Sobre puntos y coordenadas

S. XaMBO DESCAMPS

En mathématique aussi, il y a bien entendu des spécialités qu’on nomme
analyse, géometrie ou algébre. Mais ces spécialités n’ont pas d’existence
permanente et les lignes de démarcation se décplacent et changent
continuellement. Parler de spécialités rigidement établies en mathématique
est certainernent un non-sens. Les mathématiciens qui se spécialisent
étroitement se condamment A une vue incompléte de la mathématique
contemporaine.

A. Weil [1961]

INTRODUCCION

En su Géométrie Descartes nos reveld, entre otras maravillas, la posibilidad de
construir y estudiar entes geométricos, conocidos o nuevos, por medios puramente
algebraicos. Se trata de un puente entre dlgebra y geometria con trénsito en los dos
sentidos, ya que las ideas geométricas condicionan a su vez los conceptos algebraicos
que a ellas se asocian. Una ilustracién elemental y bien conocida, pero fundamental,
de este influjo reciproco es el desarrollo gradual del dlgebra lineal en el siglo pasado,
como (trasunto intrinseco de las coordenadas, hasta perfilarse como el lenguaje
natural de las geometrias lineales usuales (afin, métrica, proyectiva e hiperbélica) y
llegar a ser, por su versatilidad, en una de las materias matematicas més bdsicas, en
parte debido a que, en breves y sugestivas palabras de Manin [1981, p. 8'y 9], 10 lineal
no es mas que una idealizacién de «pequefias perturbaciones arbitrariamente gran-
des» y que «a pequena escala todo puede ser linealizado».

El tema es pues el de las relaciones entre dlgebra y geometria, bien sean en la
direccién de algebraizar ésta o en la de geometrizar aquélla, e incluso, mis en
general, el de las relaciones entre sistemas matemdticos dispares, como entre
polinomios, cuerpos y grupos en la teorfa de Galois de las ecuaciones, o entre
revestimientos no ramificados de un espacio topolégico y subgrupos del grupo
fundamental de la base. Es un tema recurrente cuyo cultivo ha movilizado medios
cada vez mis refinados. A los ejemplos mencionados (el dlgebra lineal, la teoria
de Galois y la teorfa de Poincaré del grupo fundamental) se podrian afiadir muchos
otros. Aqui queremos citar los siguientes:

(a) Los trabajos de Boole [1847, 1854] sobre logica algebraica.

(b) La versién puramente algebraica de la teorfa de las superficies de
Riemann compactas, debida a Dedeking y Weber [1882] (para una exposicion
reciente véase Lang [1982]).
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(c) Los resultados de Hilbert [1890] sobre anillos de polinomios ¥ que esen-
cialmente constituyen los fundamentos algebraicos sobre los que descansa la
teoria moderna de las variedades algebraicas en el sentido de Serre [1955].

(d) Las investigaciones de Stone [1934, 1936, 1937] sobre determinadas
relaciones entre la l6gica algebraica y la topologia, las cuales han evolucionado
en la direccién que algunos llaman «algebraizacién de la topologfa» y otros
«topologia sin puntos» (a este respecto se puede consultar el libro Johnstone
[1982], o el articulo Johnstone [1983], en los que este tema es considerado con
detalle).

(e) La teorfa espectral de S. Mazur e I. Gelfand (véase, por ejemplo,
Gelfand-Raikov-Chilov [1964], Naimark [1972]).

(f) El desarrollo de la geometria algebraica contemporénea, impulsando
principalmente por A. Grothendieck, como una sintesis, abogada ya por Kronecker,
de las ideas de geometria algebraica y las de la teorfa algebraica de nimeros
(Grothendieck-Dieudonné [EGA], Grothendieck et al [SGA].

(g) Lateoriadelas supervariedades (diferenciables, analiticas o algebraicas)
y de los grupos cudnticos (véase, por ejemplo, Manin [1984, 1988 b] y Manin
[1988 a]), o, mas en general, la llamada Geometria no conmutativa(véase Connes
[1990]).

Estos puntos, que sin duda son capitales para poder formarse una perspectiva
histérica de las interacciones del dlgebra con otras materias, aportan, si son
tenidos en cuenta, un enriquecimiento substancial del fondo de ideas en el que la
docencia y la investigacién hallan su tltimo sustento. Pero no es facil encontrar
textos asequibles que nos sirvan de gufa en estos territorios, especialmente a los
noiniciados. Siconsideramos, por ejemplo, la geometria algebraica de Grothendieck,
incluso la versién pedagdgica de Hartshorne [1977] exige un tiempo muy dilatado
de estudio, ya que a las casi 500 paginas del texto se deben afiadir, si se quiere
asimilar con éxito, un texto previo de variedades algebraicas y otro de dlgebra
conmutativa. Pero incluso tras arduos estudios pueden atn quedar ocultas las
razones profundas por las cuales el espacio de ideales primos de un anillo encierra
el secreto de la unificaci6n entre geometrfa algebraica y aritmética, o las raices que
explican, nutriendo el presente desde el subsuelo de la historia de las ideas, porqué
dicho espacio es denominado «espectro» del anillo. ; Tendra alguna relacién este
1so de la palabra espectro con el uso ordinario en fisica atémica, como en «el
=spectro del litio»?

En estas pdginas discutiremos algunas ideas elementales relativas a las
nteracciones entre el Algebra y otras ramas de las Matematicas, principalmente
iquéllas que tienen mds relieve para la geometria algebraica, M4s concretamente,
lescribiremos algunos de los procesos bdsicos que llevan de un modo natural de
objetos geométricos, en un sentido amplio, a objetos algebraicos, especialmente
nillos, y también los que nos permiten reproducir aquéllos a partir de éstos, esto
S, que nos permiten asociar un objeto geométrico a uno algebraico, digamos un
millo. En la medida de lo posible, discutiremos algunos ejemplos con objeto de
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hacer mis tangible la potencia, consubstancial con el suefio de Descartes, que
estas ideas aportan.

Se ha de advertir que los temas aquf tratados son bien conocidos por los
correspondientes expertos, siendo el objeto de estas ‘notas no mas que un inte‘nto
de exponerlos al nivel mds elemental y autocontenido que nos ha SlldO posible
alcanzar a fin de que pueda ser titil para el mayor niimero de lectores, incluyendo,
naturalmente, a los estudiantes de Matemiticas. Estos tal vez puedan leerlo con
provecho para percibir con mds discernimiento la naturaleza de algunos de los
estudios que pueden emprender y la de su continuacion, si llegare éste a ser el caso,
en una carrera de investigacién.

Siendo asi que alguna de estas cuestiones (como el papel del élgebra en la
geometrfa, la optimizaciéon de la docencia y la perspectiva histérica de los:
conceptos) han sido el objeto de las fructiferas reflexiones del profesor do? Jose
J. Etayo Miqueo a lo largo de su carrera cientifica, quisiera ofrecerle estas paginas
como una expresion de mi reconocimiento a su espléndida y ejemplar labor.

Preliminares. Este epigrafe es de referencia y el lector sélo debe consultar-
lo si se da el caso de que un cierto concepto, para el cual no se da ninguna
referencia, no le es familiar. Los requisitos se reducen a nociones elementales de
algebra y topologia, e incluso algunas de ellas se revisan brevemente.

Todos los anillos se supondrédn no nulos con unidad y por homomorfismo de
anillos entenderemos un homomorfismo de la suma y del producto que transforma
la unidad en la unidad. Si no se dice explicitamente lo contrario, los anillos se
supondrin conmutativos. SiA es un anillo y J es un ideal de A, para todo elemento
a € A pondremos a(I) para denotar la clase de restos de @ médulo 7, de modo que
a > a(I) coincide con la proyeccién canénica de A en el cociente A/L

Un dominio es un anillo que carece de divisores de cero no nulos, esto es, en
el cualax=0ya#0implicanx=0. Unideal p de A se dice que es primo (maximal)
si A/p es un dominio (un cuerpo), esto es, si axe py a ¢ p implican xe p
(respectivamente, si para todo a € A —p existe un b € A tal que ab — 1 € p).

Como es costumbre, pondremos Z, @), R y  para denotar, respectivamente,
el anillo de los miimeros enteros, el cuerpo de los niimeros racionales, el cuerpo
de los nlimeros reales y el cuerpo de los mimeros complejos.

Si ¢: A — B es un homomorfismo de anillos y J es un ideal de B, ¢ J.es
un ideal de A, Puesto que la composicién de ¢ con la proyeccién candnica
B — B/J tiene niicleo ¢! J, vemos que ¢ induce una inclusién

A/ T < B/T

En el caso de que J sea primo, entonces ¢~ J también lo es, pues si B/J es un
dominio, también lo es A/0™' J. La inclusién de Zen Qy el ideal {0} de @ prueban
que la imagen inversa de un ideal maximal no es, en general, un ideal ma‘x%mal.

Un elemento a de un anillo se dice nihilpotente si existe un entero positivo n
tal que a" = 0. El conjunto de elementos nihilpotentes coincide con la intersec‘cién
de todos los ideales primos. En efecto, es claro que todo ideal primo p contiene
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a cualquier nihilpotente a, pues si a" = 0, entonces a" € p y por tanto a € p.
Viceversa, sia no es nihilpotente, veremos enseguida que el lema de Zorn permite
hallar un ideal p que es maximal entre los que no contienen ninguna potencia de
a 'y que este ideal resulta ser primo, con lo cual estamos en presencia de un ideal
primo que no contiene a a,

He aqui la linea general de la demostracién de los dos 1iltimos asertos. Por
hipétesis el ideal {0} no contiene ninguna potencia dea, y si una cadena de ideales
no contiene ninguna potencia de a, entonces la unién conjuntista de los mismos
es un ideal que no contiene ninguna potencia de a. Asf pues existe un ideal p que
es maximal entre los que no contienen a a. Veamos que p es primo. Si x, y & p,
entonces los ideales p + (x) y p + (y) contienen propiamente a p y por tanto cada
uno de ellos contiene una potencia de a. Asi pues existen b,c € A,s5,t € p y enteros
positivos n,m tales que a" = s + bx, a™ = t + cy, de donde

a™*"=z+ (bc)xy), ze p

Como a™" ¢ p, inferimos que xy & p.

Un anillo que no tiene elementos nihilpotentes no nulos se dice que es
reducido.

Usaremos los siguientes lemas de confinamiento de ideales: (1) si un ideal estd
contenido en la unién conjuntista de un nimero finito de ideales primos, entonces
el ideal estd contenido en uno de ellos, y (2) si un ideal primo contiene la
interseccién de un niimero finito de ideales, entonces dicho ideal primo contiene
a uno de ellos.

Si B es un anillo y A un subanillo de B, un elemento » € B se dice que es
algebraico sobre A si existen elementos ay....a_ € A, no todos nulos, tales que

ab'+ab " +..+a b+a =0
0 1 n-1 n

Si podemos tomar a, = 1, se dice que b es un elemento entero sobre A. Los
elementos de B que son enteros sobre A forman un subanillo de B, llamado cierre
entero de A en B. As{ pues resulta que la suma y el producto de elementos enteros
son elementos enteros.

