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Espai Projectiu

Donat un espai vectorial E de dimensié n + 1 (n = —1), posarem [E| per
denotar el conjunt dels seus subespais vectorials de dimensio 1. Direm
que [E] és I'espai projectiu associat a E i dels seus elements en direm
punts.

També direm que [E] té dimensio n, i posarem
dim([E]) =n
(és a dir, dim([E]) = dimg(F) — 1).

Sin=1(n = 2), diem que [E] és una recta projectiva (pla projectiu). En
lloc de la notacid [E], també s’escriu IP(E), i fins i tot P si E es pot so-
breentendre. Per indicar que |'espai projectiu IP té dimensid n, escriurem
P™,
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Vectors representants dels punts. El punt corresponent al subespai vec-
torial (x) generat per un vector no nul x sera denotat [x]. Si P és un punt
i P = [x], on x és un vector no nul de E, direm que x és un representant
de P. Notem que si x,x € E son no nuls, llavors

[x] = [x'] © 31 € Ktal que x' = Ax
& x 1x’ sén linealment independents.
Varietats lineals

Si F és un subespai vectorial de E, llavors [F] € |E]. Els punts de [F] son
de la forma [x], on x és un vector no nul arbitrari de F. Notem que

m [{0}]]=0

B [(x)] = {[x]} per a tot vector no nul.

Un subconjunt L d’un espai projectiu [E]| és una varietat lineal si existeix
un subespai vectorial F de E tal que L = [F]. Si F té dimensié r + 1, di-
em, d’acord amb la definiciéo de dimensié de I’espai projectiu associat a
un espai vectorial, que L té dimensio r , i escriurem



dim(L) =r
(és a dir, dim([F]) = dimg(F) — 1).

En aquesta definicid no hi ha ambiglitat, ja que, com mostra la proposi-
cido que segueix, el subespai vectorial F queda univocament determinat
per L.

B Com que [{0}] = @, @ és una varietat lineal i dim(@) = —1. De fet, @
és I’unica varietat lineal que té dimensid negativa.

Proposicio. Si F i F' sén subespais vectorials de E, llavors
[F]S [F'|© F C F'.
En particular, [F] = [F'] siinoméssi F = F'.
Prova. Que F € F' implica [F] € [F'] és clar: tot subespai de dimensié 1

de F és un subespai de dimensié 1 de F'.

Per a la implicacié contraria, suposem [F] € [F'] i sigui x € F. Volem
veure que x € F'. Com que aquesta conclusio és obvia si x = 0, podem
suposar que x # 0. Llavors [x] € [F] € [F'] i per tant existeix x" € F’,
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x" # 0, tal que [x] = [x']. Aquesta igualtat implica que existeix A € K tal
que x = Ax. Comque x' € F', tenimAx € F',d’onx € F.

Per expressar que una varietat lineal L esta continguda en una varietat li-
neal L', sovint direm que L' passa per L, o que L' és incident amb L. Un
punt P és diu que és exterior a una varietat L, o que és independent de L,
siP & L.

Punts, rectes, plans, hiperplans

B Els punts son les varietats lineals de dimensid 0 (estrictament parlant,
les varietats de dimensio 0 soén les de la forma {P}, on P és un punt
qualsevol, ja les varietats lineals de dimensid 0 son les de la forma [F],
on F és un subespai de dimensio 1 de E, i si x és qualsevol vector no
nulde F, [F] = [{x)] = {[x]}).

B Les varietats lineals de dimensid 1 s’Tanomenen rectes; les de dimensio
2, plans.

W Les varietats lineals de dimensié n — 1 s"anomenen hiperplans.



Notacions

m Si Xy, Xq,..., X, SON vectors de E, posarem [xg, x4, ..., X,-] en lloc de
[(XO,Xl, '"»xr>]-

B Els punts de la varietat lineal [xg, x4, ..., x,-] tenen la forma

[Aoxo + Ayxqy + -+ A%, ],
on Ay, A4, ..., 4 € K sOn tals que Ayxy + A1x1 + -+ A,.x, # 0. En
particular tenim [x;] € [xg, X1, ..., X] si x; # O.

B Si xy,Xq, ..., X SON linealment independents, llavors |xg, x4, ..., X,] té
dimensio 7 i els seus punts tenen la forma [Agxy + A1x1 + -+ A,.x,],
amb (Ay, A4, ...,4,) # (0,0,...,0). En aquest cas, x; # 0 i per tant
|x;] € |xo, %1, ..., %] perai =0,1,...,7.

