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8A · On Brains and Minds Readings

On intelligence: How a new understanding of the brain will lead to
the creation of truly intelligent machines (hawkins-blakeslee-2004
[49])

Hawkins on intelligence: fascination and frustration (perlis-2005
[94])

Vision with direction (bigun-2006 [15])

Pattern theory: The Stochastic Analysis of Real-World Signals
(mumford-desolneux-2010 [86])

Life 3.0: Being human in the age of artificial intelligence
(tegmark-2017 [109])

The AI Spring of 2018 (olhede-wolfe-2018 [89]). The author’s
discuss the implications as nations race for AI dominance)

Superhuman AI for multiplayer poker (brown-sandholm-2019 [19])
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On Machine Learning
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8A · On ML In a nutshell

Machine learning, a field of computer science, seeks to design
machines that learn (Mathematics of Machine Learning: An
introduction, Plenary lecture at the Rio ICM2018, arora-2018 [7])

In general terms, a rough idea of machine learning is to produce
algorithms that output a function that

F Gives good approximations of given values y i for given inputs x i

(i = 1, . . . ,N);

G Has good generalization capacity, which means that for any x
(of a kind similar to that of the x i) the value y ′ = f (x) is a good
approximation of the expected value y corresponding to x .

There are many algorithms that have these properties, to some
extent:
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8A · On ML ML and AI

Understanding ML (shalevshwartz-bendavid-2014 [103]):

The aim [...] to introduce machine learning, and its algorithmic
paradigms, in a principled way.

arora-2018 [7]:

Machine learning is related to artificial intelligence, but
somewhat distinct because it does not seek to recreate only
human-like skills in a machine. Some skills [...] may be easy for
a machine, but beyond the cognitive abilities of humans.
Conversely, many human skills such as composing good music
and proving math theorems seem beyond the reach of current
machine learning paradigms.

The quest to imbue machines with learning abilities rests upon
an emerging body of knowledge that spans computer science,
mathematical optimization, statistics, applied math, applied
physics etc.
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8A · On ML Regression approaches

Linear regression: Let w be an unknown vector of weights (one
weight for each of the D components of the x vectors) and
fw (x) = w · x = w1x1 + · · ·+ xDxD (a weighted sum) the function to
be learned.

A way of fulfilling condition F is to pick a w that achieves

minw

∑N
i=1

(
w · x i − y i

)2
(least squares method).

Regularized linear regression (improves generalization capacity):

minw

∑
i

(
w · x i − y i

)2
+ λ||w ||22

“where λ is a scalar ... discovered by experimenting with the data”.

Mathematical foundations of supervised learning (wolf-2018 [117])

Reinforcement learning: An introduction (sutton-barto-2018 [106])

The Hundred-Page Machine Learning Book (burkov-2019 [27])
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On NNs and DL
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8A · On NN and DL In a nutshell

The inspiration of convolutional layers came from cortical neurons
within the visual cortex which only respond to stimuli in a receptive
environment (shabbir-anwer-2018 [102])

NN blueprint:

N : Input→ L1 → L2 → · · · → Lm → Output

Conventionally, the net is deep if m > 1.

Functionally, a layer takes an input x and yields an output x ′.

The map f : x 7→ x ′ depends on parameters associated to the layer
and whose nature depends on the kind of layer.

The input to the first layer is the signal to be processed.

The last layer is the output layer, and its output is the result
produced by the net on the input signal.
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8A · On NN and DL The array model

In general, x , x ′, and the layer parameters are multidimensional
arrays whose nature is chosen according to the processing that has to
be achieved.

Write [n1, n2, . . . , nd ] to denote the type of a d-dimensional (real)
array with axis dimensions n1, . . . , nd .

Thus [n] is the type of n-dimensional vectors and [n1, n2] the type of
matrices with n1 rows and n2 columns. Matrices are useful to
represent monochrome images, but for RGB images we need arrays of
type [n1, n2, 3] , or [n1, n2, n3] if it is required that the image be
represented by n3 channels, as for example n3 = 6 for a pair of color
stereoscopic images.
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8A · On NN and DL The array model

The parameters associated to convolutional and fully connected
layers are represented by an array of weights, W , and a bias array,
b. In these cases, the expression of f has the form

f π(x) = g (x ?π W + b) (1)

where ?π is a pairing specific of the layer and g is an activation
function (usually ReLU(t) = max(t − β, 0)), that is applied
component-wise to arrays.

