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Abstract

The aim of this paper is to revisit Grothendieck’s Standard Conjectures
from two main perspectives: firstly, the contexts in which they arose and
their significance in algebraic geometry (particularly in intersection the-
ory), and secondly, their ramifications up till now, including the break-
throughs in combinatorics by June Huh and his collaborators, and their
incarnation in arithmetic algebraic geometry.

Prelude
Once upon a time Kähler geometry was at the cutting edge of algebraic geome-
try, driven by the likes of S. Lefschetz (1884-1972), W. V. D. Hodge (1903-1975),
and K. Kodaira (1915-1997). At this stage, the discrete side appeared through
the homology and cohomology pioneered by H. Poincaré (1854-1912) and G. de
Rham (1903-1990), particularly in the form of their dimensions as vector spaces
(Betti and Hodge numbers, for example) and their combinatorial relations (like
the Hodge staircases). Then another discrete aspect burst out of that realm
with the birth of abstract algebraic geometry over any field, mainly by work of
O. Zariski (1899-1986), L. van der Waerden (1903-1996), A. Weil (1906-1998),
and then by the generalizations brought about by J.-P. Serre (1926–) and A.
Grothendieck (1928-2014).

A fundamental development occurred when Weil came up with his celebrated
conjectures about the zeta function of a non-singular projective variety over
a finite field. This led Grothendieck to state his “standard conjectures” for
general smooth projective varieties as an avenue to prove Weil’s conjectures.
The plan succeeded only partially, as the most difficult part (the “Riemann
hypothesis” for the zeta function) was proved by P. Deligne using different ideas.
Grothendieck’s standard conjectures remain conjectures to this day (a major
challenge in intersection theory), but amazingly they have been adapted by June
Huh (Fields Medal 2022) and his coworkers into what they call the “Kähler
package”, a well tuned framework with which they have proved a number of
important long-standing conjectures in Combinatorics.

The goal of this paper is to inspect the “Kähler package” ingredients, with
emphasis in its roots in Kähler geometry and Grothendieck’s intersection theory;
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to review some of its discrete instances, and how they have yielded proofs of
significant combinatorial conjectures; to analyze advances in some recent works
in Algebraic Geometry and Arithmetic Algebraic Geometry; and to consider its
potential for approaching old and new problems in various areas.
Notations. In addition to the standard symbols Z, Q, R and C, we let N denote
the non-negative integers, B = {0, 1} (binary digits), and F = Fq a finite field
of q elements, with F̄ = F̄q its algebraic closure.

Given integers a, b, the range {j ∈ Z | a ⩽ j ⩽ b} is denoted by [a, b]. For a
positive integer n, [n] is an abreviation of [1, n], and n//2 (quotient of the integer
division of n by 2) is an alternative notation for ⌊ n

2 ⌋ (the integer part of n/2).
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1 Manifolds and their cohomologies
Up to variations in notation, the text [1] is an excellent reference for most of the
notions and properties considered in this section. In particular we refer to it for
the following notions and their general properties: (real) smooth manifolds (pos-
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sibly with boundary) and smooth maps between manifolds; differential forms on
a manifold; oriented manifolds, integration of forms on an oriented manifold,
and Stokes theorem; and de Rham cohomology and the de Rham theorem. Ad-
ditional references will be provided whenever necessary.

In this section, X denotes a n-dimensional manifold and ∂X its boundary
(a manifold of dimension n − 1 or, when X has no boundary, the empty set).

1.1. A∗(X) =
⊕n

k=0 Ak(X): graded algebra of smooth exterior forms on X. Its
product is the wedge product, ∧. It is associative and grade-commutative, which
means that α ∧ α′ = (−1)kk′

α′ ∧ α when α ∈ Ak(X) and α′ ∈ Ak′(X). We also
set Ak

c (X) to denote the subspace of Ak(X) of k-forms with compact support.

1.2. C∗(X) =
⊕n

k=0 Ck(X) ⊆ A∗(X): graded subalgebra of closed forms. Thus
α ∈ C∗(X) if and only if dα = 0, where d : A∗(X) → A∗+1(X) is the exterior
derivative. Note that the formula d(α ∧ α′) = (dα) ∧ α′ + (−1)kα ∧ (dα′) implies
that α ∧ α′ ∈ Ck+k′(X) whenever α ∈ Ck(X) and α′ ∈ Ck′(X).

1.3. E∗(X) =
⊕n

k=0 Ek(X) ⊆ C∗(X): graded C∗-ideal of exact forms. In other
words, E∗(X) = dA∗(X). The relation E∗(X) ⊆ C∗(X) holds because d2 = 0
and hence exact forms are closed. Moreover, if α ∈ Ck(X) and α′ = dβ ∈
Ek′(X), then α ∧ α′ ∈ Ek+k′(X), because α ∧ α′ = α ∧ (dβ) = d((−1)kα ∧ β),
and similarly α′ ∧ α ∈ Ek+k′(X).

1.4. H∗
dR(X) = C∗(X)/E∗(X): The de Rham graded cohomology algebra of X.

Its product, which is induced by the wedge product, is denoted with the same
symbol ∧. In detail, if we let [α] denote the class of α ∈ C∗(X) modulo E∗(X),
then [α] ∧ [α′] = [α ∧ α′]. If the spaces H∗

dR(X) are finite-dimensional (which
happens, for instance, when X is compact), then bk(X) = dim Hk

dR(X) are the
Betti numbers of X, while χ(X) =

∑
k(−1)kbk(X) is its Euler characteristic.

H∗
dR is contravariant functor: note that if f : X → X ′ is smooth map, the map

f∗ : Ak(X ′) → Ak(X) induces maps

f∗ : Ck(X ′) → Ck(X) and f∗ : Ek(X ′) → Ek(X)

(because f∗◦ d = d◦f∗), and hence a linear map f∗ : HdR(X ′) → Hk
dR(X).

Since C0(X) = {f ∈ A0(X) | df = 0}, and this implies that f is constant
on any (parameterized) smooth curve on X, we have C0(X) ≃ Rs, where s
is the number of connected components of X, and hence H0

dR(X) ≃ Rs, as
E0(X) = dA−1(X) = 0. In particular H0

dR(X) ≃ R if X is connected.

1.5. Stokes theorems. If X is oriented and compact, then for any α ∈ An−1(X)
we have

∫
X

dα =
∫

∂X
α. In particular

∫
∂X

α = 0 if α is closed and
∫

X
dα = 0

if X has no boundary. If X is oriented but not compact, then the Stokes
relation holds for any α ∈ An−1

c (X). If we now apply Stokes to an oriented
compact k-dimentional submanifold Y of X and to the restriction ᾱ = α|Y of
α ∈ Ak(X) to Y , we get

∫
Y

dᾱ =
∫

∂Y
ᾱ, which we can abridge to

∫
Y

dα =
∫

∂Y
α

because dᾱ = (dα)|Y (to note that Y need not be compact if α ∈ Ak
c (X)).

This last version of the Stokes relation also holds (borrowing the terminology of
singular homology) if Y ∈ Ck(X), the group of singular k-chains of X: for any
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α ∈ Ak(X),
∫

Y
dα =

∫
∂Y

α, where now ∂Y is the boundary of Y , which belongs,
as ∂(∂Y ) = 0, to Zk−1(X) ⊆ Ck−1(X), the group of singular (k−1)-cycles of X.
The integral

∫
Y

α is defined, if Y =
∑

njYj (Yj a singular simplexs, nj integers)
as

∑
j nj

∫
Yj

α. Instead of singular chains, we could also use (see [2, Chapter 23])
cubical chains. Let us just recall that the groups Hk(X) = Zk(X)/∂Ck+1(X)
are the homology groups of X and Hk(X) = Hom(Hk(X),R) its cohomology
groups (actually real vector spaces). Since Hk are covariant functors from the
category of manifolds X to the category of abelian groups, Hk is a contravariant
functor from X to category of real vector spaces.

1.6. The de Rham Theorem. Given α ∈ Ck(X), X oriented and compact, it has
an associated homomorphism ᾱ : Zk(X) → R defined by ᾱ(z) =

∫
z

α. This ho-
momorphism vanishes on boundaries ∂w ∈ Zk(X), because by Stokes theorem
we have ᾱ(∂w) =

∫
∂w

α =
∫

X
dα = 0. Therefore we get an induced homomor-

phism ᾱ : Zk(X)/∂ Ck+1(X) = Hk(X) → R defined by [z] 7→ ᾱ(z) =
∫

z
α. This

homomorphism vanishes when α is exact, for if α ∈ dAk−1(X), say α = dβ, then
ᾱ([z]) =

∫
z

dβ =
∫

∂z
β =

∫
0 β = 0, again by Stokes theorem. So we can actually

regard ᾱ as a homomorphism Hk(X) → R associated to [α] ∈ Hk
dR(X). In sum,

we have a natural homomorphism h : Hk
dR(X) → Hom(Hk(X),R) = Hk(X).

The de Rham theorem asserts that this homomorphism is an isomorphism. This
is a deep theorem, as the right hand side is defined in terms of the topological
structure, and it is a homotopy-type invariant, while the left hand side is de-
fined in terms of the differential structure of X. In particular we get that the
cohomology spaces Hk(X) are finite dimensional and that dim Hk(X) = bk(X).
For example, b0(X) is the number of connected components of X (see §1.4).

1.7. The previous result is exactly the same if instead of Hk(X) we proceed
with the real vector space Hk(X,R), which by definition is equal to

Zk(X,R)/∂Ck+1(X,R),

with Zk(X,R) the real vector space of (singular) k-cycles with real coefficients
and Ck+1(X,R) the real vector space of (singular) (k + 1)-chains on X with real
coefficients. Indeed, this follows from the tautological isomorphism

Hom(Hk(X),R) ≃ HomR(Hk(X,R),R).

It is also important to note that the same result is obtained if we restrict our
attention to smooth singular (or cubical) k-chains, C∞

k (X), and smooth singular
(or cubical) k-cycles, Z∞

k (X) ⊂ C∞
k (X), thus getting a homology group

H∞
k (X) = Z∞

k (X)/∂C∞
k+1(X)

which is canonically isomorphic to Hk(X) (see [1, Theorem 18.7]).
Instead of real coefficients, we can also use complex coefficients, thus getting

the complex spaces H∗
dR(X,C), H∗(X,C), H∗(X,C), and the corresponding de

Rham isomorphism H∗
dR(X,C) ≃ H∗(X,C).
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1.8. Poincaré duality. If X is compact and oriented, there is a natural isomor-
phism Hk

dR(X) ≃ Hn−k
dR (X)∗ for all k.

The natural linear map Hk
dR(X) → Hn−k

dR (X)∗ providing this isomorphism
can be established as follows. Given α ∈ Ck(X), define α̂ : Cn−k(X) → R by the
formula α̂(β) =

∫
X

α∧β. Thus we have a linear map Ck(X) → Cn−k(X)∗ given
by α 7→ α̂. The image of this map is contained in Hn−k

dR (X)∗ ⊂ Cn−k(X)∗ (this
inclusion is the dual of the quotient map Cn−k(X) → Cn−k(X)/dAn−k−1(X) =
Hn−k

dR (X)). Indeed, for any dβ ∈ dAn−k−1(X), we have α̂(dβ) =
∫

X
α ∧ dβ =

(−1)k
∫

X
d(α ∧ β) = 0 (see §1.6). We also have that α̂ = 0 when α = dα′ ∈

dAk−1(X), as this implies that α̂(β) =
∫

X
dα′ ∧ β =

∫
X

d(α′ ∧ β) = 0 for any
β ∈ Cn−k(X). These two facts provide a linear map Hk

dR(X) → Hn−k
dR (X)∗,

which turns out to be an isomorphism for all k. In particular we have, if X is
connected, Hn

dR(X) ≃ H0
dR(X)∗ ≃ R. Alternatively, R ≃ H0

dR(X) ≃ Hn
dR(X)∗,

and 1 ∈ R is mapped to
∫

X
: Hn

dR(X) → R.
Poincaré duality can also be phrased by saying that the bilinear map

Ck(X) × Cn−k(X) → R, (α, β) 7→
∫

X
α ∧ β

induces a bilinear map Hk
dR(X) × Hn−k

dR (X) → R and that this bilinear map is
non-degenerate.

