

Systems, patterns and data engineering with geometric calculi (GC&DL)

(Born in Campinas, Brazil, on the occasion of AGACSE 2018, which was an early satellite of AGACSE 2018)

First developed as a language for physics, recently there has been an explosion of applications of **Geometric Calculus** in a great variety of areas, like general relativity, cosmology, robotics, computer graphics, computer vision, molecular geometry, quantum computing, etc.

The goal of the mini-symposium is to overview the basic ideas of GC, to report on some relevant applications, and to explore the bearing of the formalism in novel approaches to deep learning.

Geometric Calculus Techniques in Science and Engineering
(Sebastià Xambó-Descamps)

Bringing New Perspectives to Robotics and Computer Science
(Isiah Zaplana)

Geometric Algebra and Distance Geometry (Carlile Lavor)

Embedded Coprocessors for Native Execution of Geometric Algebra Operations (Salvatore Vitabile)

Hypercomplex Algebras for Art Investigation (Srđan Lazendić)

Conformal Geometric Algebra for Medical Imaging (Salvatore Vitabile)

Bio-inspired geometric deep learning (Eduardo U. Moya Sánchez)

Geometric calculus meets deep learning (SXD)

<https://mat-web.upc.edu/people/sebastia.xambo/ICIAM2019/GC&DL.html> (abstracts, references, and slides)

Geometric Calculus Techniques in Science and Engineering

S. Xambó-Descamps

UPC-BSC

16/07/2019

- Grassmann algebra
- Synopsis of Geometric algebra (GA)
- Versors, pinors, spinors and rotors
- The Dirac operator
- References

Grassmann algebra

E real vector space of finite dimension n .

$(\wedge E, \wedge)$ Grassmann's *exterior algebra* of E .

It is *unital*, *associative* and *skew-commutative*:

$x \wedge x' = -x' \wedge x$ for all $x, x' \in E$.

In particular $x \wedge x = x^{\wedge 2} = 0$ for all $x \in E$.

$\wedge^k E \subset \wedge E$ (*k-th exterior power of E*):

subspace of $\wedge E$ generated by all *k-blades*, which are the non-zero exterior products $x_1 \wedge \cdots \wedge x_k$ ($x_1, \dots, x_k \in E$).

By convention, $\wedge^0 E = \mathbb{R}$ and clearly $\wedge^1 E = E$.

The elements of $\wedge^k E$ are called *k-vectors*.

Special names: $k = 0$, *scalars*; $k = 1$, *vectors*; $k = 2$, *bivectors*; $k = n - 1$, *pseudovectors* ($\dim n$); $k = n$, *pseudoscalars* ($\dim 1$).

$$\diamond \wedge E = \bigoplus_{k=0}^{k=n} \wedge^k E \text{ (grading of } \wedge E)$$

The elements $a \in \wedge E$ are called *multivectors* and we have a unique decomposition $a = a_0 + a_1 + \cdots + a_n$, with $a_k \in \wedge^k E$.

$N = \{1, \dots, n\}$ set of *indices*.

\mathcal{J} set of subsets of N : Its elements are called *multiindices*.

$\mathcal{J}_k \subset \mathcal{J}$ subset of multiindices of cardinal k .

Let $e = e_1, \dots, e_n$ be a basis of E .

If $K = k_1, \dots, k_m$ is a sequence of indices, we set $e_{\hat{K}} = e_{k_1} \wedge \cdots \wedge e_{k_m}$. Note that $e_{\hat{K}} = 0$ if K has repeated indices (it occurs when $m > n$).

$\diamond \{e_{\hat{I}}\}_{I \in \mathcal{J}_k}$ is a basis of $\wedge^k E$.

Thus $\dim \wedge^k E = \binom{n}{k}$ and $\dim \wedge E = 2^n$.

Parity involution. The linear automorphism $E \rightarrow E$, $e \mapsto -e$, induces a linear automorphism of $\wedge E$ that is denoted $a \mapsto \hat{a}$.

- For $a \in \wedge E$, we have $\hat{a} = \sum_k (-1)^k a_k$.
- $\widehat{a \wedge b} = \hat{a} \wedge \hat{b}$ for all $a, b \in \wedge E$ (*algebra automorphism*).

Reverse involution. Exchanging the order of exterior products yields a linear *antiautomorphism* of $\wedge E$, $a \mapsto \tilde{a}$.

Since reversing a k -blade amounts to $\binom{k}{2}$ sign changes, and since this number has the same parity as $k//2$ (the integer quotient of k by 2), we have

- $\tilde{a} = \sum_k (-1)^{k//2} a_k$.
- $\widetilde{a \wedge b} = \tilde{b} \wedge \tilde{a}$ for all $a, b \in \wedge E$ (*algebra antiautomorphism*).

Let q be a *metric* on E : a non-degenerate quadratic form of E .

The metric is also regarded as a bilinear non-degenerate form:

$$2q(x, x') = q(x + x') - q(x) - q(x'), \quad q(x) = q(x, x).$$

A vector x is said to be *positive*, *negative* or *null* (or *isotropic*) according to whether $q(x) > 0$, $q(x) < 0$ or $q(x) = 0$.

The basis e is said to be *orthogonal* if $q(e_j, e_k) = 0$ for $j \neq k$.

The basis is *orthonormal* if in addition $q(e_i) = \pm 1$.

The *signature* (r, s) of q is obtained by counting the numbers r and s of positive and negative vectors in any orthogonal basis.

$(E, q) = E_{r,s}$: *orthogonal geometry* of signature (r, s) .

Fundamental goal: To understand the group $O_{r,s}$ of *isometries* of $E_{r,s}$, the subgroup $SO_{r,s}$ of *proper isometries* (or *rotations*), and the subgroup $SO_{r,s}^0$ of *rotations connected to the identity*.

Examples

Euclidean space: $E_n = E_{n,0}$ (signature $(n, 0)$).

E_2 (Euclidean plane), E_3 (ordinary Euclidean space).

Antieuclidean space $\bar{E}_n = E_{\bar{n}} = E_{0,n}$ (signature $(0, n)$).

Minkowski space: $(E, \eta) = E_{1,3}$. In this case a convenient notation for an orthonormal basis is e_0, e_1, e_2, e_3 , where e_0 is positive and e_1, e_2, e_3 negative. $O_{1,3}$ is the group of *Lorentz transformations*.

