ICIAM 2019  Minisymposium on

Systems, patterns and data engineering
with geometric calculi (GC&DL)

)

First developed as a language for physics, recently there has been an
explosion of applications of Geometric Calculus in a great variety of
areas, like general relativity, cosmology, robotics, computer graphics,
computer vision, molecular geometry, quantum computing, etc.

The goal of the mini-symposium is to overview the basic ideas of GC,
to report on some relevant applications, and to explore the bearing of
the formalism in novel approaches to deep learning.
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GC&DL  Program

Geometric Calculus Techniques in Science and Engineering
(Sebastia Xambdé-Descamps)

Bringing New Perspectives to Robotics and Computer Science
(Isiah Zaplana)

Geometric Algebra and Distance Geometry (Carlile Lavor)

Embedded Coprocessors for Native Execution of Geometric Algebra
Operations (Salvatore Vitabile)

Hypercomplex Algebras for Art Investigation (Srdan Lazendi¢)
Conformal Geometric Algebra for Medical Imaging (Salvatore Vitabile)
Bio-inspired geometric deep learning (Eduardo U. Moya Sanchez)
Geometric calculus meets deep learning (SXD)

https://mat-web.upc.edu/people/sebastia.xambo/
ICIAM2019/GC&DL.html (abstracts, references, and slides)
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Grassmann algebra
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Grassmann algebra Notations

E real vector space of finite dimension n.
(AE, A\) Grassmann's exterior algebra of E.

It is unital, associative and skew-commutative:
x Ax'=—x"ANxforall x,x" € E.

In particular x A x = x"2 = 0 for all x € E.

A¥E C NE (k-th exterior power of E):
subspace of /\E generated by all k-blades, which are the non-zero
exterior products x; A+ A xx (x1,...,xc € E).

By convention, A°’E = R and clearly A'E = E.
The elements of AXE are called k-vectors.

Special names: k = 0, scalars, k = 1, vectors, k = 2, bivectors;
k = n— 1, pseudovectors (dim n); k = n, pseudoscalars (dim 1).
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Grassmann algebra Notations
O NE = DIZINE (grading of \E)

The elements a € /\E are called multivectors and we have a unique
decomposition a = ag + a; + - - - + a,, with a, € AKE.

N ={1,...,n} set of indices.

J set of subsets of N: Its elements are called multiindices.
T C J subset of multiindices of cardinal k.

Let e = e,..., e, be a basis of E.

If K= ki,..., km is a sequence of indices, we set ex = e, A---Ae, .
Note that e; = 0 if K has repeated indices (it occurs when m > n).
O {ei}iey, is a basis of NE.

Thus dim A“E = (]) and dim AE = 2",

S. Xambé-Descamps (UPC-BSC) GC TECHNIQUES 16,/07/2019 7/76



Grassmann algebra Notations

Parity involution. The linear automorphism £ — E, e — —e,
induces a linear automorphism of /AE that is denoted a — 4.

mFor a € AE, we have =) ,(—1)a,.

maAb=4Ab forall a,b € \E (algebra automorphism).

Reverse involution. Exchanging the order of exterior products
yields a linear antiautomorphism of A\E, a +— a.

Since reversing a k-blade amounts to (’2() sign changes, and since this
number has the same parity as k /2 (the integer quotient of k by 2),
we have

"= (1),

maAb=bAZforalla,be AE (algebra antiautomorphism).
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Grassmann algebra Metrics

Let g be a metric on E: a non-degenerate quadratic form of E.

The metric is also regarded as a bilinear non-degenerate form:
2q(x,x") = q(x + x') — a(x) — q(x), a(x) = q(x,x).

A vector x is said to be positive, negative or null (or isotropic)

according to whether g(x) > 0, g(x) < 0 or g(x) = 0.

The basis e is said to be orthogonal if q(e;, ex) = 0 for j # k.

The basis is orthonormal if in addition g(e;) = +1.

The signature (r, s) of q is obtained by counting the numbers r and s
of positive and negative vectors in any orthogonal basis.