Dado un cuerpo k, a los anillos que contienen a k como subanillo los
llamaremos k-4lgebras. Unmorfismo de k-4lgebras es un morfismo de anillos que
restringido a k es la identidad.

SiA es unak-ilgebra yx ,...,x, son elementos de A, pondremos kfx,,....x | para
denotar el subanillo de A formado por las expresiones polinémicas en x sk CON
coeficientes en k. Diremos que una k-dlgebra A es finitamente generada sobre k
si existen XX € Atales que A = kfx,..x].Si T \»-»1, s0n indeterminadas,
pondremos k[ T,,...,T ] para denotar el anillo de polimonios en las indeterminadas
T,,...,T, el cual es una k-dlgebra finitamente generada sobre k. Es importante
tener presente que dar un morfismo de k-dlgebras &: k/[T,,....T ] — A equivale a
dar un elemento a = (a,,....a ) € A”: @ es el tinico morflsmo de k-dlgebras tal que
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o(T) = a, de modo que ¢ es el homomorfismo ¢, de evaluacién en a, ¢ (q) = q(a)
para todo polimonio g. .

Si k es un cuerpo v T una indeterminada, es facil verificar que k[T coincide
con su propio cierre entero en k(7)) (el cuerpo de funciones racionales en T con
coeficientes en k), lo cual se enuncia diciendo que k[T] es integramente cerrado.

Usaremos el teorema de la base de Hilbert, segin el cual todo ideal de
k[T,...T, ] es finitamente generado.

Se dice que un cuerpo k es algebraicamente cerrado sitodofe k{T] de grado
n > 0 con coeficientes en k tiene una raiz en k, esto es, si existe ¢t € k tal que f{1)
= 0. En tal caso existen elementos a,t,....t € k,t = 1, tales que f = a(T — 1 )...
(T—1t ). Sik es un cuerpo algebraicamente cerrado y K es un cuerpo que contiene
ak con dim K <o, entonces K = k. Es decir, un cuerpo algebraicamente cerrado
no tiene extensiones finitas no triviales.

El cuerpo C es algebraicamente cerrado (teorema fundamental del dlgebra).

1. SOBRE PIXELES Y ANILLOS DE BOOLE

And again it turns out, as always, that the visible must be explained in terms
of the invisible.

Manin [1981], p. 57

Esta seccién tiene por objeto mostrar, en un caso particularmente simple, casi
de juguete, las relaciones fundamentales que aparecen al analizar ciertos anillos
de funciones, sus ideales primos y los puntos sobre los cuales las funciones toman
sus valores. En secciones sucesivas veremos que el «paradigma» resultante tiene
analogos en contextos tales como la geometria algebraica o el andlisis funcional.

Pixeles y estados de una pantalla, Nos podemos imaginar una pantalla
grafica (monocroma y sin otras tonalidades que el claro y el oscuro) como una fina
reticula de mintsculas bombillas. A estas bombillas se las denomina, en el argot
informdtico, «pixeles». Si un pixel estd apagado, diremos que estd en el estado 0
y si esta encendido, en el estado 1. As{ pues el conjunto de estados posibles de un
pixel es Z, = {0,1}. Nétese que Z, tiene una tinica estructura de anillo para la cual
0 es el neutro de la suma.

Sea ahora X un conjunto. Para estimular la imaginacién, podemos pensar que
X es el conjunto de pixeles de una determinada pantalla. Como un estado de la
pantalla viene determinado por la lista de los pixeles que estin encendidos, vemos
que dar un tal estado equivale a dar un subconjunto de X. Ahora bien, dar un
subconjunto de X equivale a dar una aplicacién a: X — Z,: si ¥ es un subconjunto
de X, la aplicacién que le corresponde es la funcién caracteristica X, de Y,

{lsixe Y
XX =|0sixe ¥
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€ inversamente, si o X — Z, es una aplicacién, el subconjunto de X que ella
determinaes D(@) = {x e X: ofx)=1}, 1éase dominio de @, que es el complemen-
tario del conjunto Z(¢): = {x e X | ofx) = 0}. Asf pues

XDW = (xy D(xy) = Y

Notese que si x € X, entonces X, €s 1a funcién que toma valor 1 en x yOen
los demads elementos de X ¥ que si X)»-...X_son elementos distintos de X, entonces
Xty = X +oo+ X, donde para simplificar ponemos X_en lugar de Xy

El anillo de estados. E] conjunto F(X, Z,) de las aplicaciones de un conjunto
X en Z, tiene estructura de anillo. Recordemos que el conjunto F(X,A) de las
aplicaciones de un conjunto X en un anillo A, que siguiendo la costumbre
llamaremos funciones de X a valores en A, constituyen un anillo que contiene una

copia del anillo A. En efecto, 1a suma y producto de funciones se define por las
reglas usuales:

(+B)x) = ofx) + B(x), (of)(x) = ofx)B(x)

y un elemento a de A se identifica con la funcién constante x — « para todo x de
X.

La biyeccién del epigrafe anterior nos permite transportar la estructura de
anillo de F(X, Z,) al conjunto P(X) de subconjuntos de X. Puesto que X, X, vale |
€xactamente en los elementos de ¥  Z, Y que X, + X, vale 1 exactamente para los
elementos de la diferencia simétrica ¥ A 7 (elementos que estén en ¥ pero no en
Z 6 en Z pero no en Y), vemos que P(X) es un anillo tomando como suma la
diferencia simétrica y como producto la interseccidn.

Anillos de Boole. Un anillo de Boole es un anillo A para el cual a? = g para
todoa € A. Por ejemplo, F(X, Z,), y por tanto P(X), es un anillo de Boole. Repérese
en que todo anillo de Boole es conmutativo, ya que de un lado g + b = {a+b)=
a+ab+ba+b’=a+b+ab+ ba, de donde ab + bg = 0, cualesquiera que sean
a,b € A, y del otro, poniendo b = a, hallamos que @ + a = 0 para todo g (equivale
a—a = a), de donde ba = —ab = gb para todo g y b.

1.1. SiA esundominio de Boole, esto es, un anillo de Boole sin divisores de
cero no nulos, entonces A es isomorfo a Z,

Enefecto, siae A, dea? =a se deduce queafa—1)=0. SiA no tiene divisores
de 0, entonces seria=06a— | = 0.

Como corolario tenemos:

1.2. SiA esun anillo de Boole Y P es un ideal primo de A, entonces A/p es
candnicamente isomorfo a Z,. En particular, todo ideal primo de A es un ideal
maximal,

En efecto, A/p es un anillo de Boole, por serlo 4, y es un dominio, por
definicién de ideal primo. [J

La composicionA — Ajp = Z, es elinico morfismo v, de A en Z, cuyo nicleo
es p,
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0 siaep
Bpla) = 1 siae¢p

Como la clase médulo p de un elemento a € A es a.(p), vemos que afp )_ se
orresponde con v (a) por el isomorfismo del corolario 1.2:bI.En1 lo lsuqta’51vo
: y a itido escribir la relacién
identificaremos A/p con Z, y por tanto nos serd permit

a(p) = ya)

; ’ : : deh,
Viceversa, un homomorfismo x: A — Z, determina un ideal primo p_ P,

= x). Obsérvese que
i xa) = v, (a) = a(p,)

Pongamos i{A) y AA) para denotar el conjunto de homomorfismos deA en Z,
njunto de ideales primos de A. Entonces tenemos: ‘
4 ellcg : Dado un anillo de Boole A, la correspondencia x = p. nos fia una
biyeccidn entre el conjunto M{A) y el conjunto HA). La correspondencia inversa
esph V. :
pCom{J; se ha dicho, ker( v)=p. I%or otra parte, p_es el nicleo de x y de v de

de x = v_para todo x € AA). , , -
donTerem;xge representacién. Sea A un anillo de Boole e 1dent1f1queAmOS X
= M{A) con 2= HA) por medio de las biyecciones (1.3). Dadoa € A, sead: ¥—
Z, la aplicacion definida de la siguiente manera:

d(x) =x(a) = a(p,)

De este modo tenemos una aplicacion p: A — F(X7Z,), a I—)‘&. Se compr}ﬁaba
sin ninguna dificultad que esta ap]icgcién es un homgmorflsmo de amt (()15(;
Veamos que p es inyectivo. En efecto, §1 4 =0, ello significa que a T‘ p para i) -
ideal primo p de A y por tanto a es nihilpotente. Pero entonces la relacién a =
impli = 0. .
Impllilflasﬁtrfa? hemos demostrado que todo anillo de Boole A es isomorfo a %11’1
subanillo del anillo F(X,Z,), siendo X el conjunto fle homomorﬁsmqs de A refn Z(;
o el conjunto P(A) de los ideales primos de A. Teniendo en cm?nta el IS?mo 1%1)
entre F(.XZ,) y P(Y) (por el cual & se corresponde con el. f:on:]unto D(d) c AA)),
queda demostrado el siguiente «teorema de representacidn»: . "

1.4. Sea A un anillo de Boole y Xel conjunto de hamomozﬁsmos de A e;? dz
o el conjunto de sus ideales primos. Entonces un monomorfismo natural (de

] < P(x. U _ _
amlg);u)vjrvaciéf;v Los conjuntos D(d#) < AA) coinciden con los COHJI{nth
entornados (es decir, simultdneamente abiertos y cerrac%os) de una topologia le
AA). Con esta topologia resulta que .{{A) es un espacio de Boole (U(;l ez;;a;:;z
topolégico compacto y Hausdorff en el que todq abjerto es la lilll’ll n s
conjuntos entornados que contiene) y que todo espacio de Boole X es omfom o
al espacio A{A(X)), donde A(X) es el dlgebra de Boole de los conjuntos entorna

de X (véase Halmos [1962], § 18).
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Pixeles ¢ ideales primos.  Estudiemos ahora el caso del anillo F(X,Z,), X un
conjunto. Dado un elemento x € X, podemos considerar el homomorfismo
F(X,7,) — Z, dado por & = o(x). Dado que dos elementos distintos de X dan
homomorfismos distintos, podemos identificar X a un subconjunto de A{F(X,Z,)).
Nétese que el ideal primo p_que corresponde a un punto x estd formado por los
elementos a € A tales que a(x) = 0, y que x(a) = a(x), donde a la izquierda x se
interpreta como un homomorfismo de A en 7, y a la derecha como un elemento
de X,

Si nos restringimos a conjuntos finitos, lo cual es el caso para el conjunto de
pixeles de una pantalla, entonces se tiene:

1.5. Las correspondencias X +— F(X,Z,) y A — XA), la primera de
conjuntos finitos a anillos de Boole finitos y la segunda en sentido contrario, son
inversas una de la otra (salvo biyecciones candnicas). Es decir, para todo
conjunto finito X, existe una biyeccién natural entre X y {F(X,Z)), y para todo
anillo de Boole finito A existe una biyeccion natural entre A'y F(XA),Z,).

Se trata de ver, sip es un ideal primo de F(X,Z,), que existe una x € X tal que
p = p, (como hemos dicho ya, x es entonces tinico). A tal fin basta ver, por ser p
maximal, que existe x € Xconp Cp.

