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Q Arees. En estudiar la distancia d’un punt Q a
una recta L, hem trobat la formula

_ IxI2[ul2=(ux)?

d(Q)L) — |u|

on P iu soén un puntiun vector director de L
ionx = (Q — P. Aixi doncs tenim

luld(Q, L) = /Ix]2|ul? — (u - x)?,

Py, (%) .Z;Z (Q)

la qual cosa mostra que podem interpretar X A(u, x)

’expressio \/|x|2|u|2 — (u-x)% com l'area
del paral-lelogram format pels vectors u i x.

-

Aquesta conclusio la podem veure també di- u

rectament. Recordant que x - u = |x||u| cos(a), on a = a(u, x), obte-
nim que

x[2Jul? = (u-x)? = |x|*|ul|? sin®(a),
de manera que \/IxIZIuIZ — (u-x)% = |x||lul sin(a) = |ulh, on h és
I"altura del paral-lelogram format per u i x.




Notem que en particular que
|x|?|ul? — (u-x)? =0 © u,x sonlinealment dependents.

Com que
XX XU X
214,12 2
x|“lul“ — (u-x =‘ ‘zdet()-xu
Pl - (-2 = ) xw),
podem resumir les conclusions anteriors de la manera seglient:

Proposicio. Si e = (eq, e,) son dos vectors de V, llavors el determinant de
la matriu

e e = () (enen | = (15 1722
e ’ €y €1 €2 €
és positiu si e, e, son linealment independents, nul si e{, e, son lineal-

ment dependents i Vel - e és I'area del paral-lelogram definit pels vec-
tors eq, e,.



Determinant de Gram

Donats vectors e = (e, ..., €x), del determinant det(e’ - e) se’n sol dir
determinant de Gram de ey, ..., €.

Proposicio. Si e = (eq,...,e,) SOn vectors linealment independents,
det(el - e) > 0.

Prova. En efecte, sigui u = (u4, ..., Uy ) una base ortonormal del subespai
(eq,...,€,) M la matriu dels vectors e respecte dels vectors u, e = uM.
Llavors

el ce=(uM)’ - (uM) = MTu’ -uM = M™M
| per tant

det(e” - e) = det(M)? > 0.

Remarca. det(e! - @) no depén de I'ordre dels vectors. Per exemple, si
transposem dos dels vectors e;, aleshores queden transposades dues co-
lumnes de M i dues files de MT, amb la qual cosa det(M™ M) queda inal-
terat.



Remarques

M Si G és la matriu de la metrica en una base qualsevol, llavors
det(G) > 0.
B Unargument similar al de la prova anterior mostra que
det(e” - e) = 0 si els vectors e sén linealment dependents.
En efecte, si d = dim(eq, ...,ex) <k, i u = (uq,...,uyz) és una base
ortonormal de (ey,...,e;), i e =uM, llavors el -e = M'M, com
abans. En aquest cas, pero, det(MTM) = 0 perqué
rang(M'M) < rang(M) = d < k.
B Si M és la matriu dels vectors linealment independents e = (eq, e5)
respecte d’una base ortonormal u = (uq,u,) de (eq, e,), llavors
A(ey, e;) = |det(M)].
B Si (x;,y;) sén les coordenades d’un punt P; del pla euclidia respecte
d’una referencia rectangular (i = 1, 2, 3), llavors I'area del triangle
P; P, P; ésigual al valor absolut de
‘xz_xl y, — X1 Y11

V1 1
— —|x
X3 —Xq Y3—3’1‘ 2 :72 yi 1

1
2




Volum d’un paral-lelepipede

Donats vectors e = (eq, e,, €3), posem

V(el) €2, 83) — \/det(eT ) e)

i diem que és el volum del paral-lelepipede definit pels vectors e, és a dir,
el volum de

{xeV|x=2Ae +Ae;,+3e5, 0< A, <1,i =1,2,3}.

Justificacio

Sigui e3 la projeccid ortogonal de e3 sobre
el subespai (e, e,) i

!

e; = e; —es.

Aixi, doncs, e; = ez + e3 i e3 és ortogonal
aeqie,.

