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De |la Introduccio

La manca gairebé absoluta d’obres dedicades a la historia de la Geometria
Diferencial ha fet que la nostra tasca revestis gran dificultat i resultés en alguns

moments aclaparadora.

Dos treballs han estat de gran utilitat:
A hi G cal Method Elie Cartan and his mathematical work,
istory of Geometrical Methods, S.S. Chern i C. Chevalley (1952): “visié de

J. L. Coolidge (1340) conjunt de la immensa obra d’Elie Cartan”

,_(

A HISTORY OF
GEOMETRICAL METHODS

’%




A part d’aquests dos treballs, no hem comptat amb cap altra ajuda substancial,
havent de recorrer en la majoria dels casos a la lectura directa dels treballs
originals dels qui, al llarg dels anys, han anat forjant la geometria diferencial.

Citacions a la Part | (p 27-121%):
176 notes bibliografiques
~ 135 autors

25 articles publicats als Annals of Mathemetics

* Aquesta numeracio es refereix a la de la paginacio de 'arxiu pdf



Citacions a la Part Il (p 135-180)
77 notes bibliografiques
~ 69 autors

13 articles publicats als Annals of Mathemetics



Index I
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Noms que apareixen a I'index de contingut |

Newton, Gauss,
Riemann, Lie,
Killing, Cartan,
Einstein,

De Rham, Morse




K. Kodaira

e W DN =

10

ndex 11

Estructures complexes i quasi-complexes
Classes de Chern

Estructures hermitiques i kihlerianes

Les varietats kihlerianes compactes des dels primers resultats
d’Eckmann i Guggenheimer el 1949
al teorema de Riemann—Roch

Algunes conseqiiencies del teorema de Riemann—Roch

Cerca de teoremes d’anullacio per a fibrats vectorials.
El treball de Nakano

Deformacio d’estructures complexes

Varietats kihlerianes compactes de curvatura positiva.
Conjectura de Frankel

Teoremes d’anullacio per a fibrats
semi-positius i semi-negatius

Varietats complexes no compactes.
El d’-problema de Neumann
i el problema de Levi

26
28

32

35

37

A. Grothendieck



Noms que apareixen a I'index de contmgut 1
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THE GREBIRTRY Chern (classes de),
et Kahler (varietats kahlerianes),
Eckmann, Guggenheimer,

Nakano, Frankel (conjectura de).

C. Neumann, E. Levi




Musica d’esferes (I)

010 Jean Meusnier (1785): si les curvatures principals
en tots els punts d’una superficie son iguals, la
superficie és un esfera o un pla.

014 Gauss (1827) usa l'esfera unitat, via I'aplicacio de
Gauss, per definir la curvatura en un punt, i obté una
expressio analitica que li permet demostrar el teorema

egreqi.




Teorema de Heinrich Liebmann (1900):

029 Una superficie connexa de R3, tancada i
amb curvatura constant positiva, €s una
esfera.

El titol de la citacid, Uber die Kriimmung, és incomplet; ha de
ser Uber die Verbiegung der geschlossenen Fléchen positiver
Krimmung.



Notacions

varietat riemanniana (C™) connexa [i compacte]
dimension de M (sovint s’escriu M™)
metrica de M.

esfera de dimension n i radi r amb la metrica
euclidiana



Teorema de Heinz Hopf (1926):
o 49 Si M és completa, simplement connexa i de
curvatura constant k* > 0, és isometrica a 51

Un any abans havia provat (¢ 163) que si M és
completa amb curvatura seccional constant k,
llavors el recobriment universal és una esfera si
k > 0iun espai hiperbolicsi k < 0.



Classes d’Stiefel-Whitney (1935-37):
Usen els fibrats de fibra esferica (¢ 77-80). Teorema de classificacio.

Michael Stiefel Hassler Whitney



Teorema de H. E. Rauch (1951):
o 105 Si M és h-pincada,* on h és |'arrel de

'equacié sin tvh = Vh/2 (h = 3/4), el

recobriment universal de M és homeomorf a S™.