$E_3^c = E_{3+1,1}$: *Conformal space*. In this case, a convenient basis is formed by adding *null vectors* e_0 and e_∞ that are *orthogonal to E_3* , and such that $e_0 \cdot e_\infty = -1$, to an orthonormal basis e_1, e_2, e_3 of E_3 .

Note that *the signature of the plane* $\langle e_0, e_\infty \rangle$ is $(1, 1)$: the vectors $e^+ = (e_0 - e_\infty)/\sqrt{2}$ and $e^- = (e_0 + e_\infty)/\sqrt{2}$ are orthogonal and $q(e^+) = 1, q(e^-) = -1$.

◊ There is a unique metric on $\wedge E$, still denoted q , such that the spaces $\wedge^k E$ are pairwise q -orthogonal and with
 $q(x_1 \wedge \cdots \wedge x_k, x'_1 \wedge \cdots \wedge x'_k) = \det((q(x_i, x'_j)))$ ($i, j = 1, \dots, k$).

It follows that the basis $\{e_i\}_{i \in \mathcal{J}}$ is orthogonal (orthonormal) if e is orthogonal (orthonormal).

Exercise. The signature of this metric is $(2^n, 0)$ if $s = 0$ (so $r = n$), and $(2^{n-1}, 2^{n-1})$ otherwise. In particular $(\wedge E, q)$ is:

- non-degenerate when (E, q) is non-degenerate;
- Euclidean when (E, q) is Euclidean;
- has signature $(8, 8)$ for the Minkowski space;
- has signature $(16, 16)$ for the conformal space.

It is derived from the (left) contraction operator i_x ($x \in E$):

$$i_x(x_1 \wedge \cdots \wedge x_k) = \sum_j (-1)^{j-1} q(x, x_j) x_1 \wedge \cdots \wedge x_{j-1} \wedge x_{j+1} \wedge \cdots \wedge x_k.$$

The result is a bilinear product $a \cdot b$ ($a, b \in \wedge E$) uniquely determined by the following properties:

- $a \cdot b = 0$ if a or b is a scalar;
- $x \cdot b = i_x(b)$ if $x \in E$; so $x \cdot y = q(x, y)$ for $x, y \in E$.
- $a \cdot b = (-1)^{jk+m} b \cdot a$ ($m = \min(j, k)$) if $a \in \wedge^j E$, $b \in \wedge^k E$. In particular, $a \cdot x = (-1)^{j+1} i_x(a)$ if x is a vector and $j \geq 1$.
- $(x_1 \wedge \cdots \wedge x_{j-1} \wedge x_j) \cdot b = (x_1 \wedge \cdots \wedge x_{j-1}) \cdot (x_j \cdot b)$ if $b \in \wedge^k E$ and $2 \leq j \leq k$.
- If $a = x_1 \wedge \cdots \wedge x_k$ and $b = x'_1 \wedge \cdots \wedge x'_k$, $a \cdot b = (-1)^{k//2} q(a, b)$.
In general, $a \cdot b = q(\tilde{a}, b)$ if $a, b \in \wedge^k E$, $k \geq 1$.

There is also a *Laplace formula* for the inner product $a \cdot b$ when $a = x_1 \wedge \cdots \wedge x_j$ and $b = x'_1 \wedge \cdots \wedge x'_k$. Its general expression can be easily guessed from the following example: $(x_1 \wedge x_2) \cdot (x'_1 \wedge x'_2 \wedge x'_3) = ((x_1 \wedge x_2) \cdot (x'_1 \wedge x'_2))x'_3 - ((x_1 \wedge x_2) \cdot (x'_1 \wedge x'_3))x'_2 + ((x_1 \wedge x_2) \cdot (x'_2 \wedge x'_3))x'_1$.

◊ For all $a, b \in \wedge E$,

$$\widehat{a \cdot b} = \hat{a} \cdot \hat{b} \quad \text{and} \quad \widetilde{a \cdot b} = \tilde{b} \cdot \tilde{a}$$

Synopsis of GA

The GA of $(E, q) = E_{r,s}$, denoted $\mathcal{G} = \mathcal{G}_q = \mathcal{G}_{r,s}$, can be constructed by enriching $\wedge E$ with the *geometric product* ab (Clifford). It is **unital**, **bilinear** and **associative**. Moreover,

- For any vectors $x, x' \in E$, $xx' = x \cdot x' + x \wedge x'$ (*Clifford relations*).
- Thus $xx' = -x'x$ iff $x \cdot x' = 0$ (anticommuting property) and $x^2 = q(x)$ (*Clifford reduction*).
- If $q(x) \neq 0$ (*non-isotropic*, or *non-null* vector), $x^{-1} = x/q(x)$.
- For $x \in E$ and $a \in \wedge E$,

$$xa = x \cdot a + x \wedge a = (i_x + \mu_x)(a).$$

$$ax = a \cdot x + a \wedge x$$

- If $a \in \mathcal{G}^j$ and $b \in \mathcal{G}^k$, then $(ab)_i$ is 0 unless i is in the range $|j - k|, |j - k| + 2, \dots, j + k - 2, j + k$, and

$$(ab)_{|j-k|} = a \cdot b \text{ for } j, k > 0, \quad \text{and} \quad (ab)_{j+k} = a \wedge b.$$

- For any $a, b \in \mathcal{G}$, $\widehat{ab} = \hat{a}\hat{b}$ and $\widetilde{ab} = \tilde{b}\tilde{a}$.
- Riesz formulas $2x \wedge a = xa + \hat{a}x$, $2x \cdot a = xa - \hat{a}x$
- The metric in terms of the geometric product: For all $a, b \in \mathcal{G}$,

$$q(a, b) = (\tilde{a}b)_0 = (a\tilde{b})_0.$$

- In particular we have

$$q(a) = (\tilde{a}a)_0 = (a\tilde{a})_0$$

for all $a \in \mathcal{G}$.

- If a is a k -blade, then $\tilde{a}a$ is already a scalar and

$$q(a) = \tilde{a}a = a\tilde{a} = (-1)^{k/2}a^2$$

In particular we see that a is invertible if and only if $a^2 \neq 0$, or if and only if $q(a) \neq 0$, and if this is the case, then we have

$$a^{-1} = a/a^2 = \tilde{a}/q(a).$$

Let $e = e_1, \dots, e_n$ be a basis of E and $N = \{1, \dots, n\}$ the *set of indices*.

