Geometria / GQ

4. Quadriques analitiques
© S. Xambo

Quadrica general
Donat un polinomi quadratic real
d(x,v,2z) = ax? + by? + cz® + 2fxy + 2gxz + 2hyz + 2px + 2qy + 2rz + d
en les coordenades rectangulars (x, y, z), diem que I'equacié
¢(x,y,z) =0

defineix una quadrica analitica, que denotarem Q4. D’ara endavant con-

vindrem, a més, que la part principal de ¢,
b, (x,v,z) = ax® + by* + cz? + 2fxy + 2gxz + 2hyz,
no és identicament nul-la.

Un punt (a, B,y) pertany a la quadrica Qg siinoméssi¢(a,B,y) = 0. El
punt es diu real si a, [,y € R, i es diu imaginari si a,f,y € C i no tots
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tres son reals. Si (a, 5,y) és un punt imaginari, direm que (@, B, Y) és el
seu punt conjugat. Com que ¢(x,y,z) és un polinomi real, Q4 conté,
amb cada un dels seus punts imaginaris, el seu conjugat.

Canvi de coordenades

Si (x',y',Z") és un altre sistema de coordenades rectangulars i
¢'(x',y',z") =a'x"* +b'y'* +c'z'?
+2f'x'y' +2g'x'z + 2h'y'z"”
+2p'x" +2q'y' + 2r'z' + d
és un polinomi quadratic real en (x',y’,z"), diem que Q4 coincideix amb

Qy’, 0 que les equacions ¢(x,y,z) =0i ¢'(x',y’,z") = 0 defineixen la
mateixa quadrica, si i nomes si existeix un nombre real no nul p tal que

¢'(x",y',z') = pp(x',y',2"),
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on @(x',y’,z") denota el polinomi en (x',y',z") que s’obté substituint les
coordenades (x,vy,z) en el polinomi ¢(x,y,z) per les expressions del
canvi a les coordenades (x', y', z'). En particular, dos polinomis ¢ (x, y, z)
i ¢'(x,y,2) en les mateixes coordenades rectangulars defineixen la ma-
teixa quadrica si i només si existeix un nombre real no nul p tal que
d(x,v,z) = pd'(x,y,z (i en aquest cas direm que els polinomis ¢ i ¢’
son equivalents).



Matriu i matriu principal

a f g
Posem A=|f b h |idiem que és la matriu principal del polinomi
g h c
¢(x,y,z). Analogament, definim
?fgp
[T bha)_(A|w' _
A=( 2= (A ) wean
Pqrd

i diem que és la matriu del polinomi ¢ (x,y, z).
El coneixement de A equival al coneixement de la part principal de
¢(x,y,2),jaque

b2(x,y,2) = (x,y,2)A(x,y,2)".

Analogament, el coneixement de A equival al coneixement de ¢(x,y, z),
ja que
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d(x,y,z) = (x,y,2, DA, y,z, DT, ¢,(x,v,2) = (x,y,2)Alx,y,2)".

Notem, pero, que la quadrica Q4 nomeés determina A llevat d’un factor

real no nul i és per aquesta rad que, quan ens calgui tenir en compte
aquest indeterminacié en referir-nos a A (o a 4), escriurem [4] (o [4]).

Quadrica projectiva i conica de l'infinit

Si A és la matriu de ¢(x,y,2), i &€ = (X,Y,Z, W) sén les coordenades
projectives corresponents a les coordenades x = (x,y,z), direm que
I’equacio

[+]  §A&" =0

defineix la quadrica projectiva Q_cb associada a la quadrica Q4. L'equacio
[*] determina la quadrica Qg4, ja que si fem la substitucié § =X =

(x,v,z,1) tenim xXAxT = ¢ (x). Notem que si definim



d(&) = aX? +bY? +cZ? + 2fXY + 2gXZ + 2hYZ
+2pXW + 2qYW + 2rZW + dW?2

(direm que aquest polinomi homogeni és el resultat d’homogeneitzar
¢(x,v,2)), llavors

P (x) = EAE.
Els punts de I'infinit de la quadrica Q¢ son els punts [X, Y, Z, 0] tals que
(X,Y,Z,0AX,Y,Z,0)T =0,

és a dir, tal que W =0i (X,Y,2)A(X,Y,Z)' = 0. Direm que aquesta
equacio determina la conica de l'infinit de la quadrica Q_cb (0 de Qy).



