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Perspectiva

El dibuix en perspectiva d'un objecte ha de satisfer les relacions que s'es-

guematitzen en la figura: si O és el punt des del qual es contemplen els

R punts P, Q, R, ... de la figura,

i II és el pla del dibuix, els

punts P’, Q', R’, ... correspo-

nentsa P, Q, R, ... son la in-

0 terseccio de les rectes OP,
0Q, OR, ...amb II.

De la descripcio anterior po-

p dem destil-lar dues operaci-

ons geometrigues fonamen-
tals. La primera consisteix a projectar un punt P de l'espai afi des d'un
punt fix O, és a dir, a formar la recta OP. La segona consisteix a tallar les
rectes per O (dites projectants des de O) per un pla Il que no passa per O.
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La composicio d'aquestes dues operacions ens dona la projeccio des de O
d'un punt P sobre el pla II, aix0 és, el punt P’ d'interseccié amb II de la
projectant de P des de O (la recta OP): P' = OP N I1.

Remarques. El punt O és |'Unic que no es pot projectar des de O, i que |la
seccio per Il només esta definida per les projectants des de O que tallen
a I, és a dir, no esta definida per les projectants paral-leles a II. D'aixo en
resulta que la projeccio d'un punt P sobre el pla I1 no esta definida preci-
sament quan la projectant OP és paral-lela a II.

Representacio projectiva d’una recta

Per tal de veure que el comportament de les projeccions respecte del pa-
ral-lelisme no és més satisfactori que el que podria fer pensar el darrer
paragraf, estudiem primer amb una mica més de detall la projeccié d'una
recta des d'un punt.
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Considerem una recta L
gque no passa per O i
formem el conjunt L,
de les projectants des

de O dels punts P de L.
Es clar que L, coincideix

amb el conjunt de rec-
tes per O contingudes en el pla L V O, llevat de la recta per O paral-lela a
L. Si posem L, per denotar el conjunt de rectes per O contingudes en el
pla L vV O, conjunt al qual ens referirem dient-ne la representacio projec-
tivade L,i 0, € L, per denotar la recta per O paral-lela a L, llavors te-

nim ZO — LO L {OLOO}

La projectant OL.,, només és excepcional respecte de L o, més ben dit, de
les rectes paral-leles a L. Per veure aixo amb meés relleu, considerem una
altra recta L' del pla L V O, no paral-lela a L i que no passa per O. Llavors
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OL., és la projectant des de O del punt A’ de L’ obtingut tallant OLy i L/,
és a dir, OL,, = OA’. Es natural, per tant, pensar L., com un «punt» (que
podem anomenar punt de l'infinit de L), tal que la seva projectant des de
O éslarecta OL,,.

Per contrast, si 4 és la interseccié de L amb la paral-lela a L' per O (que
d'acord amb les notacions ja explicades denotarem OL',), llavors la pro-
jectant OA € L, de A no és la projectant de cap punt de L'. Pero com que
0A = 0Ly, és natural dir que la projecci6 de A sobre L' és el «punt» L.

Punts impropis

Les observacions de |'apartat anterior ens suggereixen la construccio, que
exposem tot seguit i que essencialment és deguda a DESARGUES, de la
clausura projectiva d'un espai afi.
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Sigui A un espai afi. Posem A

per denotar el conjunt de clas-
ses d'equivalencia de les rectes
| de A per la relacio de pa-
ral-lelisme. Dels elements de A,

en direm punts impropis, o

punts de l'infinit, de A i del con-
junt A = A U A, la clausura projectiva de A.

Posarem L, € A, per denotar |la seva classe d'equivalencia d'una recta
L, idirem que L, és el punt impropi, o de l'infinit, de L.

Notem que a tot vector v # 0O |li correspon un punt impropi, que denota-
rem [v], i que és la classe de les rectes que tenen espai director (v). Es
clar, doncs, que L., = [v] si L és una recta i v un vector director de L.
També és clar que [v] = [V] si i només si existeix un escalar A tal que
v' = Av.Posem L = L U L, i diem que L és la clausura projectiva de L.
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Donat un punt impropi X € A, i un punt O € A, posarem 0OX per deno-
tar I'Unica recta per O el punt impropi de la qual és X, és a dir, I'Unica rec-
ta per O que és de la classe X. Aixi, si L és un recta, OL, és la recta per O
paral-lela a L. Diem que OX és la projectant des de O del punt impropi X.

Analogament, si Il € A és un pla, posarem Il per denotar el conjunt de
punts impropis de les rectes contingudes a II, o, el que és el mateix, el
conjunt de punts impropis de les rectes paral-leles a II. Si W és 'espai di-
rector de II, llavors Il és el conjunt, que també denotarem [W], de
punts de la forma [v],on v € W — {0}.