If $K = k_1, \dots, k_m$ is a *sequence* of indices, set

$$e_K = e_{k_1} \cdots e_{k_m}.$$

■ $\{e_I\}_{I \in \mathcal{I}}$ is a basis of $\mathcal{G} = \wedge E$.

Remark that if $I \in \mathcal{J}_k$, then in general $e_I = e_{\hat{I}} +$ lower grade terms, like $e_{12} = e_1 e_2 = e_1 \wedge e_2 + e_1 \cdot e_2 = e_{\widehat{12}} + e_1 \cdot e_2$.

■ If e is *orthogonal*, then $e_I = e_{\hat{I}}$, as

$$x_1 \cdots x_k = x_1 \wedge \cdots \wedge x_k$$

when x_1, \dots, x_k are pair-wise orthogonal vectors.

- Artin's formula: If I, J are multiindices, then

$$e_I e_J = (-1)^{t(I,J)} q_{I \cap J} e_{I \Delta J}$$

where $t(I, J)$ is the number of inversions in the sequence I, J , $I \Delta J$ is the symmetric difference of I and J , and $q_K = q(e_{k_1}) \cdots q(e_{k_m})$.

- In particular, $e_J^2 = (-1)^{|J|//2} q_J$

Examples

- In E_2 , $e_{12}^2 = -1$ (as $2//2 = 1$ and $q_{12} = 1$).
- In E_3 , $e_{123}^2 = -1$ (as $3//2 = 1$ and $q_{123} = 1$).
- In $E_{1,3}$, $e_{0123}^2 = -1$ (as $4//2 = 2$ and $q_{0123} = (-1)^3 = -1$).
- In \bar{E}_4 , $e_{1234}^2 = 1$ (as $4//2 = 2$ and $q_{1234} = (-1)^4 = 1$).

$\mathcal{G}_2 = \langle 1, e_1, e_2, e_{12} = \mathbf{i} \rangle$, $\mathbf{i}^2 = -1$ (Gauss algebra).

$\mathcal{G}_2^+ = \langle 1, \mathbf{i} \rangle \simeq \mathbf{C}$

$\mathcal{P} = \mathcal{G}_3 = \langle 1, e_1, e_2, e_3, e_{23}, e_{31}, e_{12}, e_{123} = \mathbf{i} \rangle$, $\mathbf{i}^2 = -1$ (Pauli).

$e_{23} = \mathbf{i}e_1 = e_1\mathbf{i}$, $e_{31} = \mathbf{i}e_2 = e_2\mathbf{i}$, $e_{12} = \mathbf{i}e_3 = e_3\mathbf{i}$.

General element: $(\alpha + \beta\mathbf{i}) + (x + y\mathbf{i})$ ($\alpha, \beta \in \mathbf{R}$, $x, y \in E_3$).

$\mathcal{G}_2^+ = \{\alpha + x\mathbf{i}\} = \mathbf{H}$ (quaternion field).

$\diamond q(\alpha + x\mathbf{i}) = (\alpha + x\mathbf{i})(\alpha + x\mathbf{i})^* = \alpha^2 + x^2$

Hamilton units: $\mathbf{I} = e_{12} = e_3\mathbf{i}$, $\mathbf{J} = e_{31} = e_2\mathbf{i}$, $\mathbf{K} = e_{23} = e_1\mathbf{i}$.

(Yes, in that order if we want that the Hamilton's original relations $\mathbf{I}^2 = \mathbf{J}^2 = \mathbf{K}^2 = \mathbf{IJK} = -1$ are satisfied).

$E_{1,3} = \langle e_0, e_1, e_2, e_3 \rangle$. In $\mathcal{D} = \mathcal{G}_{1,3}$ (Dirac algebra), set: $i = e_{0123}$, $\sigma_k = e_k e_0$. Then $i^2 = -1$, i anticommutes with vectors, and

$$\mathcal{D} = \langle 1, e_0, e_1, e_2, e_3, \sigma_1, \sigma_2, \sigma_3, i\sigma_1, i\sigma_2, i\sigma_3, e_0i, e_1i, e_2i, e_3i, i \rangle.$$

A general element has the form $(\alpha + \beta i) + (x + y i) + (E + iB)$,
 $(\alpha, \beta \in \mathbf{R}, x, y \in E_{1,3}, E, B \in \mathcal{E} = \langle \sigma_1, \sigma_2, \sigma_3 \rangle)$.

$$\mathcal{D}^+ = \langle 1, \sigma_1, \sigma_2, \sigma_3, i\sigma_1, i\sigma_2, i\sigma_3, i \rangle \simeq \mathcal{P}(\mathcal{E}).$$

Its elements have the form $(\alpha + \beta i) + (E + iB)$.

◇ $i = \sigma_1 \sigma_2 \sigma_3$.

Vectors

Let E^\times be the set on non-isotropic vectors of E .

If $x \in E$, define the linear automorphism $\underline{x} : \mathcal{G} \rightarrow \mathcal{G}$ by

$$\underline{x}(a) = -xax^{-1} = \hat{x}ax^{-1}.$$

◇ For a vector y , $\underline{x}(y)$ is the reflection of y along x (or across x^\perp).

Proof. $\underline{x}(x) = -x$ and $\underline{x}(y) = y$ if $y \in x^\perp$.

The map \underline{x} is not an algebra automorphism, but satisfies:

$$\underline{x}(ab) = -x(ab)x^{-1} = -xax^{-1}xbx^{-1} = -\underline{x}(a)\underline{x}(b).$$

It follows that \underline{x} is grade-preserving. Moreover, it is an isometry:

$$\begin{aligned} q(\underline{x}(a)) &= ((-xax^{-1})\tilde{ }(-xax^{-1}))_0 \\ &= (x^{-1}\tilde{a}x^2ax^{-1})_0 = (x\tilde{a}ax^{-1})_0 = q(a). \end{aligned}$$

◊ Let $x_1, \dots, x_k \in E^\times$ and $v = x_1 \cdots x_k$. Then

$$(\underline{x_1} \cdots \underline{x_k})(a) = \hat{x}_1 \cdots \hat{x}_k a x_k^{-1} \cdots x_1^{-1} = \hat{v} a v^{-1}.$$

The expressions v form a group under the geometric product. We denote it by $\mathcal{V} = \mathcal{V}_{r,s}$ and its elements are called *versors*.