(E.q) = E, s: orthogonal geometry of signature (r, s).

Fundamental goal: To understand the group O, of isometries of
E, s, the subgroup SO,  of proper isometries (or rotations), and the
subgroup SO?,S of rotations connected to the identity.
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c

Gr algebra E

Examples

Euclidean space: E, = E, ¢ (signature (n,0)).
E, (Euclidean plane), E; (ordinary Euclidean space).

Antieuclidean space E, = E; = E; , (signature (0, n)).

Minkowski space: (E,n) = E; 3. In this case a convenient notation
for an orthonormal basis is ey, €1, e, €3, where ¢ is positive and
€1, e, e3 negative. O 3 is the group of Lorentz transformations.

E5 = E3411: Conformal space. In this case, a convenient basis is
formed by adding null vectors ey and e, that are orthogonal to E3,
and such that ¢, - e, = —1, to an orthonormal basis e, e, e3 of E;.

Note that the signature of the plane (ey, ex) is (1,1): the vectors
et = (e — ex)/v2 and e~ = (e + e,)//2 are orthogonal and
g(e*) =1,q(e”) = —-1.
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Grassmann algebra The metric AE

<& There is a unique metric on AE, still denoted g, such that the
K o .
spaces /\"E are pairwise g-orthogonal and with

qixa A= Axi,xp A A xg) = det((g(xi, x7))) (1,7 =1,..., k).

If follows that the basis {e;},c s is orthogonal (orthonormal) if e is
orthogonal (orthonormal).

Exercise. The signature of this metric is (2",0) if s =0 (so r = n)
and (2"71,2"71) otherwise. In particular (AE, q) is:

m non-degenerate when (E, q) is non-degenerate;
m Euclidean when (E, q) is Euclidean;
m has signature (8, 8) for the Minkowski space;

m has signature (16, 16) for the conformal space.
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Grassmann algebra Inner product

It is derived from the (left) contraction operator i, (x € E):
Ba N Ax) =2 (=100 x)xa A A Axa A A X

The result is a bilinear product a- b (a, b € AE) uniquely determined
by the following properties:

ma-b=0if aor bis a scalar;
mx-b=i(b)ifx€E;sox-y=q(x,y)forx,y € E.

ma-b=(—1Y*"b-a(m=min(j,k)) ifac NE be NE. In
particular, a- x = (—1Y*1i (a) if x is a vector and j > 1.

(g A AX 1 Ax) b= (A Axi_1)-(x-b)if be A*E and
2<j<k

mifa=x A---Axgand b=x] A---Ax}, a-b=(—-1)%q(a,b).
In general, a- b= q(3.b) if a,b e A“E, k> 1.
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Grassmann algebra Inner product

There is also a Laplace formula for the inner product a- b when
a=x3A---Axjand b=x; A---AXx. Its general expression can be
easily guessed from the following example: (x3 A x2) - (X{ A X5 A x§) =

((anxe) (aAx))xs— ((aAxe) - (xAx))xg+((anxe) (G Ax3))x.
<& For all a, b € AE,

a/-\bzé-f) and a-b=b-3
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Synopsis of GA
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Synopsis of GA  GA as enriched exterior algebra

The GA of (E, q) = E, 5, denoted G = G, = G, ., can be constructed

by enriching AE with the geometric product ab (Clifford). It is
unital, bilinear and associative. Moreover,

m For any vectors x, x’ € E, xx' = x - x' 4+ x A x’ (Clifford relations).

m Thus xx’ = —x'x iff x - x’ = 0 (anticommuting property) and
x? = q(x) (Clifford reduction).