Transformacié de A4 i A per un canvi de coordenades

Si fem un canvi de coordenades

(x,y, ) =My, z)" + (a, B, y)"

— _ T
o @yzn D) =Mk.y,2, 0", M= (T15), 1= (@B,

'expressio (x,y,z,1)A(x,y,z,1)T es transforma en
o'y, z2) =0y, 2, DM AM (X', y', Zz', 1)T, amb
gbé(x', yr, Z,) — (X’, yr, Z’)MTAM(X,, yl’ Z,)T-

Resumidament,
A'=MTAM, A' = MTAM.

Si les noves coordenades també son rectangulars, llavors M és ortogonal
(MT = M~1)i

A'=M"1AM.



En particular, A i A’ tenen el mateix polinomi caracteristic:

[x] Qa1 =Qa(1).
Notem a més que si els dos sistemes de coordenades tenen el mateix ori-
gen (t = 0) llavors M també és ortogonal i per tant en aquest cas

Qaz = Qa(4).

En el que segueix suposarem que ¢, # 0.

Diagonalitzacio de la part principal

Ates que una matriu simetrica real diagonalitza en una base ortonormal,
sempre podem fer un canvi ortogonal de coordenades, de manera que A’
sigui diagonal:

A, 0 0
A,:<O Az 0)
0 0 A,
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Fixem-nos que la igualtat [*] ens diu que A4,4,, 45 son els valors propis
de A. Aixi, doncs, podem suposar, per seguir el nostre estudi, que

d(x,y,2) = 11x% + A, y% + A32% + 2px + 2qy + 2rz + d.
Equacions reduides

Direm que el polinomi quadratic ¢'(x',y’,z’,1) és reduit, o que la qua-
drica Q4 €s reduida, si la seva forma es una de la taula que segueix:

Tipus Formes reduides de les quadriques

1. Centrat Ax"?+ ,y"%+ 232"% +u (44,4, >0, A3 # 0)
2. Parabolic x>+ A, y"% =272 (14 >0, A, #0)

3. Cilindriccentrat  [A;x* 4+ A,y%*+u (A, >0, 1, #0)

4. Cilindric parabolic |A;x"? —2y' (1, > 0)

5. Plans paral-lels x4 +u (A4 >0)
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Remarca. En el tipus cilindric centrat, es pot excloure el casenque u <0
i A, < 0, ja que, si ex compleixen aquestes condicions, la forma reduida
equivalent —1,y'? — A,x"¢ — u compleix —1,,—u > 0i—1, < 0.

Transformacio en forma reduida

Proposicio. Donat un polinomi quadratic ¢(x,y,z) en les coordenades
rectangulars (x,y,z), existeix un sistema de coordenades rectangulars
(x',y',z") i un polinomi reduit ¢'(x’,y’,z") tals que les equacions
d(x,y,z) =0id'(x',y,z") defineixen la mateixa quadrica.

Prova. Després d’un canvi de coordenades rectangular, podem suposar
que la part principal de ¢(x, y, z) és diagonal, amb la qual cosa

d(x,y,2) = 11x% + A, 9% + A32% + 2px + 2qy + 2rz + d.
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Cas A{A,45; # 0 (equival a det(4) # 0). Completant tres quadrats, la qual
cosa equival a un canvi d’origen, podem suposar que |'equacio de la qua-
drica és de la forma

(1) x4+ A,y + 2324 +u=0.

En aquest cas podem suposar que hi ha dos valors propis positius, ja que
altrament podem canviar I'’equacid de signe. De fet podem suposar, can-
viant si cal I'ordre de les variables, que A;,4, > 0. Es a dir, es tracta d’'una
equacio reduida de tipus centrat.