For convolutional layers, ?π = ? is array cross-correlation, while for
fully connected layers, ?π is matrix product, which is denoted by
juxtoposition of its factors, xW .
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8A · On NN and DL Main property

Given weight arrays and biases Wk and bk (k = 1, ...m), the net N
computes a function f = fW1,b1,...,Wm,bm that is continuous and
pice-wise affine.

There exist training algorithms of N , particularly those of
back-propagation type, achieving trained weights and biases for which
f is ‘optimal’ in the sense of the conditions F and G.
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8A · On NN and DL Selected references

Convolutional neural networks for images, speech and time series
(lecunn-bengio-1995 [71])

ImageNet classification with deep convolutional neural networks
(krizhevsky-sutskever-hinton-2012 [65])

Deep learning (lecunn-bengio-hinton-2015 [72])

Neural networks and deep learning (nielsen-2015 [88])

Deep learning in neural networks: an overview (schmidhuber-2015
[101]; 54 pages of references)

Deep learning tutorial (lisalab-2015 [67], Theano team)

Deep learning (goodfellow-bengio-courville-2016 [47])
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8A · On NN and DL Selected references

Understanging deep convolutional networks (mallat-2016 [78])

Deep learning with Python (brownlee-2017 [20])

Deep reinforcement learning for robotic manipulation–the state of
the art (amarjyoti-2017 [3])

Mathematics of deep learning (vidal-bruna-giryes-soatto-2017 [115])

Universality of deep convolutional neural networks (zhou-2019
[121])

SXD&EUMS (UPC·BSC & Jalisco.gob.mx) GC meets DL 16/07/2019 15 / 67



Complex and quaternionic
NNs
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8B · Complex and Quaternionic NNs Selected references

Quaternionic neural networks: Fundamental properties and
applications (isokawa-matsui-nishimura-2009 [61])

Complex-valued neural networks (second edition) (hirose-2012 [57])

Complex-valued neural networks: Advances and applications
(hirose-2013 [58])

A mathematical motivation for complex-valued convolutional
networks (bruna-chintala-lecun-piantino-szlam-tygert-2015 [21])

Deep quaternion networks (gaudet-maida-2018 [45])

Quaternion convolutional neural networks for end-to-end automatic
speech recognition (parcollet-et-6-2018 [92])

Quaternion convolutional neural networks (zhu-xu-xu-chen-2018
[122])
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Geometric NNs
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8B · Geometric NNs Selected references

Clifford Wavelets, Singular Integrals, and Hardy Spaces
(mitrea-1994 [82])

Geometric computing with Clifford algebras: theoretical
foundations and applications in computer vision and robotics
(sommer-2001 [104], editor). Particularly

Ch. 12: Introduction to neural computation in Clifford algebras
(S. Buchholz and G. Sommer)

Ch. 13: Clifford algebra multilayer perceptrons (S. Buchholz and
G. Sommer)

A theory of neural computation with Clifford algebras
(buchholz-2005 [23], PhD thesis)

On Clifford neurons and Clifford multi-layer perceptrons
(buchholz-sommer-2008 [25]: “The paper provides a sound
theoretical basis to Clifford neural computation”)
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8B · Geometric NNs Selected references

Geometric neurocomputing (bayro-2018 [10], Ch 13)

the potential of geometric neural networks [...] for a variety of
real applications using multidimensional representations, such as
in graphics, augmented reality, machine learning, computer
vision, medical image processing, and robotics.
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Research opportunities?
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8B · Research opportunities? Theory and algorithms

Pattern theory: the stochastic analysis of real-world signals
(mumford-desolneux-2010)

The master algorithm (domingos-2015 [40])

“Even more astonishing than the breadth of applications of machine
learning is that it’s the same algorithms doing all of these different
things. Outside of machine learning, if you have two different
problems to solve, you need to write two different programs. They
might use some of the same infrastructure, like the same
programming language or the same database system, but a program
to, say, play chess is of no use if you want to process credit-card
applications. In machine learning, the same algorithm can do both,
provided you give it the appropriate data to learn from. In fact, just a
few algorithms are responsible for the great majority of
machine-learning applications, and we’ll take a look at them in the
next few chapters”.
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8B · Research opportunities? Theory and algorithms

Neural networks and deep learning (nielsen-2015 [88]): “Is there a
simple algorithm for intelligence?”