Para buscar una x con esta propiedad, notemos primero que si p no estd
contenido enp, entonces la funcién caracteristica .1, del punto x estienp: sices
un elemento de p con oyx) # 0, entonces .t = X0 € p. Asf pues sip no estuviese
contenido en ninglinp , entoncesp contendrialasumaX.x, dondex recorre X, suma
que es la unidad del anillo F(X,Z,).

También tenemos que comprobar que siA es un anillo de Boole finito, y o.una
funcién de .¥= XA) a valores en Z,, entonces ¢ = d para un cierto a de A. A tal
fin basta ver que dado un ideal maximal p, existe un elemento atalque a & p y
de modo que a pertenece a cualquier ideal maximal distinto dep (es decir, tal que
4 =1 . Pero esto es una consecuencia directa del segundo lema de confinamiento
de ideales: este lema nos muestra que la interseccién de los ideales maximales
distintos de p (s6lo hay una cantidad finita de ellos) no puede estar contenida en
p, ya que de otro modo llegarfamos al absurdo de que p contendria uno de dichos
ideales. [

Observaciéon. Para todo entero positivo n,

Z! = F({1,...n}.Z,)

es un dlgebra de Boole con n ideales primos. La anterior proposicién muestra que
si A es un algebra de Boole finita con n ideales primos, entonces A es isomorfa
az'

Homomorfismo de anillos de Boole. Si X y X’ son conjuntos y f: X — X’
es una aplicacién, entonces la transformacion

f*: F(X',Z) - F(X,Z)
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definida por larelaciénf*(¢’) = @’ of, es un homomorfismo de anillos. Pongamos
¢ =f* y veamos que ¢ permite reconstruir f; en el caso en que X y X’ sean finitos.
En efecto, siinterpretamos los puntos deX(respectivamente, X ) como homomorfis-
mos de F(X,Z,) en Z, (respectivamte de F(X’, Z,), entonces f = ¢* (por definicién
o*x =x00), pues paratodox € X, o’ € F(X',Z,),

(P*x)(e’) = (x 0 (') = x(¢(a’)) = x(e’ 0 f) = (& 0 f)(x) = &’(fx) =
= (fr)(ex’)

Nétese que la reconstruccién de f a partir de ¢ en términos de ideales primos
consiste en que la relacién f{x) = x” equivale a

o'(p)=p,

No es ahora diffcil ver que la aplicacién f+ ¢ es una biyeccién entre el
conjunto de aplicaciones X — X' y el conjunto de homomorfismos de anillos
F(X',Z,) — F(X,Z,). Junto con el teorema de representacién, vemos que las
biyecciones de (1.5) son categoriales, en el sentido que inducen biyecciones entre
el conjunto de homomorfismos A’ — A entre dos dlgebras de Boole finitas A’ y
A, y el conjunto de aplicaciones de .{{A) — HA’). En otros términos, la «geome-
tria» de los conjuntos finitos equivale al «dlgebra» de las dlgebras de Boole finitas.

2. SOBRE CONJUNTOS CARTESIANOS

The archetype of an m-dimensional geometrical object is the number space

%‘{“ or, from the time of Descartes, the ring of polynomial functions
Koy X1
e R

Manin [1984], p. 51

Existe una equivalencia entre, de un lado, conjuntos algebraicos y aplicacio-
nes algebraicas entre los mismos (estos conceptos se definen en los epigrafes que
siguen) y, del otro, dlgebras finitamente generadas reducidas sobre un cuerpo
algebraicamente cerrado k y homomorfismos entre las mismas. Esta equivalencia
es andloga a la que hemos establecido en la seccién anterior. Se basa en el teorema
débil de los ceros de Hilbert (2.2), que juega aqui el papel andlogo al que ha jugado
antes el enunciado (1.2). Esta correspondencia serd usada para establecer que la
«geometria» de los conjuntos algebraicos es equivalente al «dlgebra» de las k-
dlgebras reducidas finitamente generadas sobre k.

Conjuntos algebraicos. Si k es un cuerpo infinito, podemos interpretar el
conjunto k", siguiendo la prescripcién de la geometria analitica de Descartes,
como un «espacio geométrico» (afin). Los polinomios g € k/T,....T ] en las
indeterminadas T, con coeficientes en k, proporcionan funciones k" i>' kx—
q(x). Siendo k infinito, se puede identificar cada polinomio con la correspondien-
te funcio6n, toda vez que si g(x) = 0 para todo x € k" entonces ¢ = 0. Hablaremos
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en este caso de polinomios o funciones polinémicas, indistintamente. Por ejem-
plo, T, es la i-ésima funci6n de coordenadas, T(x,....x,) = X.

Las figuras «cartesianas» del espacio k" son los subconjuntos dados por un
niimero finito de ecuaciones polinémicas. Mas precisamente, un subconjunto X de
k" se dice que es algebraico si existen polinomios f,...,f, de n variables con
coeficientes en k tales que X = Z(f,.....f ), donde

Z(f o) = (x € K" | fi(x) = ... = (%) = O}

Obsérvese que Z(f,,....f,) = Z(f,) N...0 Z(f ). A los conjuntos de la forma Z(f),
f#0, se les denomina hipersuperficies (curvas planas paran = 2, superficies para
n = 3). Si el grado total de fes d, se dice también que Z(f) tiene grado d. Las
hipersuperficies de grado 1 son los hiperplanos (rectas para n = 2, planos paran
=3) y las de grado 2 las hipercuddricas (cénicas paran = 2, cuddricas paran = 3).

Geometria algebraica y geometria diferencial. Si fuese k = R (6 ©), el
teorema de la funcién implitica nos dice que si d f,....d f, son linealmente
independientes en todos los puntos x € X = Z(f,,...,f ), entonces X es una variedad
diferenciable de dimensién n — r (respectivamente una variedad compleja de
dimensién (compleja) n — r). Claro, la conclusion es vélida para funciones mucho
més generales que los polinomios: si f,,....f, son funciones ¢ en un abierto U de
R (respectivamente funciones analiticas en un abierto U de V), entonces

X = Zf,f): = {x€ Ulf(x)= ... =f = 0}

es una variedad diferenciable de clase ¢y dimensién n — r (respectivamente una
variedad compleja de dimensiénn —r) sid_f,,....d f, son linealmente independien-
tes sobre R (respectivamente sobre C) en todos los puntos de X. He aqui pues un
contraste entre los puntos de vista que inicialmente inspiran al gedmetra algebraico
y al geémetra diferencial: mientras aquel se restringe a la consideracién de
polinomios, en principio sobre un cuerpo (y atin un anillo, como veremos)
cualquiera, como funciones primordiales de su dominio, sin imponer ninguna
restriccion adicional, éste considera funciones mucho mds generales, pero sujetas
a condiciones locales de independencia que garanticen la lisitud de los objetos en
cuestién. El territorio comiin visible desde esta perspectiva estd formado entonces
por los subconjuntos algebraicos lisos de R" (6 "), a los cuales se puede en
principio aplicar, como asi realmente se hace, cualquiera de las dos metodologias
(o ambas a la vez). Entre ambas disciplinas existen muchos otros nexos, mas o
menos recoénditos, pero la exploracidn de los mismos cae fuera del objeto de estas
piginas.

El espiritu del gedmetra algebraico cliasico. Una buena porcién de la
filosoffa que impulsa al gedmetra algebraico al aceptar las anteriores definiciones
(relativas a conjuntos algebraicos) se puede adivinar por su modo de tratar
analiticamente, por ejemplo, las rectas del espacio. Vedmoslo de un modo muy
resumido. Sea I el conjunto de rectas de k* y sea £ € T'. Tomemos dos planos
paralelos distintos 7 y @', no paralelos a {. El subconjunto I') ¢ I" formado por
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las rectas que no son paralelas a dichos planos estd en correspondencia biyectiva
con el productomx 7’, asignando acadarectale I’ el par (/N 7, £ 7’). Tomando
coordenadas afines en cada uno de los planos, hallamos que I, estd en correspon-
dencia biyectiva conk? x k* =k*, 1o que nos da «coordenadas» para todas las rectas
de T'), que a su vez nos permiten tratarlas «analiticamente». Por ejemplo, la
condicién necesaria y suficiente a fin de que € T’ corte a £, es que los puntos (£
N, éNnm, N, { N1)sean coplanarios, cond1c1on que es «algebraica» por
cuanto se puede expresar por la anulacién de un determinante de orden cuatro
formado con las coordenadas (proyectivas) de estos puntos, el cual es un
polinomio en dichas coordenadas, con coeficientes en k. Esto significa que las
rectas £que cortan a una recta 4 dada constituyen una hipersuperficie del espacio
de todas las rectas. De hecho, haciendo las cuentas se ve que se trata de una
hipercuédrica.

En este ejemplo es también manifiesto que si k = R (6 k = C), entonces el
procedimiento descrito muestra que las rectas del espacio tienen estructura de
variedad diferenciable (compleja) de dimensién cuatro, puesto que las «coorde-
nadas» dadas por un par de planos se expresan como polimonios en las dadas por
otro par.

Funciones polinomiales. Sea X un conjunto algebraico y consideremos la
aplicacién

K(T,...T ] = F(Xk)

que a cada polinomio g en las indeterminadas 7',...,T, le hace corresponder la
funci6n g de X a valores en k obtenida por restriccién de g a X, = g|X. Dicha
aplicacién es un homomorfismo de k-dlgebras y su niicleo es un ideal I_.del anillo
k[T,,...T ] queclaramente contiene el ideal(f ,.. .of,) generado por las «ecuaciones»
que defmen el conjunto X, Entonces A(X): =k[T,,.. T /1, es isomorfo al subanillo
de F(X,k) formado por las funciones de X a valores enk que se pueden obtener por
restriccién de una funcién polinémica. Los elementos de A(X) se denominan
Junciones polinomiales de X. Es también costumbre representar el anillo A(X) con
la notacién k/X]. Si ponemos?, =T |X, es claro que A(X) = k[t,.....t ], de modo que
A(X) es una k-dlgebra flmtamente generada. Como los elementos de A(X) son
funciones, es también claro que A(X) es reducida.

El teorema débil de los ceros de Hilbert. Este resultado es la piedra
angular de esta seccién. Su andlogo en la seccién anterior es la proposicién (1.1),
que ha sido la clave del teorema de representacién. Incluimos, por su simplicidad
conceptual, una adaptacién de la demostracién de Zariski-Samuel [1960] (vol. 2,
lema de la pdgina 165) a nuestro contexto.

2.1. Sea k un cuerpo algebraicamente cerrado y A una k-dlgebra finita-
mente generada. Si A es un cuerpo, entonces A tiene dimension finita sobre k.

Tomemos elementos XX, € Atales que A = kfx,,....x J. Procederemos por
induccién respecto de r. Sl r= 0 A =k yel aserto es evxdente Supongamos pues
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que > 0. Como A es un cuerpo, el cuerpo k” = k(x,), formado por las fracciones
racionales en x, con coeficientes en k, es un subcuerpodeA yA =k’[x,,...,x ]. Por
recurrencia podemos suponer demostrado que A tiene dimensi6n finita sobre k.
Asi pues seré suficiente demostrar que k’ tiene dimensidn finita sobre k.