B En particular tenim que si x,x' € E sén dos vectors linealment inde-
pendents, llavors [x, x'] és una recta. Els punts d’aquesta recta tenen
la forma [Ax + A'x'], , A" € K, (4,4") # (0,0). Com que [x], [x],
[x + x'] sén tres punts diferents de [x, x'], veiem que I'espai projectiu
| E'| satisfa I’'axioma AO.
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Proposicié (axioma Al). Donats dos punts diferents P i P’ d’un espai pro-
jectiu [P, existeix una unica recta que els conté.

Prova. Sigui E |'espai vectorial tal que P = [E]. Siguin x,x' € E vectors
no nuls tals que P = [x] i P' = [x']. Com que P # P’, x i x' son lineal-
ment independents. Per tant, (x,x’) té dimensié 2 i L = [x,x'] és una
recta. Com que P =[x] € L i P' =[x'] € L, queda provada |'existéncia
d’una recta que conté els punts P i P'.

Sigui ara M una altra recta que conté els punts P i P'. Veurem que M =
L, i aixo acabara la prova. Sigui F el subespai vectorial de E tal que
M = [F]. Com que M és una recta, F té dimensi6 2. Atés que P,P' € M,
tenim x,x’ € F i per tant (x,x’) € F. Com que els dos subespais vectori-
als d’aquesta inclusid tenen dimensié 2, de fet tenim {x,x’) = F, d’on
L=M.
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La recta que uneix dos punts diferents P i P’ sera denotada PP’. La de-
mostracié anterior prova que si x és un representant de P i x' un repre-
sentant de P’, llavors PP' = [x, x'].

Es també immediat comprovar que si L és una varietat lineal i P, P’ sén
dos punts diferents de L, aleshores PP’ C L.

L’afirmacid reciproca també és certa: si L € P té la propietat que
PP’ € L quan P, P’ € L, aleshores L és una varietat lineal.’

Remarca. Veiem, doncs, que les varietats lineals coincideixen amb les va-
rietats lineals en el sentit de la geometria projectiva axiomatica. Amb aixo
és facil veure que P™ compleix I'axioma A3.

En efecte, d'una banda tenim, si ey, eq,...,€, una base de E i posem
L; = ey, eq,...,e;] peri=0,..,n, Lyc L, c--CcL,, de manera que
existeix una cadena de varietats lineals de longitud n. Per altra banda, la
longitud r de qualsevol altra cadena de varietats lineals My € M; C --- C
M, satisfa r < n, ja que si M; = [F}], llavors F, € F; C --- C FE,. i per tant
r+1<dim(f) <dim(E) =n+1.
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Definicio. Direm que tres punts d’un espai projectiu de dimensio n > 1
estan alineats si existeix una recta que els conté.

Proposicio. Sigui P = [E] un espai projectiu de dimensié n=>1 i
P,Q,R € IP. Siguin x,y,z € E representants de P, (Q, R, respectivament.
Llavors P, Q, R estan alineats si i només si son linealment dependents.

Prova. Si P,(Q,R estan continguts en una recta [F], llavors x,y,z € F.
Com que F té dimensio 2, els vectors x,y, z son linealment dependents.
Reciprocament, si x,y,z son linealment dependents, aleshores
dim({x,y,z)) < 2 i, ates que dim(E) = 2, podem trobar un subespai
vectorial F de dimensi6 2 de E tal que (x,y,z) € F (notem que
F = (x,y,z) si els tres punts no coincideixen). Aixi tenim P,Q,R € [F] i
els tres punts estan alineats.
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Proposicio. Si P, Q, R son tres punts alineats diferents i x és un represen-
tant de P, aleshores existeix un representant y de Q tal que R = [x + y].

Prova. Sigui y' qualsevol representant de Q. Els vectors x,y’ sén lineal-
ment independents, per ser P #+= . Com que R € P(Q, existeixen escalars
A, u tals que Ax + uy' és un representant de R. Si fos A = 0, tindriem
R =[uy'] = [y'] = Q, que és contradictori amb la suposicié que Q # R.
Per tant, A # 0 i el vector x +% y’ també és un representant de R. Ana-
logament tenim u # 0 (altrament tindriem P = R), amb la qual cosa és
clar que basta posary = % V.
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Triangles. Un triangle ordenat d’un espai projectiu IP és una successio de
tres punts Py, P;, P, no alineats. Escriurem PyP; P, per denotar-lo i direm
P, que els punts Py, Py, P, son els seus vertexs.