1.9. The cohomology class of a submanifold or cycle. Assume X compact and
oriented, and let Y ⊂ X be either an oriented closed k-dimensional submanifold
without boundary or a k-cycle (singular or cubical). Then any α ∈ Ak(X) can
be integrated along Y (see §1.5), thus providing a linear map Ȳ : Ak(X) → R,
α 7→

∫
Y

α. This map vanishes on exact forms dβ ∈ dAk−1(X), for
∫

Y
dβ =

∫
∂Y

β
and either ∂Y = ∅ or ∂Y = 0. Therefore we get a linear map

Hk
dR(X) = Ck(X)/dCk−1(X) → R, [α] 7→

∫
Y

α.

This means that Ȳ ∈ Hk
dR(X)∗, which by Poincaré duality can be regarded

as Ȳ ∈ Hn−k
dR (X). This cohomology class will be denoted by cl(Y ). By the de

Rham theorem, it can also be seen as cl(Y ) ∈ Hn−k(X). If Y is a boundary, then
cl(Y ) = 0, which implies that we have a linear map cl : Hk(X,R) → Hn−k(X).

1.10. The cup and cap products. Through the de Rham isomorphism and
Poincaré duality we can define a product

Hk(X) × Hk′
(X) → Hk+k′

(X), (h([α]), h([α′])) 7→ h([α] ∧ [α′]),

where α ∈ Ck(X), α′ ∈ Ck′(X). This map was originally established combina-
torially in singular cohomology as the cup product (denoted by N). Thus we
have h([α])Nh([α′]) = h([α] ∧ [β]).

On the other hand the cup product, via cl : Hk(X, R) → Hn−k(X), induces
a product

Hk(X,R) × Hk′(X,R) → Hk+k′−n, ([z], [z′]) 7→ cl−1(cl([z])Ncl([z′])),
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where z ∈ Zk(X), z′ ∈ Zk′(X). This product was first introduced by Poincaré
as an intersection product of homology classes, which itself was induced by the
oriented intersection of cycles that meet transversally, and we will denoted by
[z] · [z′]. It is often called the cap product and denoted by ∩.

1.11. The appeal to singular (or cubical) real homology can be bypassed by
defining Hk(X,R) = Zk(X,R)/∂Bk+1(X,R), where Zk(X,R) and Bk+1(X,R)
are the real vector spaces with basis the k-dimensional closed oriented subman-
ifolds Z ⊂ X with no boundary and the (k + 1)-dimensional closed oriented
submanifolds with boundary, respectively (this idea is suggested in [3]). This
definition has advantages as compared to the singular theory: it neatly sidesteps
the technicalities involved in dealing with (regular) singular chains and cycles;
the integral

∫
Z

α (α ∈ Ck(X)) confers a clearer geometric meaning to the dual-
ity Hk(X,R) ≃ Hk

dR(X)∗ ≃ Hn−k
dR (X) and hence to the class cl(Z) ∈ Hn−k

dR (X)
for Z ∈ Zk(X,R); the intersection product Hk(X,R) × Hn−k(X,R) → R,
([Z], [Z ′]) 7→ deg(Z · Z ′), is derived from a geometric oriented intersection (here
we rely on the fact that there is a ‘moving lemma’, i.e. the intersection Z ∩ Z ′

of two submanifolds can be assumed to be transversal without modifying the
class [Z ′], and then deg(Z · Z ′) counts each point in Z ∩ Z ′ with the oriented
intersecton sign); the bypass connects with Thom’s cobordism;1; and it is a close
relative of the Chow groups of algebraic varieties (to be presented later on).

2 Riemannian manifolds

2.12. Let (X, g) be an oriented riemannian manifold. The metric g can be
extended, by standard linear algebra techniques, to a symmetric bilinear map

g : Ak(X) × Ak(X) → A0(X)

and Ak(X) inherits the symmetric positve-definite bilinear form

(α, β) =
∫

X
g(α, β)ω,

where ω ∈ An(X) is the volume form, namely the unique orientation form such
that ωx(u1, . . . , un) = 1 for any x ∈ X and any positively oriented orthonormal
basis u1, . . . , un ∈ TxX).

We also know, again from linear algebra, that there is a unique linear iso-
morphism ∗ : Ak(X) → An−k(X) (called the Hodge ∗-operator) such that
α ∧ ∗β = g(α, β)ω, and hence (α, β) =

∫
X

α ∧ ∗β. It satisfies (α, β ∈ Ak(X)):
(1) α ∧ ∗α = 0 ⇔ g(α, α) = 0 ⇔ (α, α) = 0 ⇔ α = 0;
(2) ∗ ∗ α = (−1)k(n−k)α; and
(3) (∗α, ∗β) = (α, β).

The codiferential δ : Ak(X) → Ak−1(X) is defined by δ = (−1)n(k+1)+1 ∗d∗.
It is immediate to check that δ ◦ δ = 0. It also satisfies (dα, β) = (α, δβ) for

1see https://ncatlab.org/nlab/show/bordism+ring for a summary and references
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α ∈ Ak−1(X), β ∈ Ak(X) (so δ, which is often denoted by d∗, is adjoint of d).
To prove this, it is enough to notice that

d(α ∧ ∗β) = dα ∧ ∗β − (−1)kα ∧ d ∗ β = dα ∧ ∗β − α ∧ ∗δβ

(check that (−1)kd ∗ β = ∗δβ). Taking the integral over X, the left hand side
vanishes, as it is an exact form, and consequently

(dα, β) =
∫

X
dα ∧ ∗β =

∫
X

α ∧ ∗δβ = (α, δβ).

2.13. The Laplacian. The Laplacian (also called the Laplace-Beltrami operator)
of an oriented riemannian manifold (X, g) is the operator defined by

∆ = ∆d = dδ + δd : Ak(X) → Ak(X).

It is immediate that ∆ is selfadjoint, i.e. (∆α, β) = (α, ∆β), and it is not hard
to check that that ∗∆ = ∆∗ (manage carefully the various signs appearing in
the computation).

A form α ∈ Ak(X) is said to be harmonic if ∆α = 0. It is clear that α is
harmonic if dα = δα = 0. The converse is also true: from

(∆α, α) = (dδα, α) + (δdα, α) = (δα, δα) + (dα, dα)

it follows that if ∆α = 0, then δα = dα = 0.

2.14. Hodge decomposition theorem. Let

Hk(X) = Hk
∆(X) = {α ∈ Ak(X) | ∆(α) = 0}

(the space of harmonic k-forms). Then [4, § 6.8]:

Ak(X) = dAk−1(X) ⊕ δAk+1(X) ⊕ Hk(X).

It follows that Ck(X) = dAk−1(X) ⊕ Hk(X) and Hk(X) ≃ Hk
dR(X). In par-

ticular, Hk(X) is finite dimensional and its dimension is bk(X). Notice that
Ck(X)∩δAk+1(X) = {0}, as forms in this intersection are harmonic. Moreover,
the decomposition is orthogonal. For example, if α ∈ Ak−1(X) and β ∈ Hk(X),
then (dα, β) = (α, δβ) = 0.

3 Kähler manifolds
The references [5, 6], [7], and [8] are excellent resources for filling in the details
of the overview provided in this section. Other convenient references: [9], [10,
11] and [12]. Whenever deemed useful, we will provide more specific pointers
according to the context.

To avoid confusion with i used as an index, the imaginary unit in C is
denoted by i.
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3.15. Preliminairies. A hermitian metric of a complex vector space V is a
map h : V × V → C that is C-linear in the first component, that satisfies
h(v′, v) = h(v, v′) (so that h(v, v) is real for any v ∈ V ), and which is positive
definite, namely h(v, v) > 0 for any non-zero v ∈ V . If we split h in real and
imaginary parts, say h = g + iω, then g(v′, v) + iω(v′, v) = g(v, v′) − iω(v, v′)
for all v, v′ ∈ V . It follows the g is a euclidean metric on VR (V considered
as real vector space), as g(v, v) = h(v, v) > 0 for any nonzero v ∈ V , and
that ω ∈ ∧2V ∗

R (space of skew-symmetric bilinear forms on VR). The forms
g and ω are related on account of the linearity of h with respect to v, which
yields ω(v, v′) = −g(iv, v′) or, equivalently, g(v, v′) = ω(iv, v′). Moreover, since
h(iv, iv′) = h(v, v′), we also have g(iv, iv′) = g(v, v′) and ω(iv, iv′) = ω(v, v′).
The following converse statement is also true: if g is an euclidean metric on VR
such that g(iv, iv′) = g(v, v′) and we set ω(v, v′) = −g(iv, v′), then ω ∈ ∧2V ∗

R
and h = g + iω is a hermitian metric on V .

3.16. Notations. In this section X denotes a complex manifold of complex
dimension n. Locally it has holomorphic coordinates z1, . . . , zn and changes
of coordinates are expressed by biholomorphic functions. The tangent space
TxX at x ∈ X, and its C-dual T ∗

x X, are complex vector spaces with basis
(over C) ∂z1 , . . . , ∂zn

and dz1, . . . , .dzn, respectively. These two basis are dual:
dzj(∂zk

) = δjk.
The decomposition zj = xj + iyj provides local coordinates x1, y1, . . . , xn, yn

of XR (X considered as a real manifold). In particular dimR XR = 2n. The
vectors ∂x1 , ∂y1 , . . . , ∂xn

, ∂xn
form a basis TxXR = (TxX)R, the real tangent

space, and dx1, dy1, . . . , dxn, dyn a basis of T ∗
x XR, the R-dual TxXR. Actually

XR is endowed with the natural orientation given by the bases of the form
∂x1 , ∂y1 , . . . , ∂xn , ∂yn , and dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn is a local orientation form.

Properly expressing the relation between the real bases and the complex
bases of the preceding two paragraphs requires going up to the complexified
spaces T ∗

x XR ⊗RC and TxXR ⊗RC, which agree with T ∗
x X ⊗RC and TxX ⊗RC.

Indeed, the relations dzj = dxj + idyj and dz̄j = dxj − idyj make sense in
T ∗

x X ⊗R C, and ∂zj
= ∂xj

− i∂yj
and ∂z̄j

= ∂xj
+ i∂yj

in TxX ⊗R C. Note that
(dxj + idyj)(∂xk

− i∂yk
) = δjk.

3.17. The spaces Ap,q(X,C) and the operators ∂ and ∂̄. We have a decomposi-
tion

Ak(X,C) =
⊕

p+q=k Ap,q(X,C).

