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Definicié de desplagament

Un desplacament de I'espai euclidia (A, V) és una afinitat ¢ : A = A que
conserva les distancies, és a dir, tal que

d(p(P),9(Q)) =d(P,Q)
qualssevol que siguin P, Q € A.
Proposicio. Una afinitat ¢ és un desplacament si i només si
|®(x)| = |x| peratot x €V, [*]
on ¢ és la transformacio lineal associada a .
Prova. Es conseqiiéncia immediata de la relacié
Q) —o(P) =@(Q —P),

de la definicié de distancia, i del fet que x = Q — P és un vector qualse-
volde V.

Ens referim a la condicio [*] dient que @ €s una isometria lineal de V.



Una condicié equivalent

Com que el producte escalar no només determina la norma, sind que
queda determinat per ella (formula 2x - y = |x + y|? — |x|? — |y|?),

m () ésunaisometria lineal sii només si
PxX-Qy =x-Yy
qualssevol que siguin x,y € V.

En coordenades aquesta relacio equival, si A és la matriu de @ i G la ma-
triu de la metrica, a

(xA)G(Ay") = xGy"
és a dir,

ATGA =G. [**]



Remarques

m En referéncia rectangular la condicié [+*] equival a dir que ATA = I, (és
a dir, que A és una matriu ortogonal). En altres paraules, @ és un des-
plagament si i només si ¢ transforma tota base ortonormal (o una base
ortonormal donada) en una base ortonormal.

m La condicid més general ATGA = G significa que si G és la matriu de la
métrica en una base e i posem e’ = @e, llavors e'” - e’ = ATGA = G,
és a dir,

!/ !

€; - ej = € ej
(1<1i,j<n).

m Adonem-nos, doncs, que aquestes condicions, necessaries per la propi-
etat @x - @y = x -y, son suficients per tal que @ sigui un desplaca-

ment.



Desplacaments directes i inversos

Els desplacaments es classifiquen en directes o inversos, segons que con-
servin o inverteixin 'orientacio, és a dir, segons que det(p) =1 o
det($) = —1 (o, en termes de les equacions, segons que det(4) =1 o
det(4) = —1).

Exemple (translacions). Les translacions son les afinitats tals que @ = Id.

Vist que la identitat de és clarament una isometria lineal, tenim que les
translacions son desplacaments directes.

Exemple (simetria central). L’'homoteécia de centre P

C,..—;,.B i rad A, ¢ = hp,, €s un desplagament si i només si

\/ A =41, ja que @(x) =Ax i per tant Px - Py =

[o%a A*(x-y).ElcasA=1dénag =1IdielcasA=—1

o /,;;:fp déna ¢ = hp _; = sp, la simetria central de centre
N P. Com que 5p = —Id = —1,,, op és directa si n és
parell i inversa si n és senar. La figura mostra el re-

B’.’Il’.‘ C’

sultat, A'B'C’, d’aplicar op al triangle ABC.



Exemple (simetria respecte d’una varietat lineal)

o(
d A
Sigui L una varietat lineal. El simetric d’un punt Q res- ?
pecte de L, g, (Q), es defineix (fig. (a)) aixi:

0.(Q) = Q +2(p.(Q) - Q). L
Veurem que g; és un desplacament i identificarem la .(Q)
seva transformacio lineal associada. Amb les notacions
de la figura (b),iamb W = W (L), tenim

x=0—P,x=x"+x",xeW,x" e W, i
0,(Q) = Q + 2(p,(@) — Q) » (@)
=P+x—-2x"=P+x" —x" ) 0
=P+ X, |
onx = x — x''. Com que I'aplicacié X o
sw:V-oV, x=x"+x"p»x=x"—x"
és una isometria lineal, resulta que o; és un des- __ P,
p.(Q)

placamenti o, = sy .

Si escollim una base ortonormal u de manera que
U4, ..., Ur €s una base de W, llavors les equacions

\\o 0,(Q)



de g; en la referencia [P; u] son

, ((xpsil<i<k
A _{—xi sik+1<i<n
En particular resulta que o; és directa sin — k és parell i inversasin — k
és senar. Un cas particular important és quan L és un punt P, en el qual
op és la simetria central de centre P (v. el segon exemple de |la pagina 6):

op(P+x)=P—x

per a tot vector x € V, ja que en aquest cas x' = 0 (I’espai director de P
és {0})ix" = x.