De les rectes Ly = P;P,, L1 = P,Py, L, = PyP;, en
direm costats del triangle. També diem que L; és el
costat oposat al vertex P; .

Py Py po

P, Triangles en perspectiva
Dos triangles ordenats
PyP,P, i PyP{P,

estan en perspectiva si

P; # P/ iles tres rectes P; P}
passen per un mateix punt,
diferent de qualsevol dels
vertexs P; i de qualsevol
dels vertexs P;.
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Teorema (Desargues, 1639). Si els triangles PyP; P, i PyP, P, estan en per-
spectiva, i posem L; , L; per denotar els costats de PyP; P, i PyP{P, opo-
sats a P; i a P;, respectivament, llavors les interseccions R; = L; N L; s6n
tres punts alineats.

Prova. Sigui P el punt en el qual concorren les tres rectes P;P;. Siguin x,
X, X1, %, € E — {0} tals que P = [x] i P; = [x;]. Com que P, P;, P; estan
alineats i son diferents, podem escollir x; de manera que P} = [x + x;].
Ara observem que el punt [x; — x,] de la recta L, = P, P, és també de la
recta Ly = P{P,, ja que [x; — x,] = [(x + x;) — (x + x5)]. Com que les
rectes Ly i Ly sén clarament distintes, veiem que
Ry=LyNLy=[x;—x5].
Analogament, R; =[x, —xy], R, =[x — x4]. Finalment, els punts
Ry, R, R, estan alineats, ja que
(x1 — x2) + (x5 — x0) + (%9 — x1) = 0.
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En I'enunciat del teorema que segueix usem que dues rectes diferents
d’un pla projectiu es tallen en un punt. Aixo és clar, ates que la intersec-
cio de dos subespais vectorials de dimensio 2 diferents d’un espai vecto-
rial de dimensio 3 és un subespai vectorial de dimensio 1.

Teorema (Pappus, ~ 340). En
un pla projectiu P, siguin L i M
dues rectes diferents i P el seu
punt d’interseccid. Siguin P,
P, P, punts diferents de
L—{P}iQy Q1,Q, punts dife-
rents de M — {P}. Aleshores,
les interseccions

Ro = P1Q2 N P;0Q1, Ry = P00 NPyQ2, Ry = PyQ1 N P1Qy
son tres punts alineats.

Prova. Sigui x € E — {0} tal que P = [x]. Com que P, Py, P;, P, son punts
diferents de L, existeix y € E — {0} tal que Py, =1[y], P, =[x+ y],
P, =[x+ ay] per un cert a€ K —{0,1}. Analogament, existeix
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z € E—{0} tal que Qy, = [z], Q; = |[x + z], Q, = [x + bz] per un cert
beK—{0,1}.
Com que P, Py, Qy no estan alineats, els vectors x,y, z son linealment in-
dependents. Ara tenim

Rz = [x + y + Z],
jJa que

[Cx +y) +z] € P1Qy

X+y+z|= {

xty+ ] [y + (x +2)] € PyQ4
Notem que les rectes PyQ4 i P;Q, son diferents i, per tant, [x + y + z] és
I"Unic punt comu a aquestes dues rectes.

També tenim
R, =[x+ ay + bz],
ja que
_ ([(x+ay) + bz] € P,Qq
[x +ay + bz] = {[ay + (x + bz)] € Py0,

Analogament
Ry=[(ab—1D)x+alb—1)y+b(a—1)z],
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ja que
[(ab—1)x+a(b—1)y+b(a—1)z]
_ {[(a(b —Dx+y)+(a— 1D +bz)] € P0Q;
[(a —Db(x+2z)+ (b —-D(x+ay)] € P,0,
Finalment observem que
ab(x+y+z)—(x+ay+bz)=(ab—1)x+a(lb—1)y+b(a—1)z
i, per tant, Ry € R{R,.

Remarca. En la darrera igualtat usem que ab = ba, de manera que es-
trictament parlant el teorema de Pappus és valid si, i només si, el cos L és

commutatiu.
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Interseccid i suma projectiva de varietats lineals

La interseccid L N L' de dues varietats lineals L = [F] i L' = [F'] d’un es-
pai projectiu IP = [E] és una varietat lineal, ja que

[F1Nn[F|=[F n F].
Notem que L N L' és la maxima varietat lineal continguda a L i L', en el
sentit que una varietat lineal M compleix M € L i M € L' si i només si
McLNnL'.

