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REMARKS ON MULTIPLICITIES

F. Rosselld Llompart
S. Xambd Descamps

(Fac. de Matem., Univ. de Barcelona, Gran Via 585, 0B007 Barcelona)

A) Preliminaries and notations

Let A be a local ring*, m its maximal ideal, and k = A/m . Let M be an
A—module*, and set d = dim(M). Let q be an ideal of A such that £A(H/qH)<°l°
and x = (xl,.-‘,xr)e A" such that CAH/xM <w (hence r 2 d). Then PH,q(n) =
tA(H/an) is a pelynomial in n for n > 0 (Hilbert-Samuel pnlynomial] and
441
in PH,q(ﬂ)' so that eq(H) = AdPH’q n), where for any sequence a = {a_} we

its degree is d. As usual we set e (M) to denote the coefficient of n

write Aaln) = 3 417"

We also define ux(H) =a"p (n), so that

Hn(x)

e (M) >0 ifr=4d .
u () =) @
A 0 if r>d

Now Serre's main theorem on multiplicities states the following:

Theorem O
u (M) = xOM) = § (1) EH (K. (x;H),
x £0 A
where K. (x;M) is the Koszul complex of x with coefficients in M.  ##

Remark. Serre's ariginal proof [S] uses the spectral sequence associated to

the Koszul complex; for a more direct proof, see [A-B]. or [X].

B) Agreement between Northcott and Serre's multiplicities

In [N] Northcott gives a recursive definition of multiplicity as Follows:

eA(x]:H) = £A(H/X]H) = ﬂA(ker(x‘;H)), for r =1, and for r = 2,

cA(x],...,xr;H) = eA(xz,...,xr;H/x]M)-eA(xz,...,xr;ker(xI;H)}**.

* Except when otherwise stated, rings are assumed to ke commutative,
noetherian, and local, and A-modules are assumed to he finitely
generated

* rer(aiM) = (O:a}H

Actar X Juawnadas Mispanv-Lusans
de Maetemdticar.-Seccidn 11
thaoverswdad de Muncia, 71.985



111

Afterwards Northcott proves that eA(x],...,xr;M) = ux(M}. Since his ar-
gument is rather long, it may have some interest to give a proof of this
result by proving that EA(X1,...,xr;M) = x(xi,...,xr;H) and then using
theorem 0. The goal of this section is providing a direct proof of this
equality. '

Lemma 1 (See [N}, pp. 367-368)

If %, g Z(M) then there exists an exact sequence

0 = K.(x;M) — K.{x';M) — K.(i;ﬁ)(-]) - 0,

s = " = T 3
wherf if x —_(x1,...,xr) we set x' = (I,xz,.,.,xr), X = (xz..‘.,xr)
and M = M/X1M, #¥

Remark. Since the sequence x' contains a unit, HE(K.(X';H)) = 0 for all i
and consequently x(x;M} = X(i;ﬁ). Notice also that lemma 1 is true if we

replace X, for any X, that is not a zero-divisor in M.

Lemma 2. For n >0,
y{x;M) = X(E;M/X1H+ker(x;l;M)) = X(R;ﬁ)-—x{i;ker{x];H)).

Put N = H/ker(x M) for n>>0, so that ker(x :N) = 0, Then from the
exact sequence 0 -+ ker(x1 ‘N) —> M > N = 0 we get x(x;H) = x(x; N), be-
cause x, is nilpotent on ker(x1; H). Hence, by lemma 1, x(x;N) = x(x,N/x N),
and so y(x;M) = x{X;M/x H+ker(x1, M)). Now one'sees imsediately that this
last expression is equal to y(x;M)-x(x; ker(x M)/x Hf\ker(x :M)). From
this, the equality x1Hr1ker(x‘, M) = X, ker(x1 ;H), and the exact sequence

x .
0 — ker(x1;M) - ker{x:; ﬂ) 1y ker(x{% H) -2 ker( M)/x ker(x s M)—0,
x(x;ker(xl;H)/x1Hr\ker(x;u M) = x(x;ker(x];H)). This proves the lemma. ##

Remark. Equality between the first and third expressions inthe lemma was

proved by Auslander-Buchsbaum in [A-B], Th. 3.3; the proof above is simpler
and shorter.