Considerem ara, amb el proposit d'il-lustrar les idees anteriors en relacio
amb les projeccions i seccions, la projeccié d'un pla Il que no passa per O.
(En el que segueix podem suposem que A = A3.) La projectant OP d'un
punt P € II variable ens déna una bijeccio entre Il i el conjunt I1, de les
projectants des de O no paral-leles a II.
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Per altra banda, |la projectant OX d'un punt variable X € II, ens ddna
una bijeccio entre Il i el conjunt de projectants des de O paral-leles a
[1. Per analogia amb el cas d'una recta, posarem I, per denotar el con-
junt de projectants des de O contingudes a Il V O, amb la qual cosa tenim
una bijeccié entre I1i I, donada per X = 0X, peratot X € II.

Direm que I, és la representacid projectiva de II.




10

Sigui L una recta continguda a II. La bijeccié entre ITi [, (X = 0X), res-
tringida a L, ens dona la bijeccid, qgue hem descrit anteriorment, entre L i
el conjunt L. Al punt impropi de L, L, li correspon la projectant OL,.
(Parem esment: a |'apartat anterior OL,, no era més que una notacio per
designar la recta per O paral-lela a L; aguesta notacié ens ha suggerit
tractar L, com un punt; ara, un cop definit que cal entendre per L,
OL., representa efectivament |la projectant de L, des de O.)

Si M és una altra recta del pla II, no paral-lelaa L, isi {P}=LnNM, lla-
vors {OP} = L, N My, en correspondéncia amb la relacié L N M = {P}.
Per altra banda, si L’ és una recta del pla Il paral-lela a L, pero diferent de
L, llavors Lo N L, = {OL} (= OL),), en correspondéncia amb la relacié
LNnL ={Ly}.
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Hem trobat, aixi, que la clausura projectiva I1 d'un pla II de I'espai afi de
dimensidé 3 es pot descriure com el conjunt de rectes que passen per un
punt O exterior a Il, corresponent-se les rectes no paral-leles a Il amb els
punts de II i les rectes paral-leles a I amb els punts impropis de II. En
aguesta correspondencia, la clausura projectiva d'una recta L de II es re-
presenta com el conjunt de rectes per OS contingudes en el pla L V O, de
manera que queda establerta una bijeccio entre les rectes L de Il i els
plans que passen per O, llevat el paral:-lel a II. Ara els punts impropis de II
estan en correspondéencia bijectiva amb les rectes per O paral-leles a II.
Com que aquestes rectes son les rectes per O contingudes en el pla per O
paral-lel a II, veiem que Il té, des del punt de vista de les projeccions
des de O, la mateixa estructura que L, rad per la qual I, s'anomena rec-
ta de punts impropis de II.



Teorema de Desargues

12



Qo

Q>

Qo

13



14

Geometria projectiva axiomatica

Sigui [P un conjunt (els elements del qual en direm punts) i R una familia
de subconjunts de [P (dels seus elements en direm rectes). Si P és un punt
i 7 un recta, en lloc de P € r també direm que r passa per Poque P ir
son incidents. Donats tres o més punts diem que estan alineats si hi ha
una recta que els conté.

Direm que (IP,R) és un espai projectiu de dimensid n si satisfa els axio-
mes AO-A3 seguents.

AO. Tota recta conté almenys tres punts.

Al. Per dos punts diferents A i B hi passa una recta i només una, i posem
AB per denotar-la.
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D’un subconjunt L de IP diem que és una varietat lineal si A,B € L, A +
B = AB € L.

A2. Si A,B,C,D son punts, tres qualssevol dels
qguals no estan alineats, i AB i CD es tallen en un
punt, llavors AC i BD es tallen en un punt.

(Aquest axioma es coneix com a axioma de Ve-
1
blen—Young).

A3. Existeixen varietats lineals no buides L;, j = 0, ..., n, tals que
Lo c Ly c - C L, (cadena estricte de longitud n)
i 1 és maxim amb aquesta propietat.

Escriurem IP™ per denotar un espai projectiu de dimensio n.
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Remarca. En el cas d’un pla projectiu P?, A2 i A3 equivalen a dir que P

conté almenys quatre punts no alineats i que dues rectes distintes tenen
4 \ . ’ Y . 2

almenys un punt en comu (que necessariament és unic).

Teorema fonamental de la geometria projectiva axiomatica

Donat un espai projectiu P* amb n > 3, o un pla projectiu P? que com-
pleix el teorema de Desargues (d’aquests plans se’n diu desarguessians),
existeix un cos K (possiblement no commutatiu), un K-espai vectorial E
de dimensiéo n + 1, i una bijeccié P™ < |E|, on |E] és el conjunt de sub-
espais vectorials de dimensio 1 de E tal que L S P™ és una recta si i no-
més si es correspon amb un subconjunt [F| € |E|, F un subespai vectorial
de dimensio 2 de E.

