the hypothesis and the fact
that XG = 20

Assume now that the theorem is true for n-1. Then we have a commutative diagram

0 Hy (X)) = Hop (X)) = Hy (Z2,) = 0
K k k
T c{xu‘ , chxu szn

A Xy = ALK = A(Z) =0

In this diagram, dxn , is an isomorphism by induction and c!zﬂ is an isomorphism by hypothesis,

so we see, by (a) and the definition, that the top row is exact. The bottom row is also exact

Therefore, c!xu is an isomorphism and hence we have en exact sequence

(*) O~ AK(XM) - Ak(x“) - Ak{Zn} — 0.

In this exact sequence, by induction, A, (X, |) is a finitely generated free group such that the classes
of the images in X,.; of cycle representatives of given bases of the Ak(Zi), for i < n, form a basis
Since Ak{Zn] is free by hypothesis, the exact sequence (*) is split and from this the theorem

follows

We say (see Fulton [1984], Ex. 1 9 1) that a scheme X has a cetlular decomposition if there exists
a closed filtration
X=X DX 12 2X2X_ =92
such that
Zi=Xi-Xiy
is a disjoint union of locally closed subschemes Zij isomorphic to affine spaces A™ The zij will be

referred to as cells of the cellular decomposition. These notations will be used henceforth

Corollary

Let X be a scheme and assume that X admits a cellular decomposition. Then Ak(X) is, forall k,

a finitely generated free group for which the classes of the closures of the k-dimensional cells form a

basis



224

Proof

Le:P = P(E®1) be the projective completion of E, so that we have an open embedding
j:E - P
such that P-E = P, where P is the projective bundle associated to E. Therefore we have, for all k, a
commutative diagram
0 = Hyy () = Hyy (P) = Hyy (F) — H, (B) =3 0
Tc!:: Tc-t';‘ Tcié‘
0 AP)A Py A (E)-0

. k. . .
in which the rows are exact and clg, clp are isomorphisms. For the latter we use (d), which then

implies that the odd homology groups of P {and of P) are zero, so that by (a) we get the exactness
of the top row For the exactness of the bottom row, see Fulton {1984], 1 8. Moreover, the map

Ak(P) — A k({i) is injective (See Fulton [1984], Theorem 3 3 and its proof} Now by a little

diagram chasing we easily get that ¢f E is an isomorphism and that H,,, (E)=0. ¢

3. Good closed filtrations
Theorem 1

Ler X be a scheme and let

X=X2X, 2. 2X;2X =0
be a closed filtration of X. Ser

Zi= X=X

and assume that for all 1
(1) Ay (Z;) is a finitely generated free group, and
(i) cly is an isomorphism.
1
Then el is an isomorphism and, for all k, A (X) is finitely generated free group. Moreover, the

union of the classes of the images in X of representative cycles of free bases of A (Z)) is a free basis

of AX).
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Proof

With the notations explained before, we shall show that the conditions (i) and (ii) of Theorem 1
are fulifilled.
That (i) is satisfied is a direct consequence of the definitions and Fulton {1984], 1.3 [ and 1.9.

Moreover, the classes of the k-dimensional cells of Z; form a basis of Ak( Z;) Similarly, the lemma

above and the properties of ¢/ imply that clzi is an isomorphism. ¢

Remark 1
This proof also gives that cly is an isomorphism under the conditions of the corollary, which is
the statement (b) in Ex. 19.1.11 of Fulton [1984].

Remark 2

The above Corollary implies Theorem 4.5 in Bialynicki-Birula [1973], which says that the
number of cells of given dimension in any two cellular decompositions of X is the same. Let us also
remark that the proof in Bialynicki-Birula {1973] is purely combinatorial,

4. The Chow group of some fibre spaces
Theorem 2

Ler X be a schemne which admits a cellular decomposition and let
f:X =X

be a morphism such that for all cells Zij of the decomposttion

1 =
f (Z:j}"'ZIJXF

where F is a fixed scheme Then

(1) For all X there exists an epimorphism

*) B ALX)® AF) = A(X)

r+s=k

(i) If clgis an isomorphism and Ay (F) is free for all k, then (*)isan isomorphism for all k and cly

is an isomorphism
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Proof

Let X; = £1( X; ), so that
X=X.2X, 2 2Xy2X,; =@

is a closed filtration of X' We shall write Z{ = X; - X{, = £ '(Z)).