Cas d’un unic valor propi nul. Canviant I'ordre de les variables si cal, po-
dem suposar que 4,4, # 0, A3 = 0. Completant dos quadrats, veiem que
podem suposar que I'equacio té la forma

x4+ ,y'%+2rz+d = 0.
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Sir# 0, el canvi z » z — d'/2r ens permet eliminar el terme indepen-
dent, amb la qual cosa veiem que ens queden dues classes d’equacions
reduides

() Ax?+A,y%+2rz =0 (tipus parabolic)
(M) Ax?+2A,y%+u=0 (tipus cilindric centrat).

Notem que en els dos casos podem suposar, per un argument similar al
del cas |, que 4; > 0.

Cas d’un unic valor propi no nul. Canviant 'ordre de les variables si cal,
podem suposar que A; # 0,4,,43 = 0. Completant un quadrat, veiem
gue podem suposar que |'equacio té la forma

Mx'"?+2qy+2rz+d =0.
Aquesta equacio es pot reduir a una de les dues formes seguents:

(IV)  A.x"? + 2q’y" = 0 (tipus cilindric parabbdlic)
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(V) A1x"% + u = 0 (tipus parell de plans paral-lels)
Al tipus (V) s’hi arriba si 2qy + 2rz = 0. Altrament, podem fer un canvi

ortogonal de la forma

x=x', y=(qy+12)/Jq%+712 Z=(-1y+qz)//q% + 12,

que ens condueix a una equacié de la forma A,x%+ 2ky +d' =0,

k = \/qz + r?%, que podem transformar en la forma (IV) fent el canvi
y—y—d/2k.



Equacions canoniques

Tipus centrat no degenerat (1 + 0). Posant

a=./|ul/Ay, b = 4/ lul/2; C=\/|H|/|/13|,

i atenent als diversos signes de u i A3, tenim les possibilitats seglients:

xZ 2

y% z? L
— Ttz +z=1 (ellipsoide)

x*  y*  z? . o
— t52—=z=1 (hiperboloide d'un full o reglat)
x2 yZ ZZ

+=——==—1  (hiperboloide de dos fulls)

a? b?2 c?



Tipus centrat degenerat (1 = 0). Posant

a = 1//11,b=1/1/ﬂ,2,C:\/1/|ﬂ,3|,

tenim, atenent al signe de A3, les possibilitats seglients:

x?  y? z? : L
— T3+ =0 (conimaginari)

xZ yZ ZZ

— t52—=z=0 (conreal)

Tipus parabolic. Posant

a=\,1//11,b= 1/|AZ|;

tenim, atenent al signe de 4,, les possibilitats seglients:
2 2

% + Z—z + 2rz = 0 (paraboloide el-liptic)

xZ y2

——zt2rz=0 (paraboloide hiperbolic o reglat)

15
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Tipus cilindric centrat. La discussio d’aquest cas és identica a la de les co-
nigues de tipus centrat. Posant

a=/lul/Ay, b=\lul/IA;] sip#0,0
a = 1//11, b=1/1/ﬂ,2 Si‘u,ZO,

ens queden les possibilitats seguents

2

2
% 4 % =1 (cilindre el-liptic)
x% y?
—+5=-1 (cilindre el-liptic imaginari)
2 y? . i T
— — 3z =1 (cilindre hiperbolic)
x2 yZ . . . :
— - 7= 0 (parell de plans imaginaris conjugats)
x?  y?
— — 2= 0 (parell de plans reals)
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2 2

X Yy

Notem que no cal considerar el cas primir i —1, ja que equival a
y2  x? , , . : .1
Pl 1, que és també un cilindre hiperbolic.