Locally, with respect to the coordinates z1, . . . , zn, the forms in Ap,q(X,C) have
the form

∑
ai,jdzi ∧ dz̄j , where i and j are increasing sequences of integers in

[n] with |i| = p, |j| = q, dzi = dzi1 ∧ · · · ∧ dzip
, dz̄j = dz̄j1 ∧ · · · ∧ dz̄jq

, and
ai,j ∈ A0(XR,C). The forms in Ap,q(X,C) are said to be of type (or bidegree)
(p, q). Note that Ap,q(X,C) = Aq,p(X,C), where the overline denotes complex
conjugation.

If f ∈ A0(X,C), let ∂f =
∑

(∂jf)dzj and ∂̄f =
∑

(∂̄jf)dz̄j , where we set
∂j = ∂zj

and ∂̄j = ∂z̄j
. Thus df = ∂f + ∂̄f . This decomposition implies that

on Ap,q(X,C) we have d = ∂ + ∂̄, where ∂ : Ap,q(X,C) → Ap+1,q(X,C) and
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∂̄ : Ap,q(X,C) → Ap,q+1(X,C).

3.18. Kähler manifolds. A hermitian manifold is a complex manifold X endowed
with a hermitian metric h. This means that we have a hermitian metric hx of the
tangent space TxX for any point x ∈ X, and that hx depends smoothly on x.
In local holomorphic coordinates z1, . . . , zn, the expression of h has the form∑n

i,j=1 hijdzidz̄j , where the matrix (hij(x)) is hermitian and positive definite
(this follows on imposing that h(v, v) is real and positive for v ̸= 0). The
imaginary part of hx is a 2-form ωx ∈ ∧2(T ∗

x X,C), and so we get a 2-form
ω ∈ A2(X,C). From the local expression in h with respect to the coordinates
z1, . . . , zn, we find that the corresponding expression of ω is 1

2i
∑n

i,j=1 hijdzi∧dz̄j

and hence ω ∈ A1,1(X,C). Notice that h̄ =
∑

h̄ijdz̄idzj =
∑

hjidz̄idzj =∑
hijdz̄jdzi.
A Kähler manifold is a complex manifold X equipped with a Hermitian

metric (called the Kähler metric) whose imaginary part ω is closed. This (1, 1)-
form is called the Kähler form of the Kähler metric.

Submanifolds of a Kähler manifold are Kähler, as the restriction of a closed
form to a submanifold Y is a closed form of Y .

3.19. Hodge decomposition of cohomology. A Kähler manifold is in particular a
riemannian manifold of dimension 2n and it turns out that the (p, q) components
of an harmonic k-form are harmonic. This and the Hodge theorem imply a Hodge
decomposition of cohomology:

Hk(X,C) =
⊕

p+q=k Hp,q(X,C), k = 0, 1, . . . , 2n.

Thus
(
H∗(X,C), ∧

)
is a bigraded algebra.

Since H
p,q(X) = Hq,p(X), the Hodge numbers, i.e. hp,q = dimC Hp,q(X,C),

satisfy hp,q = hq,p (see Figure 3.1).

3.20. Complex projective varieties. The restriction to S2N+1 of the Fubini-
Study hermitian metric ds2 =

∑N
j=0 dzj ⊗ dz̄j on CN+1 is invariant by the

action of S1 and hence it induces a hermitian metric on S2N+1/S1 = PN
C .

Setting zj = xj + iyj , the imaginary part of ds2 is ω =
∑

j dxj ∧ dyj . This
form has type (1, 1) and is closed. Therefore it induces a Kähler structure ω on
PN
C . The class [ω] ∈ H1,1(PN

C ) coincides with the class cl(H) of a hyperplane
H ⊂ PN

C .
Closed complex submanifolds of the complex projective space are Kähler,

and they are projective subvarieties by Chow’s theorem [13]. If X is such a
submanifold and n = dim(X), the class [ω|X] ∈ H1,1(X,C) ⊂ H2(X,C) co-
incides with the cohomology class cl(H ∩ X) of a general hyperplane section
of X. Recall that cl(H ∩ X) is defined as the Poincaré dual of the (n − 2)-class
[H ∩ X] ∈ Hn−2(X).

3.21. The Kodaira embedding theorem [14]. A compact complex manifold ad-
mits a holomorphic embedding into complex projective space (and hence it is a
smooth algebraic variety, by Chow’s theorem) if and only if it admits a Kähler
metric whose Kähler form is a rational class (i.e. it belongs to the image of
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h0,0

h1,0 h0,1

h2,0
h1,1 h0,2

h0,3
h1,2h2,1h3,0

h3,1

h3,2 h2,3

h3,3

h2,2 h1,3

Hodge diamond

hq,p = hp,q

Hq,p = Hp,q

⇒

Symmetry about vertical bisector

hn−p,n−q = hp,q

Hn−p,n−q = ∗Hp,q

⇒

Symmetry about center of diamond

Betti numbers

bk =
∑

p+q=k h
p,q

⇒ odd betti numbers are even

h0,0 = hn,n = 1

Symmetry about horizontal bisector

Figure 3.1: Properties of the Hodge numbers hp,q of a compact Kähler manifold. The
symmetries about the vertical and horizontal bisectors of the diamond imply that any
number in the diamond is equal to one of the numbers distinguished in read. The
symmetry about the horizontal bisector is the composition of the symmetry about the
center of the diamond with the symmetry about the vertical bisector.

H2(X,Q) in H2(X,C)). Kodaira, who was awarded the Fields Medal in 1954
in part for this work, qualified such Kähler manifolds as of restricted type.

3.22. Weak and Hard Lefschetz theorems. Let (X, ω) be a compact Kähler
manifold. The Lefschetz operator L : Hk(X,C) → Hk+2(X,C) is defined by
[α] 7→ [ω ∧ α]. In the Hodge diamond of X, L connects each node with the
node one vertical step above it. The weak Lefschetz theorem asserts that for
k < n, L is injective. In consequence, for k < n, bk(X) ⩽ bk+2(X) and hk−i,i ⩽
hk−i+1,i+1 (i ∈ [k]). By Poincaré duality, we also get bn−k(X) ⩽ bn−k−2(X)
and hn−i,n−k+i ⩽ hn−i−1,n−k+i−1 (i ∈ [k]). These inequalities are dubbed
Hodge staircases: the Hodge numbers on a vertical line of the Hodge diamond
are non-decreasing in the bottom half and non-increasing in the top half; and
the even (respectively odd) Betti numbers have the same property.

Note that L : Hn−1(X,C) → Hn+1(X,C) is an isomorphism, as it is injective
and both spaces have the same dimension. This is a special case of the hard
Lefschetz theorem: Lj : Hn−j(X) → Hn+j(X) is an isomorphism for all j ⩾ 0.

If Hp,q is a Hodge component of Hn−j(X), so p+q = n− j, then Lj maps it
isomorphically to Hp+j,q+j = Hn−q,n−p. We get again that the Hodge diamond
is symmetric about the horizontal diagonal; see Fig. 3.1).
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3.23. Lefschetz Decomposition Theorem. For k ⩽ n, the primitive subspace
of Hk(X,C) is defined as the kernel of Ln−k+1 : Hk(X) → H2n−k+2, and is
denoted by Hk

0 (X). For k = 0, 1, Hk
0 (X) = Hk(X). Let qk = ⌊k/2⌋ = k//2.

Then we have:
• Hk(X,C) =

⊕
j⩾(k−n)+ LjHk−2j

0 (X), where (k − n)+ = max(k − n, 0);

• For k ⩽ n, Hk = Hk
0 ⊕ LHk−2

0 ⊕ · · · ⊕ Lqk Hk−2qk

0 = Hk
0 ⊕ LHk−2;

• For k = n + k′, 1 ⩽ k′ ⩽ n, Hk = Lk′
Hk−2k′

0 ⊕ · · · ⊕ Lqk Hk−2qk

0 .

3.24. The Hodge-Riemann relations. Define Q : Hk(X,C) × Hk(X,C) → C, by
Q(α, α′) = (−1)k//2 ∫

X
α∧α′ ∧ωn−k. This is called the Hodge-Riemann pairing.

With respect to the Hodge decomposition Hk(X,C) =
⊕

p+q=k Hp,q(X), it has
the following properties:
(1) Q(Hp,q, Hp′,q′) = 0 if (p′, q′) ̸= (q, p), and
(2) ip−qQ(α, ᾱ) > 0 for 0 ̸= α ∈ Hp,q

0 (X).
Note that on Hp,p we have Q(α, α′) = (−1)p

∫
X

α ∧ α′ ∧ ωn−2p and that
Q(α, ᾱ) > 0 for 0 ̸= α ∈ Hp,p

0 (X).

3.25. Hodge conjecture. Let X is a compact Kähler manifold and Z a subman-
ifold of codimention k. Then cl(Z) ∈ H2k(X,Q) ∩ Hk,k(X) = Hk,k(X,Q) (it is
easy to see that the harmonic form representing cl(Z) cannot have components
(p, q) ̸= (k, k)). The same is true if Z ∈ Zk

Q, the group of rational linear combi-
nations of submanifolds of codimension k (rational cycles of codimension k).

At present, the Hodge conjecture [15] is stated as follows: if X is a smooth
complex projective variety (or, equivalently, a compact Kähler manifold of re-
stricted type), then cl : Zk

Q → Hk,k(X,Q) is surjective.
This conjecture and its status were presented by Pierre Deligne [16] on the

occasion of the selection, in the year 2000, of the Millennium Prize Problems
[17] by the Clay Mathematics Institute. The two examples the author presents
of page 4 point at core difficulties concerning the conjecture. To remark also
the contributions of Claire Voisin in her treatises [10, 11] and in her paper [8].
See also [18].

Let us summarize the cases in which the conjecture is known and some of
the generalizations that have turned out to be false. To account for variations
about the conjecture, the label HCk

R(C) stands for the conjecture concerning co-
homology classes over the ring R (Z or Q) of k-cycles of objects from a class C of
manifolds, where C = X , K, . . . , with X standing of smooth complex projective
varieties (or equivalently, by Kodaira’s theorem, compact Kähler manifolds of
restricted type), K for general compact Kähler manifolds,. . . If k is not quoted,
it is to be understood that the conjecture refers to all possible codimensions.
Thus, for example, the original conjecture is labeled HCQ(X ).

• HC1
Z(X ) is true. This is originally due to Lefschetz, but [19] offers a well

known sheaf theoretic proof. This and the hard Lefschetz theorem imply that
HCn−1

Z (X ) is also true. On the other hand, HCZ(X ) is false [3].
• The paper [20] shows that HCQ(X4

3 ) is true, where X4
3 is a cubic fourfold in
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P5 and also that HCn
Q(K2n) is false (K2n: compact Kähler manifolds of complex

dimension 2n). The counterexamples (in Appendix B of that paper) are complex
tori T of dimension 2n that have no analytic submanifolds of dimension n and
yet are such that Hn,n(T,Z) has rank 2.
• HC2

Q(U4) (U4 fourfolds admitting an algebraic family of rational curves cov-
ering it, as for example hypersurfaces in P5

C of degree 5): [21].
• HCQ(P) (P Prym varieties) is true: [22].

3.26. Interlude. The objects we have been considering up till now (manifolds
of various kinds) have an underlying ‘continuous’ nature, and their relation to
the ‘discrete’ (Betti and Hodge numbers, for example) has been mediated by
algebraic structures (homology and cohomology groups and algebras).