◊ Any isometry $f : E \rightarrow E$ has the form \underline{v} for some versor v . Moreover, if $\underline{v} = \underline{v}'$, then $v' = \lambda v$ for some scalar λ .

A *unit versor* (also called a *pinor*) is a versor v such that $v\tilde{v} = \pm 1$.

◊ Any unit versor is the product of unit vectors (and conversely).

◊ Any isometry $f : E \rightarrow E$ has the form \underline{v} for some unit versor v . Moreover, if $\underline{v} = \underline{v}'$ (v' also a unit versor), then $v' = \pm v$.

The even unit versors are called *spinors*. They form a subgroup $\mathcal{S}_{r,s}$ of $\mathcal{V}_{r,s}$. The *rotors* are the spinors v such that $v\tilde{v} = 1$. They form a subgroup $\mathcal{R}_{r,s}$ of $\mathcal{S}_{r,s}$. In the Euclidean space, any spinor is a rotor, but this is not true in general.

◇ Any proper isometry (also called rotation) has the form v for some spinor v . If the rotation is connected to the identity, then it has the form v for some rotor v .

Example. Let u and u' to be unit linearly independent vectors of E_n , and $\theta = \angle(u, u')$. Then the rotation \underline{v} produced by the rotor $v = u'u$ is the rotation in the plane $P = \langle u, u' \rangle$ of amplitude 2θ .

Indeed, since \underline{v} is the identity on P^\perp , it amounts to a rotation in P . Let $i = i_P$ be the unit area of P . Then u and $u^\perp = ui$ form an orthonormal basis of P and $u' = u \cos \theta + u^\perp \sin \theta$. Hence $v = u'u = \cos \theta - i \sin \theta = e^{-i\theta}$. Finally,

$$\underline{v}(u) = vu\tilde{v} = e^{-i\theta}ue^{i\theta} = ue^{2i\theta} = u \cos 2\theta + u^\perp \sin 2\theta.$$

◇ If $b \in \mathcal{G}^2$, $R = e^b = \sum_{k \geq 0} \frac{1}{k!} b^k$ satisfies $R\tilde{R} = e^b e^{-b} = 1$. If $n \leq 5$, then R is a rotor.

The Hestenes embedding $E_3 \rightarrow E_{3,1}^0$, $x \mapsto X$:

$$X = e_0 + x + \kappa(x)e_\infty, \quad \kappa(x) = \frac{1}{2}x^2.$$

The isometry group $O_{4,1}$ acts on $E_{3,1}^0$ and hence on E_3 . These actions are conformal and any conformal map of E_3 can be obtained in this way.

The similarities are induced by the isometries leaving e_∞ fixed.

Using the general construction of rotors, we can produce similarities (sufficient for robotics) tailored to our needs.

Transformation	Conformal rotor
Rotation	$e^{-i\theta}$
Translation	$e^{-ve_\infty/2}$
Dilation	$e^{\alpha e_0 e_\infty/2}$

The Dirac operator

Let e_j be a basis of E and e^j its *reciprocal*, defined by the relations $e^j \cdot e_k = \delta_k^j$.

Examples. For an orthonormal basis of E_n , $e^j = e_j$ for all j . In the Minkowski space, $e^0 = e_0$ and $e^j = -e_j$ for $j = 1, 2, 3$.

The *Dirac operator* can be defined by the expression $\partial = e^j \partial_j$ (sum wrt j implied by Einstein's convention), where $\partial_j = \partial/\partial x^j$, x^j the coordinate functions wrt to e_j (so $x = x^j e_j$ for $x \in E$).

There are three actions of ∂ on a *multivector field* $a = a^I(x) e_I$:

- $\partial a = \partial_j a^I e^j e_I$
- $\partial \cdot a = \partial_j a^I e^j \cdot e_I$
- $\partial \wedge a = \partial_j a^I e^j \wedge e_I$.

◆ $\partial a = \partial \cdot a + \partial \wedge a$ (as $e^j e_I = e^j \cdot e_I + e^j \wedge e_I$).

Let $a = a^i e_i$ be a *vector field*. Then

- $\partial \cdot a = \partial_j a^j$ (*divergence*).
- $\partial \wedge a = \sum_{i < j} (q_i \partial_i a^j - q_j \partial_j a^i) e_{ij}$.

In E_3 , $\partial = \nabla = e_1 \partial_1 + e_2 \partial_2 + e_3 \partial_3$:

- $\nabla \cdot a = \partial_1 a^1 + \partial_2 a^2 + \partial_3 a^3 = \text{div}(a)$.
- $$\begin{aligned} \nabla \wedge a &= (\partial_1 a^2 - \partial_2 a^1) e_{12} + (\partial_1 a^3 - \partial_3 a^1) e_{13} + (\partial_2 a^3 - \partial_3 a^2) e_{23} \\ &= (\partial_2 a^3 - \partial_3 a^2) e_1 \mathbf{i} + (\partial_3 a^1 - \partial_1 a^3) e_2 \mathbf{i} + (\partial_1 a^2 - \partial_2 a^1) e_3 \mathbf{i} \\ &= (\nabla \times a) \mathbf{i} = \text{curl}(a) \mathbf{i}. \end{aligned}$$

A bivector of \mathcal{D} has the form $F = E + iB$ ($E, B \in \mathcal{E}$) and can be used to encode the electromagnetic field (*Faraday bivector*).

Let $\rho = \rho(x, t)$ be the scalar function representing the *charge density* and $j \in \mathcal{E}$ the vector representing the *current density*. The $J = \rho e_0 + j$ is the *current vector*.

- ◊ The equation $\partial F = J$ is equivalent to the Maxwell equations for the electromagnetic field generated by ρ and j .
- ◊ If we multiply $\partial F = J$ by ∂ on the left, we obtain

$$\square F = \partial \cdot J + \partial \wedge J, \text{ where } \square = \partial^2 = \partial_0^2 - (\partial_1^2 + \partial_2^2 + \partial_3^2)$$

(*dalambertian*).

