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Àrees. En estudiar la distància d’un punt ܳ a 
una recta ܮ, hem trobat la fórmula 

 ݀ሺܳ, ሻܮ ൌ ඥ|௫|మ|௨|మିሺ௨൉௫ሻమ|௨|   

on ܲ i ݑ són un punt i un vector director de ܮ 
i on ݔ ൌ ܳ െ ܲ.  Així doncs tenim 

,ሺܳ݀|ݑ|   ሻܮ ൌ ඥ|ݔ|ଶ|ݑ|ଶ െ ሺݑ ൉  ,ሻଶݔ

la qual cosa mostra que podem interpretar 

l’expressió ඥ|ݔ|ଶ|ݑ|ଶ െ ሺݑ ൉  ሻଶ com l’àreaݔ
del paral·lelogram format pels vectors ݑ i ݔ. 

Aquesta conclusió la podem veure també di‐
rectament. Recordant que ݔ ൉ ݑ ൌ |ݑ||ݔ| cosሺߙሻ, on ߙ ൌ ,ݑሺߙ ‐ሻ, obteݔ
nim que  

ଶ|ݑ|ଶ|ݔ|   െ ሺݑ ൉ ሻଶݔ ൌ ଶ|ݑ|ଶ|ݔ| sinଶሺߙሻ, 

de manera que ඥ|ݔ|ଶ|ݑ|ଶ െ ሺݑ ൉ ሻଶݔ ൌ |ݑ||ݔ| sinሺߙሻ ൌ  on ݄ és , ݄|ݑ|
l’altura del paral·lelogram format per ݑ i ݔ.  

 ሻݔ௨ሺ݌ܮ

 ݔ

ܲ 

ܳ
௅ሺܳሻ݌

࢞
࢛

݄ ,ݑሺܣ  ሻݔ
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Notem que en particular que  |ݔ|ଶ|ݑ|ଶ െ ሺݑ ൉ ሻଶݔ ൌ 0 ֞ ,ݑ    .són linealment dependents ݔ

Com que |ݔ|ଶ|ݑ|ଶ െ ሺݑ ൉ ሻଶݔ ൌ ቚݔ ൉ ݑݔ ൉ ݔ  ݔ ൉ ݑݑ ൉ ቚݑ ൌ det ൬ቀݑݔቁ ൉ ሺݔ,  , ሻ൰ݑ

podem resumir les conclusions anteriors de la manera següent: 

Proposició. Si ܍ ൌ ሺ݁ଵ, ݁ଶሻ són dos vectors de ܸ, llavors el determinant de 
la matriu ்܍ ൉ ܍ ൌ ቆቀ݁ଵ݁ଶቁ ൉ ሺ݁ଵ, ݁ଶሻቇ ൌ ቀ݁ଵ ൉ ݁ଵ݁ଶ ൉ ݁ଵ  ݁ଵ ൉ ݁ଶ݁ଶ ൉ ݁ଶቁ  

és positiu si ݁ଵ, ݁ଶ són linealment independents, nul si ݁ଵ, ݁ଶ són lineal‐
ment dependents i  √்܍ ൉ ‐és l’àrea del paral·lelogram definit pels vec  ܍
tors ݁ଵ, ݁ଶ. 
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Determinant de Gram 

Donats vectors ܍ ൌ ሺ݁ଵ, … , ݁௞ሻ, del determinant detሺ்܍ ൉  ሻ se’n sol dir܍
determinant de Gram de ݁ଵ, … , ݁௞. 

Proposició. Si ܍ ൌ ሺ݁ଵ, … , ݁௞ሻ són vectors linealment independents, detሺ்܍ ൉ ሻ܍ ൐ 0. 

