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Nocions basiques

Donat un polinomi quadratic real

[%] q(x,y) = ax® + 2bxy + cy* + 2dx + 2ey + f
en les coordenades rectangulars (x, y), direm que I'equacié
[5] q(x,y) =0

defineix una conica analitica, que denotarem C,. Ates que |'equacio és li-

neal quan la part quadratica (o part principal)
g, (x,y) = ax? + 2bxy + cy?
s’anul-la, suposarem que g, (x,y) # O.

Un punt (a, B) pertany a C, si i només si q(a, f) = 0. Es diu que el punt
(a,f) ésrealsia,f € R, iesdiuque és imaginarisia,fB €ECia&Ro

f & R.Si (a,F) és un punt imaginari, direm que (c_x,B) és el seu punt
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conjugat. Com que el polinomi q(x,y) és real, C, conté, amb cada un

dels seus punts imaginaris, el seu conjugat.
Si (x',y") és un altre sistema de coordenades rectangulars i
q (x',y)=a'x"*+2b'x'y" +c'y'*+2d'x" +2e'y + [
és un polinomi quadratic en (x',y") amb part principal no nul-la, direm

que les equacions q(x,y) = 0iq’'(x’,y") = 0 defineixen la mateixa coni-
ca analitica si i només si existeix un nombre real p tal que

q'(x',y") = pq(x,y),
on considerem g(x,y) com el polinomi en (x',y") que s’obté substituint
(x,y) per les expressions del canvi de les coordenades (x,y) a les coor-
denades (x',y"). En particular, dos polinomis g(x,y) i q¢'(x’,y"') en les
mateixes coordenades rectangulars defineixen la mateixa conica si i no-
més si existeix un nombre real p tal que q'(x,y) = pq(x,y).



Conica projectiva

Considerem la conica analitica C,; definida per I'equacio [*x]. Si [X,Y, Z]
son les corresponents coordenades projectives, de manera que x = X/Z
iy =Y/Z, direm que I'equacio

[¥] aX? 4+ 2bXY + cY? +2dXZ + 2eYZ + fZ? =0

defineix la conica projectiva C’_q associada a la conica C,. Tambeé direm
que un punt [£,n,{] pertany a 5q si i només si (¢,1,¢) satisfa I'equacid
[*].

La nocid de punt real (imaginari) de la conica projectiva C_q, i la nocio de

punt conjugat d’un punt imaginari, es defineixen de manera semblant a
com hem definit aquestes nocions per la conica analitica.

Notem que |I'equacio [*] determina I'equacio

ax? + 2bxy + cy* + 2dx + 2ey+ f =0



fent la substitucio |X,Y, Z] » [x,y, 1].

Els punts de l'infinit de la conica analitica C, son, per definicio, els punts

de la conica projectiva C’_q que tenen la forma [X,Y, 0], és a dir, els punts
|X,Y, 0] tals que

aX? + 2bXY +cY? = 0.

D’aquesta equacio en diem equacio dels punts del I'infinit de la conica Cy,
i també restriccio a l'infinit de la conica projectiva éq. Notem que
aX? + 2bXY + cY? = q,(X,Y).

x2 yz XZ YZ
. o 7/ ’n [ (] ’ . —_— V4 —_—
Exemples. La restriccio a l'infinit de 'el'lipse —~+ > =1¢és—+-- =0,

la qual defineix els punts imaginaris conjugats [a, +bi, 0].
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2 2

X y

En el cas de la hiperbola primir i 1, "'equacio dels punts de l'infinit,
X% y? . .
T 0 , defineix els punts reals [a, b, 0], els quals coincideixen

amb els punts de l'infinit de les asimptotes g + % = 1.

La restriccid a I'infinit de la parabola y? = 2px és Y2 = 0, la qual només
és satisfeta pel punt [1,0,0]. Per analogia amb el comportament de la in-
terseccio d’una recta i una conica que hem vist a la introduccio, direm
qgue la recta de l'infinit és tangent a la parabola i que el punt de contacte
és [1,0,0]. En tot cas, la nocid de recta tangent a una conica projectiva se-
ra estudiada en detall posteriorment.