Since the left side is a bivector (\square preserves grades), the scalar part of the right-hand side expression must vanish: $\partial \cdot J = 0$. This is the charge conservation equation, as it is equivalent to the *continuity equation* $\partial_t \rho + \nabla \cdot j = 0$.

The original Dirac equations were written in terms of 4×4 complex matrices $\gamma_0, \gamma_1, \gamma_2, \gamma_3$ that provided a matrix representation of \mathcal{D} determined by $e_i \mapsto \gamma_i$. The space on which these matrices act, \mathbf{C}^4 , was the space of *Dirac spinors*; the *wave function* was map $\psi : E_{1,3} \rightarrow \mathbf{C}^4$; and the Dirac equation was derived as a “relativistic Schrödinger equation for the electron wave function” (Klein-Gordon equation).

It turns out, however, that GC shows that *the complex matrices are superfluous, as the only crucial fact required is that they satisfy Clifford's relations*. And after that, the analysis reveals that the role of \mathbf{C}^4 must be played by the space $\mathcal{D}^+ (\simeq \mathcal{P})$, which has complex dimension 4, and hence that the wave function is to be thought as a *spinor field*, the name for a function $\psi : E_{1,3} \rightarrow \mathcal{D}^+$.

As is customary, instead of e_0, e_1, e_2, e_3 used so far, we will use $\gamma_0, \gamma_1, \gamma_2, \gamma_3$.

The final conclusion is that the *Dirac equation* is morphed into the following equation for the spinor field ψ :

$$\partial\psi i\hbar - \frac{e}{c} A\psi = m_e c\psi\gamma_0,$$

where c is the speed of light, e is the electron charge and m_e its mass. In this equation i is not $\sqrt{-1}$, but the bivector $i = \gamma_{21}$, and A is the *electromagnetic potential*, a vector field such that $\partial \wedge A = F$ and $\partial \cdot A = 0$.

As found and expressed by D. Hestenes, this equation “reveals geometric structure in the Dirac theory that is so deeply hidden [even inaccessible] in the matrix version that it remains unrecognized by QED experts to this day”.

See [?, §3.3], [116], [117, §6.2 and §6.3], which include a comprehensive survey of applications.

■ $i = \gamma_2 \gamma_1 = i \gamma_3 \gamma_0 = i \sigma_3 = \sigma_1 \sigma_2$.

This 2-area element is a geometric imaginary unit that replaces the (ungeometric) imaginary unit $\sqrt{-1}$ in the original Dirac equation.

The first important advantage of the GC formulation of the Dirac equation is that $\psi(x)$ admits a decomposition of the form

$$\psi = \rho^{1/2} e^{i\beta/2} R,$$

where $\rho = \rho(x)$ is a positive real number, $\beta = \beta(x) \in [0, 2\pi)$ and $R = R(x)$ is a *rotor* (that is, $R\tilde{R} = 1$). Note that this expression has eight degrees of freedom: $1 + 1 + 6$.

Define $e_\mu = e_\mu(x) = R\gamma_\mu\tilde{R}$ (*comoving frame*). Since R is a rotor, this is an orthonormal frame field in $E_{1,3}$ with the same orientation and temporal orientation as the reference frame γ_μ .

Note that $\psi\gamma_\mu\tilde{\psi} = \rho e_\mu$, because i anticommutes with vectors and $\tilde{i} = i$:

$$\psi\gamma_\mu\tilde{\psi} = \rho e^{i\beta/2} R\gamma_\mu\tilde{R} e^{i\beta/2} = \rho e^{i\beta/2} e^{-i\beta/2} R\gamma_\mu\tilde{R} = \rho e_\mu.$$

In particular, $\psi\gamma_0\tilde{\psi} = \rho v$, where $v = e_0$, is the *Dirac current*.

The vector

$$s = \frac{\hbar}{2} R\gamma_3\tilde{R} = \frac{\hbar}{2} e_3 \tag{1}$$

is the *spin vector*.

The rotor R transforms the unit i to $\iota = Ri\tilde{R}$, which is the (comoving) space-like plane quantity e_2e_1 and $S = \frac{\hbar}{2}\iota$ can be called the *spin bivector*. The relation to the spin vector is as follows:

$$S = \mathbf{isv}.$$

Proof $\mathbf{isv} = \frac{\hbar}{2}\mathbf{i}R\gamma_3\tilde{R}R\gamma_0\tilde{R} = \frac{\hbar}{2}R\mathbf{i}\gamma_3\gamma_0\tilde{R} = \frac{\hbar}{2}R\mathbf{i}\tilde{R} = \frac{\hbar}{2}\iota = S.$

□

With $R = e^{i(k \cdot x)}$, we have a 'monochromatic spinor' (yes, i and i)

$$\psi = \rho^{1/2} e^{i\beta/2} e^{i(k \cdot x)}.$$

A straightforward computation shows that the condition for this wave to satisfy the real Dirac equation is that

$$\hbar k = m_e c v e^{-i\beta}$$

This implies that $\cos(\beta) = \pm 1$. As for monochromatic electromagnetic waves, the condition for constant phase in the moving frame is $v \cdot x = c\tau$, and so

$$\hbar k \cdot x = \pm m_e c (v \cdot x) = \pm m_e c^2 \tau$$

which yields the de Broglie frequency $m_e c^2 / \hbar$ of the electron.

A closer analysis shows that the vector e_1 turns in the plane ι with frequency $2m_e c^2 / \hbar$, which is the *zitterbewegung* frequency of Schrödinger, with period 4.0466×10^{-21} s.

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467, 2016.

[2] Gerardo Altamirano-Gómez and Eduardo Bayro-Corrochano.
Conformal geometric algebra method for detection of geometric primitives.
In *2016 23rd International Conference on Pattern Recognition (ICPR)*, pages 4190–4195. IEEE, 2016.

[3] Smruti Amarjyoti.

Deep reinforcement learning for robotic manipulation—the state of the art.

arXiv: 1701. 08878, 2017.

[4] Michael A Arbib and James J Bonaiuto (editors).

From Neuron to Cognition via Computational Neuroscience.

MIT Press, 2016.

[5] Michael A. Arbib and Allen R. Hancon (editors).

Vision, brain, and cooperative computation.

MIT Press, 1990.

in four parts: Visual neurophysiology, Visual psychophysics, Machine vision and robotics, and Connectionism and cooperative computation.