Ara podem procedir com segueix:



€1°€1 €616 €163 €161 €16 e; - e;
!/
det(e! -e) =|e2-e1 ex-€3 ex-e31=le,-e; e, e, €;-e3
€3 €1 €3-€ €3-€3]l |es-e; e3-e, e’ +ef?
. 14
€1°€e1 €16 €1-eé3 e1-e1 e1-e; 0
!/
— 62'81 82'62 82'83 + 82'61 62'82 0
83'81 83'82 eéz 83'61 63'82 eélz

= le3'|*A(ey, €2)?,

ja que el primer determinant de la darrera suma és nul per ser e, e,, e3
linealment dependents. Pero h = |e3 | és I'altura del paral-lelepipede de-
finit pels vectors eq, e,, e5 i per tant, extraient arrels quadrades,

V(el) €2, 63) =h- A(elJ 62)'
Remarca. Si e4, e,, €3 son linealment dependents, la igualtat de la propo-
sicié també és valida, ja que d’una banda det(e’ - e) i de I'altra el pa-

ral-lelepipede definit pels vectors eq, e,, e; és «degenerat» (un dels vec-
tors és combinacio lineal dels altres dos).
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Corol-lari. Si M és la matriu dels vectors e = (eq, e,, e3) respecte d’una
base ortonormalu = (uq, u,,us) de {eq, e,, e3), llavors

V(ey, ez, e3) = |det(M)].

Corol.lari. Si (x;,y;,z;) son les coordenades d’un punt P; de I’espai eucli-
dia respecte d’una referencia rectangular (i = 1, 2,3, 4), llavors el volum
del tetraedre P, P,P; P, és igual al valor absolut de

X1 Y1 Z1 1

1x2—x1 Yo —=Y1 Zp —Z4 Ax v, 2, 1
s —x; yz—y; zz—zy| =272 7% 72

ol E 1 3 1 3 1 ol X2 v5 25 1

X4 — X1 Ya—)Y1 Zp— 24 xi yi Zi 1

Adonem-nos que el paral-lelepipede corresponent a
P; P, P; P, és unio de dos prismes triangulars iguals i

qgue cadascun d’aquests prismes és unid de tres te-
traedres iguals a PP, P;P,. Per exemple, P, P, P3P, i
P, P;P,Ps comparteixen el vertex P; i les correspo-
nents cares oposades P;P,P, i P, P,P: son iguals.




Orientacions

Sigui IV un espai vectorial real de dimensio finita n. Donades dues bases e
i @ de V, direm que tenen la mateixa orientacio, i escriurem e ~ €', si
det(A) > 0, on A és la matriu de e respecte de e’. Si det(4) < 0,direm
que e i e’ tenen orientacions oposades, o contraries.

Exemples
1. Sin=2,e = (e, e,)iposeme’ = (e, eq), llavors e i e’ tenen orien-
tacions oposades, ja que la matriu de e’ respecte de e és ((1) (1)) i

aguesta matriu té determinant —1.

2. Sin=3ie=(eq ey e3), llavors les bases (e,,e3,e,) i (e3,eq,e,) te-
nen la mateixa orientacid que e, mentre que les bases (e,, eq,e3),
(es3,e,,eq) i (eq, e3,e,) tenen orientacid contraria a la de e.

3. Per a qualsevol n >0, si e = (eq, ...,€,,) €s una base, i posem e =
(eq,...,en,_1,—€5), llavors e i € tenen orientacions oposades, ja que la
matriu de € respecte de e és J,, = diag(1, ...,1,—1) idet(J,,) = —1.
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Proposicio. La relacio e ~ e’ és d’equivaléncia.

Prova. Com que |la matriu d’'una base e respecte d’ella mateixa és la ma-
triu identitat I,, i det(l,,) = lesulta que e ~ e, és a dir, la relacio és refle-
Xiva.

Siguin ara e, e i e bases tal que e ~ e’ i e ~ €. Llavors tenim, si
e =ed i e =e'A, det(A) >0 i det(4A") > 0. Pero com que e’ =
e'A’ = eAA’ idet(44") = det(A)det(4") > 0, resulta que e ~ e”’, amb
la qual cosa queda vist que ~ és transitiva.

Finalment, atés que si e’ =eAd i det(4d) >0 llavors e=e'A™1 |
det(4~1) = det(4)~! > 0, obtenim que ~ és simétrica.
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Definicions. Posarem o(e) per denotar la classe d’equivalencia de la base
e per la relacio ~, de la qual en direm que és l'orientacio definida per e.
Amb les notacions de I’'exemple 3 vist abans sabem que o(e) + o(e).

Per altra banda, donada una altra base qualsevol e’ = eA4, es compleix
o(e’) =o(e)sidet(4A) >0io(e") =o(e)sidet(4d) < 0.

Hem doncs demostrat que I'espai vectorial V' té exactament dues orien-
tacions.