m If g(x) # 0 (non-isotropic, or non-null vector), x ' = x/q(x).
mFor x € E and a € AE,
xa=x-a+xANa=(ix+px)(a).
ax=a-x+alAx

miIf a€ G/ and b € GX, then (ab); is 0 unless i is in the range
= k|, [j— k| +2,....j+k—2j+k, and
(ab)j_x =a-bforj k>0, and (ab)jx=aAb.
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Synopsis of GA  GA as enriched exterior algebra

m Forany a,b € G, ab — b and ab = b3
m Riesz formulas 2x A a = xa + 8x, 2x - a = xa — ax
m The metric in terms of the geometric product: For all a, b € G,
q(a, b) = (3b)y = (ab)o.
m |n particular we have
q(a) = (da)o = (ad)o

forallae G .
m If ais a k-blade, then 3a is already a scalar and

q(a) = da = a3 = (—1)"/22°

In particular we see that a is invertible if and only if a® # 0, or if and
only if g(a) # 0, and if this is the case, then we have

al=a/a®=3/q(a).
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Synopsis of GA  Working with a basis e
Let e = e,..., e, be a basis of E and N = {1,...,n} the set of
indices.
If K=ky,..., knyis a sequence of indices, set
ex = ekl RN

m*

m {¢e/}/c7 is a basis of G = N\E.

Remark that if / € J, then in general e, = e;+ lower grade terms,
like ep = ey = ey ANer + e - =ep + 6 - 6.

m [f e is orthogonal, then ¢, = ¢;, as
Xyt Xe = Xy AN\ A\ Xk

when xq, ..., x, are pair-wise orthogonal vectors.
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Synopsis of GA  Working with a basis e

m Artin's formula: If /, J are multiindices, then

e ey —= (—1)t(I’J) dinJ€iny

where t(/, J) is the number of inversions in the squence I, J, IAJ is

the symmetric difference of / and J, and gx = q(ex) - g (ex,)-
m In particular, €2 = (—1)/2q,

Examples

min £, e, =—1(as2/2=1and g, =1).

min £, el = —1(as 3/2=1and g3 = 1).

min Ei3, €203 = —1 (as 42 = 2 and qoi13 = (—1)% = —1).
min £y, el =1 (as 42 =2 and quozs = (—1)* = 1).
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Synopsis of GA Examples: Gauss and Pauli

Go=(1,e1, e, €10 = 1), iZ=-1 (Gauss algebra).

G =(1,i)~C

P=Gs= (1,6, 6,63 e3, €31, €1, €103 = i), i = —1 (Pauli).
€3 =le; = e, €31 = Iey = &, €1p = ie3 = &31.

General element: (o + i)+ (x + yi) (o, B € R, x,y € E3).
G, = {a + xi} = H (quaternion field).

O gla+xi) = (a+xi)(a+xi)y =a®+x?

Hamilton units: | = e = e3i, J = €31 = 5, K = ey3 = ¢4i.

(Yes, in that order if we want that the Hamilton's original relations
I?=J% = K> = IJK = —1 are satisfied).
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Synopsis of GA Examples: Dirac

Ei3 = (ep, €1, €, 6€3). In D =Gy 3 (Dirac algebra), set: i = ep123,
2 . . .
o = exgy. Then i = —1, i anticommutes with vectors, and

D= <17 €0, €1,€2,€63,01,02,03,101,103,103, €l, €11, €21, €31, l>'

A general element has the form (o + i) + (x + yi) + (E + iB),
(a, BER, x,y € E13, E,B € £ = (01,02,03)).

Dt =(1,01,0,,03,i01,i0,,i03,i) ~ P(E).
Its elements have the form (o + i) + (E + iB).

Oi= 010203.
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Versors
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Versors Reflections

Let £ be the set on non-isotropic vectors of E.

If x € E, define the linear automorphism x : G — G by

x(a) = —xax~ ' = gax" 1.

< For a vector y, x(y) is the reflection of y along x (or across x*).
Proof. x(x) = —x and x(y) =y if y € x*.
The map x is not an algebra automorphism, but satisfies:
x(ab) = —x(ab)x ! = —xax"'xbx"' = —x(a)x(b).
It follows that x is grade-preserving. Moreover, it is an isometry:
q(x(a)) = ((—xax"*)(—xax""))o
= (xtax?ax1)y = (xdax~1)o = g(a).
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Versors General isometries

Olet xq,....,xx € EXand v =x;---x,. Then

(xp - x)(a) =R fhaxg boxg b= Dav

The expressions v form a group under the geometric product. We
denote it by V = V, ; and its elements are called versors.