A further appearance of discreetness in algebraic geometry, again mediated
by algebra, was the introduction of (abstract) algebraic varieties defined over an
arbitrary field, and in particular fields of characteristic p > 0, e.g. finite fields.
This move, pioneered mainly by L. van der Waerden, A. Weil and O. Zariski, was
soon continued with further generalizations by J.-P. Serre, A. Grothendieck, and
many others. In this era the objects themselves, the assortment of associated
cohomologies, and their deep relations to number theory, had a much stronger
discrete character than in the preceding epoch. The Fields medals to J.-P.
Serre (1954), A. Grothendieck (1966), H. Hironaka (1970), D. Mumbord (1974),
P. Deligne (1978), G. Faltings (1986), S. Mori (1990), M. Kontsevich (1998),
T. Tao (2006), C. Birkar (2018), P. Scholze (2018) are successive highlights of
a most fruitful era in algebraic geometry.

Yet a strong early archetype of the ‘discrete’ march in algebraic geometry
was born when A. Weil focused on counting the number of points on algebraic
varieties defined over a finite field. This led him to state his celebrated con-
jectures, a brilliant moment of when the discrete charmed algebraic geometry.
Then A. Grothendieck, in an attempt to prove those conjectures, introduced his
‘standard’ conjectures in intersection theory. These avenues, which are summa-
rized in next section, are harbingers of the revolution in combinatorics repre-
sented by the breakthroughs of J. Huh and his collaborators, which somehow
culminate the efforts initiated by the likes of R. P. Stanley visible in his treatises
[23, 24]. The highlights of this revolution, including the Fields Medal to J. Huh
(2022), will be considered in the sections after next one.

4 Weil’s conjectures
and Grothendieck’s standard conjectures

In [25, p 489], the author says: “This will contain nothing new, except perhaps
in the mode of presentation of the final results, which will lead to the statement
of some conjectures concerning the numbers of solutions of equations over finite
fields, and their relation to the topological properties of the varieties defined
by the corresponding equations over the field of complex numbers”; and later
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(p 507): “This, and other examples which we cannot discuss here, seem to lend
some support to the following conjectural statements, which are known to be
true for curves, but which I have not so far been able to prove for varieties of
higher dimension” (emphases added).

Even though the bibliography about the Weil conjectures is very extensive,
for the purposes of this paper the following titles may suffice: [26, Appendix C,
§1]; [27], a recent assessment of the major impacts of [25]; and [28], a selection
of MRs related to [25]. Stemming from interest in the applications of algebraic
geometry to error-correcting coding, the note [29] presents a fast algorithm for
computing Nr(X) when X is a curve.

4.27. The Hasse-Weil zeta function. Let X/Fq be a non-singular projective
algebraic variety over Fq, and n = dim(X). Define Nr = #X(Fqr ), where
X(Fqr ) denotes the set of Fqr -points of X, and

ZX(t) = exp(
∑∞

r=1
Nr

r tr)

(the zeta function of X). This is a generating function of the Nr, in the sense
that

Nr = 1
(r − 1)!

dr

dtr
log Z(t)|t=0

(this follows easily from the definition of Z(t)).

4.28. Examples. (1) ZAn(t) = 1
1−qnt . Indeed: Nr = qrn, and hence

exp(
∑∞

r=1Nr
tr

r ) = exp(
∑∞

r=1
(qnt)r

r ) = 1
1−qnt .

In the last identity we use the formal relation
∑∞

r=1
xr

r = ln 1
1−x .

(2) If Y ⊂ X is open, ZX(t) = ZY (t)ZX−Y (t). This relation follows from the
equality Nr(X) = Nr(Y ) + Nr(X − Y ).
(3) ZPn(t) = 1

1−qnt ZPn−1(t) =
∏n

j=0
1

1−qjt . Apply (2) to Pn = An ⊔ Pn−1, then
(1) to An, and finally induction to ZPn−1(t).

4.29. Statement of Weil’s conjectures

W1 (Rationality). Z(t) = P1(t)···P2n−1(t)
P0(t)···P2n(t) , where Pj(t) ∈ Z[t] with P0(t) = 1 − t,

P2n(t) = 1 − qnt.
For j = 1, . . . , 2n − 1, let Pj(t) =

∏
k(1 − αjkt), αjk ∈ C.

W2 (Functional equation). ZX( 1
qnt ) = ±qnχ/2tχZX(t), where χ is the Euler

characteristic of X.
W3 (Riemann hypothesis). |αjk| = qj/2 (j = 1, . . . , 2n − 1, all k). This means,
with the change of variable t = q−s, that the roots 1/αjk of Pj , lie on the line
re(s) = j/2.
W4 (Betti numbers). If X ′ is a non-singular projective variety defined over a
number field embedded in C (e.g. Q) and it has good reduction mod p to X/Fp,
then deg Pj = bj(C(X ′)).
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Notes. The first proofs of W1 and W2 are due to B. Dwork [30]. W4 was
proved by Grothendieck in 1964/65, in collaboration with M. Artin and J.-L.
Verdier, by means of étale cohomology (see, for example, [31]), and the technique
also gave new proofs of W1 and W2. For more details, see for example [26,
Appendix C].

The first proof of W3 was produced by P. Deligne in 1974 [32]. See also
[33], which was announced in [32] with these words: “Dans un article faisant
suite à celui-ci, je donnerai divers raffinements des résultats intermédiaires, et
des applications, parmi lesquelles le théorème de Lefschetz ≪difficile≫ (sur les
cup-produits itérés par la classe de cohomologie d’une section hyperplane)”.

4.30. Kählerian analogue of Weil’s Riemann hypothesis. Let X/C smooth ir-
reducible projective variety, Y ⊂ X a hyperplane section, and f : X → X
an endomorphism. In [34, Th. 1], J.-P. Serre proves the following result: If
f∗(Y ) ∼alg qY for some positive integer q, then the modulus of the eigenvalues
of f∗

j : Hj(X,C) → Hj(X,C) are all equal to qj/2.
We see the analogy on replacing C by Fq and letting f be the Frobenius

endomorphism, which satisfies f∗(Y ) ∼ qY .

4.31. Intersection theory. For compact oriented manifolds, we have seen a
glimpse of ‘intersection theory’ in §1.11. For smooth quasi-projective varieties
X over an algebraically closed field F , the notion analogous to the k-cycles on an
oriented manifold is the free abelian group Zk(X) generated by closed irreducible
k-dimensional subvarieties of X (its elements are also called k-cycles of X); the
notion of homologous cycles is replaced by the notion of rationally equivalent
cycles, Z ∼rat Z ′; and the homology group is replaced by the Chow group
Ak(X) = Zk(X)/Rk(X), where Rk(X) is the subgroup of cycles rationally
equivalent to 0 (for this, and what follows in this §, we refer to [26, Appendix A]
for further details).

In the case of complete irreducible smooth algebraic varieties X of dimen-
sion n, let Ak(X) = An−k(X), the Chow group of codimension k, and A(X) =⊕

kAk(X). Then A(X) is an associative commutative ring when endowed with
the intersection product [Z] · [Z ′] of rational classes. In the case of two irre-
ducible cycles Z ∈ Zk(X) and Z ′ ∈ Zk′(X) intersecting properly (meaning that
all components C of Z ∩Z ′ have codimension k+k′), we have [Z] · [Z ′] = [Z ·Z ′],
where Z · Z ′ =

∑
CiC(Z, Z ′)C, with iC(Z, Z ′) the multiplicity of C in the in-

tersection Z ∩ Z ′. The general case is reduced to the proper case by means
of a ‘moving lemma’ for rational equivalence. The Chow ring A(X) has many
remarkable features, like the formal properties A1-A8 (loc. cit.), and for provid-
ing a natural framework for the the theory of Chern classes of coherent sheaves,
the Riemann-Roch theorem of Hirzebruch, and the Riemann-Roch theorem of
Grothendieck.

Besides rational equivalence, there are other relevant relations. Algebraic
equivalence, Z ∼alg Z ′, works like the rational equivalence but replacing P1 by
an arbitrary parameter variety S. In the numerical equivalence, Z ∼num Z ′,
the criterion is that deg(W · (Z ′ − Z)) = 0 for any irreducible closed subvariety
W of dimension n − k. There is also the homological equivalence, Z ∼hom Z ′,
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that we will consider in §4.33. It is clear that rational equivalence implies
algebraic equivalence, and Severi’s principle of conservation of number asserts
that algebraic equivalence implies numerical equivalence (cf [35]). The numerical
equivalence has been at the root of enumerative geometry since its beginnings,
and most definitely since Schubert’s foundational treatise [36]. The treatise
[37], a modern version of intersection theory, has many pointers to enumerative
geometry. Cf. also [38], now accessible as a pdf online.

4.32. Origin of Grothendieck’s standard conjectures. According to the first para-
graph of [39], the standard conjectures “arose from an attempt at understanding
the conjectures of Weil on the ζ-functions of algebraic varieties . . . and they were
worked out about three years ago independently by Bombieri and myself.” And
in the paper’s Conclusions we read: “The proof of the two standard conjectures
would yield results going considerably further than Weil’s conjectures. They
would form the basis of the so-called ‘theory of motives’ which is a system-
atic theory of ‘arithmetic properties’ of algebraic varieties as embodied in their
groups of classes of cycles for numerical equivalence. . . . Alongside the problem
of resolution of singularities,2 the proof of the standard conjectures seems to me
to be the most urgent task in algebraic geometry.”

As we have seen in §4.29 Notes, the core issue was producing a proof of W3.
As said, this was settled by Deligne following a different approach—which, by
the way, also allowed him to prove the Ramanujan conjecture on the τ function
[32, 33]. Nevertheless, the fact is that the standard conjectures remain conjec-
tures, and it is to be hoped that the fertile work of June Huh and collaborators
(which we will explore in §5, §6, and §7.50 following the steps outlined §4.35),
may rekindle the interest in them.

4.33. Weil cohomologies. Consider smooth irreducible projective algebraic va-
rieties X over an algebraically closed field κ (henceforth varieties), and set
n = nX = dim(X). The standard conjectures (see §4.34) are phrased in terms
of a Weil cohomology H∗(X) with coefficient field K (a field of characteristic
0), which means that X 7→ H∗(X) is a contravariant functor from varieties
to finite-dimensional graded K-algebras such that Hk(X) = 0 for k < 0 and
k > 2n. It is further assumed that H2n(X) is endowed with an isomorphism∫

X
: H2n(X) ≃ K (also denoted deg) and with a functorial class homomorphism

cl = clX : Zk(X) → H2k(X), so that the following properties are satisfied:
1. Poincaré duality: The map Hk(X) × H2n−k(X) → K, (α, α′) 7→

∫
X

α · α′

is non-degenerate for all k. In particular, H2n−k(X) ≃ Hk(X)∗, or, defining
Hk(X) = Hk(X)∗, H2n−k(X) ≃ Hk(X) (the duals are as K-vector spaces). If
f : X → X ′ be a morphism of varieties, the adjoint of f∗ : H∗(X ′) → H∗(X)
by Poincaré duality is a K-linear map f∗ : H∗(X) → H∗+r(X ′), where r =
nX′ − nX (dubbed the codimension of f). These two maps are related through
the projection formula: f∗(α · f∗α′) = f∗α · α′ (α ∈ H∗(X), α′ ∈ H∗(X ′)).

