
ICIAM 2019 Minisymposium on

Systems, patterns and data engineering

with geometric calculi (GC&DL)

(Born in Campinas, Brazil, on the occasion of AGACSE 2018, which
was an early satellite of AGACSE 2018)

First developed as a language for physics, recently there has been an
explosion of applications of Geometric Calculus in a great variety of
areas, like general relativity, cosmology, robotics, computer graphics,
computer vision, molecular geometry, quantum computing, etc.

The goal of the mini-symposium is to overview the basic ideas of GC,
to report on some relevant applications, and to explore the bearing of
the formalism in novel approaches to deep learning.
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GC&DL Program

Geometric Calculus Techniques in Science and Engineering
(Sebastià Xambó-Descamps)

Bringing New Perspectives to Robotics and Computer Science
(Isiah Zaplana)

Geometric Algebra and Distance Geometry (Carlile Lavor)

Embedded Coprocessors for Native Execution of Geometric Algebra
Operations (Salvatore Vitabile)

Hypercomplex Algebras for Art Investigation (Srdan Lazendić)

Conformal Geometric Algebra for Medical Imaging (Salvatore Vitabile)

Bio-inspired geometric deep learning (Eduardo U. Moya Sánchez)

Geometric calculus meets deep learning (SXD)

https://mat-web.upc.edu/people/sebastia.xambo/

ICIAM2019/GC&DL.html (abstracts, references, and slides)
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Grassmann algebra
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Grassmann algebra Notations

E real vector space of finite dimension n.

(∧E ,∧) Grassmann’s exterior algebra of E .

It is unital, associative and skew-commutative:
x ∧ x ′ = −x ′ ∧ x for all x , x ′ ∈ E .

In particular x ∧ x = x∧2 = 0 for all x ∈ E .

∧kE ⊂ ∧E (k-th exterior power of E ):
subspace of ∧E generated by all k-blades, which are the non-zero
exterior products x1 ∧ · · · ∧ xk (x1, . . . , xk ∈ E ).

By convention, ∧0E = R and clearly ∧1E = E .

The elements of ∧kE are called k-vectors.

Special names: k = 0, scalars; k = 1, vectors; k = 2, bivectors;
k = n − 1, pseudovectors (dim n); k = n, pseudoscalars (dim 1).
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Grassmann algebra Notations

� ∧E =⊕k=n
k=0∧kE (grading of ∧E )

The elements a ∈ ∧E are called multivectors and we have a unique
decomposition a = a0 + a1 + · · ·+ an, with ak ∈ ∧kE .

N = {1, . . . , n} set of indices.

J set of subsets of N : Its elements are called multiindices.

Jk ⊂ J subset of multiindices of cardinal k .

Let e = e1, . . . , en be a basis of E .

If K = k1, . . . , km is a sequence of indices, we set eK̂ = ek1 ∧ · · · ∧ ekm .
Note that eK̂ = 0 if K has repeated indices (it occurs when m > n).

� {eÎ}I∈Jk is a basis of ∧kE .

Thus dim∧kE =
(
n
k

)
and dim∧E = 2n.
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Grassmann algebra Notations

Parity involution. The linear automorphism E → E , e 7→ −e,
induces a linear automorphism of ∧E that is denoted a 7→ â.

For a ∈ ∧E , we have â =
∑

k(−1)kak .

â ∧ b = â ∧ b̂ for all a, b ∈ ∧E (algebra automorphism).

Reverse involution. Exchanging the order of exterior products
yields a linear antiautomorphism of ∧E , a 7→ ã.

Since reversing a k-blade amounts to
(
k
2

)
sign changes, and since this

number has the same parity as k//2 (the integer quotient of k by 2),
we have

ã =
∑

k(−1)k//2ak .

ã ∧ b = b̃ ∧ ã for all a, b ∈ ∧E (algebra antiautomorphism).
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Grassmann algebra Metrics

Let q be a metric on E : a non-degenerate quadratic form of E .

The metric is also regarded as a bilinear non-degenerate form:

2q(x , x ′) = q(x + x ′)− q(x)− q(x ′), q(x) = q(x , x).