Tipus cilindric parabolic. La discussio d’aquest cas €s identica a la de les
coniques de tipus parabolic. Posant p = q' /14, 'equacié adopta la forma

x? 4+ 2py = 0 (cilindre parabbdlic).
Tipus parell de plans paral-lels. Posant k = \/|u|/A; si u # 0, tenim les

possibilitats seguents:

2 —k? =0 (parell de plans paral-lels reals)

X
x? + k? =0 (parell de plans paral-lels imaginaris conjugats).

x>=0 (pladoble)
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Estudi geometric de les formes canoniques reals

El-lipsoide. Un el-lipsoide és una quadrica que
en un cert sistema de coordenades rectangulars
ve donat per |I'equacio

2 2 2
y z5
2+b2+62_1'

X
a

on a, b, c sbn nombres reals positius (diem que
son els semieixos de |'el-lipsoide).

El pla z=k, on k és un nombre real arbitrari, el talla en els punts

xz y? k? : ) :
(x,y,k) tals que ;+ﬁ =1 - - Si |k| < c, es tracta d’una el-lipse

amb centre el punt (0,0, k), eixos paral-lels a Ox i Oy, i semieixos

a\J1—k2/c% i byJ1—k?%/c2.
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2 2

Z . . X ’
Es, doncs, una el-lipse semblant a I'el-lipse s + % = 1, amb rad de sem-

blanca \/1 — k?/c?.Si |k| = c, la figura que obtenim és un parell de rec-
tes imaginaries conjugades. L'unic punt real d’aquesta interseccid és
(0,0, ¢). Finalment, si |k| > c, la seccio és una el-lipse imaginaria. Les sec-
cions pels plans x = k o y = k tenen propietats similars.

Notem que els plans de coordenades son plans de simetria. En particular,
els eixos de coordenades son eixos binaris de simetria i 'origen és centre
de simetria. Si es compleix a = b (per exemple), llavors és un el-lipsoide
de revolucio respecte de I'eix Oz. En el casa = b = ¢, l'el-lipsoide és una
esfera de radi a i centre a l'origen.
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La seccid pel pla z =k, k € R, és una el-lipse amb centre
(0,0, k), eixos principals paral-lels a Ox i Oy, i amb semiei-

xos ay/ 1+ k2/c? i byJ1+ k2/c?.

Son el-lipses semblants entre elles (circumferéncies si
a = b) i que creixen indefinidament quan |k| creix indefinidament. La més peti-
ta d’aquestes el-lipses s'obté per k = 0 i I'el-lipse que en resulta s"anomena
el-lipse de gola de I'hiperboloide.

Les seccions pels plans y =k (0o x = k), k € R, sén hipérboles quan |k| = b
(respectivament |k| = a), amb eix principal paral-lel a I'eix Oz o a I'eix Ox (resp.
Oy), segons que |k| < b (resp. |k| < a) o |k| > b (resp. |k| > b), i un parell de
rectes reals quan |k| = b (resp. |k| = a). En particular, I’hiperboloide d’un full
conté rectes, propietat que s’evoca usualment dient-ne un hiperboloide reglat.
En general, les rectes contingudes en una quadrica s"anomenen generatrius.
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Hiperboloide de dos fulls (o no reglat). Es la
figura

Les seccions per z = k sén el-lipses reals

(imaginaries) si |k| > ¢ (si |k| < ¢ ) i dues
rectes imaginaries conjugades per |k| =c. Si |k| > c, el centre de
I'el-lipse que resulta de tallar pel pla z = k és (0,0, k), els seus eixos prin-
cipals son paral-lelsa Ox i Oy, i el valor dels seus semieixos és

ak2/c2—1i ak?/c? —1,

respectivament. Aquests fets son els que justifiquen que ens referim a

aquesta figura dient que té dos fulls. Les seccions per x constant, i per y
constant, son hiperboles amb eix principal paral-lel a I'eix Oz.
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z Paraboloide el-liptic (o no reglat). Té I'equacio

amb a i b nombres reals positius. La seccid amb
el pla x = k (el pla y = k), k constant, és la pa-
rabola

y? = 2b%(z — k?/a?)
(la parabola x? = 2a?(z — k?/2b?). En canvi, la seccid per z = k és una
el-lipse real si kK > 0, una el-lipse imaginaria si k < 0, i dues rectes imagi-

naries conjugades si k = 0.