2Let us just recall here that the problem of the resolution of singularities was solved by
H. Hironaka in [40] (in characteristic zero; for positive characteristic, see [41]).
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2. Künneth formula: The natural map H∗(X) ⊗ H∗(X ′) → H∗(X × X ′),
α ⊗ α′ 7→ π∗

X(α) · πX′(α′), is an isomorphism for any varieties X and X ′ (πX

and πX′ are the projection maps of X × X ′ onto X and X ′, respectively).
3. Class map: Aside from its functoriality, which means that clX(f∗Z ′) =
f∗(clX′Z ′) for any morphism of varieties f : X → X ′ and any Z ′ ∈ Zk(X ′),
it is also required that it be Künneth-compatible (by this we undestand that
clX×X′(Z × Z ′) = clX(Z) ⊗ clX′(Z ′) for any varieties X, X ′ and any cycles
Z ∈ Z∗(X), Z ′ ∈ Z∗(X ′)) and that

∫
X

cl(Z) = deg(Z) for any Z ∈ Zn(X)
(here deg(Z) =

∑
ni if Z =

∑
i niPi, Pi ∈ X).

The elements of H∗(X) are called cohomology classes of X and the classes
in the subring A∗(X) = cl(Z∗(X)) ⊆ H2∗(X) are said to be algebraic. Two
algebraic cycles are said to be homologically equivalent when they define the
same algebraic class. To note that

∫
X

α · α′ ∈ Z for any α, α′ ∈ A∗(X) (with
the convention that

∫
X

ξ =
∫

X
ξn for any ξ = ξ0 + ξ1 + · · · + ξn ∈ A∗(X).

One instance of Weil cohomology is Grothendieck’s ℓ-adic cohomology. In
this theory K is the field Qℓ of ℓ-adic rational numbers, with ℓ different from the
characteristic of the ground field κ. See, for instance, [31]. Weil cohomologies
are presented in many references, as for example [42].

4.34. Statement of the standard conjectures. We extract from Grothendieck’s
original paper [39] just the conjectural statements that play a role in the de-
scription of the Kähler package in §6, namely the hard Lefschetz property and
the Hodge–Riemann relations, which themselves mimic for algebraic varieties
the homonymous results for Kähler manifolds. For a rather meticulous discus-
sion of Grothendieck’s standard conjectures, see [42] and [43]. See also §7.52
for references about their current status.

Let Y by a hyperplane section of X, set y = cl(Y ) ∈ H2(X), and define
L : Hk(X) ∈ Hk+2(X) to be the multiplication by y. Clearly, we also have that
Lj : Hk(X) → Hk+2j(X) is multiplication by yj .
1. Hard Lefschetz property. It states that Lj : Hn−j(X) → Hn+j(X) is an
isomorphism for all j ∈ [n] (equivalently, Ln−k : Hk(X) → H2n−k(X) is an
isomorphism for all k ∈ [n]). A corollary is that Lj : Hk(X) → Hk+2j(X) is
injective for j ⩽ n − k and surjective for j ⩾ n − k. Indeed, in the first case,
composing Lj : Hk(X) → Hk+2j(X) with Ln−k−j : Hk+2j(X) → H2n−k(X) is
Ln−k : Hk(X) → H2n−k(X), which is an isomorphism; so the first map must be
injective. In the second case, the map Lk−(n−j) : Hn−(k+2j−n)(X) → H2k(X)
followed by Lj : Hk(X) → Hk+2j(X) = Hn+(k+2j−n) produces the map
Lj+(j−(n−k)) : Hn−(k+2j−n)(X) → Hn+(k+2j−n)(X), which is an isomorphism.
Therefore the second map must be surjective.
2. Hodge–Riemann relations. For j ⩽ n/2 let Aj

0(X) = {α ∈ Aj | Ln−2j+1α =
0} (the primitive part of Aj(X); note that A0

0(X) = A0(X)). Then the inter-
section pairing Aj

0(X) × Aj
0(X) → Z given by (−1)j

∫
X

Ln−2j(α · β) is positive
definite (cf. §4.33, 3, Class map). As we have seen in §3.24, this statement
holds for complex algebraic varieties (Hodge theory).
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4.35. Interlude. The nomination of June Huh for the Fields Medal was disclosed
on 5 July 2022: “For bringing the ideas of Hodge theory to combinatorics, the
proof of the Dowling–Wilson conjecture for geometric lattices, the proof of the
Heron-Rota-Welsh conjecture for matroids, the development of the theory of
Lorentzian polynomials, and the proof of the strong Mason conjecture.” Gil
Kalai was in charge of the Laudatio [44], the Fields Medal Lecture [45] was
delivered on 6 July 2022 with the title Combinatorics and Hodge Theory, and
the corresponding paper in the ICM-2022 Proceedings appeared as [46]. Those
dazzling events revealed to workers in various areas a wealth of fresh and beau-
tiful interconnections between mathematical fields, feeling thereby inspired to
pursue the greater understanding that those accomplishments connoted.

The results obtained by J. Huh, often with collaborators, are outlined in the
next two sections: §5 is devoted to Combinatorics and §6 to the Kähler Package
and Lorentzian polynomials, including examples of how this machinery works
for solving conjectures in combinatorics “that had hitherto been unreachable by
other means”. In §7 we overview recent productions, either rooted in the topics
previously outlined or closely connected to them.

5 Combinatorics
In this section we collect a small parade of basic notions, conjectures, results,
and references about a facet of the discrete side of mathematics. In the main,
it is no more than a handy passage to a more attentive perusal of J. Huh’s
contributions and influence, which, except for a few bibliographical pointers, is
deferred to §6.

5.36. The birth of modern graph theory. In a communication at Harvard dated
January 14, 1931, H. Whitney (1907-1989) stated this (emphasis added): “We
shall give here an outline of the main results of a research on non-separable and
planar graphs. The methods used are entirely of a combinatorial character ; the
concepts of rank and nullity play a fundamental rôle. The results will be given in
detail in a later paper” (namely, [47] in our references). Whitney, who was one
of the founders of singularity theory, did groundbreaking research on manifolds,
embeddings and immersions, characteristic classes, and geometric integration
theory.

Graph theory has evolved into a very large industry. Here are some basic
references, ordered by year of publication: [48], [49], [50], [51], [52]. Let us just
recall here that an a graph with no cycles (acyclic) is also called a forest, and
that connected forests are called trees. Consequently, the connected components
of a forest are trees. A spanning tree of a connected graph G is a subgraph T
of G such that T is a tree and V (T ) = V (G). Note that |E(T )| = |V (T )| − 1
holds for any tree and hence |E(T )| = |V (G)| − 1 for any spanning tree of a
connected graph G.

5.37. The birth of the matroid. It happened in 1935 and its birth certificate is
Whitney’s paper [53]. It is worth reproducing its first few lines:
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Let C1, C2, . . . , Cn be the columns of a matrix M . Any subset of
these columns is either linearly independent or linearly dependent;
the subsets thus fall into two classes. These classes are not arbitrary;
for instance, the two following theorems must hold:
(a) Any subset of an independent set is independent.
(b) If Np and Np+1 are independent sets of p and p + 1 columns
respectively, then Np together with some column of Np+1 forms an
independent set of p + 1 columns.
There are other theorems not deducible from these; for in § 16 we
give an example of a system satisfying these two theorems but not
representing any matrix. Further theorems seem, however, to be
quite difficult to find. Let us call a system obeying (a) and (b) a
“matroid”. The present paper is devoted to a study of the elementary
properties of matroids.

5.38. Ubiquity of the matroid. The following quotations are from [54]:

As the word suggests, Whitney conceived a matroid as an abstract
generalization of a matrix, and much of the language of the theory is
based on that of linear algebra. However, Whitney’s approach was
also motivated by his work in graph theory and as a result some of
the matroid terminology has a distinct graphical flavor. Some time
later Van der Waerden also used the concept of abstract dependence
in his Moderne Algebra.

Apart from [several] isolated papers [up to 1949] ... the sub-
ject lay virtually dormant until the late fifties when W. T. Tutte
(1958,1959) published his fundamental papers on matroids and graphs
[[55], [56] in our references] and Rado (1957) studied the repre-
sentability problem for matroids. Since then interest in matroids
and their application in combinatorial theory has accelerated rapidly.
Indeed it was realized that matroids have important applications in
the field of combinatorial optimization and also that they unify and
simplify apparently diverse areas of pure combinatorics”.

In the last thirty years, matroid theory has kept its unfolding into a huge
field. The following are excellent references: [57] (a comprehensive treatise),
[58] (an earlier and a bit slimmer book, republished by Dover in 2010), and [59]
(an useful short summary, updated in 2014).

5.39. Matroids. For convenience of readers predominantly trained in the ‘contin-
uous’ side of mathematics but wishing to explore connections with the ‘discrete’
side, we briefly recall various definitions of matroids and how they relate to
each other. In what follows E will denote a finite set, and 2E (or better BE ,
B = {0, 1} ⊂ N = Z⩾0) the set of all subsets of E.

Definition by independence systems. A matroid on E is a pair M = (E, I),
where I is a family of subsets of E (called independent sets) that satisfy:
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(i1) the empty subset is independent;
(i2) any subset of an independent set is independent; and
(i3) if X, X ′ are independent and |X| > |X ′|, there exists x ∈ X − X ′ such that
X ′ ∪ x is independent (as usual in the literature, we let X ′ ∪ x be a shorthand
for X ′ ∪ {x}).

This definition is an abstraction of the notion of linearly independent sets
of a finite set of vectors in a K-vector space (such matroids are said to be
representable over the field K). It is also important to note that a graph G =
(V, E) gives rise to a matroid by declaring that a subset of E (edges of G) is
independent if it contains no cycles of G. Actually, most of the terminology
about matroids has its roots in these two sources (vector spaces and graphs).

By bases. Given a matroid M = (E, I), let us denote by B the family of
maximal independent sets, which are called bases of M . It is clear that B
determines I as the family of subsets X of E such that X ⊆ B for some B ∈ B.
The family B satisfies:
(b1) B in non-empty;
(b2) if B, B′ ∈ B and b ∈ B − B′, there exists b′ ∈ B′ such that (B − b) ∪ b′ ∈ B
(B − b is shorthand for B − {b}). This is the base exchange property and
corresponds to the property i3 of I. Now the point is that a matroid can be
defined as a pair M = (E, B) with B satisfying b1 and b2.

By circuits. A circuit of a matroid M = (E, I) is a minimal dependent set,
that is, a non-independent set whose proper subsets are independent. The set
C of circuits has the following properties:
(c1) ∅ ̸∈ C;
(c2) if C, C ′ ∈ C and C ⊆ C ′, then C = C ′; and
(c3) it satisfies the circuit elimination axiom, namely that if C, C ′ ∈ C are
distinct and e ∈ C ∩ C ′, then there exists C ′′ ∈ C such that C ′′ ⊆ (C ∪ C ′) − e.

Again a matroid can be defined as a pair (E, C) where C satisfies c1–c3.
Note that I is the family of subsets of E that contain no circuit.

By rank. Given a matroid (E, I), we have the rank function: r : BE → N,
where r(X) is the maximum cardinal |I| for independent sets I ⊆ X. It has the
following properties:
(r1) r(X) ⩽ |X|;
(r2) if X ⊆ X ′, then r(X) ⩽ r(X ′); and
(r3) r(X ∪ X ′) + r(X ∩ X ′) ⩽ r(X) + r(X ′) (submodular property).

Then a matroid on E can be defined by a function r : BE → N satisfying
those properties r1–r3. Note that the independent sets are the I ⊂ E such that
r(I) = |I|. The rank of E is also called the rank of M and denoted by r(M).