Teorema de l'esfera. Si a més M és simplement

connexa, llavors M és homeomorfa a una esfera.

* Es a dir, existeix una constant positiva A tal que
Ah < K< A, K la curvatura seccional.

Harry Rauch

“No sé si h és la millor
constant possible”



Teorema de J. Milnor (1956):
o 117 Uesfera S’ admet diverses estructures diferenciables
diferents i no difeomorfes.

Si M és compacta, Lichnerowicz havia demostrat, suposant
que Ric(g) — kg = 0 perun certescalar k = 0, que el
primer valor propi nonul A; de Af = Af (A ellaplacia)

satisfa 1, = —k
n—1

(¢ 123) H. Weyl

Teorema d’Obata (1962):

0124 Si Ay = nTk llavors M és isometricaa S™.




Teorema de Klingenberg (1959):

0127 Sin és parell i M és completa, simplement connexa,

i 0-pincada, amb 6 igual a I'arrel de I'equacio

sin TVo = V6 (6 = 0,54), M és homeomorfa a una esfera.

No se sap si el valor .
de & es pot reduir El metode, molt

encara més. diferent del de Rauch,
es basa en aplicar la
teoria de Morse.

Rauch
— S0 TR — v”’EfE

Es un problema
destacat decidir
si un teorema
similar és valid
per a varietats
simplement
connexes de
dimensio senar.

Klingenberg

e sin?wr— 1;"5

I - .I I
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La fita 6 = 0,54 de Klingenberg seria rebaixada un any més tard
independentment per Topogonov (¢ 131) i Berger (¢ 130) a
qualsevol nombre k > 7.

Berger demostraria a més que aquesta fita no es pot rebaixar mes.




Exemple de Kervaire (1960)
o 135 Una varietat topologica de dimensié 10
gue no admet cap estructura diferenciable.

En la construccio tenen un paper destacat les esferes
S°i S°.
Treballs relacionats amb la conjectura de Poincaré:

«Una varietat poliedrica, compacta, simplement connexa de dimensio 3, sense
vora, és necessariament homeomorfa a l'esfera S3»;

i amb les seva generalitzacions [Top-n i Dif-n]: «Una varietat M™ que tingui el
mateix tipus d’homotopia que una esfera, és necessariament homeomorfa a
'esfera S™»



Top-(n = 7): Stallings 1960 (¢ 136)

Top-(n = 5): Zeeman 1961 (¢ 137);

Dif-(n = 4): Smale 1961 (¢ 139); ...




Anotacions Part |: exemples

>9

Fa referencia al comentari de la memoria a l'article de Chern (¢ 115)

On curvature and characteristic classes of a Riemannian manifold,

(1955) en que prova que si M és completa, 6-pincada, in = 2 o 4, llavors
x (M) és positiva, i conjectura que I'afirmacié és valida peratotn = 2m
(“actualment encara no resolta, que nosaltres sapiguem”).

9 (Conjectura de Chern) La conjectura no ha estat tancada. El teorema

de I'esfera la implica per a varietats 6-pincades amb 6 = 1/4.
Exemples en qué es compleix: esferes S™ (y = 2); P& (y = n + 1);
P (x =2(n+1));iPE(x=3)



>10

Fa referencia a I'article de Milnor (¢ 117)

On manifolds homeomorphic to the 7-sphere (1956).

(“abans d’aquest treball no es coneixia cap exemple de varietat topologica
amb dues estructures diferenciables no difeomorfes”).

10 (Esferes exotiques) Aquest treball de Milnor va donar peu a l'estudi
de varietats homeomorfes pero no difeomorfes, i és molt citat

en la teoria del cobordisme. Juntament amb Kervaire, el propi Milnor
va culminar la classificacio de les esferes exotiques el 1963:



ANNALS OF MATHEMATICS

Vol. 77, No. 3, May, 1963

GROUPS OF HOMOTOPY SPHERES: I

BY MICHEL A. KERVAIRE AND JOHN W. MILNOR

THEOREM 1.2. For m #+ 3 the group ®, 1s finite.