Simetria especular. En el cas en que L és un hiperpla, g; és un desplacga-
ment invers i es diu que és una simetria especular (per a n = 2, la sime-
tria especular s"anomena simetria axial).

Exemple (Desplacaments de |a recta euclidiana). Les afinitats d’una recta
afi sén translacions t;, (u € V), o homotecies hp; (1 # 0,1). Les transla-
cions son desplacaments, pero de les homotecies només les de rad —1
(simetries centrals) ho sén. En resum: els desplacaments de la recta eu-
clidiana son les translacions i les simetries centrals.



Girs del pla euclidia orientat

Suposem que estem en un pla euclidia orientat (A,,15) i sigui u =
(u4,u,) una base ortonormal positiva de V,. Donat un nombre real a i un
punt P, anem a determinar els desplacaments del pla que deixen fix P i
compleixen

@(u,) = cos(a) uy + sin(a) u,.
Com que @(u,) ha de ser unitari i perpendicular a @(u4), tenim

@(uy) = (- sin(a) u; + cos(a) uy,).
A més, vist que les funcions cos i sin son periodiques de periode 2m, po-
dem suposar que «a € [0, 2m). Analitzem les dues possibilitats + per se-
parat.

Cas @(u,) = —sin(a)u; + cos(a) u,. Aquest desplacament, que en
principi depen de P, a i u, de fet només depen de P i a. En efecte, si pro-
visionalment posem gp 4, Per denotar-lo, es tracta de veure, si u’ és una
altra base ortonormal positiva, que gp 4w = gpau-



Per veure aix0, notem primer que per definicio
cos(a) —sin(a)

pla) = (sin(a) cos(a))
es ensems la matriu de gp o, respecte de la base uila de gp , v respec-
te de la base u’. Si posem u’ = uM (és a dir, M és la matriu de u’ respec-
te de u), llavors la matriu de gp . ./ respecte de u és Mp,M~*. Perd sa-
bem que M = pg per algun (i per tant Mp,M~1 = p,, com voliem de-
mostrar.
Per tant, podem posar gp , per denotar el desplagament caracteritzat per
deixar P fix i de manera que gp ,(u) = up, per una base ortonormal po-
sitiva qualsevol u. D’aquest desplacament en direm el gir de centre P i
amplitud (o angle) . Les equacions de gp , en la referéncia [P; u] sén

(x{) _ (cos(a) — sin(a) ) (;ﬁ) | U
2

P

X5 sin(e¢) cos(a)
________________ cu, + su,
Remarquem que gp , és la identitat pera = 0 i
la simetria central op per @ = m. En tot cas, gp 4 a
és un desplacament directe.’ | 7“'1

¢ = cos(a), s = sin(a)
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Cas ¢(u,) = sin(a) u; — cos(a) u,. La matriu de @ respecte de u és

s = (cos(a) sin(a))

@ sin(a) —cos(a)/’

El polinomi caracteristic de s, és A1 — 1, de manera que els seus valors
propis sén +1. Per tant, s, és diagonalitzable i la corresponent matriu di-
agonal és diag(1, —1). De fet

cos(a/2)u; + sin(a/2) u, i —sin(a/2) u; + cos(a/2) u,
son vectors propis unitaris de valors propis +1 i —1, respectivament. Po-
dem, doncs, concloure que

@ és la simetria axial g, /, respecte de la recta que passa per P amb
vector director cos(a/2) u; + sin(a/2) u,.