A vector x is said to be positive, negative or null (or isotropic)
according to whether q(x) > 0, q(x) < 0 or q(x) = 0.

The basis e is said to be orthogonal if q(ej , ek) = 0 for j 6= k .

The basis is orthonormal if in addition q(ei) = ±1.

The signature (r , s) of q is obtained by counting the numbers r and s
of positive and negative vectors in any orthogonal basis.

(E , q) = Er ,s : orthogonal geometry of signature (r , s).

Fundamental goal: To understand the group Or ,s of isometries of
Er ,s , the subgroup SOr ,s of proper isometries (or rotations), and the
subgroup SO0

r ,s of rotations connected to the identity.
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Grassmann algebra Examples

Examples

Euclidean space: En = En,0 (signature (n, 0)).
E2 (Euclidean plane), E3 (ordinary Euclidean space).

Antieuclidean space Ēn = En̄ = E0,n (signature (0, n)).

Minkowski space: (E , η) = E1,3. In this case a convenient notation
for an orthonormal basis is e0, e1, e2, e3, where e0 is positive and
e1, e2, e3 negative. O1,3 is the group of Lorentz transformations.

E c
3 = E3+1,1: Conformal space. In this case, a convenient basis is

formed by adding null vectors e0 and e∞ that are orthogonal to E3,
and such that e0 · e∞ = −1, to an orthonormal basis e1, e2, e3 of E3.

Note that the signature of the plane 〈e0, e∞〉 is (1, 1): the vectors
e+ = (e0 − e∞)/

√
2 and e− = (e0 + e∞)/

√
2 are orthogonal and

q(e+) = 1, q(e−) = −1.
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Grassmann algebra The metric ΛE

� There is a unique metric on ∧E , still denoted q, such that the
spaces ∧kE are pairwise q-orthogonal and with
q(x1 ∧ · · · ∧ xk , x

′
1 ∧ · · · ∧ x ′k) = det((q(xi , x

′
j ))) (i , j = 1, . . . , k).

If follows that the basis {eÎ}I∈J is orthogonal (orthonormal) if e is
orthogonal (orthonormal).

Exercise. The signature of this metric is (2n, 0) if s = 0 (so r = n),
and (2n−1, 2n−1) otherwise. In particular (∧E , q) is:

non-degenerate when (E , q) is non-degenerate;

Euclidean when (E , q) is Euclidean;

has signature (8, 8) for the Minkowski space;

has signature (16, 16) for the conformal space.
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Grassmann algebra Inner product

It is derived from the (left) contraction operator ix (x ∈ E ):

ix(x1 ∧ · · · ∧ xk) =
∑

j(−1)j−1q(x , xj)x1 ∧ · · · ∧ xj−1 ∧ xj+1 ∧ · · · ∧ xk .

The result is a bilinear product a · b (a, b ∈ ∧E ) uniquely determined
by the following properties:

a · b = 0 if a or b is a scalar;

x · b = ix(b) if x ∈ E ; so x · y = q(x , y) for x , y ∈ E .

a · b = (−1)jk+mb · a (m = min(j , k)) if a ∈ ∧jE , b ∈ ∧kE . In
particular, a · x = (−1)j+1ix(a) if x is a vector and j ≥ 1.

(x1 ∧ · · · ∧ xj−1 ∧ xj) · b = (x1 ∧ · · · ∧ xj−1) · (xj · b) if b ∈ ∧kE and
2 ≤ j ≤ k .

If a = x1 ∧ · · · ∧ xk and b = x ′1 ∧ · · · ∧ x ′k , a · b = (−1)k//2q(a, b).

In general, a · b = q(ã, b) if a, b ∈ ∧kE , k ≥ 1.
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Grassmann algebra Inner product

There is also a Laplace formula for the inner product a · b when
a = x1 ∧ · · · ∧ xj and b = x ′1 ∧ · · · ∧ x ′k . Its general expression can be
easily guessed from the following example: (x1 ∧ x2) · (x ′1 ∧ x ′2 ∧ x ′3) =

((x1∧x2) ·(x ′1∧x ′2))x ′3−((x1∧x2) ·(x ′1∧x ′3))x ′2 +((x1∧x2) ·(x ′2∧x ′3))x ′1.