(Our methods break down for the case n = 3. However, if one assumes
the Poincaré hypothesis, then it can be shown that ®, = 0.)

More detailed information about these groups will be given in Part 1I.
For example, for n =1, 2, 3, ---, 18, it will be shown that the order of
the group ®, is respectively:

n 1 2345 6789 10 11 12 13 14 15 16 17 18

©,]| 1 11 11 1[28/2 8 6 992 1 3 2 16256 2 16 16.



>13

Fa referencia a dos articles de Klingenberg (¢ 134)

Uber Riemannsche Mannigfaltigkeiten mit positive Kriimmung (1961) i
Uber Riemannsche Mannigfaltigkeiten mit nach oben beschrédnkter
Kriimmung (1962) en que es prova que si M és simplement connexa de

. e /7 o . 1 . 7
dimensio imparell | Z-plngada, llavors és homeomorfa a una esfera.

13 (Variant diferenciable del problema de I'esfera)

La versio diferenciable d’aquest teorema (canviar homeomorfisme
per difeomorfisme) va ser provada el 2009 per Simon Brendle i
Richard Schoen utilitzant la tecnica del flux de Ricci, [13].

Vegeu un article expositiu sobre aquest tema, dels dos mateixos
Autors (2011), [14].



>14
Aixi com en el cas de dimensio parell el resultat de Berger no es pot millorar, ja

gue els espais projectius complexos i quaternionics constitueixen exemples de
. 1 . . « 7 e
varietats Z-plngades no homeomorfes a una esfera, en dimensio imparell no se

sap actualment si el resultat de Klingenberg pot ser o no millorat rebaixant la
cota del 6-pincament.

14 (Evolucio del problema del pincament).
Aquesta cota del pincament de que parla Girbau no es va poder millorar
fins al 1994, quan Abresch i Meyer van demostrar a [15] que el resultat
de Klingenberg era cert si

o 1

—> ’

A 4(1+1079)
on 0 <6 <K <A, K lacurvatura seccional.




Musica d’esferes ||
Anotacions Part Il, resum de [>2 (Lesfera S°©)

1936, Whitney va provar que tota varietat diferenciable
admet una estructura de varietat analitica real (¢ 75).

1947, Eheresmann: Sur les variétés presque complexes (Bull
Soc Math France). Nocid d’estructura quasi complexa, J.
Mostra que S® nadmet una (per® no arriba a decidir si és

integrable).




1947, Adrian Kirchhoff: usa els octonions per construir una J
a S° (diguem-ne j):

Mirem S® com lI'esfera de radi 1 dins els octonions imaginaris
(part real nul-la).

Six € S® cIm(0) =R, T, S® ~xt i j,:T,S® > T,S®és

'aplicacié v » xv (j2 = —Id ja que x? = —1).



El 1948, Hopf, per analogia amb Whitney-1936, es pregunta si
una M?™ orientable admet una estructura complexa (* 20) .

En el mateix treball es mostra que la resposta és negativa en
general, i en particular per S*i S8.

Comenta que no ha pogut determinar si valdra el mateix per
S?™ m # 1,2,4 ( Problema de Hopf ).



1951, Eckman-Frohlicher (* 3):

Si J és una estructura quasi complexa, el tensor N definit per

NX,Y)=20X,JY] = 2|X, Y] = JIX,JY] = JUX,Y]

s'anomena tensor de torsio de .
Teorema: J és integrable sii noméssi N = 0.

En el mateix treball proven que j no és integrable.

Independentment, també ho proven Ehresmann-Libermann-1951.



Vegeu també Newlander-Nirenberg-1957 (x 4).