Theorem 1
X(x;H) = eA(xl,...,xr;M)
Proof
By lemma 2 both expressions satisfy the same recursive formula, so it is

enough- to see the equality for r = 1, in which case it is immediate from
the definitions. ##

_C) Generalization of a formula of Boda-Vogel

We fix the following notations. If NC> M is a submoduie of M, se set

U(N) = NQ, where Q runs through the primary submodules of M belonging to N
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such that dim(M/N) = dim(M/Q). (Henceforth Q will always denote a primary
module.) We define Pq by Ass{M/Q) = {pQ}.

Given a system of parameters (sop) Kyiee s Xy for M ([S] 1-10), we set
q = (x],....x ) and q; = (xI,...,x ). Finally we set H =0 and for i =
Thoonnd, M, =xn+u(n ).

With these notations, the Boda-Vogel formula ([B-V], Prop. 1), which ex-
presses the multiplicity of an ideal in a local ring as a length, can be

generalized to modules as follows:

Proposition 1
eq(H) = lh(H/Hd)

Proof

There is no loss of generality if we replace A by A/AnnM and so we can
assume that dim(M) = d, that M is a faithful A-module, and that (x

is also a system of parameters for A.

"..‘,.xd)

In order to prove the poposition we will use induction on d. First we es-
tablish the case d = 1 (d=0 is immediate). Since we have seen that e(x M) =

LA(H/X M+ker(z;M)), z = xr » N>>0, it suffices to prove that U(O)-—ker(z sM).

To begin with, we know that Ass(M) c Ass(H/ker(z;H))LIAss(ker(z;H)) and
that equality holds for minimal primes (these are the generic points of.the
components of Supp(M)). Next, if peSpec(A), then hip) = 0 ifF x ¥ e, and
so {p EAss(H)Ix £ p} ={pEAss(M/ker(z; M))Ix Z p} (by [A-B], lemma L. 5)
= Ass(M/ker(z; H)) So ker{(z;M) =11Q, where Q runs through the primary mod-
ules such that X, 4 Py and ker(z;M) € Q.

Now from the fact that if X, ¢ Pa then already ker{z;M) ¢ Q, and that
h(pQ) =0 iff dim(M/Q) = 1 *we Finally get that ker(z;M) = N qQ (for dimM/Q
=1),= u(0).

50 suppose that d >1. From the previous section we know that e, (x

xd,H) = e, (x . sHY), M' = M/ (x H+ker(z M)), z = xr .

Claim: dnm(H ¥ o= d 1, and (xz,....xd) is a sop for M'.

n>>90.

Indeed, since M'/q'M', q' = (xz,...,xd), is a quotient of M/qM, dim(M'/q'M')
= 0 and so we only have to prove that dim(M') = d-1. But this follows from
the fact that Ann(M/ker(z:M)) = (0:z), so that dim(M/ker(z;M)) = d, and the
fact that (xl,...,xd) is still a sop for M/ker(z;M). This proves the claim.

* In fact dim(M/Q) = dim(M) —h(pq). This equality will be used several times
in the sequel
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So if we set My = 0 and M! = x:H'+U(H§7}), for 22i<d, then by induction
L L 1 . 57
we have aqi(MJ) = £A{H‘!Hé}. Hence e (M) = £A(H’iﬁé}, by lemma 2. Now de-
fine HT = xIM+ker(z;H) and H? = xiH+U(M?“1), for 2%i%d. We shall prove that

(1) « (2)
! ' = =
£, (41 /m) £, (M) £ (w/m)
Here, for further reference we state the following easy lemma.
Lemma 3

If 865 NCa

, then U{

Proof of (1): Using lemma 3 one sees by induction that LHE H?/MT. From
this equality (1) follows immediately.