A tal fin consideremos una indeterminada T y los homomorfismos

0 k[T] >k fx] 2<i<P)

tales quev(7) =x, vk’ =1. Comok’[x ] tiene dimension finita sobrek’, mientras
quek’[T] tiene dimensién infinita sobre el mismo cuerpo, ker(v,) es no nuloy por
tanto existe un polinomio no nulo

fek[T]

tal que f(x) = 0. Sin pérdida de generalidad, podemos suponer que el coeficiente
de grado méximo de f, (sea n, este grado) es la unidad. Ademds, podemos poner
los restantes coeficientes con un denominador comiing € k/x, J, e incluso que este
denominador es el mismo para todos los f. Multiplicando la relacién fi(x,) = 0 por
g", vemos que existen polinomios g [T tales que g(gx,) = 0y de modo que (1) g,
tiene grado n. y su coeficiente de grado méximo es la unidad, y (2) los restantes
coeficientes de g pertenecen a k[x, J.

Para ver que k’ tiene dimension finita sobre k, sea v: k[7] — k[x,] el
homeomorfismo tal que v(7) = x,, v k = 1. 5i ker(v) # 0, digamos ker(v) = (f),
fe k[T] no nulo e irreducible, entonces la conclusion es clara, pues k[x,] = &[T}/
ker(v) = k[T1/(f) es un cuerpo de dimension finita sobre k y a fortiori k’ = k[x].

Para terminar la demostracién ser4 suficiente ver que ker(v) = 0 acarrea una
contradiccién. En efecto, en tal caso v seria un isomorfismo k[T] = k[x ]. Con
sideremos un elemento cualquiera z € k’ = k(xl). Sabemos que z = ¢(x,, ..., X))
para algiin polimonio ¢ con coeficientes en k. De la propiedad (2), pérrafo
anterior, se puede deducir sin dificultad que existe una potencia g* del polinomio
g alli definido, con el exponentes dependiente dez, tal que ¢'z es entero sobrek[x]
y por tanto tal que ¢’z € k[x,], pues k[x] = k[T] es integramente cerrado. Ello
significa que cualquier z € k(x,) se puede escribir en la forma p/g*, p € klx [ (p y
s dependientes de z, pero g es independiente del mismo), lo cual no es posible
debido al isomorfismo k[7] = k[x,] y a que k[T] no posee dicha propiedad. [

Como corolario tenemos:

2.2, Sea k un cuerpo algebraicamente cerrado, A un dlgebra finitamente
generada sobre k 'y m un ideal maximal de A. Entonces el morfismo canénico k
— A/m es un isomorfismo.

En efecto, A/m es un 4lgebra finitamente generada sobre k. Como A/m es un
cuerpo, 2.1 nos permite inferir que A/m tiene dimensi6n finita sobre k. Pero la
{inica extensién finita de un cuerpo algebraicamente cerrado k es k. [

Pondremos v, : A — k para denotar la composicién de la proyeccion candnica
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A — A/m con el isomorfismo A/m = k. Se comprueba sin dificultad que v, es el
dnico hom_omorfismo A — k de k-dlgebras cuyo niicleo es m.

The reader may need an effort of will to perceive mathematics as a tutor of our
imagination.

Manin [1981], p. xi

Reconstruccion de los puntos. Seak un cuerpo algebraicamente cerrado y
X un conjunto algeraico de k". Sea A = A(X) el anillo de funciones polinomiales
sobre X e identifiquemos k al subanillo de las funciones constantes.

Dado un punto x € X, la aplicacién de evaluacién en x, & > 0(x), s un
homomorfismo A — k. Puesto que ofx) = afx’) para todo o € A implica x = x’
(basta tomar como ¢ las funciones de coordenadas), podemos identificar X a un
subconjunto de A): = Hom . (Ak), X € A{A). De este modo nos es permitido
escribir

k=4l

x(0) = ofx)
paratodoxe Xy e A.

2.3. Se verifica que X = XA).

En efecto, sea &: A — k un homomorfismo de k-dlgebras. Pongamos x, = E( t)
yx=(x,....x ), dondet, =T/X. Seag € k[T,....T ] y g =g|X. Como q = g(,,....,),
&(g) = q(x....x ) y por tanto g(x,,....x, ) = 0 para todo g € I,. Asipuesx € X. Por
otra parte,

Xq) = G(x0X) = 4(X5.0x,) = E(F),

de donde § = x. [
Puntos e ideales maximales. Ahora si x € X = HA), p: = ker(x) =
{a € Ala(x) = 0} es un ideal maximal de A, pues

Alp =Im(x) = k.
Es inmediato verificar que
B = = Bt —x)

2.4. Laaplicacién x> p_establece una correspondencia biyectiva entre los
puntos de X y el conjunto #A) de los ideales maximales de A. La correspondencia
inversa esm > v,_.

Es claro que x = V,. yaque xy v, tienen ambos nicleo p . Por otra parte
p, =ker(v )=m. [

Aplicaciones algebraicas y homomorfismos de anillos. Sea k un anillo.
Sean X ¢ k" y X’ c k™ conjuntos algebraicos y f: X — X’ una aplicacién. Diremos
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que f es algebraica, o que es una aplicacion polinomial de conjuntos algebraicos,
si se pueden hallar polinomios g,,...,g, en las indeterminadas 7,...,T tales que
J(xy50eesX) = (G (X 300esX Drones @ (X 5., )) PATA todo punto x = (x,s..,x ) de X. Cuando
k es algebraicamente cerrado, las aplicaciones polinomiales también se denomi-
nan morfismos de conjuntos algebraicos.

Supongamos ahora que k es un cuerpo algebraicamente cerrado. Sea f> X —
X’ un morfismo de conjuntos algebraicos. Entonces la aplicacién f*:A(X’) —
F(Xk), f¥(a) = oc of, es un homomorfismo de k-algebras y es inmediato verificar
que de hechof*(A(X’)) c A(X). Asi puesfinduce un homomorfismo dek-4lgebras
fHAX) = A(X).

Sea ¢ = f*. Entonces ¢*: HA) = HA’), d*(x) = x 0 §, coincide con f cuando
identificamos X con A{A) y X’ con {A’). Omitimos la demostracién puesto que
es calcada de la que se ha dado para el caso de los anillo de Boole. En todo caso
tenemos:

2.5. La aplicacién f — ¢ establece una correspondencia biyectiva entre el
conjunto de morfismos f: X — X’ de conjuntos algebraicos y el conjunto de
homomorfismos de k-dlgebras ¢: A(X’) — A(X).

Es de notar que la relacién f{x) = x” es equivalente a la relacién ¢(p ) =p ',
de modo que, en particular, ¢’ transforma ideales principales de A(X’) en ideales
maximales de A(X).

3. SOBRE FUNCIONES CONTINUAS EN ESPACIOS COMPACTOS

Our purpose is to show... how natural and useful the Banach algebra setting
can be in harmonic analysis.

Y. Katznelson [1968], p. 194.

These features, as well as many applications, gave the book [S. Banach,
Théorie des opérations linéaires, Warszawa 1932] a great appeal, and it had
on Functional Analysis the same impact that van der Waerden’s book
[Moderne Algebra] had on Algebra two years earlier.

J. Dieudonné [1981], p. 142.

Si X es un espacio topolégico, A = ¢%X,C), el anillo de funciones continuas
de X a valores complejos, es una C-4lgebra. En esta seccidn nos ocuparemos, entre
otros, del problema de reproducir X a partir de A, tratando de poner de manifiesto
las analogias con los casos estudiados en las secciones anteriores. El resultado
clave para este fin es el teorema de Mazur-Gelfand (3.4) y su corolario (3.5), cuyo
papel es andlogo en el presente contexto al del teorema débil de los ceros de
Hilbert.

Algebras topolégicas. SiX es un espacio compacto Hausdorff y ponemos,
para todo a € A,
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kd

o] = suplor(x)
xeX

entonces|| - || =|| - [|_dota aA de una estructura dedlgebra de Banach (conmutativa
y unitaria), en el sentido de que || - || es una norma para A respecto de la cual A es
completo (0 sea, A es un espacio de Banach respecto de || - ||) y tal que

lloeBIl < fled] NG -

Recordemos que los axiomas para una norma (en un espacio vectorial
complejo A) son los siguientes: (positividad) ||lo]] 2 0y ||c] = 0 sdlo si o = 0;
(homogeneidad) ||ho|| =|A|llol| paratodoi € C, o€ A; y (desigualdad triangular)
[loc + Bl < lletl| + [IBll. La condicién de completitud es que toda sucesién de Cauchy
(respecto de la norma) sea convergente en A.

Usaremos més abajo que si A es un espacio de Banach complejoy € A un
elemento no nulo, entonces existe una aplicacion lineal continua @: A — C tal
que o) # 0. Es esta proposién una consecuencia directa del teorema de Hahn-
Banach sobre extensién de funcionales (véase Robertson-Robertson [1980],
p. 29).

Un 4lgebra normada A (no necesariamente conmutativa), con la topologia
dada por la norma, es un digebra topolégica, esto es, la suma y el producto son
aplicaciones continuas. Si A es unitaria, entonces A tiene ademds inverso
continuo, 1o que quiere decir que el grupo A* de elementos invertibles de A es
abierto en A y que la aplicacién A* — A*, o~ o, es continua.

Esquematicemos la demostracién de los dos iiltimos asertos. En primer lugar,
siee Ay |le]] <1, entonces Ia serie

o=l+e+e?+¢€ +.
es convergente enA y es inmediato que (1—€)o = 1. Esto prueba que los elementos
de la bola de radio 1 con centro en la unidad son invertibles. A continuacién
tomemos dos elementos o, € A y supongamos que o es invertible y que ||oc — B|
< |lo”YI"!. Entonces
11— o'BIl =l (e = PII < HloeHlflor — Bl < 1
y por tanto

aB=1-(1-o'P)

es invertible. Ello prueba que [ es invertible y que

31 Bt=a' Z(1-c!py

20
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Vemos pues que la bola de centro o y radio llo'lI” estd formada por elementos
invertibles. Finalmente, de Ia dltima igualdad resulta que

pl-at= X (1 -o'py, ot
j=1
de donde
B — ot < Z floc'|P]loc — BIF =
jz1

= [l |l — Bl EDIIOE“IIPIIOC — BI¥

1
Si ahora tomamos||a.— B]| < oy |loc'|l™!, entonces el segundo factor de la dltima
expresién es inferior a 2, de donde [[B™ — o'l < 2{ja”'[*|lex =Bl

To think... means to calculate with critical awareness.
Manin [1981], p. xi

Espectro de un elemento de un dlgebra topologica. Para motivar esta
definicién, consideremos primero el dlgebra A de endomorfismos de un espacio
complejo E de dimensi6n finita. Dado o0 € A, Al — 0 es no invertible si y s6lo si
ker (A — ot) # 0, es decir, si y solo si A es un valor propio de o. Si E es un espacio
de Banach complejo, y A es el algebra de sus operadores (endomorfismos
continuos), entonces dado o. € A ocurre que Al — o es no invertible siy s6lo si se
verifica al menos una de las dos condiciones siguientes: (a) el nicleo de Af — ¢
es no nulo, lo que equivale a que A sea un valor propio de o, 6 (b) la imagen de
A — o.no es todo E. En todo caso, se define el espectro de o, Eol, como el conjunto
de los A € C tales que Al — 0. es no invertible. Esta nocién fue introducida por
Hilbert, escogiendo el término por la analogia, en principio superficial, entre los
espectros de emisién de los dtomos y los conjuntos de valores propios de
operadores conocidos. Esta analogfa se convirtié en una s6lida teoria en manos de
los fundadores de la mecdnica cudntica tedrica, especialmente Heissenberg y
Schrédinger, y en una sélida teoria tras el esfuerzo fundamental de von Neumann
[1955].