Prova. En efecte, sigui ܝ ൌ ሺݑଵ, … , ,ଵ݁ۃ ௞ሻ una base ortonormal del subespaiݑ … , ݁௞ܯ ۄ la matriu dels vectors ܍ respecte dels vectors ܍ ,ܝ ൌ  .ܯܝ
Llavors  ்܍ ൉ ܍ ൌ ሺܯܝሻ் ൉ ሺܯܝሻ ൌ ்ܝ்ܯ ൉ ܯܝ ൌ   ܯ்ܯ
i per tant 
  detሺ்܍ ൉ ሻ܍ ൌ detሺܯሻଶ ൐ 0 . 

Remarca. detሺ்܍ ൉  ሻ no depèn de l’ordre dels vectors. Per exemple, si܍
transposem dos dels vectors ݁௜, aleshores queden transposades dues co‐
lumnes de ܯ i dues files de ்ܯ, amb la qual cosa detሺܯ்ܯሻ queda inal‐
terat. 
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Remarques 

 Si ܩ és la matriu de la mètrica en una base qualsevol, llavors    
    detሺܩሻ ൐ 0. 
 Un argument similar al de la prova anterior mostra que 

       detሺ்܍ ൉ ሻ܍ ൌ 0 si els vectors ܍ són linealment dependents.  
En efecte, si ݀ ൌ dim݁ۃଵ, … , ݁௞ۄ ൏ ݇, i ܝ ൌ ሺݑଵ, … ,  ௗሻ és una baseݑ
ortonormal de ݁ۃଵ, … , ݁௞ۄ, i ܍ ൌ ்܍ llavors ,ܯܝ ൉ ܍ ൌ  com ,ܯ்ܯ
abans. En aquest cas, però, detሺܯ்ܯሻ ൌ 0 perquè  
 rangሺܯ்ܯሻ ൑ rangሺܯሻ ൌ ݀ ൏ ݇. 

  Si ܯ és la matriu dels vectors linealment independents ܍ ൌ ሺ݁ଵ, ݁ଶሻ 
respecte d’una base ortonormal ܝ ൌ ሺݑଵ, ,ଵ݁ۃ ଶሻ deݑ ݁ଶۄ, llavors 

,ሺ݁ଵܣ   ݁ଶሻ ൌ |detሺܯሻ|.  
 Si ሺݔ௜, ௜ሻ són les coordenades d’un punt ௜ܲݕ  del pla euclidià respecte 

d’una referència rectangular (i = 1, 2, 3), llavors l’àrea del triangle ଵܲ ଶܲ ଷܲ és igual al valor absolut de 

   ଵଶ ቚݔଶ െ ଷݔଵݔ െ ଶݕ  ଵݔ െ ଷݕଵݕ െ ଵቚݕ ൌ ଵଶ อݔଵݔଶݔଷ  ݕଵݕଶݕଷ  111อ. 
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Volum d’un paral·lelepípede 

Donats vectors ܍ ൌ ሺ݁ଵ, ݁ଶ, ݁ଷሻ, posem  ܸሺ݁ଵ, ݁ଶ, ݁ଷሻ ൌ ඥdetሺ்܍ ൉   ሻ܍

i diem que és el volum del paral·lelepípede definit pels vectors ܍, és a dir, 
el volum de 

  ሼݔ א ݔ | ܸ ൌ ଵ݁ଵߣ ൅ ଶ݁ଶߣ ൅ ,ଷ݁ଷߣ 0 ൑ ௜ߣ ൑ 1, ݅ ൌ 1,2,3ሽ. 

Justificació  

Sigui ݁ଷᇱ  la projecció ortogonal de ݁ଷ sobre 
el subespai ݁ۃଵ, ݁ଶۄ i  

  ݁ଷᇱᇱ ൌ ݁ଷ െ ݁ଷᇱ . 

Així, doncs, ݁ଷ ൌ ݁ଷᇱ ൅ ݁ଷᇱᇱ i ݁ଷᇱᇱ és ortogonal 
a ݁ଵ i ݁ଶ.  