� For all a, b ∈ ∧E ,

â · b = â · b̂ and ã · b = b̃ · ã
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Synopsis of GA
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Synopsis of GA GA as enriched exterior algebra

The GA of (E , q) = Er ,s , denoted G = Gq = Gr ,s , can be constructed
by enriching ∧E with the geometric product ab (Clifford). It is
unital, bilinear and associative. Moreover,

For any vectors x , x ′ ∈ E , xx ′ = x · x ′ + x ∧ x ′ (Clifford relations).

Thus xx ′ = −x ′x iff x · x ′ = 0 (anticommuting property) and
x2 = q(x) (Clifford reduction).

If q(x) 6= 0 (non-isotropic, or non-null vector), x−1 = x/q(x).

For x ∈ E and a ∈ ∧E ,

xa = x · a + x ∧ a = (ix + µx)(a).

ax = a · x + a ∧ x

If a ∈ G j and b ∈ Gk , then (ab)i is 0 unless i is in the range
|j − k |, |j − k |+ 2, . . . , j + k − 2, j + k , and

(ab)|j−k| = a · b for j , k > 0, and (ab)j+k = a ∧ b.
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Synopsis of GA GA as enriched exterior algebra

For any a, b ∈ G, âb = âb̂ and ãb = b̃ ã.

Riesz formulas 2x ∧ a = xa + âx , 2x · a = xa − âx

The metric in terms of the geometric product: For all a, b ∈ G,

q(a, b) = (ãb)0 = (ab̃)0.

In particular we have

q(a) = (ãa)0 = (aã)0

for all a ∈ G .

If a is a k-blade, then ãa is already a scalar and

q(a) = ãa = aã = (−1)k//2a2

In particular we see that a is invertible if and only if a2 6= 0, or if and
only if q(a) 6= 0, and if this is the case, then we have

a−1 = a/a2 = ã/q(a).
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Synopsis of GA Working with a basis e

Let e = e1, . . . , en be a basis of E and N = {1, . . . , n} the set of
indices.

If K = k1, . . . , km is a sequence of indices, set

eK = ek1 · · · ekm .

{eI}I∈I is a basis of G = ∧E .

Remark that if I ∈ Jk , then in general eI = eÎ+ lower grade terms,
like e12 = e1e2 = e1 ∧ e2 + e1 · e2 = e 1̂2 + e1 · e2.

If e is orthogonal, then eI = eÎ , as

x1 · · · xk = x1 ∧ · · · ∧ xk

when x1, . . . , xk are pair-wise orthogonal vectors.
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Synopsis of GA Working with a basis e

Artin’s formula: If I , J are multiindices, then

eIeJ = (−1)t(I ,J)qI∩JeI∆J

where t(I , J) is the number of inversions in the squence I , J , I∆J is
the symmetric difference of I and J , and qK = q (ek1) · · · q (ekm).

In particular, e2
J = (−1)|J|//2qJ

Examples

In E2, e2
12 = −1 (as 2//2 = 1 and q12 = 1).

In E3, e2
123 = −1 (as 3//2 = 1 and q123 = 1).

In E1,3, e2
0123 = −1 (as 4//2 = 2 and q0123 = (−1)3 = −1).

In Ē4, e2
1234 = 1 (as 4//2 = 2 and q1234 = (−1)4 = 1).
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Synopsis of GA Examples: Gauss and Pauli

G2 = 〈1, e1, e2, e12 = i〉, i 2 = −1 (Gauss algebra).

G+
2 = 〈1, i〉 ' C

P = G3 = 〈1, e1, e2, e3, e23, e31, e12, e123 = i〉, i 2 = −1 (Pauli).

e23 = ie1 = e1i , e31 = ie2 = e2i , e12 = ie3 = e3i .

General element: (α + βi) + (x + y i) (α, β ∈ R, x , y ∈ E3).

G+
2 = {α + x i} = H (quaternion field).