Es ahora claro que la nocién de espectro es vdlida para los elementos de
cualquier 4lgebra. Pero como esta nocién sélo es realmente interesante en el caso
de ciertas dlgebras topoldgicas, nos restringimos a este caso para una definicién
formal. SiA es una C-dlgebra unitaria de Banach, y 0. € A, definimos el espectro
de o, Eo, 0 E(0), como el conjunto de los A € C tales que A — o es no invertible
en A. Nétese que la misma definicién para el dlgebra A de funciones polinomiales
de una variedad afin es irrelevante, por cuanto Ea =k para todo o0 € A no
constante.

Resolvente de un elemento. La aplicacion R C — Eo. — A% A —
(A — o0)!, se denomina la resolvente de 0.
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3.2. ElconjuntoC—-EaesabiertoenCylaaplicacion R es analftica en todo
C - Eo, es decir, R (1) es derivable como funcién de A para todo A € C — Ec.

La primera afirmacién es inmediata. Para ver la segunda, sea A, € C - Ea.y
sea A proximo a A,. Entonces A — o es también invertible y de

A=) = (A —~0)=h—A,

deducimos, tras multiplicar por R(A)R(A) y efectuar algunas operaciones senci-
1las, que

RO~ R(h) _
= ~ROWRO,

donde R = R . Tomando limite cuando A — A, y teniendo en cuenta que R(A) es
continua, vemos que R()) es derivable en A, con derivada —R(A,)%. U

Nétese que R(A) se puede desarrollar como una serie de potencias en A — A,
con coeficientes en A y convergente en norma para A en un entorno de A,

RAM=QA—o)' =R, —0)" j§0 (I-Ry—o) A=A+ A - o)y =
== (A, — )T A -AY,
=0

donde en el segundo paso hemos usado la férmula (3.1).
Como corolarios tenemos:
3.3. Paratodo ace A, C —Ea #C, es decir, Ett es no vacio.
Veamos primero que Ru(l) es acotada. Si |A] = 2||o!l,

como se deduce sin dificultad usando la relacién

Re(X) = %(1 — /),

vilida para todo A € C — Eo. Es decir, R (A) tiende a cero cuando A tiende a
infinito, de donde el aserto.

Sea ahora @: A — C cualquier aplicacién lineal continua y supongamos que
C—Eo.=C, es decir, que Eo. es vacio. Entonces (R ( A)) es una funcién analitica
entera, es decir, definida en todo € (y con valores complejos). Ademds, es
acotada, puesto que su valor tiende a cero cuando A tiende a infinito. Por el
teorema de Liouville, m(Ra(zl)) es constante. Como  es arbitraria, Ra(/l) es
constante, lo cual es absurdo. [J



78 S. Xambd Descamps

Se define el radio espectral de € A, p(), como el supremo de los médulos
|Al, variando A en Ec. Puesto que A — o es invertible para |A| > |||, como se ha
visto en la demostracién anterior, resulta que

p(o) < lod]

Vemos pues que Ex es compacto, por ser cerrado y acotado.

Teorema de Gelfand-Mazur. Como hemos dicho ya, este teorema es
andlogo, en el contexto de las dlgebras topolégicas, al teorema débil de los ceros:

3.4. Sea A como en el enunciado anterior'y supongamos que A es un dlgebra
de divisién, esto es, en la que todo elemento no nulo tiene un inverso. Entonces
A = €, en el sentido que la inclusion de C en A es un isomorfismo.

En efecto, dado o, existe un A € C tal que A — ¢ es no invertible. Como A es
un 4lgebra de division, serd a = A. [J

El teorema anterior fue publicado por primera vez, sin demostracién, por S.
Mazur (1938). La demostracion anterior es esencialmente debida a I. M. Gelfand
(hacia 1939) y variaciones de la misma se pueden hallar en muchas fuentes, entre
las que podemos destacar Gelfand-Raikov-Chilov [1964], § 4, Th. 2; Naimark
[1972], p. 173; Katznelson [1976], p. 200; y Aupetit [1991], p. 39.

La consecuencia mds importante para nuestros propésitos es el siguiente
resultado:

3.5. Sea A una C-dlgebra de Banach y m un ideal maximal de A. Entonces
A/m = C, en el sentido que el homomorfismo natural C — A/m (obtenido por
compaosicion de la inclusion € <> A con la proyeccién candnica A — A/m) es un
isomorfismo.

Como m es cerrado (ello es una consecuencia de los resultados del primer
epigrafe de esta seccién), A/m es un dlgebra de Banach con la norma del cociente.
Siendo A/m es un cuerpo, el teorema de Gelfand-Mazur nos da que la inclusién
de C en A/m es un isomorfismo. [J

Pondremos v para indicar la composicién de la proyeccién canénica A — A/
m con el isomorfismo canénico A/m = C. Es claro que v, es el tinico morfismo
de C-dlgebras cuyo niicleo es m.

Puntos e ideales maximales. Sea X un espacio topoldgico compacto y A el
anillo de las funciones continuas de X a valores complejos. Como hemos ya dicho,
A es un dlgebra de Banach con la norma

lloe] = suplox(x))
xeX

Dado un punto x € X, la aplicacién de evaluacién o > of(x) es un homomor-
fismo de (C-dlgebras (automdticamente continuo) y es sabido que af(x) = ofx’)
para todo o implica x = x’. Asi pues podemos identificar X a un subconjunto
de X(A): = HomMg(A,CE').
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Por otra parte, para cada § € X(A), p: = ker(£) es un ideal maximal de A.
Obsérvese que six € X, entoncesp estd formado por las funciones continuas nulas
enxl 01

3.6. Se verifica que X = X(A). Ademds, la correspondencia x - p_es una
biyeccion entre X y el conjunto MX) de los ideales maximales de A, siendo m
v, la correspondencia inversa.

Sélo es necesario demostrar el primer aserto, ya que los demds se prueban
como en la seccién anterior. Sea § € X(A). Entonces m = p gesun ideal maximal
de A. Si pudiésemos hallar un punto x € X tal que p_C m, entonces serfap =m,
de lo cual se deduce sin dificultad que & = x.

Notemos que si m_< m, entonces existe una funcién o € m tal que o(x) # 0
y por tanto tal que & es no nula en un entorno de x. Si la conclusién que queremos
establecer fuese falsa, existirfa, por compacidad de X, un recubrimiento por
abiertos U ,...,U y funciones continuaso. ,..., 0, € m tales que es nonulaen todo

r

punto de U, Entonces la funcién f# = Z|o.|* es una funcién continua que no se anula
en ningin punto de Xy B € m, pues|o|* = o;0; € m. Pero entonces fBes invertible
en A y esto es una contradiccién. []

A un homomorfismo de (-dlgebras de A en C se le denomia también un
cardcter del algebra A. Es por ello que el conjunto X(A) = Hom, (A,C) se
denomina elespacio de caracteres de A. Es un subconjunto del espacioA’ de todas
las aplicaciones lineales continuas de A en C.

The spectrum of a quantity is the set of all values that the quantity can take.
Manin [1981], p. 36

La teoria de Gelfand. SeaA un dlgebra de Banach conmutativa. Pongamos
X = X(A) para denotar su espacio de caracteres, Para cada 0. € A, podemos definir

una funcién ¢ € F(x,C) del mismo modo que en las secciones anteriores:
a(x) = x(a)

La aplicacién % A — F(X,C), o0 = @, se denomina la representacicn de
Gelfand de A.

Para estudiar esta representacién en algunos casos, notemos primero que

3.7.  Se verifica la igualdad

{a(x) /[x € X} =Ea

En particular resulta que p() = [[& . Como p(a) < [loy), la transformacién
de Gelfand o > @, es continua.

En efecto, si A — o no es invertible, existe un ideal maximal m tal que A — &
€ m. Perom = p , para algiin x € X, lo cual significa que x(A — &) = 0, es decir,
que A = x(o) = G (x). Reciprocamente, x(0) — o € ker(x) = p_y por tanto x(ct) —
o no puede ser invertible. [
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Esta proposicién nos muestra que X es un espacio espectral para A, en el
sentido que los elementos de A se representan como funciones complejas de X'y
ello de modo tal que la imagen de la funcién & coincide con el espectro de o

Nétese que | x(e) | < ploy <llall.

... if a space under study happens to be either a Banach algebra, or the dual
space of one, keeping this fact in mind usually pays dividens.

Katznelson [1968], p. 194

Teoremas Tauberianos. Es éste el titulo del libro en el que Norbert Wiener
publicé su demostracion, bastante complicada, segiin el cual si o: R — C, es una
funcién continuano nula en todos los puntos que coincide con la suma de una serie
rr' S Z a eim ron 1

igonométrica = “n absolutamente convergente, entonces la funcion inversa

1/t tiene la misma propiedad.
En 1940 I. M. Gelfand dio con una demostracion sencilla y natural del mismo,

y también de un teorema mas general de P. Lévy. Veamos las ideas en que se basa
su demostracion.

En primer lugar, sea A un 4lgebra de Banach conmutativa 'y unitaria y & un
elemento de A. Dado cualquier polinomio g € C[T], es claro que podemos

substituir T'por oen g, obteniendo un elemento g(or) € A. Puesto que g(a) = g( &),
es claro por (3.7) que E(g() = g(E0). En particular resulta que si g no se anula
en Ea, entonces q(00) es invertible en A: sig=(T-X)...T-A)y A, & Eo., entonces
los factores & — A, son invertibles en A. De este modo vemos que se puede definir
flo) sin ambigiiedad para cualquier funcién racional f € C(T) cuyo denominador

no tenga ceros en EoL.
Para demostrar el teorema de Wiener serd pues suficiente ver que el espectro

de una serie trigonométrica absolutamente convergente no puede contener 0 si ella
misma no se anula en ningtin punto.