<& Any isometry f : E — E has the form v for some versor v.
Moreover, if v = v/, then v = \v for some scalar \.

A unit versor (also called a pinor) is a versor v such that v = +1.
<& Any unit versor is the product of unit vectors (and conversely).

<& Any isometry f : E — E has the form v for some unit versor v.
Moreover, if v = v/ (V' also a unit versor), then v/ = +v.
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Versors Rotations

The even unit versors are called spinors. They form a subgroup &, .
of V,s. The rotors are the spinors v such that vii = 1. They form a

subgroup R, s of S, 5. In the Euclidean space, any spinor is a rotor,
but this is not true in general.

<& Any proper isometry (also called rotation) has the form v for some
spinor v. If the rotation is connected to the identity, then it has the
form v for some rotor v.
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Versors Construction of rotors

Example. Let u and u’ to unit linearly independent vectors of E, and
0 = Z(u,u"). Then the rotation v produced by the rotor v = u'u is

the rotation in the plane P = (u, u’) of amplitude 20.

Indeed, since v is the identity on P, it amounts to a rotation in P.

Let i = ip be the unit area of P. Then v and ut = ui form an
orthonormal basis of P and v/ = ucosf + u'sinf. Hence
v=1u'u=-cosf —isinf = e Finally,

v(u) = vui = e e’ = ue* = ucos20 + ut sin 26.
OlfbeG? R=eb =3, b satisfies RR = ebe > = 1. If
n <5, then R is a rotor.
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Versors CGA

The Hestenes embedding £; — Eg{l, x — X:

X =€+ x+K(X)ew, K(x)=1x2

The isometry group O4 7 acts on E30y1 and hence on E3. These actions
are conformal and any conformal map of E; can be obtained in this
way.

The similarities are induced by the isometries leaving e, fixed.

Using the general construction of rotors, we can produce similarities
(sufficient for robotics) tailored to our needs.

Transformation | Conformal rotor
Rotation e 10
Translation e Ves/?
Dilation gvé0eoo/2

S. Xambé-Descamps (UPC-BSC) GC TECHNIQUES 16,/07/2019 26 /76



The Dirac operator
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The Dirac operator Definitions

Let ¢ be a basis of E and ¢’ its reciprocal, defined by the relations
ef e = 8{(

Examples. For an orthonormal basis of E,, e/ = e; for all j. In the
Minkowski space, €” = ey and &/ = —¢; for j =1,2,3.

The Dirac operator can be defined by the expression 0 = €/0; (sum
wrt j implied by Einstein’s convention), where 0; = 9/0x/, x/ the
coordinate functions wrt to ¢ (so x = x/¢; for x € E).

There are thee actions of 0 on a multivector field a = a'(x)e;:
mJa=0;aée

m)-a=20;ae ¢

mJANa=0ale Ney.
Cda=0-a+0Na(asele=¢ ¢ +eNeg).
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The Dirac operator Examples: vector fields

Let a = a’e; be a vector field. Then

mJ-a=0;a (divergence).

moNa=>._.(q0;d — q0;a)e;.

In E5, 0 =V = .01 + 0> + e30;:

BV a=0a" + 0a° + 033° = div(a).

BV Aa= (013" — 0hal)en + (01a° — 0za')ers + (0ha® — 03a°)ens
= (0ha® — 03a%)eri + (0za* — 013°)exi + (01a° — Dha")esi
= (V x a)i = curl(a)i.

i<j(
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The Dirac operator Maxwell’s equations

A bivector of D has the form F = E +iB (E,B € £) and can be
used to encode the electromagnetic field (Faraday bivector).

Let p = p(x, t) be the scalar function representing the charge density
and j € £ the vector representing the current density. The
J = peg + J is the current vector.

<& The equation OF = J is equivalent to the Maxwell equations for
the electromagnetic field generated by p and j.

<& If we multiply OF = J by O on the left, we obtain

OF =0-J+0AJ, where 0 = 92 = 92 — (0? + 92 + 0?)
(dalambertian).