By a closure operator. Given M = (E, I), set X̄ = {x ∈ E | r(X ∪ x) = r(X)}
for any X ⊆ E. This defines the operator BE → BE , X 7→ X̄. This operator
has the following properties:
(d1) X ⊆ X̄ for any X ⊆ E;
(d2) if X ⊆ Y ⊆ E, X̄ ⊆ Ȳ ;
(d3) ¯̄X = X̄ for all X ⊂ E; and
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(d4) If X ⊂ E, x ∈ E, and x′ ∈ X ∪ x − X̄, then x ∈ X ∪ x′.
It turns out that a matroid on E can be specified by giving a closure operator

BE → BE , X 7→ X̄, by which we understand that it satisfies d1–d4. One
important point to note is how independent sets are determined by means of a
closure operator: I ⊆ E is independent if and only if x ̸∈ I − x for all x ∈ I.

By flats. Given a matroid, its flats are the subsets F ⊆ E such that F̄ = F
(closed subsets). The collection of flats, L, has the following properties:
(f1) ∅ and E are flats;
(f2) the intersection of any two flats is a flat; and
(f3) for any flat F and any e ∈ E − F , there is a unique flat that is minimal
among the flats containing F ∪ e.

Moreover, the family L of flats is a lattice with the partial order given by
inclusion. The lattice operations ∧ and ∨ are defined by F ∧ F ′ = F ∩ F ′ and
F ∨ F ′ = F ∪ F ′.

Once more, a matroid can be defined as a pair M = (E, L), where L is
a family of subsets of E satisfying f1–f3. In terms of flats, the bases are the
B ⊆ E such that B̄ = E but B − b < E for all b ∈ B.

In §5.45(2) we recall another definition due to J. Huh.

5.40. Four useful properties of finite numeric sequences. Let a0, . . . , am be a
sequence of non-negative real numbers. It is said to be:
(1) Unimodal: if a0 ⩽ a1 ⩽ · · · ⩽ aj ⩾ aj+1 ⩾ · · · ⩾ am for some j ∈ [m]. For
instance, the sequences of Betti numbers b0, b2, . . . , b2n and b1, b3, . . . , b2n−1 of
a compact Kähler manifold are unimodal. They also happen to be symmetric.
These two properties would still hold for smooth projective algebraic varieties
over any field κ if the hard Lefschetz property turns out to be true (cf. §4.34).
(2) Log-concave: if a2

j ⩾ aj−1aj+1 for all j ∈ [m − 1]. A log-concave se-
quence of positive terms is unimodal. For example, the symmetric sequence(

n
0
)
,
(

n
1
)
,
(

n
2
)
, . . . ,

(
n
n

)
is log-concave, hence also unimodal (which in this case is

clear from the properties of binomial numbers). Let the following quote from
[60] be a motivation for continuing this journey in next section: “We believe that
behind any log-concave sequence that appears in nature there is . . . a ‘Hodge
structure’ responsible for the log-concavity”.
(3) Ultra-log-concave: If aj/

(
m
j

)
, j ∈ [m], is log-concave.

(4) Top-heavy: if aj ⩽ am−j for j ∈ [0, m//2].
For the ubiquity of these notions in algebra, combinatorics and geometry, see
the surveys [61] and [62]. For specific occurrences in the theory of projective
hypersurface singularities, see [63].
Example 1 (I. Newton). Let

∑n
j=0 bjxj =

∑n
j=0

(
n
j

)
ajxj be a real polynomial

with real roots. Then b0, b1, . . . , bn is ultra-log-concave (⇔ a0, a1, . . . , an is log-
concave). Moreover, if bj ⩾ 0, then b0, b1, . . . , bn has no internal zeros. See [64,
Theorem 5.12].
Example 2 (J. Huh, [65, 66]). Let Pn = Pn

C. Then H2k = H2k(Pm ×Pn,Z) is free
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with basis the classes [Pk−j × Pj ], where j ∈ Ik = [max(0, k − m), min(k, n)].
Thus any ξ ∈ H2k can be (uniquely) expressed as ξ =

∑
j∈Ik

cj [Pk−j × Pj ],
cj ∈ Z. When can some integer multiple of ξ be representable, i.e. be equal
to the homology class [Z] of a subvariety Z? The answer is as follows in [66,
Theorem 1]: if ξ is an integer r times either [Pm × Pn], [Pm × P0], [P0 × Pn], or
[P0 × P0], then ξ is representable if and only if r = 1; otherwise, some positive
multiple of ξ is representable if and only if {cj}j∈Ik

is a nonzero log-concave
sequence of nonnegative integers with no internal zeros.
Intersection cohomology staircases. If X is an irreducible complex projective
variety of dimension n, possibly with singularities, Goresky and MacPherson
[67, 68] introduced the intersecction cohomology of X,

IH∗(X) = IH0(X) ⊕ IH1(X) ⊕ · · · ⊕ IH2n(X).

Let βj = dim IHj(X) (IH Betti numbers). Then the sequences β0, β2, . . . , β2n

and β1, β3, . . . , β2n−1 are symmetric and unimodal. For a detailed overview of
the development of IH, see [69].

5.41. The Read-Hoggar conjecture. Given a graph G = (V, E), and a positive
integer q, a proper coloring of G with q colors is a map c : V → [q] such that
c(a) ̸= c(b) when (a, b) ∈ E.

The number of proper colorings of G with q colors turns out to be a poly-
nomial in q (the chromatic polynomial of G) of the form

χG(q) = anqn − an−1qn−1 + · · · + (−1)n−1a1q,

where n = |V | and aj ⩾ 0 for j = 1, . . . , n.
The Read-Hoggar conjecture (1968, 1974) says that a1, . . . , an is log-concave.

It was proved by J. Huh in his PhD research (see [63] and [65]). The sequence
is also unimodal (this was Read’s conjecture). This turns out to be a special
case of the conjecture considered next.

5.42. Heron–Rota–Welsh conjecture. The characteristic polynomial, χM (q), of
a matroid M = (E, I) is defined as

χM (q) =
∑

X⊆E

(−1)|X|qr(E)−r(X) =
r(E)∑
j=0

(−1)jwjqd−j ,

where the coefficients wj are called Whitney numbers (of the first kind).
The characteristic polynomial generalizes the notion of chromatic polyno-

mial of a graph (see [57, p. 588]): if (G, E) is a connected graph and (M, I)
its associated matroid, then χG(q) = qχM (q). This is why the characteristic
polynomial of a matroid is also called chromatic polynomial.

The Heron-Rota-Welsh conjecture asserts that w0, w1, . . . , wr(E) is log-concave,
and it was proved in [60].

5.43. The Dowling-Wilson conjecture. Let L be a finite lattice, r : L → N
its rank function, Lk = {x ∈ L : r(x) = k}, and d = rank(L) (the rank of
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its maximum element). L is said to be geometric if it is generated by L1 (the
atoms of L) and r satisfies the submodular property, namely r(x) + r(x′) ⩾
r(x ∨ x′) + r(x ∧ x′) for all x, x′ ∈ L.

The Dowling-Wilson top-heavy conjecture (1974) asserts that

|Lk| ⩽ |Ld−k| for all k ⩽ d/2. (∗)

Actually the conjecture was phrased for the lattice L(M) of flats of a matroid
M = (E, I) (recall that a flat is a subset of E that is maximal for its rank) and
it was proved in [70] (see also [71] for further enhancements). But this is not
a less general statement than Eq. (∗), as the class of geometric lattices agrees
with the class of lattices of flats of matroids.

The maximal elements of Lk will be called k-flats of L (points for k = 1,
lines for k = 2 and planes for k = 3). See Fig. 6.2 for two simple illustrations.

5.44. Mason’s conjecture. Let ik = ik(M) be the number of independent sets of
cardinal k of a finite matroid M = (E, I). Mason’s ultra-strong conjecture says
that the ik form an ultra log-concave sequence, i.e.

i2
k ⩾ (1 + 1

k
)(1 + 1

n − k
)ik−1ik+1, n = |E|,

and it was proved in [72]. Notice that if we set i′
k = ik/

(
n
k

)
, the ultrastrong

condition is equivalent, by definition, to i′
k ⩾ i′

k−1i′
k+1. As explained in the

footnote 2 of [46], it was independently proved in [73]. In this paper the authors
introduce the notion of completely log-concave polynomials and proved, for any
finite matroid, that the (homogenization of the) generating polynomial of its
independent sets has this property. We will return to this point in next section.

5.45. Interlude. It is a good place to recall, following [45] and [46], together
with other references to be specified, a few additional combinatorial concepts
and notations that will be serviceable in next section.
(1) A generalized permutohedron is a polytope in RE (E a finite set) all of
whose edges are in the direction ei − ej for some i, j ∈ E ({ej}j∈E denotes
the standard basis of RE), and it is said to be integral if its vertices belong to
the lattice ZE . Examples: the standard permutohedron P (1, 2, . . . , n), which is
the convex hull of all the permutations of (1, 2, . . . , n), and the hyperoctahedron
P (±1, 0, . . . , 0), which is the convex hull of all the permutations of (±1, 0, . . . , 0)
(see Fig. 5.1), are integral generalized permutohedra. According to [74], all
generalized permutahedra in Rn are obtained from the standard permutohedron
by moving its vertices so that all the edge directions are preserved. See also [75].
(2) We can identify the subsets of a finite set E with BE (also called zero-one
vectors). A subset J of the lattice ZE is said to be M -convex if it is the set of
lattice points of an integral generalized permutohedron. A finite set J ⊂ NE

is M -convex when it satisfies the symmetric basis exchange property: For any
α, β ∈ J and an index i such that αi > βi, there is an index j such that αj < βj

and α − ei + ej , β + ei − ej ∈ J . Examples: given a positive integer d, the set of
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P (1, 2)
P (1, 2, 3) P (±1, 0)

P (1, 2, 3, 4) P (±1, 0, 0)

Figure 5.1: P (1, 2), P (1, 2, 3) and P (1, 2, 2, 4) are the standard permutohedra in R2,
R3 and R4, respectively. Note that P (1, 2, . . . , n) is (n−1)-dimensional, as it lies in the
hyperplane x1+· · ·+xn =

(
n+1

2

)
of Rn. P (±1, 0) ⊂ R2 (a square) and P (±1, 0, 0) ⊂ R3

(an octahedron) are examples of hyperoctahedra. Note also that P (±1, 0, 0) is an edge
direction preserving deformation of P (1, 2, 3, 4) –shrink each of the square faces to a
vertex while preserving the directions of all the edges).

vectors in α ∈ NE (or α ∈ BE) such that
∑

αi = d. Importantly, matroids on
the set E can be defined as M -convex subsets of BE (see [46]).
(3) Let G = (V, E) be a connected graph and JG ⊆ BE be the set of spanning
trees of G (see Fig. 5.2 for an example). For any G, JG is a matroid (in other
words, it is the set of lattice points of an integral generalized permutohedron).
Such matroids are said to be graphic.

JG = }⇒G {
Figure 5.2: Set JG of spanning trees of the full 4-vertex graph G.

Representable (or realizable) matroids over a field F can be defined by a similar
procedure. Let W be a vector space over F, φ : E → W a map, and denote by
Jφ ⊆ BE be the set of subsets B of E such that φ(B) is a basis of W . Then Jφ is a
matroid (the set of lattice points of an integral generalized permutohedron), and
such matroids are said to be representable over F. For example, if v1, v2, v3, v4 ∈
R2 are general vectors, we get six bases {vi, vj}1⩽i<j⩽4 which form, regarded
as elements of B4, the octahedron {1100, 1010, 1001, 0110, 0101, 0011}. Graphic
matroids are representable over any field [57, §5.1].
(4) Let L be a geometric lattice of rank d (see §5.43) and E = L1 the set of
points (or atoms) of L (elements of rank 1). Let JL ⊂ BE be the set of bases
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of L (recall that a basis is a set of d points whose join has rank d). Then JL is
the set of lattice points of an integral generalized permutohedron.