A tal fin, sea W el dlgebra de las series trigonométricas 0u(f) = EZ a.e™ a

valores complejos y que son absolutamente convergentes en R: es un dlgebra de
Banach (conmutativa y unitaria) con la norma

el = %o

Para cada x € [0,2m), la aplicacion o — a(x) es un cardcter de W (que
seguiremos denotando x) y como consecuencia el intervalo [0,2m) se puede
identificar a un subconjunto del espacio espectral X = X(W). Reciprocamente, si
£ es un caracter de W, entonces& =x para algiinx € [0,2m) (necesariamente (nico).
En efecto, las relaciones

E (e E ()= 1, IEEI < llel = 1y eI < llell = 1
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prueban que existe un vinico x € [0,27) tal que

g(ei:) = eix

y es entonces facil ver que EestX

Hablerlldo Idel}tificado el espacio espectral de W, es ahora claro que sioc e W
no se anula en ningin punto, entonces 0 ¢ Ea Or consigui
- - 5 nsiguie
invertible en W. P PSS

0bse}rvacmn. Gelfand se dio cuenta en seguida que la expresion fla) (o €
A,‘A un 4lgebra de Banach. conmutativa y unitaria) tiene sentido para funciones
n}as generales que las racionales que no tienen polos en Ec. El secreto es la
férmula de Cauic}lly de la teoria elemental de funciones analiticas. El punto estd en
que, como es facil ver, para funciones racionales sin polos en Ec vale la férmula

1| f)dA

2T . A-o

flo) =

§1endp v cualquier camino liso y simplemente cerrado que contiene a Ec en su
1nter/1gr. Pero ahora es claro que esta férmula tiene sentido para cualquier funcién
aflahtlca en un abierto que contiene a Ec. Con ello hemos esbozado la demost
c16n3<;c la generalizacion de Lévy del teorema de Wiener: .
s Ec.x‘ .Enggzlfsse}(;)e\;y) v{/Sjeclzj ae Wy se funa funcién holomorfa en un entorno

Qtro ejemplo interesante es el dlgebra de Banach A = A(K) de las funciones
continuas en un compacto K de €'y que son holomorfas en el interior de K (con
la norma del supremo). Es claro que K se identifica a un subconjunto del espacio
espectral de X = X(A), identificando x € K al homomorfismo de evaluaciénpoc [
0(x). Veqr’nos que K = X. En efecto, sea § € Xy seax = &(i), donde i es la funci6n
de inclusién de K en €. Si fuese x ¢ K, la funcién B definida por la relacién

1

B(z) = ——

2=k
perteneceria a A, lo cual es imposible, yaque 1 = B(i—x) y & ((i —x)B) = 0. Asi
fues ha _de serx e K Ef‘ a_hora claro que § y x coinciden sobre los polinomios. Por
qa:i;t(é coinciden sobre limites uniformes de polinomios, de lo cual se puede inferir

= X.
P 'gop_(rlf)gia de Gelfand. Por otra parte, es natural preguntarse si la norma de
inducird de modo natural alguna topologfa en X Puesto que

x(o)] < p(e) < led],

fg{r{l{l& se ha hecho notar al final del epigrafe sobre la teoria de Gelfand, vemos que
€ Xesun elemento del espacio A’ de las aplicaciones lineales continuas de
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A en € (espacio dual de A) y que por tanto el espacio espectral X heredara cual-
quier topologfa de A’. Ahora bien, A’ viene dotado de dos topologia naturales.
Por ser un espacio de aplicaciones lineales continuas, A’ viene provisto de

una norma,

o]l = supla(ex)
Jed=1

Se tiene entonces que
(e < lwll - lled]

para todo o € A, y que [|w|| es la minima constante real que tiene esta propiedad.
Por ejemplo, los elementosx € Xtienen norma I, porlas desigualdades del parrafo
anterior, de modo que X estd contenido en la bola unidad de la norma de A’.

La segunda topologia, més estrechamente relacionada con las propiedades
algebraicas de A, es la débil (weal-star). Es la topologia minima para la cual los
elementos de A dan aplicaciones (lineales) continuas de A’ en C, via el acopla-
miento natural A x A’ — . A esta topologia la denominaremos topclogia
espectral o topologia de Gelfand del espacio espectral X(A).

Para terminar la seccidn, refiramos el problema de la corona. Este problema
hace referencia a un abierto U de €, al cual le asociamos el 4lgebra de Banach
H=(U) de las funciones que son holomorfas y acotadas en U. Como en ocasiones
anteriores, podemos sumergir U en el espacio espectral X de H=(U). El problema
de la corona consiste en determinar si U es denso en X, segtn la topologia de
Gelfand, y permanece abierto en general, aunque se conoce que la respuesta es
afirmativa (L. Carleson), para un disco (véase Aupetit [1991] para més detalles y

referencias).

4. SOBRE LA GEOMETRIZACION DEL ALGEBRA

Several decades had to lapse before the rise of the theory of topological,
differentiable and complex manifolds, the general theory of fields, the theory
of ideals in sufficiently general rings, and only then it became possible to
construct algebraic geometry on the basis of the principles of set-theoretic
mathematics. [...]. The basis for this rebuilding of algebraic geometry was

algebra.
Shafarevich, preface to Basic Algebraic Geometry, Grundlehren 213, Springer 1974

En la seccidn anterior hemos visto que para todo espacio topolégico compacto
Hausdorff X existe una biyeccién natural entre X y el espacio espectral del dlgebra
%X, C). No es dificil ver que esta biyeccién es un homeomorfismo, a condicién
de dotar a dicho espacio espectral de 1a topologia de Gelfand. Recordemos que la
topologia de Gelfand era la minima para la cual las funciones G son continuas.
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Fen6menos parecidos ocurrian para conjuntos algebraicos, aunque hasta este
momento no los hemos considerado méds que como conjuntos, al no haber
detectado tqdavia ninguna estructura topolégica natural en los mismos. El ojetivo
de esta seccion es mostrar que los conjuntos alegraicos poseen efectivamente una
topologia natural y extraer de este hecho algunas consecuencias.

Topologia de Zariski. Sea k un cuerpo algebraicamente cerrado yseaX C
k" un conjunto algebraico. La topologia de Zariski de X es la topologia cuyo_s
cerrados vienen dados por la siguiente proposicién:

4.1. Los conjuntos algebraicos contenidos en X forman una familia de
cerrados para X.

Es suficiente ver que la unién de dos conjuntos algebraicos es un conjunto
algebrai.co y que la interseccién de una familia arbitraria de conjuntos al gebraicos
es también un conjunto algebraico. El primer aserto es claro, dado que se verifica
la igualdad.

Z(fsef) U Z(g,1008,) = Z(flgl,...,FIgl,...,frgl,...,f,gs).

El segundo aserto es algo mds delicado. Consideremos una familia X =
Z(f)sf,/), i € L La interseccién de los Z, es el conjunto donde se anulan
simulténeamente todos los polimonios f}.", i€ I, 1=<j<r.Elpunto est4, pues, en
VEr que este conjunto se puede obtener como anulacién de un nimero ﬁnitt; de
pl?liptwm::os. Pefjo esto es una consecuencia del teorema de la base de Hilbert. En
efecto, si consideramos el ideal J de k/T ..., i i0s f (i
€ I, 1 =j =r), dicho teorema garantiz[a gue J {af ?ﬁiﬁeﬁg ,{;(;Sngfizlrgogiwsjz .

, digamos

J = (h,,...,h), y por tanto I_EI X =Zh,.h) O

. Es‘ inmediato verificar que la topologia de Zariski es consistente con las
inclusiones, en el sentido que si X ¢ X', X y X’ conjuntos algebraicos, entonces
la topologia de Zariski de X’ induce en X la topologia de Zariski de X.

Nét.ese también que los cerrados propios de Ia topologia de Zariski de k son
}os conjuntos finitos. Ello es asi porque un polinomio no nulo de grado n en una
indeterminada 7' admite a lo més n raices distintas, y a quesit,...,t € k entonces
f= (T’— t,)...(T—1 ) se anula precisamente ent,,....t, Z(f) = {t ,...[,t). Enlo sucesivo
k sera dotado de esta topologia, a Ia que podemos denomiﬁar cofinita.

Ahora dado un conjunto algebraicoX c k*, hemos visto que X se identifica con
el conjunto ((A), dondeA es el dlgebra de funciones polinomiales deX. Se plantea
la cuesti6n de reconstruir la topologia de Zariski de X a partir del 4lgebra A(X)
Puesto que en k tenemos la topologia cofinita, podemos pensar, como en la teorfa;
de G}%lfand, en latopologia espectral, esto es, la minima topologia para la cual las
funciones de A son continuas.

4.2. Si X es un conjunto algebraico con dlgebra de funciones polinomiales
A, la topologia de Zariski de X coincide, via la identificacién de X con X(A), con
la topologia espectral. ,
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Sea Z = Z(g,,....g,) un cerrado de Zariski de X. Queremos ver que Z es un
cerrado espectral. Ahora bien, puesto que Z = Z(g ) M...N Z(g ), serd suficiente ver
que si g es un polinomio, entonces X M Z(g) es un cerrado espectral. Pero ello es
claro, ya que si y es la restriccién de g a X, entonces

X Z(g) =70),

que es un cerrado espectral por ser {0} cerradoenky ye€ A.

Inversamente, queremos ver que un cerrado espectral es un cerrado de
Zariski. Puesto que la familia de cerrados de la topologia espectral es la generada
por las imdgenes inversas por elementos de A de subconjuntos finitos de k, es
suficiente ver que si @ € A y t € k, entonces o”'(¢) es un cerrado de Zariski. Pero
ello es también claro, ya que si ¢ es un polinomio cuya restriccién a X es o, y f
= a - t, entonces 0-'(2) = X M Z(f) como se comprueba sin dificultad. []

Caracterizacién de las dlgebras finitamente generadas reducidas. El
anillo de funciones polinomiales de un conjunto algebraico es una k-dlgebra
finitamente generada reducida. Reciprocamente:

4.3. Sea A una k-dlgebra finitamente generada y reducida. Entonces existe
un conjunto algebraico X tal que A es isomorfa a A(X).

En efecto, por ser A finitamente generada, existen elementos 7 ,...,t € A tales
que A = kft,...t]. Sea ¢: kil ]~ Akl homomorfismo de k-dlgebras
definido por las relaciones ¢(T,) = t. Es claro que ¢ es epiyectivo. Seal = ker(9).
Por el teorema de la base, existen polinomios f,,....f, tales que I = (f,,....f,). Sea X
= Z(f,....f). Habremos terminado si vemos que/, = I, yaque si ello es asf, entonces
A=kKk[T,,..T J/ker(¢) = k[T,,...T /I =k{T,,...T I, =A(X).

Puesto que la inclusién’ ¢ I, es evidente, bastard ver sifes un polinomio nulo
en X = Z(f,.....f ), entonces f€ I

A tal fin, consideremos una indeterminada auxiliar T y formemos (éste es el
artificio de Rabinowitz) el conjunto algebraicoY = Z(1 —fT, f,.....f,) dek™'. Puesto
que por hipétesis f es nulo en los puntos donde se anulan todos los f, es claro que
Y es vacio. Pero sabemos que ello implica, como una consecuencia inmediata del
teorema débil de los ceros, que el ideal (1 — fT,f,.....f) de k[T,,....T,] es todo
k[T,,...,T ]. En particular existen g....g, € k[7,....T,] tales que

I =igiClomfT g ofy wds g if

Sustituyendo 7, por 1/f en esta identidad, hallamos que existe un entero
positivo m y polinomios k. ,...h, € k[T ,....T, ] tales que

freh f4ush f

Aplicando ¢ a ambos miembros, hallamos que ¢(f)" = 0. Pero por hipétesis A
es reducida, de donde ¢(f) = 0. Pero ello significa que f e ker(¢) = 1. [
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Teorema de los ceros. En la demostracién anterior se ha visto que sif,f,,....f,
ekl sz--aTn] y fes nulo sobre X = Z(f,,....f ), entonces existe un entero positivo
m tal que f" € (f,.....f,). Este hecho es el teorema fuerte de los ceros de Hilbert.