Matriu i matriu principal d’una conica

A una matriu simetrica real

a b d
[#] A= (b d e)
d e f

li podem assignar el polinomi
qA(x,y) = ax? + 2bxy + cy? + 2dx + 2ey + f

Si la matriu principal de A, que per definicié és
_(a b
A= (b c)'

és no nul-la, el polinomi g#(x,y) defineix una conica analitica ng, que

podem denotar abreujadament Cz. Direm que aquesta conica analitica és
la determinada per la matriu A referida a les coordenades (x,y). Notem
que si p és un nombre real no nul, 4 i pA determinen, referides a un ma-
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teix sistema de coordenades, la mateixa conica analitica. Notem també

que la part principal del polinomi qA(x, y) és el polinomi
q2(x,y) = ax? + 2bxy + cy?.

Reciprocament, donada la conica analitica definida per I'equacid [*x*],
podem associar-li la matriu simetrica real [#], onara a,b,c,d, e, f son els
coeficients del polinomi g(x,y). Com que aquesta matriu només esta de-
finida llevat d’un factor escalar no nul, posarem [A] per denotar-la i di-
rem que és la matriu de la conica relativa a les coordenades (x, y). Per tal
de poder fer la distincid quan ens calgui, de la matriu 4 en direm la ma-
triu de I'equacio [*x*]. La part principal d’aquesta matriu és la matriu 4, on
A esta formada amb els coeficients de la part principal de g(x, y). Obser-

vem que podem posar

A= (A | '"T), m = (d,e).
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Lema. Donada la matriu simétrica real 4, la conica que determina, referi-
da a les coordenades (x, y), és la definida per I'equacio

(x,y, DA(x,y, DT = 0.

La conica projectiva associada a aquesta conica és la definida per
I’equacio

X,Y,2)AX,Y,2)T =0

i la restriccio a l'infinit per I'equacio
X, VAKX, V)T =o0.

Prova. (X,Y,Z2)A(X,Y,Z)T
= (aX+bY +dZ,bX +cY +eZ dX +eY + fZ)X,Y,Z)T
=aX?+ bYX +dZX + bXY + cY? + eZY + dXZ + eYZ + fZ*
= aX?+ 2bXY + cY? + 2dXZ + 2eYZ + fZ°.

Les altres dues relacions s’obtenen fent (X,Y,Z) = (x,y,1)iZ = 0.
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La matriu A d’una conica i la seva matriu principal, A, també s’anomenen
matriu projectiva i matriu de l'infinit de la conica.

Proposicié. Siguin A i A’ matrius simétriques reals 3 X 3. Llavors, la coni-
ca analitica definida per 4, referida a les coordenades rectangulars (x, y),
coincideix amb la codnica analitica definida per la matriu A’, referida a les
coordenades (x’,y"), si i només si existeix una matriu M de la forma

_ T
M = (’g“ 1; ),MEO(Z), p = (r,5s),75s€ER,

i un nombre real p, tals que
A' = pMTAM.

Si aquest és el cas, llavors també tenim
A = pMTAM,

on A i A" sén les matrius principals de A i A’ (notem que la matriu princi-
pal de MTAM és MT AM).
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Equacions reduides
Veurem que existeix un canvi rectangular de coordenades
x=oax" + By +vy, ¥y =ax + By v,
que transforma el polinomi
q(x,y) = ax® + 2bxy + cy* + 2dx + 2ey + f
en un polinomi
q'(x",y") = qayx" + By +y1, a2x" + By’ +v2)
gue és d’una de les formes seglients:
a) Lx2+ A,y 4+u (cascentrat)
b) Ax'? + 2ey’ (cas parabolic)
c) Aix*+u (rectes paral-leles)

on A4,4, i e son nombres reals no nuls i © un nombre real arbitrari.
D’aquestes expressions en direm formes reduides.
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Primera reduccio. El primer pas consisteix a diagonalitzar la matriu A, és
a dir, a fer un canvi tal que la nova matriu de l'infinit, A’ = MT AM, sigui
diagonal. Com veurem tot seguit, aix0 es pot aconseguir fent un canvi
(x,y)T = M(x',y)T amb M ortogonal (és un canvi, per tant, que deixa
I"origen fix).

Proposicio. Si A no és diagonal (és a dir, si b = 0) i definim
a€|—n/4, n/4]

per la formula
tan(2a) = 2b/(a — ¢)

(amb la convencio que 2a = /2 sia = c) i posem

(COS Q& — sin a)
sina cosa’/’

llavors A’ = MTAM és diagonal.



13
Prova. Un calcul immediat ens mostra que I’element de la posicid (1,2) de
la matriu MTAM és
b cos(2a) — % (a — c¢) sin(2a),

i 'anul-lacié d’aquest element equival a |la relacié que hem usat per defi-
nir a. Com que MTAM és una matriu simétrica, també s’anul-la I'element
de la posicid (2,1) i, per tant, MT AM és una matriu diagonal. 0

Corol-lari. Els valors propis de A, diguem-ne 4, i 4,, sOn reals i
A O
w=(l 0.
0 A
Prova. Com que M és ortogonal, M = M~1. Per tant,
A'=MT'AM = M~1AM

és una matriu conjugada de A. En resulta que 4 i A’ tenen els mateixos
valors propis. Com que A’ és real i diagonal, aixo acaba la prova. O
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Remarca. Els valors propis A, i A, de A s’obtenen resolent I'equacié
det(Al, — A) = 0, és a dir,
A —(a+c)dl+ (ac—b?) =0

(es coneix amb el nom d’equacio secular de A). Aixi doncs,

a+c++/(a—c)2+4b>2
2 V4

21,12 —_

ja que (a + ¢)? —4(ac — b?) = (a — ¢)? + 4b?. Aquesta expressid con-
firma que A4 i A, son reals.
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Segona reduccio. La proposicio anterior ens permet reduir I’equacio de la
conica a una de la forma

[o] Aix? + A, y% + 2dx + 2ey + f = 0.

Hi ha dues situacions a considerar: A4, #0 i A4, = 0. Si es dodna
aquest segon cas, hi ha un valor propi nul i un de no nul (recordem que
hem suposat A # 0). Intercanviant els eixos de la referencia si calgués,
sempre podem suposar que A4; # 0i A, = 0. Amés, canviant I'equacio de
signe si fos 1; < 0, podem suposar, en qualsevol cas, que 4; > 0. En re-
sum, suposarem que en l'equacio [¢] es compleix 44 > 0 i, d’aquesta
manera, els dos casos es corresponen a les condicions A, #0i A, =0,
respectivament.

Ara I’eina basica per seguir el procés de reduccio és la complecio del qua-
drat, és a dir, la identitat

Ax? +2dx =Ax"*+k, x' =x+d/Ai k =—d?*/A.
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Si estem en el cas A4, # 0, llavors dues complecions del quadrat, i el cor-
responent canvi de coordenades (el canvi d’origen x =x"—d/A4,
y =y —e/A,), ens permeten de suposar que d = e =0, amb la qual
cosa obtenim una equacio reduida del cas centrat:

X%+ L,y +u=0.

| si estem en el cas 4, = 0, llavors podem fer una complecioé del quadrat,
amb la qual cosa arribem a una equacio sense terme lineal en x. Es a dir,
podem suposar que |I'equacio [¢] és

Aix?+2ey+ f=0.
Si e = 0, aguesta equacio és de la forma

x> +u=0,
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gue és una equacid reduida de rectes paral-leles, i si e # 0, un canvi
f

d’origen de la formay =y’ — P

ens permet de suposar que f = 0, amb

la qual cosa s’obté una equacio de la forma
Ax'? + 2ey' =0

gue és una equacio reduida de tipus parabolic.

Equacions canoniques
Comencem amb una reduida de tipus centrat
12 72
AMx“+ 1y "+u=0

i procedim a discutir els diversos casos possibles. Si u # 0, posant

a=+/lul/Ay, b =+/lul/I2]

obtenim que I'equacio és equivalent a una de les tres formes seguents:
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% + 2’_2 =1 (ellipse)

x%  y?

~ + = —1 (el-lipse imaginaria)
2 2

% — 2’_2 =1 (hipérbola)

Siu = 0, llavors podem posar

a =1/, b=1/{12,]

i obtenim que I'equacié adopta la forma seglient:

2 2

X
—2+€y
a

= 0,

one=1siA,>0ie=-—1si 1, <0. La segona possibilitat ens ddna
dues rectes reals,

XY _
“ 2=,

i la primera dues rectes imaginaries conjugades,
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+i==0.

Q| =
S

Pel que fa a la reduida de tipus parabolic, 1;x? + 2ey = 0, és clar que és
equivalent a I'equacio
x% 4+ 2py =0,ambp = e/A,.

Com que py = (—p)(—y), sempre podem suposar que p > 0 (altrament,
es pot canviar 'orientacio de I'eix Oy). Veiem, doncs, que es tracta d’una
parabola amb parametre focal p i amb eix coincident amb I'eix Oy.

Finalment, la reduida de tipus A;x%? + u =0 és equivalent, posant

k = /|ul/A{ quan u # 0, a una de les tres equacions seglients:

x? = k? (parell de rectes reals paral-leles, x = +k)

x? = —k? (parell de rectes imaginaries conjugades paral-leles, x = +ik)

x?>=0 (rectadoble)
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Coniques centrades

Diem que una conica és centrada si det(4) # 0. Segons el que ja hem dit
en aquest apartat, son les coniques que donen lloc a reduides de tipus
centrat.

Proposicio. Suposem que la conica és centrada. Llavors existeix un unic
punt (xg, Yo) respecte del qual la conica és simetrica. A més, aquest punt
ésiguala —(d,e)A™ L.

Prova. Suposem que el punt (xg,yy) és un centre de simetria de la coni-
ca. Si fem el canvi d’origen x = x' + xy, y = ¥y’ + y,, llavors la conica, re-
ferida a les coordenades (x',y"), ha de ser simetrica respecte de I'origen.
Aixo significa que I'equacio

(x" + x0, 9 + Vo)A + x0, 7 +y)T +2(d, e)(x" + x0,y +y)T +f =0
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ha de ser invariant per la simetria central (x’,y’) » (—x’,—y"), és a dir,
que no ha de tenir termes lineals en x" i y’. Com que els termes lineals en
x'iy' de l'equacié anterior resulten ser

Z(XO, yO)A(x', y,)T T Z(d: 8)(3(’, y’)T’

veiem que la condicié per tal que (xq,Vy,) sigui centre de simetria és
I’equacié matricial

(x9,Y0)A + (d,e) = 0.

Pero com que A és una matriu invertible,
(x0,¥0) = —(d,e)A™!

és la seva unica solucio.

L’Unic centre de simetria, —(d, e)A™, d’'una conica centrada s’Tanomena
centre de la conica.
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Notem que I'equacié (xq,yo)A + (d,e) = 0, que determina el centre, es

pot escriure, separant les dues components, com el sistema
ax0+by0+d=0}
bxo + CYo +e=0
Aquestes equacions, que s’anomenen equacions del centre, es poden re-
cordar més facilment si observem que
ax +by+d = O}
bx+cy+e=0
son (la meitat de) les derivades parcials de I'equacié de la conica respecte

de x i y, respectivament. En general, representen el lloc geometric dels
punts que son centres de simetria de la conica i per aixo s"anomenen

equacions dels centres.
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Definicio alternativa de les coniques no degenerades

A la introduccié hem vist que la parabola és el lloc geometric dels punts P
que compleixen la condicié d(P,F) = d(P, L), on F és el focus i L la di-
rectriu. Remarcablement, I'argument que hem usat per demostrar aquest
fet es pot adaptar facilment al cas d’una el-lipse (suposant que no és cir-
cumferencia), o al cas d’una hiperbola, per demostrar que, en gualsevol
dels dos casos, la conica és el lloc geometric dels punts P tals que

d(P,F) =¢-d(P,L),

on F és un focus, L la directriu d’aquest focus (es defineix com en el cas
de la parabola), € = cos(y) / cos(a), amb a I'angle entre I'eix del con i
una generatriu i y I'angle entre el pla de la conica i I'eix del con. Notem
qgue, amb les notacions de la figura del cas de |la parabola, en lloc de

PQ = PP’/ cos(a)

tindrem
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PQ = PP’/ cos(y),
ja que y és I'angle format per PP' i II.

Vegem com establir I’enunciat anterior per mitjans analitics, com una
il-lustracio dels metodes de l'apartat anterior. Un avantatge d’aquest
procediment és que quedara establert, ensems, que |la constant € coinci-
deix, en el cas de I'el:lipse i la hiperbola, amb I'excentricitat. Com que
& = 1 en el cas de |la parabola, d’ara endavant considerarem que la para-
bola té excentricitat 1.

Sigui e un nombre real positiu. Siguin, en un pla euclidia, L unarectai F
un punt exterior a L. Llavors, el lloc geometric dels punts P tals que

d(P,F) _
d(P,L)




25

és una el-lipse, una parabola o una hipéerbola segonsquee <1,e=10

e > 1. En tots el casos, F és un focus, |la recta per F perpendicular a L és

I"eix principal i e és I'excentricitat.

En efecte, sigui O el peu de la
perpendicular a L pel punt F i
considerem una referencia rec-
tangular amb origen O i eixos OF
i L. LU'eix Ox, doncs, coincideix
amb la perpendicular a L per F.
També tenim que F = (p,0), on
p és la distancia de F a L (en di-
em parametre focal).

Per un punt P = (x,y), la condi-
cié6 d(P,F)/d(P,L) = e és equi-
valent a la relacio

0

e= g (hipérbola)

g

e= %(el-lipse)

e =1 (parabola)
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(x —p)* +y* =e’x?,
és a dir, a
x] (1 —e?)x*+y?—2px+p?=0.

Si e<1, llavors 1—e? >0 i per complecid del quadrat obtenim
I’equacio

(1) (x =) +y2 =1

1—e?

la qual representa una el-lipse de centre el punt 0’ = (1_pe2 ,0), eix prin-

cipal Ox i semieixos
ep ep

a = b = :
1—e2’ 1—e?

2

N . e
Un calcul senzill mostra que ¢ = P ,
1—e?

d’on resulta que |'excentricitat de

'el-lipse és c/a = e. Finalment, FF és un focus de l'ellipse, ja que
0" —(c,0) =(p,0) =F.
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Sie = 1, 'equacio [*] del lloc geometric esdevé
y? — 2px + p* =0,

que es tracta d’una parabola per a la qual el punt F = (p,0) és el focus i
la recta Ox |'eix.

Manca discutir el cas e > 1. Canviant de signe I'equacio [*], obtenim
I’equacio equivalent

(e? —Dx? —y?+2px —p? =0

que, completant el quadrat, es transforma en

2 2,2
2 p 2 e p
e —1 (x ) —ye = :

( ) t e’—1 Y e’—1
Es tracta, doncs, d’una hiperbola amb centre al punt (— ezp—1’0) | semiei-
X0S

ep ep
a = b =
e?-1"’ e?—1
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e?p
e2—1’

Per calcul s’obté que ¢ = d’on resulta que F = (p,0) és un focus i

gue e és I'excentricitat.

En una conica d’excentricitat e i parametre focal p, el punt Q = (p, pe)
(mateix sistema de coordenades que a la figura) és de la conica. Té la
propietat que FQ és perpendicular 'eix principal de la conica, ja que
Q — F = (0,pe). Tenim, a més, que d(F,A) = pe. Aquesta distancia es
denomina semicostat de la conica i posarem A per denotar-lo (el costat, o
latus rectum en terminologia tradicional, és 24 = 2pe).