For all i, j we fix an isomorphism
. — I
hij.Zij xF=f (Zij)
To prove (i) we shall proceed by induction on n. If n = 0 then
AXp) = Af (Zg)
@' hn‘i L

=@ Al H(Zg) «=— @ AyZg; xF)

= &) Ay (Zg) ®Armg(F)

=9,( D, Ay BALF)

r+s=k

= & Al Zy) ®A(P)

j. res=k

= ® A (X ®AF)

r+5ak

Notice that the resulting isomorphism

hy: @ A(Xg) ®A(F) — AL(Xp)

1+5=k

is such that

ho (ZgjI®IV]) = [ h(Zgy x W1,

for all j and any [V] in Ak_mﬂj(ﬂ .
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Assume now by induction that (i) is oue for n-1, i e, that we have an epimorphism

ho.ir @ ALK ) ®ALF) = A, )
ras=k

such that

for i’ < n, any j' and any [V] in Ak‘mi'j'(F)‘

Now reasoning as in the case n=0 we see that there exists an isomorphism

g, © A(Z) ®A(F) = A(Z))

r+s=k

such that

2al[Zy] BIV]) = [hy(Zx V)]

for any j and any [V] in Ab:-mﬁij)- From these facts and the exact sequence
AXL) = A k(X;} - A (Z) -0

one can easily construct an epimorphism

he: ® ALX,) ®ALF) -5 A(X,)

t‘+s=k
such that

ho((Z; 51 @IV = by (Zi ¥V

fori' < n,any i and any [V]in Ak_mj_j,(F) - This ends the proof of (i).

In order to see (ii) we shall prove that the filtration

X=X\5X: 2.0 Xy2X =0

satisfies the staternents (i) and (ii) of Theorem 1.
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The statement {i) has already been proved above (isomorphisms g} Notice, moreover, that if for
all k we have bases

{}: mj’a[ Vj,a] }g_

of A (F) then we have bases
{& nlj,a{hij‘(zij'xvj,a)}}ag‘

of A(Z)).

Now to see that statement (i} is satisfied, notice that by the lemma Cfajxp is an isomorphism

because clpis an isomorphism. From this it follows that ¢l is an isomorphism and so

1z

clzi=@cl rigy

is an isomorphism. Thus we can apply Theorem 1, which gives that c¢/y is an isomorphism and that

Ag(X") is finitely generated free group for which the elements
{Zmy o[y (ZixV o) b
form a basis. This implies that the epimorphism h is an isomorphism. ¢

Corollary (of the proof)

In Theorem 2 (ii) if we assume that clp is an isomorphism, then (*) is an isomorphism for all

k, up to torsion, and cly is an isomorphism. ¢

5. A.(Hilb3P®)

Let Gr(2,n) be the Grassmannian of planes in projective n-space P?, n23. Let APP™ be the
subscheme of Hilb>P" that parametrizes triples of colinear points and leti be the closed embedding
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of AIFP™ in Hilb3P" Let U = Hilb3P® -APP" We have that the map which sends a given triple of
non-colinear points to the unique plane that contains it, U'—Gr(2,n), is locally wivial with fiber

U= Hilb3P%- A1%p2
Propaosition

The Chow groups of U are given by the following rable:

i 0 I 2 3 4 5 6

A 0 232 Z@znz 73 yARN A /
and cly; is an isomorphism Moreover, these groups are determined by the following table of

generators and (abelian) relations (we use notations and conventions of Elencwajg and Le Barz
[1985b], which for convenience of the reader we list at the end of this paper):

i Generators Relations
6 u
5 H '
4 H2 h, p
3 H3,Hh,p
2 H?h, hZ hp 3H2h -6h2-6hp = 0
1 Hhp 3Hhp = 0

Proof

The sequence
(*) ALAPPY) B A (HilbPD) - A (U) -0

is exact by Fulton (1984}, 1 8 Now we first compute A (AIP2) using the fact that Proposition 2

in Le Barz [1987] actually gives Z-bases of A (AI*P2). Consider the divisors

V=>< V- //

-

on AIPP? Then we have that

Ag = Z, with basis [AIPP2],
A, =272, with a basis given by V and V',
Aq= 73, with a basis given by V2, VV'and V2,
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A, = Z3, with a basis V3, v2v', yy2
A, = Z2, with a basis V3V', V2V'Z and

Aotz.

Now we know a basis of A (Hilb3P?) (see Elencwajg and Le Barz [ 1985b]),

1 A; Bases

5 Z2 H, A

4 YAl HZ,HAha,p

3 A H? H2A, Hh, Ha, o, B
2 A H2h, HZa, h? ha, hp

1 yA Hha, Hhp

0 Z h3

An straightforward computation shows us that

i([APP?)) = A.
la(V) = [{Ph l.(V') = a.