Referencies. R. J. Brumcrot, Modern Projective Geometry (Holt, Reinhart
and Winston). B. Segre, Lectures on Modern Geometry (Ed. Cremonese).
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Remarca. Un teorema remarcable de geometria projectiva és el segient:

Teorema (Pappus). Sigui L i M
dues rectes distintes d’un pla

projectiui P = L N M. Siguin

Py, Py,P, € L —{P}i

Qo, 01,0, € M — {P}. Posem

Ro = P1Q N P04,

R1 = P;Q¢ N PyQ,

R, = PyQ41 N P;Q,. Aleshores els punts Ry, R{, R, estan alineats.

Doncs bé, en el capitol seglient veurem que un espai projectiu axiomatic
satisfa el teorema de Pappus si i només si el cos K (notacions del teorema
fonamental) és commutatiu.
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Enfocament actual de la geometria projectiva

El resultat del teorema fonamental de |la geometria projectiva axiomatica
és que els punts d’'un espai projectiu axiomatic de dimensio n es poden
representar com els subespais vectorials de dimensio 1 d’un cert K-espai
vectorial E de dimensio n + 1. Si ens mirem aquest espai vectorial com
un espai afi, els subespais de E de dimensido 1 son les rectes de E que
passen per |'origen. La conclusio concorda, doncs, amb les consideracions
fetes anteriorment (pagines 4-11), ja que hem trobat (per exemple) que
el pla projectiu I1 = IT U I, associat a un pla afi [ € A3 es podia repre-
sentar pel conjunt de rectes de A3 que passen per un punt O exterior a
I1.

Aix0 ens porta a prendre el conjunt [E] de les rectes vectorials d’un K-
espai vectorial E com el punt de partida més convenient per a I'estudi de
la geometria projectiva des d’un punt de vista modern. Aquest enfoca-
ment té molts avantatges:
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— com en el cas de la geometria afi i metrica, tenim a |la nostra disposi-
cio tot el formalisme de I'algebra lineal,

— obtenim tot el que es pot aconseguir amb la geometria projectiva
axiomatica (llevat els plans no desarguessians’);

— el tractament inclou el cas de dimensio n = 1, que la geometria axi-
omatica nomeés pot considerar com a part d’un espai de dimensio su-
perior, perdo no com una entitat en si;

—ens permet retrobar |la representacio projectiva de |'espai projectiu
A = A U A, associat a un espai afi, ja que aquesta representacié ens
mostrava que podem pensar A com el conjunt de rectes per un punt
O exterior a A, corresponent les rectes paral-leles a A als punts im-
propis o de l'infinit.
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Notes

1. L'axioma A2 també es pot formular dient que
una recta que talla a dos costats d’un triangle en
punts diferents també talla el tercer.

En la figura, que reprodueix la que acompanya

I’enunciat de A2, podem formar el triangle AXC, on X és el punt
d’interseccido de AB i CD. Llavors la recta BD talla els costats AX i CX del
triangle AXC en els punts B i D, respectivament, i dir que BD talla AC és
tant com dir que BD talla el tercer costat AC de AXC.

2. Suposem primer que es verifiquen A2 i A3 amb n = 2. Aleshores volem
veure que

- IP conté 4 punts no alineats

- Dues rectes distintes de P es tallen en un punt.

En efecte, per hipotesi existeix una cadena Ly € Ly C L, de varietats li-
neals de longitud 2 i cap altra cadena de varietats lineals pot tenir longi-
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tud superior a 2. En resulta que L; ha de ser una recta i llavors per obte-
nir quatre punts no alineats basta prendre tres punts d’aguesta recta i un
puntde L, — L,. Per altra banda, si L i L' sén rectes, i Q € L' — L, llavors
no és dificil veure, usant A2, que conjunt Upe; QP és una varietat lineal.
Com que conté L estrictament, A3 ens diu que IP = Upg; QP. En particu-
lar resulta L' € Upe; QP, d’on resulta que L' ha de ser de la forma OP
per algun P de L.

Reciprocament, suposem que [P conté quatre punts no alineats i que du-
es rectes distintes sempre es tallen en un punt. Llavors 'axioma A2 és
obvi. Pel que fa a A3, hem de veure que hi ha una cadena Ly c L; C L,
de varietats lineals de longitud 2 i cap altra cadena de varietats lineals pot
tenir longitud superior a 2. Per a |'existencia d’una tal cadena, basta
prendre una recta L = PQ ifer Lo =P, Ly = L, L, = P. | per veure que
la longitud r d’'una cadena L, € L; € --- C L, (que podem suposar irrefi-
nable, iamb r = 2) no pot ser superior a 2, adonem-nos que L, ha de ser
un punti L = L una recta. Aleshores, si Q € L, — L, Upe; QP es una va-
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rietat lineal (aixo es veu usant que dues rectes qualssevol es tallen) i per
tant L, = Upe; OP, ja que altrament la cadena seria refinable. Aixo prova
quer = 2.

3. Es molt recomanable l'article de Ch Weible titulat Survey of Non-
Desarguessian Planes (Notices AMS, Noveber 2007, pag. 1294-1303).