Pla ut

144

SUNAX
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¢ = cos(a), s = sin(a)
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Exemple (rotacions a |’espai). Considerem un
vector unitari u de |'espai euclidia orientat
(A3,V3),a € RiP € A. Definim

Rp oy a: A3 - A3

de la manera seglient:
RP,u,a(P +x)=P+ Ru,a(x)f
Ryo(x) = x" + cos(a)x” + sin(a) (u A x"),
x'=py(x) = (x - Wu,
x"=pp(x)=x—-x".
Rp 1, o €s una aplicacio afi amb aplicacio line-
al associada Ry, 4, i €s un desplagament:
|Ru’a(x)|2 = |x"|? + cos?(a) |x"'|? + sin?(a) [u A x"'|?
= |x'|? + cos?(a) |x"'|? + sin?(a) |x"'|?
= |x'|* + |x"|? = [x]°.
Rp . o deixa invariants els punts de la recta
P + (u) i indueix un gir de centre P i ampli-
tud @ enelpla P + u'.
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Direm que Rp,, o és la rotacio (o gir) d’eix P + (u) i amplitud a. Notem
gue podem escriure

RpyuaP+x) =P+ (x-u)u+cos(a)(x — (x-u)u) +sin(a) u Ax
=P+ cos(a)x+ (1 —cos(a))(x-uwu+sin(a) u A x.

Una referencia convenient per expressar les equacions de Rp,, €s
R = |P;uq,u,,us], onu; = u, u, és qualsevol vector unitari perpendicu-
lara uiuz = uy Au,.Lamatriude R, , en la base uq, u,, uz és

1 0 0
(O cos(a) —sin(a))

0 sin(a) cos(a)
i per tant les equacions de Rp ,, o en la referencia R son
X1 = X1, X3 = cos(a) x, — sin(a) x5, x3 = sin(a) x, + cos(a) x5 .

En particular veiem que les rotacions de |'espai son desplacaments direc-
tes.
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Classificacioé 2D

. vo Lema. Si P i Q son dos punts fixos d’un desplaca-

p x ( ment @, llavors x = Q — P és un vector propi de @
de valor propi 1. Reciprocament, si P és un punt fix de ¢ i x €s un vector
propi de valor propi 1 de @, llavors Q també és fix.

Prova. Si P i Q son dos punts fixos del desplagament ¢,
P+x=0Q =¢@Q)=¢® + x)=¢P)+dx) =P+ d(x),
de manera que @ (x) = x. Reciprocament, si P és fixi ¢(x) = x,
p(Q) =P + x) =p(P)+o(x)=P+x=0Q.

Ara procedirem per casos segons la dimensio de la varietat de punts fixos
F d’un desplagament ¢ del pla euclidia orientat (A2, V).

Cas F = A“. El desplacament és la identitat. En qualsevol referéncia les
seves equacions son

I 1
X1 =X1, Xy =Xo.
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t L, Cas F = L, L una recta. Siguin O i u; un punt i un vec-
tor director unitari de L. Llavors u; és un vector propi
de valor propi 1 de @ (pel lema). Si u, és un vector uni-
. , tari perpendicular a u4, ha de ser $(u,) = —u,, ja que
0 e altrament seria ¢(u,) = u, i la varietat de punts fixos

no es reduiria a L (el punt O + u, seria fix). Per tant, ¢
) Uy és la simetria axial d’eix O + (uq) = L.

En la referéncia [0; uy, u,| les equacions de ¢ sén
I I
x1 — Xl, xz — _xz.

Cas F=0, O un punt. Si u4, u, és una base ortonormal de V5, les equaci-
ons de ¢ en la referéncia |0; uq,u,] tenen la forma

!/
X X1
(3)=a().
X
X, 2
on A és una matriu ortogonal. Sabem, pero, que aquestes matrius tenen
la forma
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cos(a) —sin(a)
sin(a) cos(a)

cos(a) sin(a) )

sin(e) —cos(a)

A=pg = ) o a=pa =

amb a € [0, 2m).

El cas A = p, />, no es pot donar, vist que A tindria el valor propi 1 (el seu
polinomi caracteristic és A% — 1) i per tant els punts fixos de @ no es re-
duirien a 0.