[6] Paolo Arena, Luigi Fortuna, Giovanni Muscato, and Maria Gabriella Xibilia.
Neural networks in multidimensional domains: fundamentals and new trends in modelling and control, volume 234 of *LNCIS*.
Springer, 1998.

[7] Sanjeev Arora.
Mathematics of Machine Learning: An introduction, 2018.

[8] Will Ballard.
Hands-on deep learning for images with tensorflow.
Packt, 2018.
Build intelligent computer vision applications using TensorFlow and Keras.

[9] Eduardo Bayro-Corrochano.

Geometric computing: for wavelet transforms, robot vision, learning, control and action.

Springer, 2010.

[10] Eduardo Bayro-Corrochano.

Geometric Algebra Applications Vol. I: Computer Vision, Graphics and Neurocomputing.

Springer, 2018.

[11] Eduardo Bayro-Corrochano and Gerik Scheuermann.

Geometric algebra computing: in engineering and computer science.

Springer Science & Business Media, 2010.

[12] Eduardo Bayro-Corrochano, Eduardo Vazquez-Santacruz, Eduardo Moya-Sanchez, and Efrain Castillo-Muñis.

Geometric bioinspired networks for recognition of 2-D and 3-D low-level structures and transformations.

IEEE transactions on neural networks and learning systems,
27(10):2020–2034, 2016.

[13] Mauricio C. L. Belón.

Applications of conformal geometric algebra in mesh deformation,
2013.

XXVI Conference on Graphics, Patterns and Images (IEEE), 39-46
<http://sibgrapi.sid.inpe.br/attachment.cgi/sid.inpe.br/sibgrapi/2013/07.04.19.56/doc/PID2845377.pdf>.

[14] Fernando Berzal.

Redes neuronales & deep learning.

Author, 2019.

[15] Josef Bigun.

Vision with direction.

Springer, 2006.

[16] Nick Bostrom.

Superintelligence: paths, dangers, strategies.

Oxford University Press, 2014.

[17] Paul Breiding, Sara Kališnik, Bernd Sturmfels, and Madeleine Weinstein.
Learning algebraic varieties from samples.
Revista Matemática Complutense, 31(3):545–593, 2018.

[18] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond Euclidean data.
IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[19] Noam Brown and Tuomas Sandholm.
Superhuman AI for multiplayer poker.
Science, 10(1126):13 pages, 2019.

[20] Jason Brownlee.
Deep learning with python.
Machine Learning Mastery, 2017.
Develop deep learning models on theano and tensorflow using keras.

[21] Joan Bruna, Soumith Chintala, Yann LeCun, Serkan Piantino, Arthur Szlam, and Mark Tygert.
A mathematical motivation for complex-valued convolutional networks.
arXiv: 1503. 03438, 2015.

[22] Joan Bruna and Stéphane Mallat.
Invariant scattering convolution networks.
IEEE transactions on pattern analysis and machine intelligence,
35(8):1872–1886, 2013.

[23] Sven Buchholz.

A theory of neural computation with Clifford algebras.

PhD thesis, Christian-Albrechts Universität Kiel, 2005.

[24] Sven Buchholz, Eckhard Hitzer, and Kanta Tachibana.

Coordinate independent update formulas for versor Clifford neurons, 2008.

SCIS & ISIS 2008, Japan Society for Fuzzy Theory and Intelligent Informatics, 814-819.

[25] Sven Buchholz and Gerald Sommer.

On Clifford neurons and Clifford multi-layer perceptrons.

Neural Networks, 21(7):925–935, 2008.

[26] Sven Buchholz, Kanta Tachibana, and Eckhard Hitzer.
Optimal learning rates for Clifford neurons, 2007.
International conference on artificial neural networks (Springer),
864-873.

[27] Andriy Burkov.
The Hundred-Page Machine Learning Book.
Andriy Burkov, 2019.

[28] Wai Lam Chan, Hyeokho Choi, and Richard Baraniuk.
Quaternion wavelets for image analysis and processing.
In *IEEE International Conference on Image Processing*, volume 5,
pages 3057–3060, 2004.

[29] Adam S. Charles.

Interpreting deep learning: The machine learning rorschach, 2018.

<https://arxiv.org/pdf/1806.00148.pdf>.

[30] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.

Neural ordinary differential equations.

In *Advances in neural information processing systems*, pages 6571–6583, 2018.

[31] Taco Cohen, Mario Geiger, Jonas Köhler, and Max Welling.

Convolutional networks for spherical signals.

arXiv: 1709. 04893, 2017.

[32] Taco Cohen and Max Welling.

Group equivariant convolutional networks.

In *International conference on machine learning*, pages 2990–2999, 2016.

[33] John J. Craig.

Introduction to robotics: Mechanics and control (third edition).

Always learning. Pearson, 2014.

[34] Yuwei Cui, Subutai Ahmad, and Jeff Hawkins.

The HTM spatial pooler—A neocortical algorithm for online sparse distributed coding.

Frontiers in computational neuroscience, 11:111, 2017.

[35] Celia del Buey de Andrés.

Todo es más sencillo con los hipercomplejos.

Gaceta de la Real Sociedad Matematica Española, 22(1):145–157, 2019.

[36] Amit Deshpande, Sandesh Kamath, and KV Subrahmanyam.

Robustness and equivariance of neural networks, 2018.

[37] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu.

Exploiting cyclic symmetry in convolutional neural networks.

arXiv: 1602. 02660, 2016.

[38] Samuel Dodge and Lina Karam.

Understanding how image quality affects deep neural networks.

In *Quality of Multimedia Experience (QoMEX), 2016 Eighth International Conference on*, pages 1–6. IEEE, 2016.

[39] Pedro Domingos.

The master algorithm.

Basic Books, 2015.

How the quest for the ultimate learning machine will remake our world.

[40] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis.

Learning $so(3)$ equivariant representations with spherical CNNs.

In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 52–68, 2018.

[41] Carlos Esteves, Avneesh Sud, Zhengyi Luo, Kostas Daniilidis, and Ameesh Makadia.

Cross-Domain 3D Equivariant Image Embeddings.

arXiv: 1812. 02716, v2, 2019.

[42] Michael Felsberg.

Low-level image processing with the structure multivector, 2002.

PhD thesis.

[43] H Firdaus and T Ogawa.