“science contains many more such examples [besides astronomy].
Consider the myriad chemical substances making up our world, so
beautifully explained by Mendeleev’s periodic table, which is, in turn,
explained by a few simple rules which may be obtained from quantum
mechanics”.

“My own prejudice is in favour of there being a simple algorithm for
intelligence. And the main reason I like the idea, above and beyond
the (inconclusive) arguments above, is that it’s an optimistic idea.
When it comes to research, an unjustified optimism is often more
productive than a seemingly better justified pessimism, for an
optimist has the courage to set out and try new things. That’s the
path to discovery, even if what is discovered is perhaps not what was
originally hoped. A pessimist may be more “correct” in some narrow
sense, but will discover less than the optimist”.
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8B · Research opportunities? Theory and algorithms

Group equivariant convolutional networks (cohen-welling-2016 [33])

Dynamic routing between capsules (sabour-frosst-hinton-2017
[100])

Matrix capsules with EM routing (hinton-sabour-frosst-2018 [56]):
work out these remarkable schemes for GNNs.

Neural ordinary differential equations
(chen-rubanova-bettencourt-duvenaud-2018 [31]). Can these view of
differential equations provide insights of GNNs?

Toward an Al Physicist for Unsupervised Learning
(wu-tegmark-2018 [118])

Learning algebraic structures: preliminary investigations
(he-kim-2019 [51])
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8B · Research opportunities? Theory and algorithms

Feature extraction using conformal geometric algebra for AdaBoost
algorithm based inplane rotated face detection
(pham-doan-hitzer-2019 [96])

Geometric Algebra, Gravity and Gravitational Waves (lasenby-2019
[69])

Maxwell’s equations are universal for locally conserved quantities
(burns-2019 [28])

A 1d up approach to Conformal Geomet- ric Algebra: applications
in line fitting and quantum mechanics (lasenby-2019-1up [68])

Using Raising and Lowering Operators from Geometric Algebra for
Electroweak Theory in Particle Physics (mcclellan-2019 [80])
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Invariant scattering convolution networks.

IEEE transactions on pattern analysis and machine intelligence,
35(8):1872–1886, 2013.

SXD&EUMS (UPC·BSC & Jalisco.gob.mx) GC meets DL 16/07/2019 33 / 67

arXiv:1503.03438


GC & DL References

[23] Sven Buchholz.

A theory of neural computation with Clifford algebras.

PhD thesis, Christian-Albrechts Universität Kiel, 2005.

[24] Sven Buchholz, Eckhard Hitzer, and Kanta Tachibana.

Coordinate independent update formulas for versor Clifford neurons,
2008.

SCIS & ISIS 2008, Japan Society for Fuzzy Theory and Intelligent
Informatics, 814-819.

[25] Sven Buchholz and Gerald Sommer.

On Clifford neurons and Clifford multi-layer perceptrons.

Neural Networks, 21(7):925–935, 2008.

SXD&EUMS (UPC·BSC & Jalisco.gob.mx) GC meets DL 16/07/2019 34 / 67



GC & DL References

[26] Sven Buchholz, Kanta Tachibana, and Eckhard Hitzer.

Optimal learning rates for Clifford neurons, 2007.

International conference on artificial neural networks (Springer),
864-873.

[27] Andriy Burkov.

The Hundred-Page Machine Learning Book.

Andriy Burkov, 2019.

[28] Luke Burns.

Maxwell’s equations are universal for locally conserved quantities,
2019.

To appear in AACA.

SXD&EUMS (UPC·BSC & Jalisco.gob.mx) GC meets DL 16/07/2019 35 / 67



GC & DL References

[29] Wai Lam Chan, Hyeokho Choi, and Richard Baraniuk.

Quaternion wavelets for image analysis and processing.

In IEEE International Conference on Image Processing, volume 5,
pages 3057–3060, 2004.

[30] Adam S. Charles.

Interpreting deep learning: The machine learning rorschach, 2018.

https://arxiv.org/pdf/1806.00148.pdf.

[31] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K
Duvenaud.

Neural ordinary differential equations.

In Advances in neural information processing systems, pages
6571–6583, 2018.

SXD&EUMS (UPC·BSC & Jalisco.gob.mx) GC meets DL 16/07/2019 36 / 67

https://arxiv.org/pdf/1806.00148.pdf


GC & DL References

[32] Taco Cohen, Mario Geiger, Jonas Köhler, and Max Welling.
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