Si es compleix que a = b, el paraboloide el-liptic és de revolucié respecte
de lI'eix Oz.
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Paraboloide hiperbdlic (o reglat). Es la quadrica
donada per I'equacio

Les seccions per z = k son hiperboles si k # 0.

Més precisament, si k > 0 (si k < 0), la seccio

pel pla z = k és una hipérbola amb eix principal
paral-lel a Ox (a Oy), eix secundari paral-lel a Oy (a Ox), i amb semieixos

a2k i b\V2k (avV—-2k i bvV—-2k).

La seccid pel pla z = 0 és un parell de rectes reals. Les seccions per x = k
0 y = k son paraboles amb eix paral-lel a Oz, en el primer cas amb orien-
tacio contraria (parabola amb un maxim) i en el segon amb orientacid co-
incident (parabola amb un minim).
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Cons. La quadrica

és analoga a un parell de rectes reals i, ates que es-
ta formada per rectes que passen per l'origen (per
cada punt P # O conté la recta PO), en diem con
real.

Es clar que la seccié pel pla z=k, amb k € R no
nul, és una el-lipse amb centre en el punt (0,0, k), eixos principals pa-
ral-lels a Ox i Oy, i amb semieixos a|k|/c i b|k|/c. Aixi, doncs, les dimen-
sions de l'el-lipse C; obtinguda tallant el con amb el pla z = k creixen
proporcionalment al valor absolut de k. De fet, ’homotécia de centre O i
rad p > 0 transforma Cy en C,. A més, per a qualsevol k + 0, el con és
la unié de les rectes OP amb P € Cj. Diem que O és el vertex del con i
que Ci és una directriu.
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La seccid pel pla z = 0 és un parell de rectes imaginaries conjugades.

Les seccid del con amb el play =k (el pla x = k), kK € R no nul, és una
hiperbola amb eixos principals paral-lelsa Oz i Ox (Oz i Oy) i amb semi-
eixos c|k|/b i alk|/b (resp. c|k|/a i blk|/a). En canvi, la seccié amb el
play = 0 (el pla x = 0) és un parell de rectes.

\ Cilindres. Si q(x,y) és un polinomi quadratic
z en les coordenades x,y, sabem que la figura
7 2 , ., .
\ &J de A“ representada per I'equacidé q(x,y) = 0
Plogs és una conica C. Ara be, si mirem el polinomi
/7\ \J q(x,y) com un polinomi en les coordenades

X

(x,y,2) de A3, llavors la quadrica C' de A3 re-

)

presentada per l'equacié q(x,y) =0 és la
unio de les rectes paral-leles a I'eix Oz que passen per un punt variable
de C. Per exemple, si C és un parell de rectes (reals o imaginaries, dife-

rents o coincidents), llavors C' és un parell de plans (reals o imaginaris, di-
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ferents o coincidents). En el cas en que C és no degenerada, es diu que |la
quadrica C' és un cilindre de base C, i que les rectes per un punt de C pa-
ral-leles a Oz son les seves generatrius. Com que les generatrius d’un ci-
lindre son concurrents en un punt impropi, els cilindres son cons amb el
vertex a l’infinit. Un cilindre es diu el-liptic (real o imaginari), hiperbolic o
parabolic segons que la seva base sigui una el-lipse (real o imaginaria),
una hiperbola o una parabola.
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Classificacio de les quadriques
Invariants
Definim nombres reals
D; =D;(4), 1<i<4,
di=d;(4), 1<i<3,
per les formules seglents:
Qs(1) =det(Al, — A) = 2* — D23 + D,A?> — D3A + D,
Q (1) =det(Al3 — A) = 23 — d A% + d,A — ds.
L’expressio
D, = det (4)

s’anomena discriminant de ¢(x,y,z) (o discriminant de la quadrica Q¢

relativament a les coordenades x,y, z). Analogament, I'expressio
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d3 — d@t(A)

s’anomena discriminant de la part principal de ¢(x,y,z). Remarquem
que

d1=a+b+C
d, =ab—f?+ac— g*+ bc — h?.