Proof of (2): We only need to see that U(HI) = U(M;). To begin with, from
ker(z;M) = U(0) we get that HIQ'M?. Next, we observe that dim(Hlﬂi) = d-1,
because dim(M/U(0)) = d and x X

H PO
XppsemenX g is SCiii

a sop for H/U(0). Finally
equality (2) follows from the following claim: if H;SQQ and h(p.) = 1, then
H,€Q To see this claim we only need to prove that (H?)p 2 (Ml)p for p a
prime ideal with h(p) = 1, inasmuch as the p, satisfying the hypothesis of
the claim are the minimal prime ideals of Ass(H/H?)- Since X{EP, we want
to prove that U(G)P = ker(z;H)p. To see this notice that x1€ PA_ is a sys-
tem of parameters for Hp and therefore ker(z;M)p = ker(z;Mp) = U(O-AP) =
ulo) . ##

P

Next theorem, also a generalization of a result of Boda-Vogel ([B-v],
Th. 1) makes it easier to apply last proposition. Lets first recall a de-
finition,
Definition ([A“B]). A sequence Xpre--yx, of elements of A is said to be an
H-reducing sop for A iff (a) Xyr---sXy ¥s a sop for M, and (b) for all
p EAss(M/qi_]H) such that dim(A/p) = d-i we have that x. ¥ p.

Theorem 2

The following statements are equivalent:

(i) eq(H) = ﬂA(M/de+U(qd_IH))
(ii) Xys:0e9%y is an M-redicing sop for M
(iii) Ula;H) = UH.), for 1€ i £ d-1

(iv) Ula, M) = UMy ;)

Proof :
It is clear that (iij) = (iv), and (iv) = (i) is true by proposition 1.

(i) = (ii). Put q' = (xl,...,xd_l,x;'), where n>>0. From drim(qud_fﬂ) = {
we get that ker(xJH H/qd_1H) = U(0) (case d=1 of proposition 1), and so
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U(a)ﬂx;' (H/qd_]H) = 0. From lemma 3 we infer that U(qd_1H)n q'H = q _H.
Moreover, since xj ¢ Z(H/U(qd_lM}),

eq,(n) = n-eq(H) n-eA(xd;H/U(qd_‘H))

n
2, (M/x MUlqy (M)

n
!.A(H/q‘H) -2, (xy H+U(qd_lﬂ))/q'ﬂ

ZA(H/q'H) - -CAU(qd_IH) /U(qd_lﬂ)n q'M

£,(n/q'H) — £,(u(0))

= LA(H/q'H) - LAker(x;; M/q'M) .

By [A-B], Cor. 4.8, we see that (xl""’xd-l'x;) is an M-reducing sop for
M and thus so is (x‘,...,xd).
(ii) = (iii). We will proceed by induction on i. The case i = 0 is trivial,

so assume 1€i€d-1, and that (iii) is true for 1,...,i. Fromq. HCH and
1

i+1
dtm(H/qi”H) = dlm(H/MiH) = d-i-1 we get that U{quH)SU{HiH). Then if

(xl,... ,xd) is an M-reducing system of parameters, U(qu) < U(qi+]H)' as we
show below, so that M. . = x, M+ U(Hi) = xo M+ U(qiM) su(qmn), and so

U(Mi+1) gl.l(quH), which ends the proof.

To see that U(qu) gU(quH), take m ¢ U(quH). Then there exists a
primary submodule Q of M with dim(M/Q) = d-i-1, quMSQ, and (Q:m) <Py So
(qin-_ﬂ) ;(qi+1H:m) < (q:m) <Py which implies that x, . ¢ Py’ But being
XyyeersXy an M-reducing sop we have therefore that p‘1 £ Ass(H/qi,H] , which
implies that there exists p, EASS("‘tiH) such that (qu:H)gpigpQ and
h(pi) = j. Thus if Q' is the pi-primary submodule belonging to q.M we get
finally that m £ Q'. L
Remark. The range of application of theorem 2 is actually broader than it
would seem at first glance, because by [A-B], proposition 4.9, any ideal of
A which is generated by a sop for A can actually be generated by an M-redu-
xing system of parameters. Recall that if we replace A by A/Ann(M) there is

one-to-one correspondence between sop's for A and sop's for M.