Figure 5.3: Three graphical geometries which are not graphic. The first, on the left,
is the lattice of linear subspaces of Z3

2 (often called the Fano plane). It has 7 points, 7
lines and

(7
3

)
−7 = 28 bases and it is realizable over F if and only if the characteristic of

F is 2. The second, in the middle, has 7 points, 6 lines, and 29 bases, and is realizable
over F if and only the characteristic of F is not 2. The third has 9 points, 8 lines, and
84 bases, and it is not realizable over any field. See [57, Prop. 6.4.8] and [76].

6 The Kähler package
Honoring Kähler, for he “first emphasized the importance of the respective
objects in topology and geometry”, a Kähler package has, as presented by J.
Huh in [46], and previously in [77], has three ingredients and three postulates.
Although in the latter two references it is phrased in a ‘mixed’ approach, we
follow the ‘unmixed’ formalism, so that we will have powers Lj of an operator
L instead of products of operators L1, . . . , Lj ∈ K (see ingredient (2) below).
As mentioned in the footnote 1 to [46], this stance does not incur a loss of
generality, and in any case it is sufficient for our purposes.
Ingredients
(1) A graded real vector space A =

⊕d
j=0 Aj ;

(2) A convex cone K of graded linear maps L : A⋆ → A⋆+1; and
(3) A bilinear pairing P : A⋆ × Ad−⋆ → R that is symmetric, P (x, y) = P (y, x),
and satisfies P (x, Ly) = P (Lx, y) for all x, y and all L ∈ K.
Postulates. For any j ⩽ d/2,
Poincaré Duality: Pj : Aj → (Ad−j)∗ is an isomorphism;
Hard Lefschetz Propery: For any L ∈ K, Ld−2j : Aj → Ad−j is an isomorphism;
Hodge-Riemann Relations: The pairing (henceforth labeled HRj)

Aj × Aj → R, (x, y) 7→ (−1)jP (x, Ld−2jy) = (−1)j⟨x, y⟩,

is positive definite on the kernel Aj
0 ⊆ Aj of Ld−2j+1 (the primitive part of Aj ,

to borrow the name from Lefschetz theory).
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We will further assume that there is a distinguished nonzero element 1 ∈ A0,
as this will be the case in all instances we shall consider.
It is clear that A0

0 = A0, for Ad+1 = 0, and HR0 just says that ⟨x, x⟩ > 0 for any
nonzero x ∈ A0. We define deg : Ad → R by the formula deg(α) = P (1, α). In
particular, deg(Ld1) = P (1, Ld1) > 0 by HR0. Now A1

0 = {x ∈ A1 | Ld−1x = 0}
and for any such x we have ⟨L1, x⟩ = P (L1, Ld−2x) = P (1, Ld−1x) = 0, which
implies that A1 = ⟨L1⟩ ⊥ A1

0 with respect to the bilinear form ⟨x, y⟩. For any
nonzero x ∈ A1

0, we have ⟨x, x⟩ = P (x, Ld−2x) < 0, by HR1, while ⟨L1, L1⟩ =
P (L1, Ld−2L1) = P (1, Ld1) > 0. In other words, ⟨ , ⟩ has Lorentzian signature
(+ − · · · −).

6.46. Examples. In a Kähler package, A = A(X) depends on the objects X of
some species. The examples below are described in [46]:
(1) The content of Grothendieck’s standard conjectures [39] can be phrased by
saying, for smooth projective algebraic varieties X over any field κ, that the
ring A∗(X) of algebraic classes in the (even) ℓ-adic cohomology ring H2∗

ℓ (X) is
a Kähler package. These conjectures are still open, but see §7.52 for a glimpse
on some positive results.
(2) X is a convex polytope and A(X) its combinatorial cohomology. See [78].
(3) X a matroid and A(X) one of the following:

(a) The Chow ring of X [60];
(b) The conormal Chow ring of X [79];
(c) The intersection cohomology of X [71].

(4) X is an element of a Coxeter group and A(X) its Soergel bimodule [80].
Additional references: [81] (a gentle introduction) and the treatise [82].
Another remarkable example is the arithmetic Kähler package, which was in-
troduced in [83] using the arithmetic intersection theory developped in [84]. A
convenient entry to this topic is the overview [85].

6.47. Lorentzian polynomials. The main reference for this section is [72], help-
fully framed by [45] and [46]. The following quotation from [46, page 4] reveals
interesting aspects of its author research temper (emphasis not in the source):

The known proofs of the Poincaré duality, the hard Lefschetz prop-
erty, and the Hodge–Riemann relations for the objects listed above
[§6.46] have certain structural similarities, but there is no known way
of deducing one from the others. Could there be a Hodge-theoretic
framework general enough to explain this miraculous coincidence?

A related goal is to produce a flexible analytic theory that would
reflect certain basic features of the unified theory: If one postulates
the existence of the satisfactory cohomology A(X), what can we say
about X at an elementary and numerical level? This is a worthwhile
question because, depending on X, the construction and the study of
A(X) might be beyond the reach of our current understanding. A
step in this direction is taken in a joint work with Petter Brändén
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[namely [72]], where the difficult goal of finding A(X) is replaced by
an easier goal of producing a Lorentzian polynomial from X. Such a
Lorentzian polynomial can be used to settle and generate conjectures
on various X (Section 2) and, sometimes, leads to a satisfactory
theory of A(X) (Section 3).

Let Hd
n be the space of real homogeneous polynomials of degree d ⩾ 2 in n

variables x1, . . . , xn. The set of Lorentzian polynomials Ld
n ⊂ Hd

n is defined by
induction on d follows. The elements of L2

n are specified by two conditions:
(a2) their coefficients are non-negative; and
(b2) their signature has at most one positive sign.
For degrees d > 2, the set Ld

n is defined recursively by the following conditions:
(ad) ∂jf ∈ Ld−1

n for all j ∈ [n], where ∂j = ∂/∂xj ; and
(bd) the set of (exponents of) monomials of f (the support of f) is the set of
lattice points of an integral generalized permutohedron (cf. §5.45(1)).

One of the crucial results in [72] is that Ld
n is the closure of L̊d

n, which is the
set of f ∈ Ld

n satisfying the following conditions: for d = 2,
(̊a2) the coefficients of f are positive real numbers; and
(̊b2) the signature of f has exactly one positive sign; and for d > 2,
(̊ad) ∂jf ∈ L̊d−1

n for all j ∈ [n].
In [72] it is also established that the compact set PLd

n ⊂ PHd
n is contractible,

with contractible interior PL̊d
n (Theorem 2.28), and conjectured that PLd

n is
homeomorphic to a closed Euclidean ball, a fact that was proved by Brändén in
[86]. See Figure 6.1.

The Lorentzian Ball PLd
n

appears on the boundary sphere of PLd
n

Every integral generalized permutathedron

Volume polynomials in algebraic
geometry over F

in convex geometry

Volume polynomials

Figure 6.1: This image is a rough reproduction of the image on the slide #13 of J.
Huh’s Fields lecture at the ICM-22. Note the statement about the boundary sphere.
Concerning volume polynomials, see §6.48 for an example in algebraic geometry, and
we refer to [78] for examples in convex geometry.

6.48. Example. Let D = D1, . . . , Dn be nef Cartier divisors on d-dimensional
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irreducible projective variety X over an algebraically closed field. Consider the
polynomial function

volD : Rn
+ → R, w 7→ 1

d! deg(w1D1 + · + wnDn)d,

where deg(Dr1
1 · · · Drn

n ) (r1 + · · · + rn = d) is the degree (or
∫

X
) in the sense

of [37, Definition 2.4.2]. If X admits a resolution of singularities Y and the
Hodge-Riemann relations hold in degree ⩽ 1 (so HRj for j = 0, 1) for the ring
of algebraic cycles A(Y ), then volD(w) is Lorentzian [46, Example 7].

We defer to Section 7 the discussion of other manifestations of Lorentzian
polynomials, especially significant in algebraic geometry and intersection the-
ory.

6.49. On the proof of the Dowling-Wilson conjecture. Let us end this section
by describing, after J. Huh’s Fields Lecture [45], how the Dowling–Wilson con-
jecture was solved.

Given a geometric lattice L of rank d, consider the set B of its bases, that is,
subsets of size d of E = L1 (the set of atoms) whose join has rank d. Then B is
the set of lattice points of an integral generalized permutohedron (cf. §5.45 (2)),
and the basis generating function g =

∑
ν∈B wν is a Lorentzian polynomial (cf.

Fig. 6.2 for examples).

1

2 3

4

1

2 3

4

g = w1w2w3 + w1w2w4 + w1w3w4 + w2w3w4 g = w1w2w3 + w1w2w4 + w2w3w4

Figure 6.2: In these examples, the proper non-trivial flats are the points and the
lines. Bases are minimal sets of points that span the lattice: {1, 2, 3}, {1, 2, 4},{1,3,4},
{2, 3, 4} for the left-hand lattice and {1, 2, 3}, {1, 2, 4}, {2, 3, 4} for the right-hand one.
In each case, the corresponding generating function is displayed.

Now define H(L) = {f : L → Q} =
⊕

F ∈L QδF and make it a graded Q-
algebra (the Möbius algebra of L, [70, §2]) with the multiplication determined
by

δF · δF ′ =
{

δF ∨F ′ if r(F ∨ F ′) = r(F ) + r(F ′)
0 otherwise.

The bases generating function of L is 1
d! (

∑
j∈E wjδj)d. This suggests taking

A(L) = H(L); K(L), the set of multiplications by positive linear combinations
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of the δj ; and P (L), multiplication in H(L) composed with Hd(L) ≃ Q. But
H(L) already fails to satisfy Poincaré duality, for dim Hj(L) = |Lj | and in
general |Lj | ≠ |Ld−j |.

As shown in [71], the rescue from this failure came from the intersection coho-
mology of L, IH(L), which is an indecomposable graded H(L)-module endowed
with a map P : IH(L) → IH(L)∗[−d] that satisfies the following properties for
every j ⩽ d/2 and every L ∈ K(L):
Poincaré duality. P : IHj(L) → IHd−j(L)∗ is an isomorphism;
Hard Lefschetz: Ld−2j : IHj(L) → IHd−j(L) is an isomorphism; and
Hodge-Riemann relations: The pairing

IHj(L) × IHj(L) → Q, (x, y) 7→ (−1)jP (x, Ld−2jy),

is positive definite on the kernel of Ld−2j+1. In addition, IH0(L) generates a
submodule isomorphic to H(L).

The construction relies on the resolution of singularities of algebraic varieties,
and in particular on the ‘wonderful models’ in [87] (a really wonderful book).

Since the composition of Hj(L) ↪→ IHj(L) with the Hard-Lefschetz iso-
morphism IHj(L) ≃ IHd−j(L) is injective, Ld−2j : Hj(L) → Hd−j(L) com-
posed with Hd−j → IHd−j(L) is injective (see diagram below) and consequently
Ld−2j : Hj(L) → Hd−j(L) is injective, which proves that |Lj | ⩽ |Ld−j |.