Si (x',y',z") és un altre sistema de coordenades rectangulars, i A" i A’
son la matriu i la matriu principal de ¢'(x',y’, z"), respectivament, posa-
rem

Dl, — Di(A,)i 1<i< 4;
d; =d;(A), 1<i<3.
Proposicio. Es compleixen les identitats

Dl’l- — D4, dé — d3, dé — dz, di — dl'
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Si, @ més a més, les dues referencies tenen el mateix origen, llavors tam-
bé es compleixen les identitats

Dé — D3, Dé — Dz, Di — Dl'

Prova. La demostracio és analoga a la de les relacions analogues per les
coniques. O

Remarca. Si en lloc de A uséssim pA, p un escalar no nul, per calcular 4’,
llavors obtindriem

Dy = D,(pA) = p*d,, di = di(pA) = p'd;, i = 1,2,3.

En resulta que expressions com ara D,/d7 (suposant d; # 0), D,/d5 (su-
posant d, # 0), o D; /d3 (suposant d3 # 0) sén independents del siste-
ma de coordenades i de I'equacidé que emprem per representar la qua-
drica. Aquesta és la rad per la qual expressions com les considerades
s’anomenen invariants euclidians (absoluts) de les quadriques.
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Observem també que I'anul-lacié o no de D,, d3, d,, o d; tampoc no de-
pen de l'equacid de la conica emprada per verificar-les. El mateix passa
amb relacions com ara D, > 0, d3d; > 0 o d, > 0. Com que aquesta
mena de relacions apareixen frequentment en els enunciats, sovint, per
abus de llenguatge, també ens referim D,, ds, d,, i d; dient que son in-
variants euclidians de les quadriques.

Propietats similars es poden afirmar de les expressions D3, D, i D4 si les
dues referéncies tenen el mateix origen, perd no en general. Es per
aqguesta rad que, d’aquestes expressions, en direm semiinvariants eucli-
dians de les quadriques.

Index principal d’una quadrica. En la classificacid efectiva de les quadri-
gues hi intervé encara una nocié més, que anomenarem index, o index de
la part principal per ser més precisos, i que per definicié és I'index j de la
conica de l'infinit (és a dir, 0 o 1 segons que les arrels no nul-les del poli-
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nomi caracteristic de A tinguin totes el mateix signe o que passi el contra-
ri, és a dir, qui hi hagi almenys una arrel positiva i una arrel negativa).

Classificacio mitjangant invariants. Els cons, els cilindres i els parells de
plans (reals o imaginaris conjugats, distints o coincidents) formen les
quadriques dites degenerades, per contrast amb el-lipsoides, hiperboloi-
des i paraboloides, que son les no degenerades.

Lema. Una quadrica és degenerada sii noméssi D, = 0.

Prova. El calcul de D, en termes de les equacions reduides ens déna

Formes reduides D,

Mx?+ 1,92+ 32% +u (A,A, >0, 13 #0) | 144,430 = dspu
x>+ A, y"4 =272 (14 >0, A, #0) — A A,1?
Mx>+,y%+u (A4, >0, 1, #0) 0

Aix'? =2y (A, > 0) 0

1xZ+ 1 (A, > 0) 0
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i la conclusid resulta directament de les definicions i les propietats del
discriminant. O

Quadriques no degenerades. En el cas de les quadriques no degenerades
és clar que la quadrica és un paraboloide si d3 = 0 i un el-lipsoide o un
hiperboloide si d3 # 0. A més, aquests dos darrers casos es poden distin-
gir per la condicié j = 0ij = 1, respectivament. La taula anterior mostra
a més que D, < 0 caracteritza els el-lipsoides reals entre els el-lipsoides,
els hiperboloides de dos fulls entre els hiperboloides, i els paraboloides
hiperbolics entre els paraboloides.

L’equacio reduida d’una quadrica de tipus centrat és

Lix'? + A,y + A3z + 22 = 0.
3

Per aquestes quadriques hi ha un unic centre de simetria: I'origen de co-
ordenades per a les coordenades reduides o el punt de coordenades
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—(p,q,7)A™! en termes de coordenades arbitraries. L’argument és ana-
leg a I'usat per a les coniques centrades i es pot deixar com a exercici.