C) On two theorems of Serre

In this section we give short proofs of two theorems of Serre related to
multiplicities. i
Theorem 3 { [S],Th,\/-f,;

Let A be a regular local ring with dim(A) = n. Let M, N be two A-

modules such that KA(H@N) <o _ Then d(M)+d(N)-n = j(M,N), where
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j(M,N) =: sup{i[Tor?(M,N] # 0} and d(H) = depth (M).
uc d{H) = 0, then meAss(M) and so there exists
an exact sequence 0 = Ajm = M — M —+ 0. From the correspondlng Tor exact
sequence we get the exact sequence Tor (H N) — Tor (A/m,N) — Tor (M,N),
from which we easily see that J(N,N) = pdA(N). '50 in this case the relatien
Weé want to establish is equivalent to the Auslander-Buchsbaum formula
pdp (M) 3 () = n.
Assume d(M) >0 and take aem, a £ Z(M). From the exact sequence

0> M -3 M= M/aM = 0 we get the exact SEquence T 1(r‘i/aM) - Tor {M,N)
LM Torj(M N) and so if ] = j{H,N) we see ker(a; Tch(H M) # 0 (apply A.2.1
in [F]), from which we deduce that j(M/aM,N) = j+1. Since d{M/aM) = d(M)-1
the proof is complete. #E

Remark. From theorem 3 it is easy to see that Tor (H N) =0 for i >0 iff M
and N are Cohen-Macaulay modules satisfying dlm(H) + dim(N) = n, and in this
case X{M,N) = EA{HG?N), so there is agreement between Serre's definition of
multiplicity and that of Gribner. Serre Conjectured ([s], v.20) that this

is the only case when agreement can occur, Recently Hochster [H] has solved

this affirmatively, with hypotheses more general than in the geometric case.

y giving a rather direct and elementary proof of
basic properties of Serre's intersection mu!t|p1lc1tles on algebraic
varieties, This proof is closely related to the proof of the agreement
between Serre's multiplicities and those of Samuel. We will also obtain a
proof of the dimension theorsm for intersections on algebraic varieties.

Let (v, U ) be an algebraic variety over a field k. Let X, Y be subvar-
ieties ov U, and let Z be a simple companent of X NY, that is to say, Z is
an irreducible component of XNY and 2 € Sing(V). As usual, we will say that
X and Y intersect properly along Z if cod (Z) = cod (X) codv(Y). Let py
and Py be the prime ideals of 0 = Z v defined by X and Y, respectively,
Then m, .y is minimal over Py*Py and so 2,,v,px*p ) < =. The Intersection
mu]ttpllcsty of Xand Y at Z, relative to V (in the sense oF Serre) is de-
fined to be the integer | (X Y) =: (U/px.UYpY) =: T (-1) onori(UVPx,U7PY)-
When V can be understood we simply write I_(x Y,

Theorem 4 ([s], Theoremei, p. v-13)
(1) 1,(x,¥) > o,
(i) IZ(X Y) = 0 iff X and Y do not intersect properly at Z,
(1i1) cod (z) € cod (x) + cod (v).



Proof .
First assume that X is complete intersection at Z, i.e. px;{x],...,xn_ri,

where n=dim(Vv), r = dim(X). Then K.(xI,...,xn_r;o) - Ufpx ~* 0 becomes 3

free resolution of a?nx and so XU(U/px.UVpY)ax(x;UYpY) = ux(G/pY). where we
set x = (xl,...,xh_'). Thus in this case !Z(X,Y} * 0 and iZ(X,Y) =0 iff

dim(v) - dfm(X)> dim(y) - dim(z), that Is, iff codv(ZJ <codv(x) + cod (v

\.uuv\

In any evert we have dim(V)-dim(x) = dim(Y)-dim(Z) (c¥F. section A). This

)

Proves the theorem in the case when X is a Jocal complete intersection at Z.

affine variety. Let A denote the algebra of regular functions of v and set
B =A @kA, the algebra of reqular functions of v Vo IfF B = A s the mul-
tiplication epimorphism and l,is its kernel, then | g the ideal of the
diagonal A of VeV, A= B/I, and Tor?(H,N) = Tor?(HQDkN,A)- From this one
deduces immediately the Formula of "reduction to the diagonal",

v VxV
IZ(X'Y) = ’ZA (X’(Y,A),

where 28 s the image of Z in yxy by the diagonal morphism. But on a non-
singular variety A is a local complete intersection, 50 the theorem fol lows
by the local complete intersection case, f§
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