(d’August Newlander no he trobat cap foto)




Teorema de Borel-Serre (1951):
(* 9) S2 i S° sén les Uniques esferes
que admeten una estructura quasi complexa.

La de S2 és integrable (esfera de Riemann =~ IP’%).

Uestructura quasi complexa j de S°
no és integrable.

1966, van de Ven (x 10) : On the Chern numbers of certain complex and almost

complex manifolds. Dona exemples de varietats quasi complexes compactes de
dimensio 4 que no admeten estructures complexes. Usa el teorema de l'index.

Pot tenir S® alguna estructura quasi-complexa integrable?



Segons Alfred Adler (1969, x 8) no en té cap i a la memoria aquest resultat
es dona per bo.

Alfred Adler: The Second Fundamental Form of a Kahler Metric
American Journal of Mathematics, Apr., 1967, Vol. 89, No. 2, pp. 260-274

Alfred Adler: The Second Fundamental Forms of s® and P(C)
American Journal of Mathematics, Vol. 91, No. 3 (Jul., 1969), pp. 657-670

THEOREM. S° does not admit a complex structure.



<4 WIKIPEDIA \
" : The Free Encyclopedia Aquesta pagina no

. Esta a VIQUIPEDIA!!

i= List of incomplete proofs

 Complex structures on the 6-sphere. In 1969 Alfred Adler published a paper in the
American Journal of Mathematics claiming that the 6-sphere has no complex structure.
His argument was incomplete, and this is (as of 2016) still a major open problem.

(cap referencia on trobar perque es considera un ‘argument incomplet’)



1993, Yau: Open problems in geometry

Problema 52: Proveu que tota varietat quasi complexa compacta de
dimensio real = 6 admet una estructura complexa integrable.
Encara no resolt per I'esfera S® (no cita Adler).

Es podria resoldre construint un flux parabolic en I'espai de les
estructures quasi complexes per deformar una estructura quasi-complexa

donada en una d’integrable.

IV. Kahler geometry

£2. Prove that every compact almost complex manifold with dimension
> 3 admits an itegrable complex structure. This question is still unsolved
for the six-dimensional sphere. One approach is to form a parabolic flow in
the space of almost complex structures to deform an almost complex structure
to an integrable one.



1987, LeBrun: Orthogonal complex structures on S® [no existeixen]
Segons alguns autors, ja ho havia demostrat Blanchard el 1953.

2003, Chern: On the non-existence of a complex structure on the six-
sphere. Preprint [v. Bryant-2014 més avall].



Steven G. Krantz

The Proof is
in the Pudding

§ 11.10.1
(correus finals oct 2024)

@ Springer

2011, Krantz. U'esfera de sis dimensions seria un
exemple interessant i significatiu si de fet
tingués una estructura complexa. Adler va
afirmar que no en tenia cap, i va publicar el seu
article en una revista de primer nivell [...] Pero
la gent [sic] no ha acceptat la seva prova [cap
referencia al respecte].

Durant 39 anys, Adler ha mantingut que la seva
prova es correcta. Ara [ca 2011] esta jubilat [...] |
ningu ha estat capac de senyalar on estava
I’error. Finalment, fa uns 5 anys [és a dir, ca
2006], Yum-Tong Siu, de Harvard, va escriure un
article en el qual explicava precisament on
estava l'error [??]. Pero el document d’Adler no
s’ha reparat mai, i fins avui ningu no sap decidir
si I'lafirmacio es vertadera o falsa.




2014 v1, 2021 v2: Bryant: Chern’s study of almost-complex structures on
the six-sphere.

No cita Adler-1969.

Tot i que [Chern] no va resoldre el problema (actualment encara obert)
de determinar si existeix una estructura quasi complexa integrable a S°,
va demostrar una identitat significativa que resol la pregunta per a una
classe interessant d'estructures quasi complexes a S°.