L’equacio reduida d’una quadrica de tipus parabolic és
Alxlz + Azylz — 2 —— Z =

Quadriques degenerades. Per a les quadriques degenerades (D, = 0), és
clar que la condicié d5 # 0 equival a dir que la quadrica és un con, real si
j =1 iimaginari si j = 0. Les quadriques degenerades tals que d; =0
corresponen, doncs, a quadriques en l'equacié reduida de les quals hi
apareixen dues o menys coordenades. El seu tractament és, doncs, del
tot paral-lel al de les coniques d’un pla.

L’equacio reduida d’una quadrica de tipus cilindric centrat és
D
Ax'?+ ,y"% + —==0.
2

L’equacio reduida d’una quadrica de tipus cilindric parabolic és



L’equacio reduida d’un parell de plans paral-lels és

Ax"% — ZZ—iy’ = 0.
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Algorisme de classificacio

e

D, # 0 4

e

ds # 0 4

Ld3 = (0 paraboloide {

rd3;t0{

.
d3=0 <
\ .

[j = 0 el - lipsoide {

\j = 1 hiperboloide {
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D, <0 real

D, > 0 imaginari

D, < 0 dos fulls

D, > 0 un full o reglat
D, <0 el-liptic

D, > 0 hiperbolic

J = 0 con imaginari
j =1 conreal

f

d, # 0 <

d2=0<

d, > 0 D3¢O{

0, <0 |

d,{D3; < 0 cilindre el - liptic real

d,1D; > 0 cilindre el - liptic imaginari
D; = 0 parell de plans imaginaris conjugats
D5 # 0 cilindre hiperbolic

D; = 0 parell de plans reals

(D; # 0 cilindre parabolic

D, > 0 parell plans || imaginaris conjugats

D, < 0 parell plans || reals
D3 =0 {
\

D, = 0 pla doble
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Exemple. 2xy — 2xz + 2yz —4x + 1 = 0 és un hiperboloide reglat, ja
queD, =2>0,d3=—-2#0ij=1jaqued, =—-3<0.

Exemple. 4x? + 9y? + 16z% + 12xy + 16xz + 24yz + 2x + 4y + 6z +
1 = 0 és uncilindre parabolic, jaque D, =0,d; =0,d, =0iD5 # 0.

Exemple. 9x% + 4y + z?> —6xy —8yz—4x — 6y +4z+a =0 és un
hiperboloide d’un full si a < 3, un con real si a = 3 i un hiperboloide de
dos fulls si a > 3. En efecte,
>0sia<3
D,=1173 — a) ={=0 Si a=3},
<0sia>3

d3 — _117, d2 — 24, d1 — 14,] = 1.
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Exemple. Si suposem que la quadrica Q4 €s un el-lipsoide real, el seu vo-

. , 4 . . . ,
lum en termes dels semieixos és gnabc i en termes dels invariants és

4 / . .
L fo/dg. Els arguments son similars als usats per trobar |'area d’una

el-lipse en termes dels seus semieixos i dels seus invariants.



38

( ( o D, <0 real
j =0 ellipsoide , o
D, >0 1maginari
d, # 05
. _ _ D, <0 dos fulls
D, #0 < j =1 hiperboloide
\ D, >0 un full

D, <0 elliptic
\ D, >0 hiperbolic
( =0 con imaginari
d, #0 {] .
j =1 conreal

d, =0 paraboloide {

n d D, <0 cilindre el-liptic real
-
d, >0 ° d D, >0 cilindre el-liptic imaginari

d,#0 1 D, =0 parell de plans imaginaris conjugats
D, =0 - 4 <0 D, # 0 cilindre hiperbolic
<
d,=0 ; ? D, =0 parell de plans reals

(D, #0 cilindre parabolic
D, <0 parell de plans paral-lels reals

D, =0 <D, >0 parell de plans paral-lels imaginaris conjugats
D, =0 pla doble

\