En el cas A = p,, tenim el gir go , de centre O i amplitud a. Podem ex-
cloure el cas a = 0, ja que tindriem A = diag(1,1) = I, i ¢ seria la iden-
titat. Per « =, A = diag(—1,—1) = —I, (té el valor propi —1 repetit) i
C’ @ = 0y, la simetria central de centre O. Altrament

D.B, A no té valors propis reals, ja que el seu polinomi

vt caracteristic és A2 — 2 cos(a)A + 1, que no té arrels

¢ reals si @ # 0, . La distincié geometrica és que g,

- \___‘_* _________ A deixa invariants totes les rectes per O, mentre que

A4 B ggq nodeixa cap recta invariant si a # 0, .
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Cas F = (. En aquest cas ¢ ha de tenir el valor propi 1, ja que altrament
sabem que tindria un punt fix. Sigui 14 un vector propi unitari de valor
propi 1 i u, un vector unitari perpendicular a u;. Llavors @(u,) és unitari
i ortogonal a u4 i, per tant, tenim dues possibilitats:

®(uqy) = fu,.

Donat un punt arbitrari O com a origen, en la referéncia [0; uq, u,] les
equacions de @ tenen la forma

()= DE -+
X 0 +1/\x; P2/’
és a dir,

X1 =1 +p1, X3 = 1x, + 2.
El cas del signe +, tenim una translacio. Prenent u; en la direccié de la
translacié, podem suposar que p, = 0, de manera que ens queda, posant
P = P1,

X1 =% +p, x, =xy(p# 0, altrament tindriem la identitat).
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El cas del signe —, tenim una simetria axial sequida de translacio. Com
gue podem escriure

Xy —P2/2 = —(x3 —p2/2),

fent el canvi d’origen (0,0) — (0,p,/2) podem aconseguir que p, = 0,
de manera que ens queda, posant p = py,

X1 =X +p, X3 =X
(p # 0, altrament tindriem una simetria axial). Es tracta, doncs, d’una
simetria axial ((x1,x,) » (x1, —xy)) seguida d’una translacié paral-lela a
I’eix de la simetria, i en diem simetria axial amb translacio paral-lela o
amb lliscament.’

e P

~ ¢(P)



Taula de la classificacio 2D

F |Equacions canoniques ntin” 0, Nom | s
A?% | x] = xq, X5 = Xy 2 |0 Id Id |d
L |x] =xq1, X =—X, 1|1 oy, SA |i
O |x; =—Xq, X = —X, 0|2 ho —1 SC |d

X = CXq{—SXp, Xy =SX1+Cx |0 |0 gog,a#0,m| G |d
O|lx;=x1+p, x=x,p#0) |2 |0 t, T |d

X1 =x1+p, x;=—x,(p#0) 1|1 0 SA+T |i

La columna F conté una descripcié del conjunt de punts fixos: L significa que F és una
recta, O que hi ha un unic punt fix i @ que no hi ha punts fixos. En la columna de les
equacions canoniques posem ¢ = cos(a), s = sin(a) en el cas F = O i amb § sense va-
lors propis. En la columna ¢, que conté una descripcié simbolica del desplagament, o
representa una simetria axial, T una translacio paral-lela a I'’eix de o. Abreugem els noms
amb les convencions seglients: SA indica una simetria axial, SC una simetria central; G
un gir d’amplitud a # 0, m; T una translacio diferent de la identitat; i SA+T una simetria
axial amb translacié paral-lela. Finalment, n* (n~) és la multiplicitat del valor propi +1
(—1) de la transformacio lineal associada i s denota el «sentit» del desplacament (d di-

recte, i invers).




19

Algorisme de classificacié dels desplacaments del pla
Partim d’una afinitat donada per I'’equacié matricial
x'T = Ax" + p'.

Suposem que hem verificat que es compleix la condicid ATGA = G per
ser un desplacament, que hem calculat les multiplicitats n* i n~ dels va-
lors propis +1 i —1 de A, i que hem decidit (mirant si el sistema
x! = Ax" + p* és compatible o no) si hi ha punts fixos o no (F # @ o

F = Q).

(nt+n" <2 -G, cos(a)=%tr(A)
o F=@¢-T
) " _2_){F¢(Z)—>Id
+ - — —
e T S
\ \nt =0- SC
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Classificacié 3D

Analogament al cas 2D, procedirem per casos segons la dimensio de la
varietat F de punts fixos d’un desplagament ¢ de |'espai euclidia orientat
(A3, V).