� q(α + x i) = (α + x i)(α + x i )̃ = α2 + x2

Hamilton units: I = e12 = e3i , J = e31 = e2i , K = e23 = e1i .

(Yes, in that order if we want that the Hamilton’s original relations
I 2 = J2 = K 2 = I JK = −1 are satisfied).
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Synopsis of GA Examples: Dirac

E1,3 = 〈e0, e1, e2, e3〉. In D = G1,3 (Dirac algebra), set: i = e0123,
σk = eke0. Then i 2 = −1, i anticommutes with vectors, and

D = 〈1, e0, e1, e2, e3,σ1,σ2,σ3, iσ1, iσ2, iσ3, e0i , e1i , e2i , e3i , i〉.

A general element has the form (α + βi) + (x + y i) + (E + iB),
(α, β ∈ R, x , y ∈ E1,3, E ,B ∈ E = 〈σ1,σ2,σ3〉).

D+ = 〈1,σ1,σ2,σ3, iσ1, iσ2, iσ3, i〉 ' P(E).

Its elements have the form (α + βi) + (E + iB).

� i = σ1σ2σ3.
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Versors
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Versors Reflections

Let E× be the set on non-isotropic vectors of E .

If x ∈ E , define the linear automorphism x : G → G by

x(a) = −xax−1 = x̂ax−1.

� For a vector y , x(y) is the reflection of y along x (or across x⊥).
Proof: x(x) = −x and x(y) = y if y ∈ x⊥.

The map x is not an algebra automorphism, but satisfies:

x(ab) = −x(ab)x−1 = −xax−1xbx−1 = −x(a)x(b).

It follows that x is grade-preserving. Moreover, it is an isometry:

q(x(a)) = ((−xax−1)̃ (−xax−1))0

= (x−1ãx2ax−1)0 = (xãax−1)0 = q(a).
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Versors General isometries

� Let x1, . . . , xk ∈ E× and v = x1 · · · xk . Then

(x1 · · · xk)(a) = x̂1 · · · x̂kax−1
k · · · x

−1
1 = v̂ av−1.

The expressions v form a group under the geometric product. We
denote it by V = Vr ,s and its elements are called versors.

� Any isometry f : E → E has the form v for some versor v .
Moreover, if v = v ′, then v ′ = λv for some scalar λ.

A unit versor (also called a pinor) is a versor v such that v ṽ = ±1.

� Any unit versor is the product of unit vectors (and conversely).

� Any isometry f : E → E has the form v for some unit versor v .
Moreover, if v = v ′ (v ′ also a unit versor), then v ′ = ±v .
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Versors Rotations

The even unit versors are called spinors. They form a subgroup Sr ,s
of Vr ,s . The rotors are the spinors v such that v ṽ = 1. They form a
subgroup Rr ,s of Sr ,s . In the Euclidean space, any spinor is a rotor,
but this is not true in general.

� Any proper isometry (also called rotation) has the form v for some
spinor v . If the rotation is connected to the identity, then it has the
form v for some rotor v .
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Versors Construction of rotors

Example. Let u and u′ to unit linearly independent vectors of En and
θ = ∠(u, u′). Then the rotation v produced by the rotor v = u′u is
the rotation in the plane P = 〈u, u′〉 of amplitude 2θ.

Indeed, since v is the identity on P⊥, it amounts to a rotation in P .
Let i = iP be the unit area of P . Then u and u⊥ = ui form an
orthonormal basis of P and u′ = u cos θ + u⊥ sin θ. Hence
v = u′u = cos θ − i sin θ = e−iθ. Finally,
v(u) = vuṽ = e−iθue iθ = ue2iθ = u cos 2θ + u⊥ sin 2θ.

� If b ∈ G2, R = eb =
∑

k≥0
1
k!
bk satisfies RR̃ = ebe−b = 1. If

n ≤ 5, then R is a rotor.
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Versors CGA

The Hestenes embedding E3 → E 0
3,1, x 7→ X :

X = e0 + x + κ(x)e∞, κ(x) = 1
2
x2.

The isometry group O4,1 acts on E 0
3,1 and hence on E3. These actions

are conformal and any conformal map of E3 can be obtained in this
way.