2015, Etesi: Complex structure on the six dimensional sphere
from a spontaneous symmetry breaking. J Math Phys 56 (21 p)

9 versions arXiv entre 2005 i 2015, v2 retirada.

Posa Adler-1969 a les referencies pero no en diu res en tot l'article.



2016, Atiyah: The non-existent complex 6-sphere,
https://arxiv.org/abs/1610.09366 (8 p)

“una breu demostracié de la conjectura que S°® no té cap estructura
complexa”.

2018, Atiyah: Understanding the 6-dimensional sphere. Inclos a
Foundations of Mathematics and Physics One Century After Hilbert:
New Perspectives (J. Kouneiher, ed.), pp. 129-133

Una demostracio “més transparent” d’Atiyah-2016. “Utilitzo I'exemple de
la 'esfera S® per un nova manera de veure molts problemes de la fisica.
En el futur espero que aquestes idees proporcionin una perspectiva
diferent, amb beneficis substancials en tots els ambits”.


https://arxiv.org/abs/1610.09366%20(8

2018, Agricola-et4: On the history of the Hopf problem. Differential
Geometry and its Applications (9 p).

Conté informacio interessant.
No cita Adler.

Sobre Etesi-2015 i Atiyah-2016: “entre els experts no hi ha consens”.



2019, Xambd: “Sir Michael Atiyah, in memoriam”, SCM/Noticies 45, 47-56.

“... potser la inspiracio que A. Connes va trobar a l'article Groups of odd order
[desacreditat] per escriure On an idea of Michael Atiyah la trobara algu més a

'article sobre S®” i escriura ...



2019, Baez: “Book review: Foundations of Mathematics and Physics One
Century After Hilbert: New Perspectives”

Aquest ressenya reconeix el valor de diversos articles (Gromov, Connes,
Witten, Penrose, Smolin, ...), i acaba aixi:

“Dos inconvenients del llibre son una gran quantitat d'errors tipografics i un
article de Michael Atiyah que afirma falsament demostrar una famosa
conjectura oberta, és a dir, que no existeix una estructura complexa a la 6-
esfera. Una millor edicid i arbitratge podria haver detectat aquests
problemes.”



2022 v1, 2024 v2, S. R. Simanca (arXiv): S® (or any of S* x S%, S% x S, or
S x S°, respectively) is not diffeomorphic to a complex manifold.

2024, Etesi (arXiv v6; la vl és de 2015):

“The complex structure on the six dimensional sphere”.

A diferencia d’Etesi-2015, la demostracio no usa fisica matematica, pero hi ha
importants calculs que no es donen explicitament per ser ‘massa complicats’.

A MathOverflow hi ha un comentari de R. Bryant a la v1: “I'afirmacio basica
d’aquest article, és a dir, que certa classe de conjugacio de G, és una
subvarietat complexa respecte a (una de les) estructures complexes invariants
per I'esquerra de Samelson a G, es pot veure facilment, per calcul directe,
que és falsa”.



Resum
El Problema 52 de Yau aposta per l'existéncia d’una estructura complexa a S°.

G. Etesi n’ha publicat una demostracio (2015), i una altra l'octubre de 2024
(prepublicacid), contestades d’'una manera poc explicita fins on puc albirar.

La majoria es decanta per la no existencia, i en casos particulars (com ara el
cas de J orgonal) la demostracio és acceptada.

Projecte

Aplicar metodes de formalitzacio matematica, per exemple amb
Lean, comencant preferentment pels articles Etesi-2024 i Adler-1969.



AR (10 setembre 2023)

Has tingut una idea magnifica amb la
digitalitzacié de la memoria «concepto
metodo y fuentes» (com no s’ha m’ha
ocorregut a mi!?), ja que la guardo com
a incunable.

Si et puc ajudar en la versio castellana o
la catalana, si consideres que val la pena
la traduccio, ja m’ho diras. Entre bici i
néts encara em queda temps.

Moltes gracies!
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