Cas F = A3. El desplacament és la identitat. En qualsevol referéncia les
seves equacions son

I 1 I
X1 = X1, X2 = X2, X3 = X3.

Cas F = m, m un pla. Siguin O i u4, U, un punt i s Us
dos vectors unitaris ortogonals directors de . U, T
Llavors u4, u, sén vectors propis de valor propi 0
~ o . L . u
1 de @. Si u3 és un vector unitari perpendicular '
a (uq,u,), ha de ser $(u3) = —us. Per tant, ¢ | —us

és la simetria especular respecte del pla . En |la
referencia [O; uq, u,| les equacions de ¢ son

I I 1
X1 = X1, X2 = X2, X3 = —X3.
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Cas F = L, L una recta. Siguin O i u; un punt i un
vector director unitari de L. Llavors, u; és un vec-
tor propi de valor propi 1 de ¢. Siguin u,, u; vec-
tors unitaris ortogonals a u¢, i ortogonals entre si.
Llavors

@ ((uy, uz)) = (uy, uz)

i @ indueix un desplacament ¢’ del pla O + (u,, u3) que té el punt O com
a Unic punt fix (altrament ¢ no es reduiria a L). Per tant ¢’ és un gir de
centre O i amplitud a € (0,2m), gir que és una simetria central si & = .
En resulta que @ és un gir d’amplitud a al voltant de I'eix L, gir que esde-
vé la simetria axial del mateix eix quan a =m. En la referencia
|0; uq,u,,u3], les equacions de ¢ son

A
—SUy + CUz | U3 cu, + Sus

X{ = X1, X5 = CXy — SX3, X3 = SX, + cx3 (c = cos(a),s = sin (a)).
Pera =,

I I I
x1 — Xl, xz — _xz, X3 —_— —X3 .
(equacions de la simetria axial).
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Cas F = 0, O un punt. Si u4, u,, uz €s una base ortonormal de V3, les
equacions de @ en la referéncia [0; uq, u,, u3] tenen la forma

X1 X1
xy | =A[ %2,
X3 X3

on A és una matriu ortogonal. Estant en dimensid senar, A té necessari-
ament un valor propi real. Aquest valor propi ha de ser —1 (altrament ¢
tindria punts fixos distints de 0). Podem suposar, doncs, que uz és un
vector propi amb valor propi —1. lIgual que en el cas anterior, ¢ indueix
un desplacament ¢’ del pla O + (u4, u,) que té el punt O com a Unic punt
fix (altrament F no es reduiria a 0). Per tant ¢’ és un gir de centre O i
amplitud a € (0,2m), gir que és una simetria central si @ = m. En resulta
que @ és un gir d'amplitud a al voltant de I'eix O + (u3) (gir que esdevé
la simetria axial del mateix eix quan a = m), seguit de la simetria especu-
lar respecte del pla O + (uq,u,). En la referéncia [0; uq,u,,us], les
equacions de @ sén (amb ¢ = cos (a), s = sin(a)):
X1 = CX{ — SXp, X3 = SXq + CXp, X3 = —X3.
Pere ¢ =1, x; = —Xq, Xy = —X,, X3 = —X3 (simetria central g;).
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Cas F = (. En aquest cas @ ha de tenir el valor propi 1, ja que altrament

sabem que tindria un punt fix. Sigui n* la dimensié de I'espai V3" de vec-

tors propis de valor propi 1. Les possibilitats sén nt =3, nt =2 o
t=1

nt = 1.

n* = 3|. En aquest cas ¢ = Id i ¢ és una translacié diferent de la identi-

tat. Escollint u; de manera que estigui en la direccio de la translacio,

aconseguim que les equacions de la translacio tinguin la forma

X1 =X+ D, X3 =%, x3=2x3(p>0).

n*t = 2| Podem escollir u; i u, de manera que formin una base de V3 .
Llavors u; és necessariament un vector propi de valor propi —1 i les
equacions de @ tenen la forma

X1 = X1+ D1, X3 = X3 + D3, X3 = —X3 + p3.
Fent el canvi d’origen (0,0,0) ~ (0,0,p3/2), podem suposar que p; =
0. Es tracta d’'una simetria especular seguida d’una translacié paral-lela al
pla de la simetria (simetria especular amb translacio paral-lela o amb llis-
cament).
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Observem finalment que podem escollir una altra base ortonormal de V3"

amb la qual p, =0 i p =p; >0, quedant finalment les equacions
!/ !/ !/

X1 =X1+D, X =Xy, X3 = —X3.