The similarities are induced by the isometries leaving e∞ fixed.

Using the general construction of rotors, we can produce similarities
(sufficient for robotics) tailored to our needs.

Transformation Conformal rotor
Rotation e−iθ

Translation e−ve∞/2

Dilation eαe0e∞/2
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The Dirac operator
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The Dirac operator Definitions

Let ej be a basis of E and e j its reciprocal, defined by the relations

e j · ek = ∂jk .

Examples. For an orthonormal basis of En, e j = ej for all j . In the
Minkowski space, e0 = e0 and e j = −ej for j = 1, 2, 3.

The Dirac operator can be defined by the expression ∂ = e j∂j (sum
wrt j implied by Einstein’s convention), where ∂j = ∂/∂x j , x j the
coordinate functions wrt to ej (so x = x jej for x ∈ E ).

There are thee actions of ∂ on a multivector field a = aI (x)eI :

∂a = ∂ja
Ie jeI

∂ · a = ∂ja
Ie j · eI

∂ ∧ a = ∂ja
Ie j ∧ eI .

� ∂a = ∂ · a + ∂ ∧ a (as e jeI = e j · eI + e j ∧ eI ).
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The Dirac operator Examples: vector fields

Let a = aiei be a vector field. Then

∂ · a = ∂ja
j (divergence).

∂ ∧ a =
∑

i<j(qi∂ia
j − qj∂ja

i)eij .

In E3, ∂ = ∇ = e1∂1 + e2∂2 + e3∂3:

∇ · a = ∂1a
1 + ∂2a

2 + ∂3a
3 = div(a).

∇∧ a = (∂1a
2 − ∂2a

1)e12 + (∂1a
3 − ∂3a

1)e13 + (∂2a
3 − ∂3a

2)e23

= (∂2a
3 − ∂3a

2)e1i + (∂3a
1 − ∂1a

3)e2i + (∂1a
2 − ∂2a

1)e3i

= (∇× a)i = curl(a)i .
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The Dirac operator Maxwell’s equations

A bivector of D has the form F = E + iB (E ,B ∈ E) and can be
used to encode the electromagnetic field (Faraday bivector).

Let ρ = ρ(x , t) be the scalar function representing the charge density
and j ∈ E the vector representing the current density. The
J = ρe0 + j is the current vector.

� The equation ∂F = J is equivalent to the Maxwell equations for
the electromagnetic field generated by ρ and j .

� If we multiply ∂F = J by ∂ on the left, we obtain
�F = ∂ · J + ∂ ∧ J , where � = ∂2 = ∂2

0 − (∂2
1 + ∂2

2 + ∂2
3)

(dalambertian).

Since the left side is a bivector (� preserves grades), the scalar part
of the right-hand side expression must vanish: ∂ · J = 0. This is the
charge conservation equation, as it is equivalent to the continuity
equation ∂tρ +∇ · j = 0.
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The Dirac operator Real Dirac equation

The original Dirac equations were written in terms of 4× 4 complex
matrices γ0, γ1, γ2, γ3 that provided a matrix representation of D
determined by ei 7→ γi . The space on which these matrices act, C4,
was the space of Dirac spinors; the wave function was map
ψ : E1,3 → C4; and the Dirac equation was derived as a “relativistic
Schrödinger equation for the electron wave function” (Klein-Gordon
equation).

It turns out, however, that GC shows that the complex matrices are
superfluous, as the only crucial fact required is that they satisfy
Clifford’s relations. And after that, the analysis reveals that the role
of C4 must be played by the space D+ (' P), which has complex
dimension 4, and hence that the wave function is to be thought as a
spinor field, the name for a function ψ : E1,3 → D+.

As is customary, instead of e0, e1, e2, e3 used so far, we will use
γ0, γ1, γ2, γ3.
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The Dirac operator Real Dirac equation

The final conclusion is that the Dirac equation is morphed into the
following equation for the spinor field ψ:

∂ψi~− e

c
Aψ = mecψγ0,

where c is the speed of light, e is the electron charge and me its
mass. In this equation i is not

√
−1, but the bivector i = γ21, and A

is the electromagnetic potential, a vector field such that ∂ ∧ A = F
and ∂ · A = 0.