Vegem ara que existeix, amb les mateixes notacions, una varietat L V L'
que és la minima que conté L i L', enelsentitque M2LiM2L" sii
noméssi M 2 LV L. Enefecte,siL=[F]iL =[F'],onFiF' son sub-
espais vectorials de E, llavors
LVL =[F+F']

satisfa les condicions, atés que F + F' és el minim subespai vectorial de E
que conté F i F'. Direm que L V L' és la suma projectiva de les varietats L
i L'. Per exemple, si P i Q son punts, llavors PV Q = PQ.
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Formula de les dimensions

Proposicio. Si L i L' son varietats lineals de I'espai projectiu P = [E], lla-
VOrs
dim(L VL) +dim(L nL") =dim(L) + dim(L").
Prova. Siguin F i F' els subespais vectorials de E tals que L = [F] i
L' = [F']. Aleshores
dim(F + F") + dim(F n F") = dim(F) + dim(F").
La formula de I’enunciat en resulta immediatament, ja que
dim(F + F") = dim(LVL') +1,
dim(FNF") = dim(LNnL")+1,
dim(F) = dim(L) + 1,
dim(F") = dim(L") + 1.
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Exemple. Sigui L una varietat lineal d’un espai projectiu i Q un punt exte-
rior a L. Aixi LNQ =0 i, per tant, dim(LN Q) = —1. Com que
dim(Q) = 0, de la formula de les dimensions en deduim que

dim(L v Q) = dim(L) + 1.
En el cas particular en que L és un punt P, aquesta formula ens diu que
PV Q és una recta, i per tant que PV Q = P(Q, com ja hem observat an-
teriorment. Notem que si L és una recta, aleshores L V Q és un pla.

Exemple.
Sigui H un hiperpla de P" i suposem que L és una varietat lineal no con-
tinguda a H. Llavors H V L = P" i la férmula de les dimensions ens déna

dim(HNL) =dim(H) + dim(L) —dim(HVL) =n—1+4+dim(L) —n =dim(L) — 1,
és a dir,

dim(H N L) = dim(L) — 1.

En el cas en que dim(L) = 1, aquesta formula ens diu que la interseccid
d’una recta amb un hiperpla que no la conté és un punt.
Quan n = 2, H és una recta i I'enunciat precedent ens dona que dues
rectes distintes d’un pla projectiu es tallen en un punt.
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Exemple. Considerem el cas n = 3. Com que els hiperplans de P> sén els
plans, I'’enunciat precedent ens dona que dos plans diferents de es tallen
en una recta. Per altra banda, la interseccié d’una recta amb un pla que
no la conté és un punt. Pel que fa a dues rectes diferents L i L’ de IP3, es
poden donar dues possibilitats. Una és que

dim(L VL") =2,
és a dir, que les dues rectes estiguin contingudes en un mateix pla (es diu,
aleshores, que les dues rectes sén coplanaries), i que és equivalent a dir
que L N L' és un punt. L’altra possibilitat és que

dim(LVv L) =3
i que equival a dir que L N L' = @. En aquest cas, es diu que les dues rec-
tes es creuen.

Exemple (verificacio de I"axioma A2). Siguin A, B, C, D quatre punts dis-
tints i no alineats, i suposem que les rectes AB i CD es tallen. Llavors
AB V CD és un pla. Com que AC i BD son rectes d’aquest pla, també es
tallen, com es tractava de veure.’
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Notes

1. Sigui L € IP(E) tal que PP’ € L quan P, P’ € L. Per veure que L és una
varietat lineal, basta veure que F = {0} u{x € E — {0} | [x] € L} és un
subespai vectorial, ja que si aquest és el cas aleshores és clar que L =

[F].

La propietat Ax EF six EF i A€ K és obviasix =00 A=0, i altra-
ment és consequencia de [Ax] = [x] € L i la definicié de F.

Queda per mostrar que x + x' € F si x,x" € F. Com que la relacio és ob-
viasix=0o0x'"=00x+ x" =0, podem suposar que x,x’,x + x # 0.
Sigui P=[x] €L i P'=[x"] € L. Aleshores PP' € L, per hipotesi, i
[x +x'] € PP',iaixi[x + x| €L, ésadir, x + x' €F.

2. En la formulacio de I'axioma A2 es suposa que tres qualssevol dels

punts no estan sobre una recta, pero la conclusio és valida encara que
n’hi hagi tres d’alineats.