Una consecuencia sencilla de este teorema es queen unak-dlgebra finitamente
generada la interseccion de sus ideales maximales coincide con el conjunto de los
elementos nihilpotentes. En particular, si A es finitamente generada sobre k y
reducida, la interseccion de sus ideales maximales es {0}.

Sefialemos aqui que cuando el cuerpok no es algebraicamente cerrado existen
otras formas del teorema de los ceros, mas elaboradas, para las cuales el lector
interesado puede consultar McKenna [1980] y Colliot-Théléne [1982]. Para
generalizaciones del teorema de los ceros al contexto diferenciable, véase Bochnak
[1973]. Recordemos aqui el caso mds elemental. Supongamos que U es un abierto
de R"y quef,.....f. son funciones de clase £ tales qued f,,...,d_f, son linealmente
independientes en un punto x € X = Z(f,,...,f ). Sea f una funcién de clase £~
definida en un entorno V de x y tal que fes nula en V m X. Entonces existe un
entomo V' < V de x tal que f pertenece al ideal de (£=(V’) generado por las
restricciones de las fa V.

Geometrizacién de k-algebras finitamente generadas reducidas. Ahora
nos damos cuenta de que si X < k" es un conjunto algebraico, A(X) es algo més
que una k-dlgebra finitamente generada reducida, ya que viene dotada de un
sistema distinguido de generadores. En correspondencia con ello, X es algo mas
que un espacio topolégico, ya que viene presentado como un subespacio dek”. No
obstante, el tipo de algebras que pueden ocurrir como 4lgebras de funciones
polinomiales de conjuntos algebraicos ha quedado caracterizada, en el teorema
anterior, en términos que no dependen de tales conjuntos.

Es, pues, natural considerar dlgebras finitamente generadas sobre k& como
objetos primarios y asignarles, de un modo intrinseco, una geometria a cada una
de ellas. SiA es una tal dlgebra, le podemos asociar su espacio espectral .X'= A{A),
dotado de la topologia espectral, a la cual la podemos también llamar, apropiada-
mente por (4.2), topologia de Zariski. De este modo, los elementos ot € A se
representan como funciones & sobre 1 a las que podemos llamar funciones
regulares sobre X, Nétese que si & = 0, entonces ha de ser o =0, ya que x(a) = 0
para todo x € Yequivale a que ¢ esté en todos los ideales maximales de A.

Los cerrados de Zariski de .t vienen descritos del siguiente modo. Sean
Q,...,0, € Ay pongamos V(0.,...,0.) C .¥'para denotar el conjunto de los x € X
tales que x(a) = 0 para todo i. Si identificamos *'con el conjunto de los ideales
maximales de A, V(«,...,a ) es el conjunto de los ideales maximales m tales que
o, € m. Con estas notaciones tenemos:

4.4. Los subconjuntos V(¢,...,0. ), con r entero positivo y @,,..., @ € A, son
los cerrados de la topologia de Zariski de X,

Para la demostracién se. puede representar A como el dlgebra de funciones
regulares sobre un conjunto algebraico X, en cuyo caso el aserto se demuestra de
un modo parecido a (4.2). [
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Comportamiento respecto de morfismos. SeanA y B k-ilgebras finitamente
generadas reducidas y pongamos X' = MA) 7= X4B). Sea ¢: A —» B un
homomorfismo de k-dlgebras. Entonces tenemos una aplicacién ¢*: 7— trdada
por y > y o 0. En términos de ideales maximales, ¢*(m) = ¢~(m). Nétese que la
inclusion

A/d'm — B/m

es necesariamente la identidad, pues el anillo de la derecha esk y el de la izquierda
contiene k.
4.5. La aplicacion f = ¢* es continua, ya que

Za,...0) = Z(o,,....00.)

En efecto, de las definiciones resulta inmediatamente que

(da)y = aoffy)

paratodo o€ A, y € 9 En particular (ga)y = 0 si y sélo si o(fy) = 0y de ello se
deduce sin dificultad la relacién del enunciado.

Notese que la férmula (¢or)y = offy) nos muestra que f = ¢*,

A los espacios de la forma 4{A), A un dlgebra finitamente generada y reducida
sobre un cuerpo algebraicamente cerrado k los denominaremos variedades
algebraicas afines. Y a las aplicaciones entre variedades afines inducidas por
homomorfismos de k-dlgebras (en sentido opuesto), morfismos de variedades
algebraicas afines.

Geometria de un cociente. Sea A una k-ilgebra finitamente generada
reducida, / = (¢,...,0t) un ideal de A. El cociente B = A/l es una k-dlgebra
finitamente generada. Un elemento o(/) € B es nihilpotente si y s6lo si existe un
entero positivo m tal que 0" € I, lo que muestra que B es reducida si y sélo si el
ideal I es un ideal radical, esto es, tal que o* € I, m un entero positivo, implica
0. € I Si/es un ideal radical, a la proyeccién canénica m: A — B le corresponde
una inyeccién ©*: ' — rque da un homeomorfismo de #con V(o,...o0 ).

Hemos intentado dejar claro que A{A) es un objeto geométrico intrinsecamen-
te asociado a A y que su inclusién en un k" es equivalente a dar un sistema de n
generadores de A como k-dlgebra. Ello es ahora claro, ya que la distincién de un
sistema de n generadores en A equivale a distinguir un epimorfismo dek/T vl o]
en A, al cual le corresponde una inclusién de {A) en k.

Geometria de una localizacién. Mencionemos tan sélo el caso de la
localizacién por un elemento. Sea A un k-dlgebra finitamente generada reducida
y X=AA). Sea ¢ € A unelemento no nulo. Entonces D( @) es un abierto. ;Es este
espacio el espacio espectral de una k-dlgebra? Es claro, por definicién de D(g),
que los puntos de este abierto son los homomorfismos de A en k cuyo valor en
es no nulo. Por ofra parte, podemos formar el anillo A, tomando fracciones de la
forma o/f", donde n es un nimero natural cualquiera y o un elemento arbitrario
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de A. Estas fracciones pueden ser sumadas y multiplicadas como las fracciones de
nimeros enteros y de este modo Aﬁ es una k-ilgebra conmutativa y unitaria. La
Gnica diferencia con el caso de los nimeros racionales estd en que ahora, si el
calculo ha de ser consistente, una fraccién o/p" se considera nula cuando "o =
0 para algin m natural.

Es ademds claro que si £,,...,t, son generadores de A como k-algebra, entonces
Paenk, 1/p son generadores de A_, de modo que A_es finitamente generada.
Veamos que es reducida. Si a/B*, fuese nihilpotente, entonces seria o"/p"¥ = 0 en
A,, para un cierto niimero natural N. Esto significa que existe un m natural tal que
ﬁ’aoc“’ = 0 en A. Multiplicando por una potencia de 8 o de o, vemos que Po es
nihilpotente y como A es reducida, ha de ser Bo. = 0. Por tanto o/f" =0 en A,.

Por iltimo, es claro que tenemos un homomorfismo de k-dlgebras A: A — A
o > o/1. Pongamos X'= H{A), 7= MAP). Dado que ¢/1 es invertible en A — A
resulta que (A*y)(B) = y(P/1) # 0 para todo y € 9 Reciprocamente, si x(f3) #
x € X entonces existe un unico homomorfismo y: A(P — k tal que y(o/B") =
x(e/)x(B)™, lo cual prueba que A* identifica A B) con D(f).

Por tltimo, es claro que tenemos un homomorfismo de localizacién h: A — A,
o> 0/1. Pongamos t'= H{A), 9= MAy). Dado que /1 es invertible en A , resulta
que (A*y)(B) = y(B/1) # 0 para todo y € 97 Reciprocamente, si x(f3) # 8 xXe.x
entonces existe un tnico homomorfismo y: A, — k tal que y(a/ pri =
x(o/)x(f3)™, lo cual prueba que A* identifica HA g con D( B).

Se ha de advertir que la localizacién de A respecto de un subconjunto §
cualquiera es una k-dlgebra A cuya construccién, puramente algebraica, no
ofrece dificultad. Ahora bien, si § no es finito, entonces A, no es en general
finitamente generada. No obstante, su espacio de caracteres se identifica con el
subconjunto del espacio espectral de A formado por los puntos en los que no se
anula ningin elemento de S, conjunto que en general no es ni abierto ni cerrado.

Productos o geometria del producto tensorial. Sean A y B k-dlgebras
finitamente generadas reducidas. Entonces podemos formar el dlgebra A ®, B,
cuyos elementos son sumas finitas de elementos de la forma o ® B y cuyo
producto viene caracterizado por la relacién (o ® B)(a’ ® ') = oo’ & Bf.
Tenemos homomorfismos de k-dlgebras A > A® B, a—»a®1,B—A ®p B,
B>1@® B, demodoque a®P=(0® 1)1 @ ﬁ). De ello resulta que dar un
homomorfismo de k-dlgebras A ® B — C, C cualquier k-dlgebra, es equivalente
a dar un par de homomorfismos de k-dlgebras A — C, B — C.

Es claro ademds que A ®, B es finitamente generada y se puede ver que es
reducida. Asi pues podemos considerar el espacio espectral Z= A ®P B).
Tenemos morfismos Z— X, Z— 97y ademds dar un morfismo Z— Pequivale
a dar un par de morfismos Z — X Z— 9 Asi pues Pes un producto de las
variedades afines .{{.2) y A(B).

Es fécil ver que si X ¢ k", Y < k", entonces su producto coincide, como
conjunto, con el producto X x ¥ < k™" Sin embargo es de observar que la
topologia de Zariski de 1a variedad producto es mds fina que la topologia producto.

B’
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Grupos algebraicos. Algebras de Hopf. Identifiquemos el espacio de las
matrices n X n con el espacio k™. La funcién det: & — k es un polinomio
(homogéneo) de gradon y el producto de matrices nos da un morfismo algebraico
k" x k" — k*. Como GL, (k) estd formado por las matrices con determinante
no nulo, es una variedad afin, GL (k) = D(det), y el producto de matrices
GL, (k) x GL, (k) — GL (k) es un morfismo de variedades. La aplicacién
GL, (k) = GL, (k), dada por a > a’', es también un morfismo.

Un grupo lineal es un subgrupo G de algin GL (k) cerrado por la topologia
de Zariski. Por ejemplo, los grupos cldsicos: El mismo GL, (k); SL (k), el grupo
lineal especial, formado por las matrices con determinante 1, es el lugar de ceros
de det- 1, SL (k) = Z(det — 1); OL (k), el grupo ortogonal, formado por las
matrices ortogonales, esto es, matrices @ € GL, cuya traspuesta coincide con su
inversa, aa”=aa=1I; Sp (k), el grupo simpléctico, formado por las matrices
simplécticas, esto es, matrices a € GL, tales que a'Ja = J, siendo

R

e / la matriz identidad de orden n.