Application of Quaternion Neural Network to EMG-Based Estimation of Forearm Motion.

In *Proceedings on the International Conference on Artificial Intelligence (ICAI'17)*, pages 317–318. The Steering Committee of The World Congress in Computer Science, 2017.

[44] Chase J Gaudet and Anthony S Maida.

Deep quaternion networks.

In *2018 International Joint Conference on Neural Networks (IJCNN)*, pages 1–8. IEEE, 2018.

[45] Aurélien Géron.

Hands-on machine learning with Scikit-Learn and TensorFlow: Concepts, tools, and techniques to build intelligent systems.

O'Reilly, 2017.

[46] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep learning.

MIT press, 2016.

[47] Gösta H Granlund and Hans Knutsson.
Signal processing for computer vision.
Springer, 1995.

[48] Jeff Hawkins and Sandra Blakeslee.
On intelligence: How a new understanding of the brain will lead to the creation of truly intelligent machines.
Macmillan, 2007.

[49] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level performance on imangenet classification.
In *Proceedings of the IEEE international conference on computer vision*, pages 1026–1034, 2015.

[50] Yang-Hui He and Minhyong Kim.
Learning algebraic structures: preliminary investigations, 2019.
[arXiv:1905.02263](https://arxiv.org/abs/1905.02263).

[51] Mikael Henaff, Joan Bruna, and Yann LeCun.
Deep convolutional networks on graph-structured data, 2015.
[arXiv:1506.05163](https://arxiv.org/abs/1506.05163).

[52] David Hestenes.
Maxwell–Dirac electron theory, 2019.
Preprint 07/2/2019, 20 pages.

[53] David Hestenes and Garrett Sobczyk.
Clifford Algebra to Geometric Calculus.
Reidel, 1984.

[54] Geoffrey E. Hinton, Alex Krizhevsky, and Sida D. Wang.
Transforming auto-encoders, 2011.
International Conference on Artificial Neural Networks (Springer, 2011), 44-51.

[55] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst.
Matrix capsules with EM routing.
In *ICLR 2018*. Springer, 2018.
15 pages.

[56] Akira Hirose.
Complex-valued neural networks (second edition).
Springer, 2012.
Japanese edition 2004, first English edition 2006.

[57] Akira (editor) Hirose.

Complex-valued neural networks: Advances and applications.
IEEE Computational Intelligence. John Wiley & Sons, 2013.

[58] Eckhard Hitzer and Stephen J Sangwine.

Quaternion and Clifford Fourier transforms and wavelets.
Springer, 2013.

[59] Lester Ingber.

Computational algorithms derived from multiple scales of neocortical processing.

Cognitive Computation, 4(1):38–50, 2012.

[60] Teijiro Isokawa, Nobuyuki Matsui, and Haruhiko Nishimura.
Quaternionic neural networks: Fundamental properties and applications.
In *Complex-valued neural networks: utilizing high-dimensional parameters*, pages 411–439. IGI Global, 2009.

[61] David C. Knill and Whitman Richards (editors).
Perception as Bayesian inference.
Cambridge University Press, 1996.
Paper #1 is *Pattern theory: a unifying perspective*, by D. Mumford.

[62] Masaki Kobayashi.
Rotational invariance of quaternionic Hopfield neural networks.
IEEJ Transactions on Electrical and Electronic Engineering,
11(4):516–520, 2016.

[63] Jens Kober, J Andrew Bagnell, and Jan Peters.
Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[64] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
ImageNet classification with deep convolutional neural networks.
In *Proceedings of the Conference Neural Information Processing Systems (NIPS 2011)*, pages 1097–1105, 2012.

[65] Sanjeev R. Kulkarni and Gilbert Harman.
Statistical learning theory: a tutorial.
Wiley Interdisciplinary Reviews: Computational Statistics, 3(6):543–556, 2011.

[66] LISA lab.

Deep learning tutorial, 2015.

Release 0.1. Theano Development Team.

[67] Anthony Lasenby.

Geometric algebra, gravity and gravitational waves.

Advances in Applied Clifford Algebras, 29(4):41 pages, 2019.

[68] Carlile Lavor, Sebastià Xambó-Descamps, and Isiah Zaplana.

A Geometric Algebra Invitation to Space-Time Physics, Robotics and Molecular Geometry.

SBMA/Springerbrief. Springer, 2018.

[69] Y Le Cunn and Y Bengio.

Convolutional neural networks for Images, Speech and Time Series.

AT&T Laboratories, pages 1–14, 1995.

[70] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.

Deep learning.

nature, 521(7553):436, 2015.

[71] Karel Lenc and Andrea Vedaldi.

Understanding image representations by measuring their equivariance and equivalence.

In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 991–999, 2015.

[72] Ian Lenz.

Deep learning for robotics.

PhD thesis, Cornell University, 2016.

[73] Henry W. Lin, Max abd Tegmark, and David Rolnick.

Why does deep and cheap learning work so well?

Journal of Statistical Physics, 168(6):1223–1247, 2017.

arXiv:1608.08225, v4.

[74] Pertti Lounesto and Esko Latvamaa.

Conformal transformations and Clifford algebras.

Proceedings of the American Mathematical Society, 79(4):533–538, 1980.

[75] Kevin M Lynch and Frank C. Park.

Modern Robotics: Mechanics, Planning, and Control.

Authors, 2017.

[76] Stéphane Mallat.

Understanding deep convolutional networks.

Phil. Trans. R. Soc. A, 374(2065):20150203, 2016.

[77] Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis Tuia.

Rotation equivariant vector field networks.

arXiv: 1612. 09346, 2016.

[78] Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio.

Learning functions: when is deep better than shallow.

arXiv: 1603. 00988, 2016.

[79] Marius Mitrea.
Clifford wavelets, singular integrals, and Hardy spaces.
Springer, 1994.

[80] Shariq Mobin and Joan Bruna.
Voice conversion using convolutional neural networks.
arXiv: 1610. 08927, 2016.

[81] Jojo Moolayil, Moolayil, and Suresh John.
Learn Keras for Deep Neural Networks.
Springer, 2019.
A fast track approach to modern deep learning with python.

[82] E Ulises Moya-Sánchez and Eduardo Vázquez-Santacruz.
A geometric bio-inspired model for recognition of low-level structures.
In *International Conference on Artificial Neural Networks*, pages 429–436. Springer, 2011.