+:

n Sigui u4 un vector unitari de valor propi 1 i siguin u,, u; vectors
unitaris ortogonals a u, i ortogonals entre si. Llavors @ ({u,,u3)) =
(u,, u3) ila restriccié de @ a (u,, u3) no té el valor propi 1. En resulta que
les equacions de @ en la referéncia [0; uq,u,,u3], O un origen arbitrari,
tenen la forma (posant ¢ = cos(a), s = sin(a))

X1 1 0 0\ /% 21
X, |={0 ¢ —s]||X2]|+]|DP2]
X3 0 s ¢/ \X3 D3

c —S , . : .
Vist que (S c) no té el valor propi 1, podem fer un canvi d’origen de

la forma (0,0,0) = (0,a, b) i aconseguir que en la nova referéncia tin-
guem p, = p3 = 0. Ens queden, doncs, les equacions
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X1 1 0 0\ /*\ /P
X, | =10 ¢ —s||X|+ <O) ,
X3 0 s ¢/ \X3 0

que mostren que el desplagcament és un gir d’eix O + (uq) seguit d’una
translacid en la direccié d’aquest eix. D’aquest desplacament se’n diu
moviment helicoidal. En el cas a« = m, és una simetria axial seguida d’'una
translacié paral-lela a I'eix de la simetria (també es diu que és una sime-
tria axial amb lliscament).”



Taula de classificacio 3D
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F |Equacions canoniques ntin~| @ Nom|s
A3|x] = xq, X5 = Xy, X5 = X3 3/0/Id| Id |d
T |X; = X1, X3 = Xp, X3 = —Xg3 2 |1 | o, | SE |i
L |x1=Xx1, X3 =—Xp, X3 = —Xg3 112 o, | SA |d
X1 = CX{ — SXy, Xy = SX1 + CXy, X3 = X3 1|0 |RLs| G |d
O |x;1 = —Xxq, X = =Xy, X3 = —X3 0 |3 |0y SC |i
X{ =CX{— SXp, Xy =SX; +CXxy, X3 =—%x3 |0 |1 | oy G+SE|i
O |x; =x1+D, X3 =Xy, X3 = X3 3/0|¢t,| T |d
X1 =X+ D, X3 =Xy, X3 = —X3 2 |1 | 10 |SE+T|i
X1 =X+ D, X3 =—Xy, X3 = —X3 1|2  1p |SA+T|d
X{ =CXq{— SXp, Xy =SX; +CXy, X3 =%X3+p| 1 |0 | Ty | G+T |d
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Explicacio de les convencions de la taula

Columna F (varietat de punts fixos): @ significa que no hi ha punts fixos;
O, un unic punt fix; L, que F és una recta; i  que, F és un pla.

Columna de les equacions: ¢ = cos (a), s = sin(a), a # 0, 7.

Columna ¢ (descripcioé simbolica del desplagcament): y representa un gir
d’amplitud a # 0, ; p, una simetria axial; ¢ una simetria especular (que
en el cas de gy és respecte d’un pla perpendicular al I'eix de y); T una
translacié paral-lela a l'eix de g, p 0 y, segons correspongui.

Nom: SE indica una simetria especular; SA, una simetria axial; G un gir
d’amplitud a # 0,m; SC, una simetria central; T, una translacio diferent
de la identitat; SE+T, una simetria especular amb translacio paral-lela al
pla de la simetria; SA+T, una simetria axial amb translacio paral-lela al seu
eix; i G+T, un moviment helicoidal.

n* (n7): multiplicitat del valor propi +1 (—1).

La columna s conté el «sentit» (d directe, i invers). Es iguala (—=1)™ .
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Algorisme de classificacid dels desplacaments de I’espai
Partim d’una afinitat donada per I'equacié matricial x'7 = Ax" + pT.