(VI =H2A, iJ(VV)=Ha, i(VY)=a
ia(V3) = 3HZh + 6H2a - 6h% - 18ha - Ghp.
i(VIV) = H2%a,  iu(VVD) =ha

i(V3V') = 3Hhp + 3Hha, i, (V2V?) = Hha
io(VIVI) = b3,

From these relations we infer on the one hand that A, (U) are the groups given in the statement, and

on the other that i. is 2 monomorphism. Finally by an argument similar to that used in the proof of the

Lemma in Section 2 we conclude that ¢l is an isomorphism. ¢

Remark 3
The scheme U provides an example of a scheme in which c¢/y; is an isomorphism and A (U) has

torsion.
Unfortunately, in order to compute the Chow groups of U', it is not possible to apply Theorem
2 as it stands. Notice, however, that the Corollary to Theorem 2 applies and so
Ak(U')Q = $i:0:k Ai(U)Q®Ak-i(Gr(2'”))Q

and cljy is an isomorphism, whence
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0 - Ak(Alz‘P“}Q - Ak{Hilb3P“)Q — A (U= 0
is a split exact sequence, hence

by(Hilb P") = b (APPM+L. | b(U) by (Gr(2,n))

=L, 04 BiP) b y(Gr(L,m)+ I, | (b(Hilb3P?)-b(APPY) by (Gr(2,n))

Finally A (Hilb3P") is free (apply Bialynicki-Birula [1973]) and so we have obtained a formula for

rgzA, (Hilb®P™) For a combinatorial expression of this formula, see Rossellé [1986].

Remark 4
The expression of bk(HilbjP“) given in Rossellé [1986] is different from the one given above,

but it is not difficult to see, again using Theorem 2, that they agree.

Remark 5§
Theorem 2 can also be applied to determine the Betti numbers of varieties of ordered triangles in

projective space. Define W _*, for n23, as the closure in

(PPY’xGr(1,n)*xGr(2,n}xGr(2,P(Sym?E_*))

of
{ (x| %%3 1 .Iz,!3,n,z)[ X1»X2,%4 distinct points, x;&/j for all j#i,
r the plane spanned by x,,X,.X5, and I the 2-dimensional system
of conics in 1t that contain the points x;,X5,X4} .
Then one can see that the projection from W_* to Gr(2,n) is a fibration that satisfies the

hypothesis of Theorem 2, with fiber the triangle variety W* of Schubert, Semple, and Roberts and
Speiser, and thus one can obtain that A (W *) is a finitely generated free abelian group of rank

b(Wy*) = Z;,o:k b;(Gr(2,mby_(W*)
and the class map is an isomorphism for all k. In particular one easily sees that

bk(wn*) = b‘.’-n-k(wn*) :
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Here is a table comparing Betti numbers for W, * and for Hilb3P3:

k 01 2 3 4 5 678 9
by(W3*) 1 8 25 47 63 63 47 25 8 |

b(Hilb’P3) 1 2 6 10 13 13 10 6 2 |

6. The case of positive characteristic

We shall indicate briefly how to modify the proofs of the characteristic O case when the
charateristic of the ground field is p>0 We only need to take care of the proof of Theorem 1
(Section 3) and the Lemma (Section 2) because these are the elements used in the proof of
Theorem 2.

As far as the lemma goes, it is enough to consider, instead of the diagram in the proof of the
Lemma, the diagram

0—Hy ((B) 5 Hy(P) —» Hy(P) — Hu® - 0
Td;. TCI;' TCI; '

0— A (P®Z = A (P)OZ; — A (E)QZ,— 0

and reason in the same way as there, but using the definition of "¢/ isomorphism" given for the
positive characteristic case.
For the proof of Theorem 1, notice that step 0 of the induction is still valid. If n>0, let K denote

the kernel of the map AKX, — Ak(xn), which is free because by the inductive hypothesis the
group A (X, ) is free. Consider the diagram
0 Hy (X)) — Hy(Xp) — Hp(Zy) — 0
be / ke IL‘
Mhey TR T,

0 - K®Z, A (X, )®Z, - AX)®L, - ALZ)®Z, 0.

Now the same argument as in the proof of Theorem 1 shows that the middle vertical arrow is an

isomorphism and that K®Z,; is 0. Hence K = 0 and the proof can be continued as in the characteristic

( case.
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List of notations and conventions (after Elencwaig and Le Barz)

A bold line (resp point) stands for a fixed line (resp. for a point of the triple}. An ordinary line stands for a variable
line, and a small circle for a variable point of the triple. A cross denotes a fixed point of the piane

[#]

e

H = {triples of P2 with one of its points on a given line} =

A = [AI3P) - \

h = {triples with a fixed point} =

a = [triples that are colinear with a given point) = /‘{

p = {triples with two points on a given line} =

@ = {triples on a fixed line} = /

f = {one point on a fixed line and the other two on another} =

bi(X) = Betti number of X = rank A,(X)

Acknowledgements. The authors want o thank the referee for his suggestions, which have lead to the improvement

of the manuscript at a number of points.
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