Un espai orientat és un espai en el qual hem distingit una de les dues ori-
entacions, diguem o0, com a orientacio positiva. En aquest cas es diu que
I’orientacio contraria, 0, és l'orientacio negativa.
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Area orientada

Donats dos vectors e = (eq, e,) d’un pla euclidia, sabem que

Aeq,e;) = |det(M)|
on M és la matriu dels vectors respecte d’una base ortonormal qualsevol
u = (uq,u,). Tenim, doncs, que A(eq, e,) = tdet(M), amb el signe + si
e té la mateixa orientacid que u i amb el signe — altrament. Si el pla és
orientat, i o és l'orientacio positiva, posarem

A,(eq, ep) = det(M),

on ara u és qualsevol base ortonormal positiva (és a dir, amb o(u) = o).
Tenim, doncs, que

A, (eq,e;) > 0si e té orientacio positiva i

A, (e, e;) < 0si e té orientacid negativa.
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Angle orientat en un pla orientat

Vegem, com a aplicacido de I'area orientada,
la nocid d’angle orientat,

a,(x,y) € [0,2m),

entre dos vectors no nuls x i y del pla eucli-
dia orientat (per una orientacio o):

a(x,y)si A,(x,y) >0
—a(x,y)si A,(x,y) <0

ap(x,y) = {Zﬂ

Notem que si A,(x,y) # 0, llavors x i y sén linealment independents i,
per tant, a(x,y) € (0,m), amb la qual cosa a,(x,y) € (m, 2m) si
A,(x,y) < 0. En tot cas es compleix

cos(a,) = cos(a) = iyl sin(a,) =

AO(xry)
x|yl
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Volum orientat

Consideracions similars a les de |I'area valen per al volum. Donats tres
vectors e = (eq, e,, e3) d’un espai euclidia, sabem que

V(ell €2, 83) — |det(M)|

on M és la matriu dels vectors e respecte d’'una base ortonormal qualse-
vol u = (uq,u,, u3). Tenim, doncs, que

V(eli €2, 83) — idet(M) ’

amb el signe + si e té la mateixa orientacido que u i amb el signe — altra-
ment.

Si I’espai és orientat, i 0 és I'orientacio positiva, posarem
Vo(eq, ez, e3) = det(M)

on ara u és qualsevol base ortonormal positiva (és a dir, amb o(u) = o).
Tenim, doncs, que V,(eq, e5,e3) > 0 si e és una base amb orientacid posi-
tivail,(eq, e, e3) < 0sie ésunabase amb orientacid negativa.
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Producte vectorial

En aquesta seccié suposarem que V3 és un espai vectorial euclidia orien-

tat de dimensié 3. Posem u = (uq, u,, u3) per denotar una base orto-
oy 1

normal positiva de V3.

Donats dos vectors x i y, amb components (xq, X5, x3) i (y1,V2,V3) res-
pecte de u, definim el seu producte vectorial, x Ay, de la manera se-

guent:

XNY = (nyS_xSyZ)ul + (x3y1 — x1Y3)U; + (X1Y2 — X2V1)Ug,

és a dir,
X2 X3| |X3 X1 |X1 X2
eny= (52 S S ) = e x 0
y vy vl lys vil7lyy v, (x1,%2,%3) X (¥1,¥2,¥3)
Simbolicament,
U; U; us

x Ay =|x1 Xz x3| =det(u’,u’ -x,u’ -y).
Y1 Y2 V3
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Propietats del producte vectorial

B El| producte vectorial és bilineal.

B yAx=—xAy(esdiuque el producte vectorial és alternat). En par-
ticular, x Ax = 0.

B u, Au, =uU3, Uy AUz = Uq, Uz AUy = Us.

a) Formula del producte mixt. El vector x Ay compleix la formula del
producte mixt: si z €s un altre vector, llavors

ul uz u3 ul'Z uz'Z u3'Z
(XxAy)-z=|X1 X2 X3|-z=]| X X2 X3 [=V,(x,y,2),
Y1 Y2 V3 V1 Y2 Y3

ja que z-u; = z; . En particular resulta que x Ay no depen de la base
positiva usada per calcular-lo. Notem també que la férmula implica que

xANy)-z=(WYAz)-x=(2ZAx) Y. [xAy

b) x Ay ésperpendiculara xiy.Es clar, ja que
Vo (x,,2) = V5 (6,7,) = 0. —
X
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c) Norma del producte vectorial

lx Ayl =A(x,y) .
En efecte, [x Ay|* =V,(x,y, x Ay) =V(x,y,x Ay) =[x Ay|A(x, y).