Hj(L) ↪→ IHj(L)

Ln−2j ↓ ↓ Ln−2j

Hd−j(L) → IHd−j(L)

7 Postfaces

7.50. Additional notes on June Huh’s main works. In the preceding sections we
have cited the following papers of J. Huh, often with collaborators: [63] (2012),
[65] (2014, PhD thesis), [66] (2015), [70]* (2017), [60] (2018), [77]* (2018), [71]*
(2020), [72] (2020), [46] (2022), [79] (2022). The items distinguished with an
asterisk are cited in [88], to which we refer not only for his insightful comments
on them, but also for his introduction (Appendix C) to basic tropical geometry
notions and references for them.

The early paper [89] (2012) extends to all realizable matroids the result ob-
tained in [63] asserting the log-concavity of the coefficients of the characteristic
polynomial of matroids realizable over a field of characteristic zero. This step
was a clear progress toward the proof of the Rota-Heron-Welsh conjecture. On
the other hand, in [90] the authors first define morphism of matroids, then in-
troduce the notion of bases of such a morphism and show that the generating
function for such bases is strongly log-concave.

28



Okounkov’s log-concavity conjecture for Littlewood–Richardson coefficients
is proved for the case of Kostka numbers in the paper [91], and the fact that the
Chow ring of a polymatroid yields a Kähler package is established in [92]. The
paper [93] is a significant continuation of [79], while in [94] the authors introduce
three equivalence relations (valuative, homological, and numerical; definitions
1.1, 1.2, 1-3) on the free abelian group Matr(E) generated by rank r matroids
on E, and the main result of the paper (Theorem 1.4) is to prove that they
are equivalent. The techniques used rely on the combinatorics and algebraic
geometry of the stellahedron ΠE of E, for which two definitions are provided.
One is derived from the standard permutohedron and the other is expressed as
the Minkowski sum of the independence polytopes of the uniform matroids Ur,E

for r = 0, . . . , n (the bases of Ur,E are all size r subsets of E).
Finally two very recent works that offer perspectives on J. Huh’s track: [95],

about the Hodge theory of matroids, and the bachelor thesis [96], a study of
log-concavity in combinatorics, with new results, particularly on posets and
matroids.

7.51. Some recent references on Lorentzian polynomials and their applications.
[97] introduces the notion of dually Lorentzian polynomials and establishes that
“any theory that admits a mixed Alexandrov–Fenchel inequality also admits a
generalized Alexandrov–Fenchel inequality involving dually Lorentzian polyno-
mials”, and from this the authors derive such inequalities in various settings,
such as for mixed discriminants, for mixed volumes, and for integrals of Kähler
classes.

The paper [98] develops a theory of Lorentzian polynomials on cones and
provides several characterizations of them. It introduces the notion of hereditary
(multivariate) polynomials, and offers a sharp characterization of hereditary
Lorentzian polynomials.

The set of real homogeneous polynomials of degree d in n variables that can
be represented as the volume polynomial of n convex bodies in the Euclidean
space Rn is considered in [99] and shown to be a subset of the Lorentzian
polynomials. Moreover, a classification of the cases when the two sets are equal
is provided.

The work [100] “explains connections among several, a priori unrelated, areas
of mathematics: combinatorics, algebraic statistics, topology, and enumerative
algebraic geometry”. Such connections are mediated by the theory of Lorentzian
polynomials. A surprising result is the interpretation of the number of hyper-
quadrics in Pn

C that pass through r general points and are tangent to
(

n+1
2

)
−r−1

general hyperplanes as the degree ϕ(n, r) of the statistical “general linear con-
centration model” (compactly introduced on the left column of page 4).

One important feature of [101] is to provide “the first series of examples of
hard Lefschetz classes of dimension two both in algebraic geometry and analytic
geometry”. A key result is a “local Hodge index inequality for Lorentzian polyno-
mials, which is the algebraic analogue of the local Alexandrov-Fenchel inequal-
ity obtained by Shenfeld-van Handel for convex polytopes”. In [102], the same
authors seek further applications of the theory of Lorentzian polynomials to
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algebraic geometry, analytic geometry and convex geometry. A guiding thread
of their approach is the notion of ‘reverse Khovanskii–Teissier’ inequality (rKT
in their shorthand), which has multiple connections with other themes. For
example, the result that “any theory that admits a mixed Alexandrov-Fenchel
inequality admits a rKT property” has a clear parallelism with the result in
[97] (commented above), with rKT in place of generalized Alexandrov–Fenchel
inequality involving dually Lorentzian polynomials.

The chromatic symmetric function of a graph was introduced and studied
by Stanley in 1995. Among many other details, the paper [103] conjectures
that such functions are Lorentzian. The evidence they provide is the proof of a
special case (abelian Dick paths, which are presented in section 2.3).

An interesting application of the ‘Lorentzian approach’ is found in [104]:
the authors show that the coefficients of ∆L(−t) (where ∆L(t) is the Alexander
polynomial of a special alternating link L) form a log-concave sequence with no
internal zeros, hence it is also a unimodal sequence. This settles (in a stronger
form) a case of a long standing conjecture of Fox, which claims the said uni-
modality for arbitrary alternating links. Here it seems reasonable to expect
that log-concavity holds also for arbitrary alternating links, a point made by
Stoimenow (2005) and stressed by J. Huh in his lecture at the ICM-2018 (Rio
de Janeiro).

We end this point with a few words about [105], which extends previous
works of the author in several directions that bridge over to the Lorentzian
realm and beacons a message that deserves a careful study by algebraic geome-
ters interested in such discrete connections to intesection theory. The focus of
its first part is on covolume polynomials, which are defined as “limits of positive
multiples of polynomials whose coefficients are multidegrees of irreducible alge-
braic subvarieties of products of projective spaces”. This appears to be a notion
dual of volume polynomials studied in [72]. Indeed, after their normalization by
the operator N introduced in [72], covolume polynomials turn out to be dual
Lorentzian polynomials (in the sense of [97]), while volume polynomials of pro-
jective varieties are Lorentzian (cf. §6.48). In any case, covolume polynomials
are ‘sectional long-concave’, a notion that plays for such polynomials the role
of ‘sectional ultra-log-concave’ enjoyed by Lorentzian polynomials. The second
part of the paper is devoted to the Segre zeta function ζI(t1, . . . , tℓ), a power
series in the variables t1, . . . , tℓ that depends on a list of multihomogeneous
polynomials I of multidegree (n1, . . . , nℓ). This zeta function turns out to be
a rational function (Theorem 3.2 of the paper) and encodes information on the
Segre classes of Z(I) ⊆ Pn1 × · · · × Pnℓ , where Z(I) is the subscheme defined
by I. The main result is that the homogenization of the numerator of 1−ζI (call
it hI) is a covolume polynomial, and that the homogenization of the numerator
of ζI is also a covolume polynomial provided that the projective normal cone of
Z(I) is irreducible. Actually the author conjectures, on experimental evidence,
that hI is Lorentzian. The third and last part of the paper is devoted to appli-
cations to adjoint polynomials of convex polytopes and the main result is that
they are covolume polynomials in the case of convex polyhedral cones contained
in the non-negative orthant and sharing a face with it. As expressed by the
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author, it is conceivable that the result is valid without the face condition, and
that the said covolume polynomials are Lorentzian afte normalization.

7.52. Notes on the standard conjectures. While Grothendieck’s standard con-
jectures (cf. §4.34) provided elegant proofs of three of the Weil conjectures,
they have hitherto not delivered a proof of the Riemann-Weil conjecture, which
yielded, as recalled in §4.32, to a different approach by Deligne.

After presenting an enlightening historical synopsis, the paper [106] proves
the standard conjecture of Hodge type for abelian fourfolds in characteristic p.
The author relies on p-adic Hodge theory. The paper also proves that numerical
equivalence for such fourfolds agrees with ℓ-adic cohomological equivalence for
infinitely many primes ℓ, which falls short of getting the agreement for all primes
ℓ ̸= p (ℓ-independence) required by the conjecture.

A systematic approach to what is known about the standard conjectures and
their relations to other conjectures, is offered in the papers [107] and [108]. All
in all, they are technically quite demanding, as they depend on many previous
works, and for the most part fall outside the scope of our paper. The first
deals with consequences of the Lefschetz type conjecture for irreducible smooth
projective varieties X over F̄p (p a prime number). For instance, the standard
conjecture of Hodge type for abelian varieties in characteristic p follows from
the Lefschetz conjecture for all X [107, Theorem 2], and also that the standard
conjectures for X are a consequence of the full Tate conjecture. This conjecture,
which predicts that ℓ-adic Tate classes are algebraic, is studied in the second
paper. In particular it is proved [108, Theorem 2.8] that if the Tate and standard
conjectures are true for X and one ℓ ̸= p, then they are true for X and all
ℓ ̸= p. Obviously, this conditional statement does not reach to guarantee the
independence of ℓ in Ancona’s (unconditional) theorem.

Since the standard conjectures were tied to the theory of motives from the
very beginning, we just provide a few basic references on this topic: [109], [110],
[111], [112], and [113].

7.53. Extras. It is no secret that combinatorics has rendered many services to
other branches of mathematics, as for example probability theory and theoretical
physics, often through a background of probability concepts. Ready examples
are found in statistical physics, for example. The book [114] is an excellent recent
compendium of this topic (for a recent review of the comprehensive five-volume
collection of these authors, to wich the cited volume belongs, see [115]). The
Feynman graphs (or diagrams) in quantum electrodynamics, used for probability
computations, is another illustration.

Now it is rather alluring to find that pure combinatorics can go a long way
to provide a solid foundation for quantum field theory. This perspective is
epitomized by the rather brief text [116]. Its combinatorics basis is very explicit
and forceful (cf. for example [116, §5.2], on “combinatorial physical theories”).
It is interesting to realize that all along you encounter topics and problems for
further research.

For people interested in mathematical foundations of quantum field theory,
combinatorial or otherwise, perhaps also in research problems stemming from
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those foundations, the great treatise [117] should be very welcome. Its au-
thor was awarded the 2024 Abel Prize “for his groundbreaking contributions
to probability theory and functional analysis, with outstanding applications in
mathematical physics and statistics” and the following quote summarizes its
aims and scope (our emphasis):

QFT is one of the great achievements of physics, of profound interest
to mathematicians. Most pedagogical texts on QFT are geared to-
ward budding professional physicists, however, whereas mathemati-
cal accounts are abstract and difficult to relate to the physics. This
book bridges the gap. While the treatment is rigorous whenever pos-
sible, the accent is not on formality but on explaining what the physi-
cists do and why, using precise mathematical language. In particu-
lar, it covers in detail the mysterious procedure of renormalization.
Written for readers with a mathematical background but no previ-
ous knowledge of physics and largely self-contained, it presents both
basic physical ideas from special relativity and quantum mechanics
and advanced mathematical concepts in complete detail. It will be of
interest to mathematicians wanting to learn about QFT and, with
nearly 300 exercises, also to physics students seeking greater rigor
than they typically find in their courses.”

As final note, let us mention a return to the continuous from the discrete in
the form of combinatorial approaches to algorithmic learning, like graph learning
in general and manifold learning in particular. There is a growing number of
contributions to these topics in recent times, as for example [118] (and the
references mentioned there) and the surveys [119] and [120]. Connected to this,
let me point to the announcement [121].
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vol. 52, pp. 137–252, 1980. Numdam pdf�.
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[110] P. Deligne, “Hodge cycles on abelian varieties,” 2003. JS Milne pdf�. A TeXed
copy of Hodge cycles on abelian varieties (the notes of most of the seminar
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