Suposem que hem verificat que es compleix la condicid ATGA = G per
ser un desplacament, que hem calculat les multiplicitats n* i n~ dels va-
lors propis +1 i —1 de A, i que hem decidit (mirant si el sistema
x! = Ax" + p” és compatible o no) si hi ha punts fixos o no (F # @ o

F=0)

( (F=0->G+T, 2cos(a) =tr(4) — 1
n++n‘<3—><F¢®_){n+>O—>G, 2cos(a) =tr(4) — 1
\ nt=0->G+SE, 2cos(a) =tr(4) +1
(. + _ F=0-T
) n _3_){F¢(Z)—>Id
F=0->SE+T
+
nt+n-=3-4" _2_){F¢Q)—>SE
F=0->SA+T
+
Tl_l%{F¢®%$X

\ \nt =0- SC
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Notes
1. Es facil comprovar les segiients regles de calcul:

by ©0p = O-P+%u ’

0}

o
Op ° ty P—%u ’

0g ©0p = lyy,0nx =(Q —P.

Vegem, com a exemple, el primer cas. Com que el desplacament
@ =t, o op €s invers, sera la simetria central respecte del seu punt fix Q.
Siposemx =0 — P, llavorsQ =P + x i

p(Q)=Q=P+x
(tu © JP)(Q) — { — — —
ty(op(Q)) = ty(op(P+x)) =P —x +u
d’on resulta que x = —x 4+ u, és a dir, x = %u i =09 = 0P+%u.

2. La matriu de gp, respecte d’una base ortonormal orientada negati-
vament és p(—a).
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3. A la nota 1 hem vist que tot desplacament de la recta euclidiana és o
una simetria central o producte de dues simetries centrals (les translaci-
ons). En el cas 2D, tot desplacament és composicido de com a molt 3 sime-
tries axials. La rad d’aquesta afirmacio prové del fet que les translacions
(girs) es poden posar com a composicio de dues simetries axials d’eixos
paral-lels (respectivament d’eixos que es tallen en el centre de gir).

L 1/ En efecte, el producte ¢ = s,/ o 5; de dues simetri-
es axials s; i s;7 €s un desplacament directe. Si els
eixos L i L' son paral-lels, ¢ és una translacio, ja que

S !/ P . 7 . . o ~
P 5P i W és 'espai director d’aquests eixos, @ = s, =
2v , .
Id). Més concretament, ¢ = t,,,, on v és el vector
v perpendicular a les rectes i de norma igual a la dis-

tancia entre elles).

| si la interseccio dels eixos L i L' és un punt O, llavors ¢ és un gir de cen-
tre O (si considerem la simetria central de centre O com un gir d’amplitud
), ja que O és I'unic punt fix de @ (si P és un punt fix de ¢, llavors
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SL’(SL(P)) =P = s,(P)=spy(P) > s,(P)—P = @ (P) = s,/(P)
s;7(P) — P; pero s, (P) — P és perpendicular a L i A

s;1(P) — P és perpendicular a L', de manera que
s;(P)—P=0isy(P)—P =0, és adir, P ha de
ser fix per sy i per s;r). Si 'angle entre els dos eixos
és a, I'amplitud del gir ¢ és 2a.

Resumint: si un desplacament ¢ del pla té una recta de punts fixos, ¢ és
la simetria respecte d’aquesta recta; si té un unic punt fix O és el produc-
te de dues simetries respecte d’eixos que passen per O; i si no té punts fi-
xos, €s el producte de dues simetries axials d’eixos paral-lels si és una
translacio i el producte de tres simetries axials si és una simetria axial
amb lliscament.

4. En el cas 3D tot desplacament és composicio de com a molt 4 simetries
especulars. La rad d’aquesta afirmacié prové del fet que les translacions
(rotacions) es poden posar com a composicio de dues simetries especu-
lars respecte de plans paral-lels (respectivament, de plans no paral-lels).
Els arguments son similars al cas del pla i es deixen com a exercici.
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En relacid a la taula de classificacid 3D, el nombre n de simetries necessa-

ries per expressar els diversos casos ve donat per la taula seglient:

Nom

SE

SA

SC

G+SE

SE+T

SA+T

G+T