Since the left side is a bivector ([J preserves grades), the scalar part
of the right-hand side expression must vanish: 9 - J = 0. This is the
charge conservation equation, as it is equivalent to the continuity
equation 0;p + V - j = 0.
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The Dirac operator Real Dirac equation

The original Dirac equations were written in terms of 4 X 4 complex
matrices 7o, 71, V2, Y3 that provided a matrix representation of D
determined by e; +— ~;. The space on which these matrices act, C*,
was the space of Dirac spinors; the wave function was map

¥ : E; 3 — C* and the Dirac equation was derived as a “relativistic
Schrodinger equation for the electron wave function” (Klein-Gordon
equation).

It turns out, however, that GC shows that the complex matrices are
superfluous, as the only crucial fact required is that they satisfy
Clifford’s relations. And after that, the analysis reveals that the role
of C* must be played by the space Dt (=~ P), which has complex
dimension 4, and hence that the wave function is to be thought as a
spinor field, the name for a function ¢ : E; 3 — D*.

As is customary, instead of e, 1, €, e3 used so far, we will use
Y05 V15 V2, V3-
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The Dirac operator Real Dirac equation

The final conclusion is that the Dirac equation is morphed into the
following equation for the spinor field 1:

it — = A = mecio,

where c is the speed of light, e is the electron charge and m, its
mass. In this equation / is not v/—1, but the bivector i = 21, and A
is the electromagnetic potential, a vector field such that 0 A A= F
and 0-A=0.

As found and expressed by D. Hestenes, this equation “reveals
geometric structure in the Dirac theory that is so deeply hidden [even
inaccessible] in the matrix version that it remains unrecognized by
QED experts to this day”.

See [?, §3.3], [116], [117, §6.2 and §6.3], which include a
comprehensive survey of applications.
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The Dirac operator Real Dirac equation

This 2-area element is a geometric imaginary unit that replaces the
(ungeometric) imaginary unit v/—1 in the original Dirac equation.
The first important advantage of the GC formulation of the Dirac
equation is that 1(x) admits a decomposition of the form

¢ _ p1/2eiﬁ/2R,
where p = p(x) is a positive real number, § = 3(x) € [0,27) and
R = R(x) is a rotor (that is, RR = 1). Note that this expression has
eight degrees of freedom: 1+ 1 + 6.
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The Dirac operator Local observables

Define e, = e,(x) = Ry,R (comoving frame). Since R is a rotor,
this is an orthonormal frame field in E; 3 with the same orientation
and temporal orientation as the reference frame .

Note that wfyuzz = pe,, because i anticommutes with vectors and
i=1:
Vyb = pePP Ry, RePl? = pelPl2e™Pl2Ry R = pe,.

In particular, @/WOIZ = pv, where v = e, is the Dirac current.

The vector

is the spin vector.

S. Xambé-Descamps (UPC-BSC) GC TECHNIQUES 16,/07/2019 34 /76



The Dirac operator Local observables

The rotor R transforms the unit / to ¢« = Riﬁ, which is the

(comoving) space-like plane quantity e;e; and S = gb can be called
the spin bivector. The relation to the spin vector is as follows:

S =isv.

Proof isv = iRy;RRYR = “Riy3R = IRIR =1 = S. O
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The Dirac operator Monochromatic solutions

With R = e/(k¥) we have a ‘monochromatic spinor’ (yes, i and /)
b = pl/2eiB/2gilkx).
A straightforward computation shows that the condition for this wave
to satisfy the real Dirac equation is that
hk = mecve ™’
This implies that cos(/3) = +1. As for monochromatic

electromagnetic waves, the condition for constant phase in the
moving frame is v - x = ¢, and so

hk - x = +m.c(v - x) = £m.c?r
which yields the de Broglie frequency m.c?/h of the electron.

A closer analysis shows that the vector e; turns in the plane ¢ with
frequency 2m.c?/h, which is the zitterbewegung frequency of
Schrodinger, with period 4.0466 x 10~ 2!s.
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