Ara podem procedir com segueix: 
 

 ଵࢋ

ଶࢋ
ଷᇱᇱࢋ ଷࢋ

ଷᇱࢋ
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 detሺ்܍ ൉ ሻ܍ ൌ อ݁ଵ ൉ ݁ଵ݁ଶ ൉ ݁ଵ݁ଷ ൉ ݁ଵ  ݁ଵ ൉ ݁ଶ݁ଶ ൉ ݁ଶ݁ଷ ൉ ݁ଶ  ݁ଵ ൉ ݁ଷ݁ଶ ൉ ݁ଷ݁ଷ ൉ ݁ଷอ ൌ ቮ݁ଵ ൉ ݁ଵᇱ݁ଶ ൉ ݁ଵᇱ݁ଷ ൉ ݁ଵᇱ    ݁ଵ ൉ ݁ଶᇱ݁ଶ ൉ ݁ଶᇱ݁ଷ ൉ ݁ଶᇱ    ݁ଵ ൉ ݁ଷᇱ݁ଶ ൉ ݁ଷᇱ݁ଷᇱଶ ൅ ݁ଷᇱᇱଶቮ  

           ൌ ቮ݁ଵ ൉ ݁ଵᇱ݁ଶ ൉ ݁ଵᇱ݁ଷ ൉ ݁ଵᇱ    ݁ଵ ൉ ݁ଶᇱ݁ଶ ൉ ݁ଶᇱ݁ଷ ൉ ݁ଶᇱ    ݁ଵ ൉ ݁ଷᇱ݁ଶ ൉ ݁ଷᇱ݁ଷᇱଶ ቮ ൅ ቮ݁ଵ ൉ ݁ଵᇱ݁ଶ ൉ ݁ଵᇱ݁ଷ ൉ ݁ଵ   ݁ଵ ൉ ݁ଶᇱ݁ଶ ൉ ݁ଶᇱ݁ଷ ൉ ݁ଶ    00݁ଷᇱᇱଶቮ  

      ൌ |݁ଷᇱᇱ|ଶܣሺ݁ଵ, ݁ଶሻଶ , 

ja que el primer determinant de la darrera suma és nul per ser ݁ଵ, ݁ଶ, ݁ଷᇱ  
linealment dependents. Però ݄ ൌ |݁ଷᇱᇱ| és l’altura del paral·lelepípede de‐
finit pels vectors ݁ଵ, ݁ଶ, ݁ଷ i per tant, extraient arrels quadrades, 

  ܸሺ݁ଵ, ݁ଶ, ݁ଷሻ ൌ ݄ ൉ ,ሺ݁ଵܣ ݁ଶሻ. 

Remarca. Si ݁ଵ, ݁ଶ, ݁ଷ són linealment dependents, la igualtat de la propo‐
sició també és vàlida, ja que d’una banda detሺ்܍ ൉ ‐ሻ i de l’altra el pa܍
ral·lelepípede definit pels vectors ݁ଵ, ݁ଶ, ݁ଷ és «degenerat» (un dels vec‐
tors és combinació lineal dels altres dos). 
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Corol·lari. Si ܯ és la matriu dels vectors ܍ ൌ ሺ݁ଵ, ݁ଶ, ݁ଷሻ respecte d’una 
base ortonormal ܝ ൌ ሺݑଵ, ,ଶݑ ,ଵ݁ۃ ଷሻ deݑ ݁ଶ, ݁ଷۄ, llavors 

  ܸሺ݁ଵ, ݁ଶ, ݁ଷሻ ൌ |detሺܯሻ| . 
Corol.lari. Si ሺݔ௜, ,௜ݕ ௜ሻ són les coordenades d’un punt ௜ܲݖ  de l’espai eucli‐
dià respecte d’una referència rectangular (݅ ൌ 1, 2, 3, 4), llavors el volum 
del tetràedre ଵܲ ଶܲ ଷܲ ସܲ és igual al valor absolut de 

  
ଵ଺ อݔଶ െ ଵݔ ଶݕ െ ଵݕ ଶݖ െ ଷݔଵݖ െ ଵݔ ଷݕ െ ଵݕ ଷݖ െ ସݔଵݖ െ ଵݔ ସݕ െ ଵݕ ସݖ െ ଵอݖ ൌ ଵ଺ ተ ݔଵݔଶݔଷݔସ  ݕଵݕଶݕଷݕସ  ݖଵݖଶݖଷݖସ  1.1.1.1.ተ 

Adonem‐nos que el paral·lelepípede corresponent a ଵܲ ଶܲ ଷܲ ସܲ és unió de dos prismes triangulars iguals i 
que cadascun d’aquests prismes és unió de tres te‐
tràedres iguals a ଵܲ ଶܲ ଷܲ ସܲ. Per exemple, ଵܲ ଶܲ ଷܲ ସܲ i ଶܲ ଷܲ ସܲ ହܲ comparteixen el vèrtex ଷܲ i les correspo‐
nents cares oposades ଵܲ ଶܲ ସܲ i ଶܲ ସܲ ହܲ són iguals.  

ଵܲ ଶܲ 

ଷܲ

ସܲ ହܲ
଺ܲ
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Orientacions 

Sigui ܸ un espai vectorial real de dimensió finita ݊. Donades dues bases ܍ 
i ܍Ԣ de ܸ, direm que tenen la mateixa orientació, i escriurem ܍ ׽ ሻܣԢ, si detሺ܍ ൐ 0, on ܣ és la matriu de ܍ respecte de ܍Ԣ. Si detሺܣሻ ൏ 0,direm 
que ܍ i ܍Ԣ tenen orientacions oposades, o contràries. 

Exemples 

1. Si ݊ ൌ ܍ ,2 ൌ ሺ݁ଵ, ݁ଶሻ i posem ܍ᇱ ൌ ሺ݁ଶ, ݁ଵሻ, llavors ܍ i ܍Ԣ tenen orien‐

tacions oposades, ja que la matriu de ܍Ԣ respecte de ܍ és ቀ01  10ቁ i 

aquesta matriu té determinant െ1. 
2. Si ݊ ൌ 3 i ܍ ൌ ሺ݁ଵ, ݁ଶ, ݁ଷሻ, llavors les bases ሺ݁ଶ, ݁ଷ, ݁ଵሻ i ሺ݁ଷ, ݁ଵ, ݁ଶሻ te‐

nen la mateixa orientació que ܍, mentre que les bases ሺ݁ଶ, ݁ଵ, ݁ଷሻ, ሺ݁ଷ, ݁ଶ, ݁ଵሻ i ሺ݁ଵ, ݁ଷ, ݁ଶሻ tenen orientació contrària a la de ܍.  
3. Per a qualsevol ݊ ൐ 0, si ܍ ൌ ሺ݁ଵ, … , ݁௡ሻ és una base, i posem ܍ത ൌሺ݁ଵ, … , ݁௡ିଵ, െ݁௡ሻ, llavors ܍ i ܍ത tenen orientacions oposades, ja que la 

matriu de ܍ത respecte de ܍ és ܬ௡ ൌ diagሺ1, … ,1, െ1ሻ i detሺܬ௡ሻ ൌ െ1. 
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Proposició. La relació ܍ ׽  .Ԣ és d’equivalència܍

Prova. Com que la matriu d’una base ܍ respecte d’ella mateixa és la ma‐
triu identitat ܫ௡ i detሺܫ௡ሻ ൌ 1esulta que ܍ ׽ ‐és a dir, la relació és refle ,܍
xiva. 

Siguin ara ܍ ,܍Ԣ i ܍ԢԢ bases tal que ܍ ׽ Ԣ܍ Ԣ i܍ ׽ ᇱ܍ ԢԢ. Llavors tenim, si܍ ൌ ԢԢ܍ i  ܣ܍ ൌ ሻܣԢ, detሺܣԢ܍ ൐ 0 i detሺܣԢሻ ൐ 0. Però com que ܍ԢԢ ൌ܍ԢܣԢ ൌ ᇱሻܣܣԢ  i detሺܣܣ܍ ൌ detሺܣሻdetሺܣԢሻ ൐ 0, resulta que ܍ ׽  ԢԢ, amb܍
la qual cosa queda vist que ׽ és transitiva. 

Finalment, atès que si ܍Ԣ ൌ ሻܣi detሺ ܣ܍ ൐ 0 llavors ܍ ൌ ଵሻିܣଵ i detሺିܣᇱ܍ ൌ detሺܣሻିଵ ൐ 0, obtenim que ׽ és simètrica. 
  



11 
 

Definicions. Posarem ݋ሺ܍ሻ per denotar la classe d’equivalència de la base ܍ per la relació ׽, de la qual en direm que és l’orientació definida per ܍. 
Amb les notacions de l’exemple 3 vist abans sabem que ݋ሺ܍ሻ ്  .തሻ܍ሺ݋

Per altra banda, donada una altra base qualsevol ܍Ԣ ൌ Ԣሻ܍ሺ݋ es compleix ,ܣ܍ ൌ ሻܣሻ si detሺ܍ሺ݋ ൐ 0 i ݋ሺ܍Ԣሻ ൌ ሻܣሻ si detሺ܍ሺ݋ ൏ 0. 

Hem doncs demostrat que l’espai vectorial ܸ té exactament dues orien‐
tacions. 

Un espai orientat és un espai en el qual hem distingit una de les dues ori‐
entacions, diguem ݋, com a orientació positiva. En aquest cas es diu que 
l’orientació contrària, ݋ҧ, és l’orientació negativa. 
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Àrea orientada 

Donats dos vectors ܍ ൌ ሺ݁ଵ, ݁ଶሻ d’un pla euclidià, sabem que 
,ሺ݁ଵܣ   ݁ଶሻ ൌ |detሺܯሻ|  
on ܯ és la matriu dels vectors respecte d’una base ortonormal qualsevol ܝ ൌ ሺݑଵ, ,ሺ݁ଵܣ ଶሻ. Tenim, doncs, queݑ ݁ଶሻ ൌ േdetሺܯሻ, amb el signe ൅ si ܍ té la mateixa orientació que ܝ i amb el signe െ altrament. Si el pla és 
orientat, i ݋ és l’orientació positiva, posarem 

,௢ሺ݁ଵܣ   ݁ଶሻ ൌ detሺܯሻ, 

on ara ܝ és qualsevol base ortonormal positiva (és a dir, amb ݋ሺܝሻ ൌ  .(݋
Tenim, doncs, que 

,௢ሺ݁ଵܣ    ݁ଶሻ ൐ 0 si ܍ té orientació positiva i ܣ௢ሺ݁ଵ, ݁ଶሻ ൏ 0 si ܍ té orientació negativa. 
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Angle orientat en un pla orientat 

Vegem, com a aplicació de l’àrea orientada, 
la noció d’angle orientat, ߙ௢ሺݔ, ሻݕ א ሾ0,  ,ሻߨ2

entre dos vectors no nuls ݔ i ݕ del pla eucli‐
dià orientat (per una orientació ݋): 

,ݔ௢ሺߙ   ሻݕ ൌ ൜           ߙሺݔ, ,ݔ௢ሺܣ  ሻ siݕ ሻݕ ൐ ߨ02 െ ,ݔሺߙ ,ݔ௢ሺܣ  ሻ siݕ ሻݕ ൏ 0  
Notem que si ܣ௢ሺݔ, ሻݕ ് 0, llavors ݔ i ݕ són linealment independents i, 
per tant, ߙሺݔ, ሻݕ א ሺ0, ,ݔ௢ሺߙ ሻ, amb la qual cosaߨ ሻݕ א ሺߨ, ,ݔ௢ሺܣ ሻ siߨ2 ሻݕ ൏ 0. En tot cas es compleix 

  cosሺߙ௢ሻ ൌ cosሺߙሻ ൌ ௫൉௬|௫||௬| ,   sinሺߙ௢ሻ ൌ ஺೚ሺ௫,௬ሻ|௫||௬|  . 

  

ݔ
ܱ

ݕ
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Volum orientat 

Consideracions similars a les de l’àrea valen per al volum. Donats tres 
vectors ܍ ൌ ሺ݁ଵ, ݁ଶ, ݁ଷሻ d’un espai euclidià, sabem que 

  ܸሺ݁ଵ, ݁ଶ, ݁ଷሻ ൌ |detሺܯሻ| 
on ܯ és la matriu dels vectors ܍ respecte d’una base ortonormal qualse‐
vol ܝ ൌ ሺݑଵ, ,ଶݑ ,ଷሻ. Tenim, doncs, que ܸሺ݁ଵݑ ݁ଶ, ݁ଷሻ ൌ േdetሺܯሻ , 

amb el signe ൅ si ܍ té la mateixa orientació que ܝ i amb el signe െ altra‐
ment.  

Si l’espai és orientat, i ݋ és l’orientació positiva, posarem  

  ௢ܸሺ݁ଵ, ݁ଶ, ݁ଷሻ ൌ detሺܯሻ 

on ara ܝ és qualsevol base ortonormal positiva (és a dir, amb ݋ሺܝሻ ൌ  .(݋
Tenim, doncs, que ௢ܸሺ݁ଵ, ݁ଶ, ݁ଷሻ ൐ 0 si ܍ és una base amb orientació posi‐
tiva i ௢ܸሺ݁ଵ, ݁ଶ, ݁ଷሻ ൏ 0 si ܍ és una base amb orientació negativa. 
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Producte vectorial 

En aquesta secció suposarem que ଷܸ és un espai vectorial euclidià orien‐
tat de dimensió 3. Posem ܝ ൌ ሺ࢛ଵ, ࢛ଶ, ࢛ଷሻ per denotar una base orto‐
normal positiva de ଷܸ.1 

Donats dos vectors ݔ i ݕ, amb components ሺݔଵ, ,ଶݔ ,ଵݕଷሻ i ሺݔ ,ଶݕ ‐ଷሻ resݕ
pecte de ܝ, definim el seu producte vectorial, ݔ ר ‐de la manera se ,ݕ
güent:  ݔ ר ݕ ൌ ൫ݔଶݕଷ– ଶ൯࢛ଵݕଷݔ ൅ ሺݔଷݕଵ െ ଷሻ࢛ଶݕଵݔ ൅ ሺݔଵݕଶ െ  ,ଵሻ࢛ଷݕଶݔ

és a dir, ݔ ר ݕ ؠ ቀቚݔଶݕଶ  ݔଷݕଷቚ , ቚݔଷݕଷ  ݔଵݕଵቚ , ቚݔଵݕଵ  ݔଶݕଶቚቁ ൌ ሺݔଵ, ,ଶݔ ଷሻݔ ൈ ሺݕଵ, ,ଶݕ   . ଷሻݕ
Simbòlicament, 

ݔ  ר ݕ ൌ อ࢛ଵݔଵݕଵ   ࢛ଶݔଶݕଶ   ࢛ଷݔଷݕଷ อ ൌ detሺ்ܝ, ்ܝ ൉ ,ݔ ்ܝ ൉  . ሻݕ
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Propietats del producte vectorial 

 El producte vectorial és bilineal. 
ݕ  ר ݔ ൌ െݔ ר ‐En par .(es diu que el producte vectorial és alternat) ݕ

ticular, ݔ ר ݔ ൌ 0.  
ଵݑ  ר ଶݑ ൌ ଶݑ ,ଷݑ ר ଷݑ ൌ ଷݑ ,ଵݑ ר ଵݑ ൌ  .ଶݑ

 
a) Fórmula del producte mixt. El vector ݔ ר  compleix la fórmula del ݕ

producte mixt: si ݖ és un altre vector, llavors ሺݔ ר ሻݕ ൉ ݖ ൌ อ࢛ଵݔଵݕଵ   ࢛ଶݔଶݕଶ   ࢛ଷݔଷݕଷ อ ൉ ݖ ൌ อ࢛ଵ ൉ ଵݕଵݔݖ    ࢛ଶ ൉ ଶݕଶݔݖ    ࢛ଷ ൉ ଷݕଷݔݖ อ ൌ ௢ܸሺݔ, ,ݕ  , ሻݖ

ja que ݖ ൉ ࢛௜ ൌ ௜ݖ  . En particular resulta que ݔ ר  no depèn de la base ݕ
positiva usada per calcular‐lo. Notem també que la fórmula implica que 

  ሺݔ ר ሻݕ ൉ ݖ ൌ ሺݕ ר ሻݖ ൉ ݔ ൌ ሺݖ ר ሻݔ ൉  . ݕ

b) ݔ ר  És clar, ja que .ݕ i ݔ és perpendicular a ݕ
 ௢ܸሺݔ, ,ݕ ሻݔ ൌ ௢ܸሺݔ, ,ݕ ሻݕ ൌ 0. ࢞ ࢟

࢞ ר ࢟
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c) Norma del producte vectorial |ݔ ר |ݕ ൌ ,ݔሺܣ  . ሻݕ

En efecte, |ݔ ר ଶ|ݕ ൌ ௢ܸሺݔ, ,ݕ ݔ ר ሻݕ ൌ ܸሺݔ, ,ݕ ݔ ר ሻݕ ൌ ݔ| ר ,ݔሺܣ|ݕ  .ሻݕ

d) Càlcul del producte vectorial en una base qualsevol  
Si ܍ ൌ ሺࢋଵ, ,ଶࢋ  ଷሻ és una base qualsevol de l’espai euclidià orientat deࢋ
dimensió 3, llavors 

ݔ   ר ൌ ݕ ଵ௏೚ሺ௘భ,௘మ,௘యሻ อ ݔଵࢋ ൉ ݕଵࢋ ൉ ݔଶࢋ  ଵࢋ ൉ ݕଶࢋ ൉ ݔଷࢋ  ଶࢋ ൉ ݕଷࢋ ൉  . ଷอࢋ
En efecte, el determinant d’aquesta expressió coincideix amb 

 detሺ்܍, ்܍ ൉ ,ݔ ்܍  ൉   .ሻݕ

Si ܯ és la matriu de ܍ respecte d’una base ortonormal positiva ܝ, llavors 

 detሺ்܍, ்܍ ൉ ,ݔ ்܍  ൉ ሻݕ ൌ detሺ்ܝ்ܯ, ்ܝ்ܯ ൉ ,ݔ ்ܝ்ܯ ൉ ሻݕ ൌ detሺܯሻ ݔ ר  ,ݕ
i l’afirmació resulta del fet que detሺܯሻ ൌ ௢ܸሺ݁ଵ, ݁ଶ, ݁ଷሻ. 
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e) Doble producte vectorial. Si ݔ, ,ݕ ݔsón vectors, aleshores ሺ ݖ ר ሻݕ ר ݖ ൌ ሺݔ ൉ ݕሻݖ െ ሺݕ ൉  . ݔሻݖ

En efecte, podem suposar que ݔ i ݕ són linealment independents, ja que 
altrament les dues expressions són nul·les. En tal cas, podem calcular el 
doble producte vectorial ሺݔ ר ሻݕ ר ,ݔ usant la base positiva ݖ ,ݕ ݔ ר ݔሺ :ݕ ר ሻݕ ר ݖ ൌ ଵ௏ሺ௫, ௬,  ௫ ר ௬ሻ ቮ ݔሺݔ ר ሻݕ ൉ ݖݔ ൉ ݔ ݔሺݕ    ר ሻݕ ൉ ݖݕ ൉ ݕ ݔ    ר ݔሺݕ ר ݖሻଶݕ ൉ ሺݔ ר   ሻቮݕ

 ൌ ଵ|௫ ר ௬|మ ቮ ݖ0     ݔݕ ൉ ݖ0  ݕ   ݕݔ ൉ ݔ   ݕ ר ݔሺݕ ר ݖሻଶݕ ൉ ሺݔ ר  ሻቮݕ

    ൌ െ൫ሺݖ ൉ ݔሻݕ െ ሺݖ ൉ ሻݔ ൉  . ൯ݕ
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f ) Producte escalar de dos productes vectorials. Si ݔ, ,ݕ ,Ԣݔ  ,Ԣ són vectorsݕ

aleshores ሺݔ ר ሻݕ ൉ ሺݔᇱ ר ᇱሻݕ ൌ ฬݔ ൉ Ԣݔ ݕ ൉ ݕԢݔ ൉ Ԣݔ ݕ ൉  . Ԣฬݕ
De nou, podem suposar que ݔ i ݕ són linealment independents. Llavors 
tenim ݔᇱ ר ᇱݕ ൌ ଵ|௫ר௬|మ อ ݕ       ݔ ݔ            ר ݔ ݕ ൉ ᇱݔ ݕ ൉ ᇱݔ ሺݔ ר ሻݕ ൉ ݔᇱݔ ൉ Ԣݕ ݕ ൉ ᇱݕ ሺݔ ר ሻݕ ൉ Ԣݕ อ . 
Multiplicant escalarment per ݔ ר  obtenim ,ݕ

  ሺݔ ר ሻݕ ൉ ሺݔᇱ ר ᇱሻݕ ൌ ଵ|௫ר௬|మ ቮ    0        0        ሺݔ ר ݔ  ሻଶݕ ൉ ᇱݔ ݕ ൉ ᇱݔ ሺݔ ר ሻݕ ൉ ݔᇱݔ ൉ Ԣݕ ݕ ൉ ᇱݕ ሺݔ ר ሻݕ ൉ Ԣݕ ቮ 

        ൌ ฬݔ ൉ Ԣݔ ݕ ൉ ݔԢݔ ൉ Ԣݔ ݕ ൉   . Ԣฬݕ
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Distància entre dues rectes de ८ଷ  

Sabem que la distància entre dues rectes 
no paral·leles ܮ ൌ ܲ ൅ Ԣܮ i ۄݑۃ ൌ ܲԢ ൅  ۄԢݑۃ
de l’espai euclidià ordinari ve donada per la 
fórmula 

  ݀ሺܮ, ᇱሻܮ ൌ |௞ ൉ ௫||௞|  , 

on ݔ ൌ ܲԢ െ ܲ i on ݇ és qualsevol vector no nul perpendicular a ݑ i ݑԢ. 
Doncs bé, ara veiem que podem posar ݇ ൌ ݑ ר  Ԣ, amb la qual cosaݑ

  ݇ ൉ ݔ ൌ ሺݑ ר ᇱሻݑ ൉ ݔ ൌ ௢ܸሺݑ, ,ᇱݑ |݇| ,ሻݔ ൌ ݑ| ר |Ԣݑ ൌ ,ݑሺܣ  ,Ԣሻݑ

d’on   ݀ሺܮ, ᇱሻܮ ൌ ܸሺݑ, ,ᇱݑ ,ݑሺܣሻݔ ᇱሻݑ  . 
  

ݔ
ܮܲ

ܲԢ
 ܳ ݇ Ԣܮ

ܳԢ 
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Àrea de polígons 
Recordem... Donats tres punts ܣሺܽଵ, ܽଶሻ, ܤሺܾଵ, ܾଶሻ i ܥሺܿଵ, ܿଶሻ, l’àrea orientada ܵ ൌ
da ܵ ൌ ܵሺܥܤܣሻ del triangle ