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Definicio de projectivitat
Siguin P = [E] i P’ = [E'] dos espais projectius.

Donada una aplicacié lineal injectiva f: E — E', posarem [f |: P — [P’ per
denotar I'aplicacié tal que [x]| = [f(x)].

B Esta ben definida, ja que [f(Ax)] =[Af(x)] =[f(x)] per a tot
A €K —{0}.

muf]=1[f]eK—{0}).

Direm que una aplicacié @: P — P’ és una projectivitat si existeix un iso-

morfisme lineal f: E — E' talque ¢ = [f ].

Les projectivitats d’un espai projectiu P en ell mateix s"anomenen homo-
grafies de P.

B Una projectivitat transforma varietats lineals en varietats lineals de |la
mateixa dimensio: [f|([F]) = [f (F)] per a tot subespai F de E.
W Si ¢: P > P’ és una projectivitat i L i L’ sén varietats lineals de P,

e(LVL)=@pL)Vel"), oLnL")=¢(L)Nne(".



Algunes propietats basiques

B La composicié de projectivitats és una projectivitat. De fet, si E, E' i
E" sén espais vectorialsi f: E - E'i f': E' - E" sén aplicacions lineals
injectives, llavors [f'Te [f ] =[f"° f].

BSif:E — E' és unisomorfisme lineal, [f ] és bijectiva i la projectivitat
[f~1] ésinversa de la projectivitat [f ]: [f 17 = [f1].

B Les homografies d’'una espai projectiu IP formen un grup amb l'ope-
racio de composicio.

D’aquest grup, se’n diu el grup projectiu de P, i posarem PGL(IP) per
denotar-lo.

B Invaridncia projectiva de la rad doble. Si ¢: P — P! és una projectivi-
tat, llavors p(@(Q1), ¢(Q2), 9(Q3), 9(Q4)) = p(Q1,Q2,0Q3,Q4). En
efecte, referits els punts de P! a una referéncia S, diguem Q; =
[x:, ¥ils, lavors @ (Q;) = [x;, ¥ily(s) i 'enunciat s’obté directament de
la definicié de rad doble.



Teorema fonamental de les projectivitats

Sigui R =[Py, Py, ...,P;; U] una referencia de I'espai projectiu P i
R' = [Py, Py, ..., P;; U] una referéncia de I'espai projectiu P’ (P i P’ te-
nen doncs la mateixa dimensio). Llavors existeix una Unica projectivitat
@:P - P’ tal que p(P;) =P; (0<i<n)iel)=U (abreujadament,
p(R) =R').

Prova. Sigui e, e4, ..., €, una base de E adaptada a R i ej, ey, ..., €5, Una
base de E’ adaptadaa R'.

Sigui f: E = E’ I'Gnica aplicacid lineal tal que f(e;) = e;. Llavors f és un
isomorfisme lineal i la projectivitat [f] transforma P; = [e;] en [e/] = P} i
U=|ey,+e ++e,]enle)j+e +-+e,]=U".

Per veure la unicitat, sigui ¢: P — P’ una projectivitat que transforma R
en R'. N’hi haura prou si mostrem que ¢ = [f]. Sigui g: E = E’ un iso-
morfisme lineal tal que ¢ = [g]. Com que

P; =@(P) =[g(e)]iU =) =[g(ey) +g(e)) + -+ gley)],
g(ey),g(eq), ..., g(e,,) és una base de E' adaptada a R'. Per la unicitat,
llevat d’un factor escalar, de les bases adaptades a una referencia, exis-
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teixun A € K — {0} tal que g(e;) = Ae; . Arae] = f(e;), per definicié de
fiaixig =Af,dong = [g] = [A4f] = [f]. B

Exemple. Siguin Q;, i = 1, ...,4, punts diferents de Pl Q;,,i=1,../4,
punts diferents de P!. Llavors existeix una projectivitat ¢: P —» P! tal

que @(Q;) = Qi si i només si p(Qq,Q2,03,Q4) = P(Qpéz»é&éz}); I en

aquest cas @ és unica.

La condicio es clarament necessaria, per la conservacio de la raé doble
per projectivitats. Per veure I'afirmacié reciproca, sigui ¢:P! - P! |a
projectivitat que transforma la referéncia [Q4, Q,; Q3] de P! en la refe-
réncia [Q4, Q; Q3] de IP'. Com que Q, és el punt que té coordenada abso-

luta p = p(Q1, @2, @3, Q4) en la referéncia [Q1, Q2; @3], ¥ (Q4) és el punt
que té coordenada absoluta p en la referéncia [Q, Q3; Q3]. Pero aquest

punt és Qy si p(Q1, @2, @3, Q4) = p.



Representacio d’una projectivitat en coordenades

Siguin ¢@: [P > P’ una projectivitat, R = [P, ..., P,; U] una referéncia de
PiR =][Py,..,P;;U'] una referéncia de P'. Sigui e = (e, ..., e,) una
base adaptadaa Rie' = (e, ..., e,) una base adaptada a R'. Si ¢ = [f],
sigui M la matriu de f respecte de les bases e i €', és a dir, f(e) = e'M.
Com que e, €' i f estan definides llevat d’un factor escalar no nul, [M]
només depen de @ i direm que és la matriu de @ respecte de les referen-
ciesR iR".

Siguin & = (&, ..., &) i & = (&, ..., &) les R-coordenades d’un punt P
de IP les R'-coordenades de ¢ (P), respectivament. Llavors

[§"] = [M][§"].

En efecte, €&’ és un representant de P. Per tant, f(e&!) = f(e)&" =
e’ ME&T és un representant de @(P). Com que e’&'T és un altre represen-
tant de @ (P), la formula en resulta immediatament.



Exemple: involucions de P!
Sigui @ # Id una involucié de P! (és a dir, una homografia tal que @? és
la identitat). Si la matriu de @, en una certa referencia, és [g Z], llavors

a + d = 0. Reciprocament, si a+d =0, llavors @ és una involucid i
@ * 1d.

En efecte, com que

[a b] [a b] _ [az +bc b(a+d)

c dilc d c(a+d) bc+d?

ha de ser [I,], és necessari que d? = a?,ésadirra+d =00a—d = 0.
Sifosa+ d # 0, llavors seria ¢ = Id, ja que tindriemd =aib =c = 0.
Aixi, doncs, a +d = 0, i el calcul anterior mostra que la matriu de <p2 es
[I5]. Notem que a® + bc = —(ad — bc) # 0.



Extensio projectiva d’una afinitat

Sigui @: A = A una afinitat de l'espai afi (A, V) i f:V = V el seu auto-
morfisme lineal associat (f = @).

Teorema. (1) Existeix una unica homografia @ de A tal que @(P) = ¢(P)
(P € A). (2) 'homografia ¢ deixa A, invarianti @|A, = [f].

Prova. Sigui w € V el vector tal que @(0) =0 +w. Sigui f:V >V
"Gnica aplicacié lineal tal que ey = e + Wi f|V = f.Comqueey € Vi f
és un automorfisme de V, f és un automorfisme de V. Sigui @ = [f]. Per
definicié tenim, doncs, @([Aey + v]) = [A(ey + W) + f(v)]. Si ara P és

unpuntde AiP=0+v (v evV),
P(P)=g([eg+vD) =[eg+w+f(W)]=0+w+f(v) =p(P),

i aixo demostra I'existencia de . Notem que

?|A» = [f]|V] = [fIV] = [£].

Per veure la unicitat, sigui 1 una homografia de A tal que Y(P) = ¢ (P)

per a tot punt P € A. Veurem que ¥ = ¢ i aixo acabara la demostracio.
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Per definicié d’homografia, existeix un automorfisme lineal g de V tal que

i = [g]. De
_ eo]) = |g(e
(D) = Lg](l 0_]) [g(_o)]
p(0)=0+w= ey +Ww]
deduim que existeix u € K tal que g(ey) = u(ey +w), és a dir,
(u=tg)(ey) = ey + w (notem que u # 0 perqué g és injectiva). Com que
[u=tg] = [g] = ¢, canviant g per u~1g podem suposar que Y = [g] i
g(ep) = ey +w = f(ep).

Sigui ara v € V un vector qualsevol i P = O + v. Llavors, amb

[g9](leo +v]) = [g(eo) + g(w)] = [ep + w + g(v)]
p(P)=0+w+f(v) =[eg+w+ f(v)]

W(P) = {

veiem que g(v) = f(v) = f(v).
En suma, tenim g = f i, per tant, Y = @.
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Caracteritzacio del grup afi com a subgrup del grup projectiu

Corol-lari. |’aplicacié ¢ — @ és un monomorfisme de G(A) en PGL(A) i
la seva imatge és el subgrup de PGL(A) format per les homografies que
deixen A, invariant (o, equivalentment, que deixen i(A) invariant).

Prova. Siguin ¢ i ¢’ afinitats de A. Aleshores, 1) = @'{ és una homogra-
fia de A que deixa i(A) invariant i que compleix Y(P) = (¢'¢@)(P) per a
tot P € A. Com que Y’ = ¢’¢ també compleix Y'(P) = (¢'¢)(P), per
unicitat veiem que @’ = @ @, la qual cosa prova @ — @ és un homo-
morfisme de grups. Aquest homomorfisme és un monomorfisme, ja que
les extensions projectives d’afinitats diferents son homografies diferents.

Sigui ara ¥ = [g] una homografia de A que deixa A, invariant. Llavors g
deixa V invariant. A més, si g(ey) = ues +w, amb w € V, tenim u # 0
(altrament g no seria injectiva). Canviant g per ,u‘lg, podem suposar,
doncs, que g(ey) = ey + w. Si ara posem

f=glVieP)=0+w+ f(P—0) (peratotP € A),
@ és una afinitat de A i

@(P) =[eg +w+ f(P—0)] = [g(eo + (P~ 0))] =¢(P),
d’on resulta ¥ = @.
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Expressio de ’homografia ¢ en coordenades

Sigui R = [0; ey, ..., e,] una referéncia afi de A i R = [Py, ..., B,; U] la
corresponent referéncia projectiva de A.

Considerem una afinitat ¢ de A i suposem que I'equacié matricial de ¢
en la referencia R és
x'T = AxT + pT,

de manera que A és la matriu de f = @ en la base €4, ...,e,, i p sOn les
coordenades de @ (0) en la referencia R.

_ 110
Proposicio. La matriu de @ en el referencia R és IPTH :
Prova. En efecte,

fleg) =€y +w=¢ey+pie; +-+pueyi f(ej) = f(ej) =i a;je;
perj=1,..,n,onhemposat A = (aij).
B Una homografia de A diferent de la identitat és una translacio si i

nomeés si el seu conjunt de punts fixos coincideix amb I"hiperpla de
"infinit A,.
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Punts fixos per una homografia

Sigui @ = [f] una homografia de I'espai projectiu P = [E]. Un punt
[x] € P és fix per ¢ siinoméssi [f(x)] = [x]. Com que aquesta relacid
equival a dir que existeix A € K tal que f(x) = Ax, veiem que |[x] és fix
per @ si i només si x és un vector propi no nul de f.

Proposicio. El conjunt de punts fixos de ¢ és la unié d’un nombre finit de
varietats lineals disjuntes dues a dues.

Prova. Sigui @ = [f], on f és un automorfisme lineal de E. El conjunt de
vectors propis de f de valor propi A € K formen un subespai vectorial E)
de E. Amés, E; NE, = {0} si A # u. Si posem A, ..., A, per denotar els
valors propis no nuls diferentsde f i L; = |E;] (i = 1, ..., 1), llavors és clar
que les varietats lineals L4, ..., L,- son disjuntes dues a dues i que el con-
junt de punts fixosde @ és L; U --- U L,..
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Exemple: homologies

Es diu que una homografia @ és una homologia si és diferent de la identi-
tat i té un hiperpla de punts fixos. En tal cas, I'hiperpla s"Tanomena eix de
I"homologia.

Si una homologia no té altres punts fixos que els de |'eix, es diu que és
especial. Altrament, es diu que és general.

Una homologia general té un Unic punt fix fora de |'eix. En efecte, sigui H
I’eix d’'una homologia ' i suposem que P,Q & H son dos punts fixos de ¢
diferents. Veurem que si R és un punt qualsevol, llavors R és fix per ¢,
amb la qual cosa l'afirmacido queda establerta per reducciéo a 'absurd
(@ # Id).

Per veure que R és fix, podem suposar que
R&HiR+P,Q. Aleshores RP és fixa, ja que
conté dos punts fixos (P i X = PR N H). Per les
mateixes raons, QR és fixa. | d’aixo resulta que
R és fix.
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L’anic punt fix fora de I'eix d’'una homologia general sTanomena centre de
I"lhomologia.

B Si ¢ és un homologia general, existeixen referencies projectives R tals

},OHKEK,K#—'

|

I
0,1. Basta prendre R =[Py, Py,...,B;U] amb Py, =P el centre de
I"lhomologiai Py, ..., P, sobre l'eix H.

B El parametre k queda univocament determinat per
@ (direm que k és el modul de ¢). De fet, per a tot
punt X+#P, X¢&¢H, k=pP,P,X,X"), on
X'=¢oX) i P=XX"NnH: si P'=]e'], llavors
X=[Aeg+e] (A€K—-{0}), X' =[xdey +e] i
p(P,P',X,X") = p(c,0,A,Ak) = k.

B Les homologies de modul —1 es diuen harmoniques. Per exemple,
I’extensio projectiva de la simetria especular oy respecte d’un hiperpla H
d’un espai euclidia és ’homologia harmonica d’eix H i centre el punt de
I'infinit de les rectes perpendiculars a H.

B Les rectes invariants per una homologia general son les contingudes a
I"eix i les que passen pel centre.

: , K
que la matriu de @ respecte de R té la forma [
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Si A és un espai afi i ¢ és una homotecia de centre O, llavors la seva ex-
tensid projectiva @ és una homologia general: el seu eix és I'hiperpla de
infinit i el seu centre és el punt 0. El modul de @ coincideix amb la raé
de ¢.

Si @ és un homologia especial, existeixen re-  pr _ P, = [e,] H
feréencies projectives R = |P,, ..., P,; U] tals
que la matriu de @ respecte de R té la forma o(P) = [ey + e4]
1 .
11
P =Py = [eo]
1.

Amb les notacions del punt anterior (i de la figura), per a tot punt P € H
es compleix que la recta P@(P) passa per P;.

D’aix0 resulta que les rectes invariants per ¢ son precisament les contin-
gudes a l'eix H de ¢ iles que passen pel punt P; € H. D’aquesta manera,
veiem que el punt P; de 'eix de ¢ queda univocament determinat per ¢ i
direm que és el centre de I’'homologia especial @).

Si @ és una translacio de A, diguem ¢ = t,,, ¢ és una homologia especial
amb eix I'hiperpla A, i centre [v].
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Projeccions

Sigui P = [E] un espai projectiu de dimensié n = 2 i V € P una varietat
lineal de dimensidéd =n—r—1(1<r<n-—1). DonatunpuntP ¢V,
direm que la varietat V vV P és |la projectant de P des de V i posarem VP
per denotar-la. Notem que VP té dimensié d + 1 = n —r, de manera
que VP és una recta quan I/ és un punt.

Sigui ara L una varietat de dimensio r tal v
que LNV =@. Notem que V VL =P,

com una consequencia immediata de la /\Q
formula de les dimensions. Donat un punt P \Q'

P ¢V, la interseccio de la projectant VP 7 p’
amb la varietat L, VP N L, és un punt de L,
ja que per la formula de les dimensions

dim(VP N L) =dim(VP) +dim(L) —dim(VPVL)=n—-r+r—-—n=0.

Direm que P' = VP N L és la projeccio de P sobre L des de V (o amb cen-
tre V). Obviament, tenim P’ = P siinoméssi P € L.
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Perspectivitats

Considerem ara una altra varietat L' de dimensio
ritalque VN L = @. Llavors podem considerar
"aplicacio my: L —» L' talqueP » P =VPNL'
D’aquesta aplicacio, en direm la perspectivitat de
LenL' desdeV (o amb centre V).

P’ Q'
Proposicio. Siguin L i L' dues varietats lineals de dimensié r d’un espai
projectiu P™* = [E], 1 <r <n — 1. Sigui V una varietat lineal de P de
dimensid n —r — 1 i disjunta de L i de L'. Aleshores, la perspectivitat
my + L — L' és una projectivitat.

Prova. Siguin F,F',G € E els subespais vectorials
tals que L = [F], L' = [F'] i V = [G]. Les relacions
VNnL=@ i VVL=IP equivalen a E=G ®F.
Analogament, E=G @ F'. Donat x € E, sigui
x' € F' I'Gnic vector tal que x — x' € G, és a dir, la
projeccié de x sobre F' relativament a la descom-
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posicid E =G @ F'. 'aplicacié E — F' tal que x — x’ és lineal i el seu
nucli és G. Aixi doncs, atés que G N F = {0}, 'aplicacid f: F — F' tal que
x — x' és lineal i injectiva. Com que F i F' tenen la mateixa dimensio, f
és un isomorfisme. Per acabar la demostracio és suficient provar que

Ty = [f ].
En efecte, si P = [x] € L, llavors x — x’ € G, d’on
VP =[G + (x)] = [G + (x')].
Per tant
my(P) =VPNL =[G+ xHn[F]= [x']=[fC)]

Proposicio. Si L i L' son dues rectes de P™ i my: L — L' és una projectivi-
tat, llavors, per a tota quaterna Q4, Q,, Q3,04 € L,

p(Q1,0Q2,0Q3,Q4) = P(ﬂV(Qﬂ; my (Q2), Ty (Q3), Ty (Q4))-

Prova. Es conseqiiéncia del fet que les perspectivitats sén projectivitats i
qgue les projectivitats conserven la ra6 doble.
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Aplicacio. Siguin L, L,, L3, L, quatre rectes de [P? concurrents en un
punt O. Si L és qualsevol recta que no passa per O, i Q; =L NIL;
(i =1,2,3,4), llavors el valor p(Q4, Q,, Q3,Q,) només depén de Ly, L,
L3, Ly, i no de L. Posarem p(L4,L,, L3, L,) per denotar-lo i direm que és
la rad doble de Ly, L,, L, L,. La raé doble de quatre plans de P3 que

passen per una recta (es diu que formen un feix) es defineix analoga-
ment.

Q
0 0 Qs *
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Projectivitats de Poncelet

Si L i L' son varietats lineals de dimensiéo r (1 < r <n — 1) d’un espai
projectiu [P, d’'una aplicacid @: L — L’ en direm una projectivitat de Pon-
celet si es pot obtenir com a composicido d’'un nombre finit de perspectivi-
tats, aixo é€s, si es pot trobar una successio Ly, ..., L; de varietats lineals
de dimensié v, amb L = Ly i L' = L, , i una successio Vy, ..., V} de varie-
tats lineals de dimensié n—r—1talsque V;NL,_; =V;NL; =@ per
i =1,..,k, de manera que ¢ és la composicido de les perspectivitats
my;:Li_q = L; . Com que les perspectivitats son projectivitats, es clar que
tota projectivitat de Poncelet és una projectivitat. L'afirmacid reciproca,
també és certa:

Teorema (de Poncelet). Tota projectivitat ¢: L — L' entre dues varietats
lineals de dimensié r d’un espai projectiu P™ (1 < r < n — 1) és una pro-
jectivitat de Poncelet.

Prova. Només farem el casn = 2, r = 1. Establirem primerelcas L # L'
després el cas general.
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Proposicio. Siguin L i L' dues rectes diferents de IP?, 4, B, C tres punts di-
ferentsde L i A’, B’, C' tres punts diferents de L'. Llavors, 4, B, C es poden
transformar en A’, B', C' per una perspectivitat o per una composicié de
dues perspectivitats.

Prova. Suposem primer que A = A'. Llavors
B # B’', ja que altrament L i L' coincidirien. Ana-
logament, C # C'. Podem, doncs, considerar el
punt d’interseccio, diguem-ne 0, de les rectes
BB'i CC'. Ara és clar que la perspectivitat de veér-
tex O transforma A,B,C en A", B, C’.

Si A" + A, considerem una recta L' per A’ que no
passi per A ni coincideixi amb L', i un punt O sobre
la recta AA’ diferentde A i A’. La projeccid

de L en L" amb vértex O transforma A en A’. Si-
guin B",C" € L" les imatges de B i C per aquesta
projeccio. Com que, pel cas anterior, hi ha una
projeccié que transforma A’,B",C" en A',B’,C’,
aixo acaba la prova.
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Proposicio. Tota projectivitat entre dues rectes de [P és una projectivitat
de Poncelet.

Prova. Siguin L i L' les rectes i @:L — L' una projectivitat. Siguin
A, B, C € L tres punts diferents i posem
A'= @A), B"'=@B)il =¢(0).
Pel teorema fonamental de les projectivitats, sera suficient veure que
existeix una projectivitat de Poncelet Y:L — L' tal que Y(4) =4,
Y(B) =B’ i Y(C) = C'. Com que aix0 ha estat establert a la proposicié
anterior si L # L', ara només cal fer el cas L = L'. Aquest cas, pero, es
pot reduir a I’'anterior com expliguem tot seguit.
A B C AI BI gl
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Escollim una recta L, diferentde LiunpuntO & L,L,. Posem A, B; i C;
per denotar les projeccions de A,B,(C sobre L; des de 0. Com que
L # L =1L, per la proposicido existeix una projectivitat de Poncelet
Y,:L; - L' tal que
1(4) = A", Y1(BY) =B, ¢¥.(C,) =C".

Si posem Y:L — L' per denotar la composicio de la perspectivitat
To: L — L' amb la projectivitat de Poncelet 1, llavors és una projectivi-
tat de Poncelet que compleix les condicions que necessitavem.
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Teorema del quadrangle complet

Considerem un quadrangle complet
ABCD i sigui XYZ el seu triangle dia-
gonal. Sigui X'el punt d’interseccid de
lesrectes ABiYZ.

Lema. Els punts X i X' separen har-
monicament els punts A i B.

Prova. Projectant la recta AB sobre

la recta CD des de Z s’obté que
p(A,B, X', X)=p(D,C, X" X),

on X' és el punt d’interseccié de CD i YZ. Tornant a projectar la recta CD

sobre AB desde Y, s’obté p(D,C,X",X) = p(B,A, X', X). Per tant,
p(A,B,X',X)=p(B,AX,X)

i sabem que aquesta relacid equival a dir que 4, B, X', X és una quaterna

harmonica.
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Teorema (del quadrangle complet). En un quadrangle complet, el parell
de costats del triangle diagonal incidents amb un vertex d’aquest (per
exemple, en la figura ZX i ZY son els costats incidents amb Z) separa
harmonicament el parell de costats del quadrangle que es tallen en
aquell vertex (AD i BC en I'exemple).
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Construccio geometrica del quart

harmonic

Siguin Q4, -, Q5 tres punts alineats
diferents.

Volem construir el punt Q4 de la rec-
tal = (Q4Q, tal que

p(Ql) QZJ QBJ Q4) = —1.

El lema de |la pagina anterior ens do-

¢
na la solucid. Sigui Z un punt exteri- % Q; 10 Qs
ora L iescollimun puntY de larecta Q37 diferent de Q5 i de Z. Siguin Py
i P, les interseccions de Q1Y amb Q,Z i de Q,Y amb Q,Z, respectiva-
ment. Llavors Q, és el punt d’interseccio de P; P, amb L.
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Quaternes equianharmoniques. Una quaterna de punts alineats diferents
es diu equianharmonica si, posant ¢ per denotar la seva rad doble, es té
que & = 1/(1 — &). Com que aquesta relacié equival a §2 = & — 1, veiem
que &3 = &% — & = —1. Si € és una solucié de I'equacid % = & — 1, lla-
vors I'altra solucioé és 1 — & = —&% = &1, D’aix0d segueix que entre els sis
valors possibles de la rad doble, en fer permutacions dels punts, només
n’hi ha dos de diferents: i1 —¢.SiK =C, llavorsé i1l —¢& son les ar-
rels cubiques complexes de —1.