As found and expressed by D. Hestenes, this equation “reveals
geometric structure in the Dirac theory that is so deeply hidden [even
inaccessible] in the matrix version that it remains unrecognized by
QED experts to this day”.

See [?, §3.3], [116], [117, §6.2 and §6.3], which include a
comprehensive survey of applications.
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The Dirac operator Real Dirac equation

i = γ2γ1 = iγ3γ0 = iσ3 = σ1σ2.

This 2-area element is a geometric imaginary unit that replaces the
(ungeometric) imaginary unit

√
−1 in the original Dirac equation.

The first important advantage of the GC formulation of the Dirac
equation is that ψ(x) admits a decomposition of the form

ψ = ρ1/2e iβ/2R ,

where ρ = ρ(x) is a positive real number, β = β(x) ∈ [0, 2π) and

R = R(x) is a rotor (that is, RR̃ = 1). Note that this expression has
eight degrees of freedom: 1 + 1 + 6.
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The Dirac operator Local observables

Define eµ = eµ(x) = RγµR̃ (comoving frame). Since R is a rotor,
this is an orthonormal frame field in E1,3 with the same orientation
and temporal orientation as the reference frame γµ.

Note that ψγµψ̃ = ρeµ, because i anticommutes with vectors and

ĩ = i :

ψγµψ̃ = ρe iβ/2RγµR̃e
iβ/2 = ρe iβ/2e−iβ/2RγµR̃ = ρeµ.

In particular, ψγ0ψ̃ = ρv , where v = e0, is the Dirac current.

The vector
s = ~

2
Rγ3R̃ = ~

2
e3 (1)

is the spin vector.
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The Dirac operator Local observables

The rotor R transforms the unit i to ι = RiR̃ , which is the
(comoving) space-like plane quantity e2e1 and S = ~

2
ι can be called

the spin bivector. The relation to the spin vector is as follows:

S = i sv .

Proof i sv = ~
2
iRγ3R̃Rγ0R̃ = ~

2
R iγ3γ0R̃ = ~

2
RiR̃ = ~

2
ι = S .
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The Dirac operator Monochromatic solutions

With R = e i(k·x), we have a ‘monochromatic spinor’ (yes, i and i)

ψ = ρ1/2e iβ/2e i(k·x).

A straightforward computation shows that the condition for this wave
to satisfy the real Dirac equation is that

~k = mecve
−iβ

This implies that cos(β) = ±1. As for monochromatic
electromagnetic waves, the condition for constant phase in the
moving frame is v · x = cτ , and so

~k · x = ±mec(v · x) = ±mec
2τ

which yields the de Broglie frequency mec
2/~ of the electron.

A closer analysis shows that the vector e1 turns in the plane ι with
frequency 2mec

2/~, which is the zitterbewegung frequency of
Schrödinger, with period 4.0466× 10−21s.

S. Xambó-Descamps (UPC·BSC) GC Techniques 16/07/2019 36 / 76



The Dirac operator Monochromatic solutions

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, et al.

Tensorflow: Large-scale machine learning on heterogeneous
distributed systems.

arXiv preprint arXiv:1603.04467, 2016.

[2] Gerardo Altamirano-Gomez and Eduardo Bayro-Corrochano.

Conformal geometric algebra method for detection of geometric
primitives.

In 2016 23rd International Conference on Pattern Recognition
(ICPR), pages 4190–4195. IEEE, 2016.
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S. Xambó-Descamps (UPC·BSC) GC Techniques 16/07/2019 49 / 76

arXiv:1602.02660


The Dirac operator Monochromatic solutions

[39] Pedro Domingos.

The master algorithm.

Basic Books, 2015.

How the quest for the ultimate learning machine will remake our
world.

[40] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and
Kostas Daniilidis.

Learning so(3) equivariant representations with spherical CNNS.

In Proceedings of the European Conference on Computer Vision
(ECCV), pages 52–68, 2018.
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In Proceedings of the European Conference on Computer Vision
(ECCV), pages 631–647, 2018.
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