Si G es un grupo lineal, las aplicaciones i: G X G — Gy t: G — G, dadas por
multiplicacion y paso a la matriz inversa, son morfismos de variedades. Asi que
los grupos lineales son en particular grupos algebraicos.

Sea A el dlgebra de las funciones polinomiales de un grupo lineal G. En-
tonces tenemos homomorfismos de k-dlgebras p*: A > A @ A, 1*: A 5 Ay
A*:A—> A @ A, dondeA: G — Gx Ges laaplicacion diagonal, x— (x,x). Diremos
que |* es lacomultiplicacion, que A* es lamultiplicacion y que t* es la aplicacion
antipoda de A. El elemento neutro / de G es un homomorfismo A — k, al que
llamaremos counidad de A. A la inclusién 1 de k en A 1a llamaremos unidad. En
correspondencia con la propiedad asociativa del, diremos queL* esceasociativa.
La aplicacién p* no verifica la propiedad de coconmutatividad, debido a que G
no es en general conmutativo. Sin embargo A* es conmutativa, en un sentido
natural que no hace falta hacer explicito. La counidad satisface la propiedad que
traduce quel € G es el elemento neutro del grupo. La unidad verifica la propiedad
dual.

La estructura (A,A*,1L¥,n,1), con las propiedades descritas, es un ejemplo de
dlgebra de Hopf con antipoda. Entre la multiplicacién y comultiplicacién hay una
relacién de compatibilidad, que se expresa por la conmutatividad del diagrama
dual del diagrama conmutativo que sigue:

G
B NA
GxG GxG
AxAl Taog

GXGXGXG 2  GXxGXGXG
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donde S, €S el morfismo que consiste en trasponer el segundo y tercer fact‘or.

Un morfismo de grupos lineales induce un morfismo entre las correspondien-
tes dlgebras de Hopf, y viceversa. De este modo no es dificil ver, por ejemplo, que
todo morfismo ¢ de GL (k) en k*, el grupo multiplicativo de k, es una potencia
entera del determinante, ¢(a) = det(a)?, g € Z.

Nota sobre grupos cudnticos. Las dlgebras de Hopf como las descritas, pero
admitiendo la posibilidad de que sean no conmutativas, vienen siendo usadas en
Jos tltimos afios para obtener una generalizacion de los grupos (algebraicos o de
Lie) a lo que se ha dado en llamar grupos cudnticos. El objeto primario es el
4lgebra de Hopf, a la cual se somete a una «geometrizacién» cuyo resultado es el
grupo cudntico. Paraeste tema, y temas relacionados de geometriano conmutativa,
que no podemos tratar aquf, remitimos al lector a las referencias consignadas en
el punto (g) de la introduccidn.

Variedades téricas. Hemos visto que el lenguaje de los conjuntos algebraicos
(o variedades algebraicas afines) es equivalente al de las k-dlgebras finitamente
generadas reducidas: a cada conjunto algebraico X se le asocia el dlgebra A(X) y,
viceversa, a cada k-lgebra finitamente generada A se le asocia su espacio
espectral X(A).

Por la misma definicién, los conjuntos algebraicos vienen definidos por
ecuaciones polinémicas, a lo cual corresponde una descripcién del dlgebra de
funciones polinomiales como un cociente de un anillo de polinomios.

El punto que queremos destacar aqui es la construccién de ciertas algebras
finitamente generadas reducidas de las cuales a priori no se conoce explicitamente
ningin sistema de generadores. Los espacios espectrales de estas dlgebras son
ejemplos interesantes de variedades afines que no vienen dadas explicitamente
como conjuntos algebraicos.

Para describir estas dlgebras, sea S un subconjunto del conjunto M de
monomios en las indeterminadas T, ..., T, con exponentes enteros, y formemos
el conjunto k[S] de todas las combinaciones lineales de los elementos de S con
coeficientes de k. De la misma definicién resulta que k[S] es un subanillo de
A=k[T, .. T, T, .., T ] siysélosisSes cerrado con el productoy 1 € §, es
decir, si y s6lo si S es un subsemigrupo del grupo multiplicativo 2 (el cual es
isomorfo al grupo aditivo Z7). Si S es un subsemigrupo de #, el anillo k[S] es
autométicamente reducido, por ser subanillo de 4. Si ademds S es finitamente
generado, entonces k[S] serd una k-dlgebra finitamente generada. Nétese que
k[#M] coincide conk(T,, ...,T, T, ...,T,], el anillo de polinomios de Laurent en
las indeterminadas T.

. Cémo se pueden construir subsemigrupos finitamente generados S de M? Es
claro que un modo de proceder es escoger un conjunto finito W, .., W, de
monomios y definir § como el semigrupo generado por W, ..., l. En este caso
k[S] = k[p,, ...t ]. Asi, por e emplo,k[T?, T*] es el anillo de funciones polinomiales
de la curva Y2 = X°. Nétese ademds que el anillo de polinomios k[T, ..., T] se
obtiene tomando el semigrupo de los monomios con exponentes no negativos.
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Pero hay otro modo de proceder y que consiste en partir de un cono racio-
nal poliédrico ¢ = [ V] de @ (es decir, el conjunto de combinaciones
lineales 7V, + ...+ 7V_con coeficientes racionales f, no negativos, siendo los
V, vectores enteros) y tomar como S el conjunto S, de monomios cuyos expo-
nentes m = (m, ..., m ) verifican que m - x 2 0 para todo x € ©. Se puede ver que
de este modo §_ es un subsemigrupo finitamente generado y por tanto a © le
podemos asociar una variedad afinX_definida como el espacio espectral dek[S_].
A estas variedades se las denomina variedades téricas afines y su estudio tiene
actualmente una considerable importancia en varios campos de la geometria
algebraica.

Nos remitimos a Oda [1988] para una introduccién sistematica a estas
variedades y a Procesi-Xambé [1991] para una aplicacién de las mismas a un
problema cldsico de geometria enumerativa.

Geometrizacion de un anillo conmutativo arbitrario. La geometrizacion de la
k-dlgebras finitamente generadas se ha hecho via los ideales maximales de las
mismas. Un tal procedimiento no puede ser satisfactorio para anillos conmutativos
cualesquiera toda vez que la imagen inversa de un ideal maximal no es en general
un ideal maximal, sino s6lo un ideal primo. Pero si a cada anillo conmutativo con
unidad A le asociamos el conjunto ®A) de sus ideales primos y a cada ideal I de
A le asociamos el subconjunto V(I) de #(A) formado por los ideales primos p de
A tales que Icp (es decir, tales que a(p) =0 para todo a e 1), entonces los
conjuntos V(7) son los cerrados de una topologfa de B(A ), que se denomina también
de Zariski, la cual tiene un comportamiento natural respecto de los morfismos
arbitrarios de anillos: si f2 A — B es un homomorfismo de anillos, la aplicacién
P = f'(p) de AB) en AA) es continua. Vemos pues que el espacio topoldgico
Spec(A) (el conjunto A(A) con la topologia de Zariski) juega el papel de unespacio
espectral para A. A este espacio se le denomina espectro primo de A. La nocién
de dlgebra de funciones regulares no es vilida tal cual (ndtese que si ae A,
entoncesa(p) es un elemento del anilloA/p, el cualvariaal variarp), pero se puede
substituir por la nocién de haz espectral de Spec(A) (véase Hartshorne [1977]).
El esquema afin definido por A es entonces el espacio Spec(A) dotado de su haz
estructural.

Variedades y esquemas. Grosso modo, y calcando la definicién usual de
variedades diferenciables, las variedades algebraicas se definen como espacios
que localmente son isomorfos a variedades afines y los esquemas como espacios
que localmente son isomorfos a esquemas afines, Las variedades algebraicas son
el objeto de estudio de la geometria algebraica cldsica, mientras que la geometria
algebraica moderna es, en gran medida, el estudio de los esquemas y sus
aplicaciones, con frecuencia a problemas que son reformulaciones rigurosas de
problemas cldsicos. Dado que los esquemas generalizan las variedades (este
hecho no es del todo trivial y descansa, en tltimo andlisis, en el teorema de los
ceros de Hilbert; véase Hartshorne [1977]) y que los ideales primos tienen su
origen en cuestiones de aritmética, la teorfa de esquemas resulta ser un lenguaje
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apropiado para expresar no §610 los proble’mas y ’métodos de 1:’:1 lgeontletlr;a;
algebraica cldsica, sino también lps de teona_l de nimeros, ,ESpeCla men.g 1
cuestiones de tipo diofantico. Esta 1d‘ea es crumefl en la fllosof}a que ha relgl ola
vanguardia de la geometrfa algebraica en los iltimos decemos,.dando uge;r’a
numerosos ¢ importantes avances en lo que se puf:de denor_nmar g;:ome IIc'ila
algebraica aritmética, para distingulrlla de la geometna algebralf:a en el sengl 0
ordinario y que sélo se ocupa del estudio de varledac_ies enun septldo (flas1co. ara
una iniciacién al estudio de la geometria algebraica aritmética, véase Xambo
[1991] y las referencias que allf se daq. - . -
Epilogo. ;Quéeselespectro de un anillo? ;Paraqué sirve? ;Se puedf: prescindir
de un concepto en apariencia tan abstracto? En estas notas en realidad hemos
intentado contestar a una baraja de preguntas de esta suerte, .mostrando que l}fily
caminos que conducen, sin solucién de continuld‘a’d en las ideas, de la noc;lcin
experimental de espectro de un dtomo a la nocién de espectro de un anillo
conmutativo. También se han dado indicaciones de algunas direcciones en las que
se estd trabajando en la actualidad como continuacién naltural de las que nos han
conducido al presente. Junto a las polaridades entre fu/ncmnes (o coordenadas_) y
puntos, entre l6gica y realidad, entre dlgebra y geometria, en .el fondo se han tenido
en cuenta otras emparentadas con las mismas, como las existentes entre on_das y
particulas o entre matemdticas y fisica, como lo sefialan las numerosas citas a
Manin [1981], obra que recomendamos encarecidamente a quienes estén intere-
sados por este tipo de discursos. . _
Agradecimientos. Es para mi un agradable dgber expresar mi gratlt_ud a .T .M.
Montesinos por el tiempo y la paciencia que ha invertido en muchas dlSC.u.SIf)IleS
sobre el contenido de estas notas y su presentacién, y espec1almer‘1te por dirigirme
las preguntas consignadas en el epilogo, al t'%empo que Ihe de dejar claro que los
errores, impreciones o defectos que en las mismas subsistan son s6lo achacables
al autor. . : ; ‘

También quiero agradecer los comentarios que Lé-Dung T1-'ang y Jests R].uz
me han hecho a una versién preliminar y que han ayudado a mejorar el contenido
de algunos puntos y a eliminar numerosas erratas. ‘

Finalmente quiero dar las gracias a los profesores J avmf Etayo y Fernal}do
Etayo, por proporcionarme datos sobre la biografia matematica }ie don José J.
Etayo Miqueo, datos que me permitieron apreciar en un caso proximo y concreto
la exactitud de las ideas expresadas por A. Weil en la cita inicial.
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