[83] David Mumford and Agnès Desolneux.
Pattern theory: the stochastic analysis of real-world signals.
A. K. Peters, 2010.

[84] Kevin P. Murphy.
Machine learning: A probabilistic perspective.
MIT Press, 2012.

[85] Michael A Nielsen.

Neural networks and deep learning, volume 25.

Determination press San Francisco, CA, USA, 2015.

[86] Sofia Olhede and Patrick Wolfe.

The ai spring of 2018, 2018.

<http://discovery.ucl.ac.uk/10051919/1/AIspringv5.pdf>, 3 pages. Authors discuss the implications as nations race for AI dominance.

[87] Michael Otte.

A survey of machine learning approaches to robotic path-planning.

International Journal of Robotics Research, 5(1):90–98, 2008.

[88] Michael Otte.

A survey of machine learning approaches to robotic path-planning.

Technical Report PhD Preliminary Exam, University of Colorado at Boulder, 2008.

[89] Titouan Parcollet, Ying Zhang, Mohamed Morchid, Chiheb Trabelsi, Georges Linarès, Renato De Mori, and Yoshua Bengio.

Quaternion convolutional neural networks for end-to-end automatic speech recognition.

arXiv: 1806.07789, 2018.

[90] Ankit B Patel, Tan Nguyen, and Richard G Baraniuk.

A probabilistic theory of deep learning.

arXiv preprint arXiv:1504.00641, 2015.

[91] Donald Perlis.

Hawkins on intelligence: fascination and frustration.

Artificial Intelligence, 169(2):184–191, 2005.

[92] Minh Tuan Pham and Kanta Tachibana.

A conformal geometric algebra based clustering method and its applications.

Advances in Applied Clifford Algebras, 26(3):1013–1032, 2016.

[93] Tuan M. Pham, Danh C. Doan, and Eckhard Hitzer.

Feature extraction using conformal geometric algebra for AdaBoost algorithm based inplane rotated face detection.

Advances in Applied Clifford Algebras, 29(4):19 pages, 2019.

[94] Tao Qian, Mang I. Vai, and Yuesheng Xu (editors).
Wavelet analysis and applications.
Applied and numerical harmonic analysis. Birkhäuser, 2007.
Includes: *Clifford analysis and the continuous spherical wavelet transform* (P. Cerejeiras, M. Ferreira, U. Kähler).

[95] David Rolnick and Max Tegmark.
The power of deeper networks for expressing natural functions, 2018.
[arXiv:1705.05502](https://arxiv.org/abs/1705.05502), v2.

[96] Javier Ruiz-del Solar, Patricio Loncomilla, and Naomi Soto.
A survey on deep learning methods for robot vision.
[arXiv: 1803.10862](https://arxiv.org/abs/1803.10862), 2018.

[97] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
Dynamic routing between capsules.
In *Advances in neural information processing systems*, pages 3856–3866. Springer, 2017.

[98] Jürgen Schmidhuber.
Deep learning in neural networks: An overview.
Neural networks, 61:85–117, 2015.

[99] Jahanzaib Shabbir and Tarique Anwer.
A survey of deep learning techniques for mobile robot applications.
arXiv: 1803. 07608, 2018.

[100] Shai Shalev-Shwartz and Shai Ben-David.

Understanding machine learning: From theory to algorithms.

Cambridge university press, 2014.

[101] Gerald Sommer (ed.).

Geometric computing with Clifford algebras: theoretical foundations and applications in computer vision and robotics.

Springer, 2001.

[102] GS Staples.

CliffMath: Clifford algebra computations in Mathematica,
2008-2018, 2019.

[103] Richard S Sutton and Andrew G Barto.

Reinforcement learning: An introduction.

MIT press, 2018.

[104] Lei Tai, Jingwei Zhang, Ming Liu, Joschka Boedecker, and Wolfram Burgard.

A survey of deep network solutions for learning control in robotics:
From reinforcement to imitation.

arXiv: 1612. 07139, v4, 2018.

[105] Yichuan Tang.

Deep learning using linear support vector machines.

arXiv: 1306. 0239, v4, 2015.

[106] Max Tegmark.

Life 3.0: Being human in the age of artificial intelligence.
Knopf, 2017.

[107] Tijmen Tieleman.

Optimizing neural networks that generate images.
University of Toronto (Canada), 2014.
PhD thesis.

[108] Julian Togelius.

Playing Smart: On Games, Intelligence, and Artificial Intelligence.
MIT Press, 2018.

[109] Jerry R Van Aken.

A high-level model of neocortical feedback based on an event window segmentation algorithm.

arXiv: 1409. 6023, 2014.

[110] Ivan Vasiliev, Daniel Slater, Gienmario Scapagna, Peter Roelants, and Valentino Zocca.

Python Deep Learning (second edition).

Packt, 2019.

Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow.

[111] Jayme Vaz and Stephen Mann.

Paravectors and the geometry of 3D euclidean space.

Advances in Applied Clifford Algebras, 28(5):99–141, 2018.

[112] Rene Vidal, Joan Bruna, Raja Giryes, and Stefano Soatto.

Mathematics of deep learning.

arXiv: 1712. 04741, 2017.

[113] Yi-Qing Wang.

An analysis of the viola-jones face detection algorithm.

Image Processing On Line, 4:128–148, 2014.

[114] Michael M Wolf.

Mathematical foundations of supervised learning, 2018.

[115] Tailin Wu and Max Tegmark.

Toward an AI Physicist for Unsupervised Learning, 2018.

arXiv:1810.10525, v2.

[116] S. Xambó-Descamps.

From Leibniz' *characteristica geometrica* to contemporary geometric algebra.

Quaderns d'Història de l'Enginyeria, 16 (Special issue dedicated to commemorate LEIBNIZ (1646-1716)):103–134, 2018.

pdf.

[117] Sebastià Xambó-Descamps.

Real spinorial groups—a short mathematical introduction.

SBMA/Springerbrief. Springer, 2018.

[118] Ding-Xuan Zhou.

Universality of deep convolutional neural networks.

Applied and Computational Harmonic Analysis, 2019.

[119] Xuanyu Zhu, Yi Xu, Hongteng Xu, and Changjian Chen.

Quaternion convolutional neural networks.

In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 631–647, 2018.