d) Calcul del producte vectorial en una base qualsevol
Si e = (eq, e,, e3) és una base qualsevol de I'espai euclidia orientat de

dimensioé 3, llavors
€1 € €3

x'el x'ez x'e3
y-€,y-€ y-eé;

En efecte, el determinant d’aquesta expressio coincideix amb

XAy =

Vo(eq,ez,€3)

det(e’, e’ - x, el - y).
Si M és la matriu de e respecte d’una base ortonormal positiva u, llavors

det(e, el - x, el - y) = det(MTu?, MTu? - x, MTu? - y) = det(M) x Ay,
i I’afirmacio resulta del fet que det(M) =V, (eq, e5, €3).
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e) Doble producte vectorial. Si x,y, z sOn vectors, aleshores
(xAY)ANz=(x-2)y—(y-2z)x.

En efecte, podem suposar que x i y sén linealment independents, ja que
altrament les dues expressions son nul-les. En tal cas, podem calcular el
doble producte vectorial (x A y) A z usant la base positiva x,y,x A y:

) X y XNY
— . . 2
(x/\y)/\z—V(x,y,xAy) xAy)-x (xAy)-y (xAy)
Z X Z:y z-(xA\y)
X y XAy

=1 0 0 (xAy)?

_ 2
ny z-x z-y z-(xAy)

=—((z-Yx—(z-%)y).
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f) Producte escalar de dos productes vectorials. Si x,y,x’,y' son vectors,
x-x y-x

y-x' y- y’| |

De nou, podem suposar que x i y son linealment independents. Llavors

tenim

aleshores (x Ay) - (x" Ay') = |

b y XAy

!

x-x" y-x (xAy)-x

x-y y-y (xAy)-y
Multiplicant escalarment per x A y, obtenim

x' Ay = —
lxAy|?

0 0 (x Ay)?
Ay (I AY)=roslaa yex! (eAy) X
x-y yy (Ay)-y
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Distancia entre dues rectes de A3

Sabem que la distancia entre dues rectes
no paralleles L=P+(u) i L'=P" + (u’)
de I'espai euclidia ordinari ve donada per la
formula

/ k-
d(L, L) =1,

on x = P'— P i on k és qualsevol vector no nul perpendicular a u i u'.
Doncs bé, ara veiem que podem posar k = u A u’, amb la qual cosa

k-x=w@Au") -x=V,(uu’,x), |k| =luru'| =Au,u),

d’on
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Area de poligons
Recordem... Donats tres punts A(aq,a,),
B(b{,b,) i C(cq,cy), I'area orientada S =
daS = S(ABC) del triangle ABC ve dona-
da per la féormula

_1|by—a; by —a,
B (0,0) g €1 —ay C—az|

Observem... Si A(0,0), B(b,0) i C(x,h), la
formula ens dona l'expressié familiar S = bh/2 (notem que S > 0 si el
triangle és antihorarii § < 0O si és horari.

A(0,0)

Una meravellosa formula. ’area (orientada) d’un poligon de N costats
ve donada per la formula

a; b

1N
S=="
=1
27070 a1 bjya
on Pj(aj, bj) (j =1,...,N) son els vertexs consecutius del poligon i on

Py .1 = P4 per convencio. Notem que el j-esim sumand és I’area orienta-
. . 2
da del triangle OP;P; 4, O I'origen de coordenades.



Exemple: el cas d’un triangle

l( a1 b1 az b2 a3 b3 )
2 az b% a3 b3 a1 b1
1 “ 1 1 1A, — Aq bz — bl
~Z|*2 b, 1=5a—a b; — b
Qs b3 1 3 1 3 1

qgue coincideix amb I’area orientada del triangle.

’
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Notes

1. Aquesta base és també denotada i, j, k, especialment en les llibres de
fisica.

2. La figura representa un poligon amb N = 10 vertexs. Adonem-nos que
I"area del poligon OP,P;P,Ps és efectiva-
ment la suma de les arees orientades dels
triangles OP,P;, OP;P, i OP,Ps (la suma
dels dos primers equival a I'area de OP,X,
positiva, més la de XP;P,, negativa, i al su-

mar I'area de OP,Ps, que és positiva, resti-
tuim la de OXP; i cancel-lem la de XP3P,).
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| | A(0,0)
/h B
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P1o
P6\/
psL

XAy




