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Xambó-Descamps, Abraham Sánchez and Ulises Cortés.

EUMS & SXD (Jalisco.gob.mx & UPC) Bio-inspired DL 16/07/2019 2 / 67



Why to go beyond CNN
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Why to go beyond CNNs Shortcomings of the CNNs

no suitable theory of CNNs design is available.

the learning of an invariance response may fail even with very deep
CNNs or by large data augmentations in the training.

DL cannot guarantee capabilities of the mammalian visual systems
such as lighting changes and rotation equivariance.
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Why to go beyond CNNs Promising paradigms

Learning algebraic varieties from samples (Real algebraic varieties
and computer algebra) breiding-sturmfelds-et2-2018 [17]

Group equivariant convolutional networks cohen-welling-2016 [33]

Geometric deep learning
bronstein-bruna-lecun-szlam-vandergheynst-2017 [18]

Understanding deep convolutional nets mallat-2016 [78]

Convolutional networks for spherical signals
cohen-geiger-kohler-welling-2017 [32]

Low-level image processing with the structure multivector
(felsberg-2002 [43])
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Why to go beyond CNNs Promising paradigms/GC

Our strategy for exploring “Geometric Deep Learning” is to use
Geometric Calculus (GC) in the sense of:

Clifford Algebra to Geometric Calculus hestenes-sobczyk-1984 [54]
(bible of GC)

Applications to relativity, robotics and molecular geometry
lavor-xambo-zaplana-2018 [70]

The main strong points for this advance are the long history of
achievements in a great variety of fields (see [120], §6.4)

Additional bonus: The representation of the signals occurs in a
higher dimensional space and hence they provide naturally a stronger
discrimination capacity.

There is a well-developed theory of GC wavelets with the potential
to be applied to DL much as scalar wavelets are used in current DL
techniques: [82], [29], [59].
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A new kind of layer
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A new kind of layer Mathematical structure
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HSVφ = (H,S ,V ) = (Iφ, |IR | , 1) , HSVθ = (H, S ,V ) |= (Iθ, |IR | , 1)

RGBθ, RGBφ
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A new kind of layer Examples of monogenic features

(a) RGB input image. (b) RGBθ. (c) RGBφ. M6 = (b) + (c).

Source computations:
https://github.com/asp1420/monogenic-cnnillumination-contrast.
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A new kind of layer Monogenic CNN
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Data and experimental setup
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Data and experimental setup Datasets

(a) 100 RGB images from the CIFAR-10 dataset
(b) 100 images from the Dogs and Cats dataset.
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Data and experimental setup Illustration of the datasets

(a) 100 RGB images from the CIFAR-10 dataset
(b) 100 images from the Dogs and Cats dataset.
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Data and experimental setup Experimental scheme
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Data and experimental setup CNN1 structure and flow
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Data and experimental setup RESNET20 scheme

K. He, X. Zhang, S. Ren, and J. Sun, Identity mappings in deep
residual networks, in European Conference on Computer Vision, pp.
630-645.
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Data and experimental setup CNN2 structure and flow
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Main results
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Main results Test performance of CNN1 on CIFAR10
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Main results Test performance of RESNET20 on CIFAR10
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Main results Test performance of CNN2 on Dogs & Cats
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Conclusions and outlook
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Ending notes and outlook Main conclusions

Geometric calculus has the potential to articulate novel and
promising researches in deep learning (GCDL).

We have designed a bio-inspired front layer for CNNs that
processes a monogenic signal by extracting phase and orientatation
signals and assembling them in a HSV space.

The experimental results with two different datasets and three
CNNs confirm that the accuracy gained by using our layer has a
substantially more robust performance when faced with severe
illumination changes than the same nets without such a front layer.
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Ending notes and outlook Current and future work

To continue the trail walked in this research by developing a front
layer for CNNS that is resilient when faced with other transformations
of the images, as for instance rotations or even small deformations.
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Includes: Clifford analysis and the continuous spherical wavelet
transform (P. Cerejeiras, M. Ferreira, U. Kähler).

[98] David Rolnick and Max Tegmark.

The power of deeper networks for expressing natural functions,
2018.

arXiv:1705.05502, v2.

[99] Javier Ruiz-del Solar, Patricio Loncomilla, and Naiomi Soto.

A survey on deep learning methods for robot vision.

arXiv: 1803. 10862 , 2018.

EUMS & SXD (Jalisco.gob.mx & UPC) Bio-inspired DL 16/07/2019 59 / 67

arXiv:1705.05502
arXiv:1803.10862


[100] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.

Dynamic routing between capsules.

In Advances in neural information processing systems, pages
3856–3866. Springer, 2017.

[101] Jürgen Schmidhuber.

Deep learning in neural networks: An overview.

Neural networks, 61:85–117, 2015.

[102] Jahanzaib Shabbir and Tarique Anwer.

A survey of deep learning techniques for mobile robot applications.

arXiv: 1803. 07608 , 2018.

EUMS & SXD (Jalisco.gob.mx & UPC) Bio-inspired DL 16/07/2019 60 / 67

arXiv:1803.07608


[103] Shai Shalev-Shwartz and Shai Ben-David.

Understanding machine learning: From theory to algorithms.

Cambridge university press, 2014.

[104] Gerald Sommer (ed.).

Geometric computing with Clifford algebras: theoretical foundations
and applications in computer vision and robotics.

Springer, 2001.

[105] GS Staples.

CliffMath: Clifford algebra computations in Mathematica,
2008-2018, 2019.

EUMS & SXD (Jalisco.gob.mx & UPC) Bio-inspired DL 16/07/2019 61 / 67



[106] Richard S Sutton and Andrew G Barto.

Reinforcement learning: An introduction.

MIT press, 2018.

[107] Lei Tai, Jingwei Zhang, Ming Liu, Joschka Boedecker, and Wolfram
Burgard.

A survey of deep network solutions for learning control in robotics:
From reinforcement to imitation.

arXiv: 1612. 07139 , v4, 2018.

[108] Yichuan Tang.

Deep learning using linear support vector machines.

arXiv: 1306. 0239 , v4, 2015.

EUMS & SXD (Jalisco.gob.mx & UPC) Bio-inspired DL 16/07/2019 62 / 67

arXiv:1612.07139
arXiv:1306.0239


[109] Max Tegmark.

Life 3.0: Being human in the age of artificial intelligence.

Knopf, 2017.

[110] Tijmen Tieleman.

Optimizing neural networks that generate images.

University of Toronto (Canada), 2014.

PhD thesis.

[111] Julian Togelius.

Playing Smart: On Games, Intelligence, and Artificial Intelligence.

MIT Press, 2018.

EUMS & SXD (Jalisco.gob.mx & UPC) Bio-inspired DL 16/07/2019 63 / 67



[112] Jerry R Van Aken.

A high-level model of neocortical feedback based on an event
window segmentation algorithm.

arXiv: 1409. 6023 , 2014.

[113] Ivan Vasiliev, Daniel Slater, Gienmario Scapagna, Peter Roelants,
and Valentino Zocca.

Python Deep Learning (second edition).

Packt, 2019.

Exploring deep learning techniques and neural network architectures
with PyTorch, Keras, and TensorFlow.

[114] Jayme Vaz and Stephen Mann.

Paravectors and the geometry of 3D euclidean space.

Advances in Applied Clifford Algebras, 28(5):99–141, 2018.

EUMS & SXD (Jalisco.gob.mx & UPC) Bio-inspired DL 16/07/2019 64 / 67

arXiv:1409.6023


[115] Rene Vidal, Joan Bruna, Raja Giryes, and Stefano Soatto.

Mathematics of deep learning.

arXiv: 1712. 04741 , 2017.

[116] Yi-Qing Wang.

An analysis of the viola-jones face detection algorithm.

Image Processing On Line, 4:128–148, 2014.

[117] Michael M Wolf.

Mathematical foundations of supervised learning, 2018.

[118] Tailin Wu and Max Tegmark.

Toward an AI Physicist for Unsupervised Learning, 2018.

arXiv:1810.10525, v2.

EUMS & SXD (Jalisco.gob.mx & UPC) Bio-inspired DL 16/07/2019 65 / 67

arXiv:1712.04741
arXiv:1810.10525


[119] S. Xambó-Descamps.
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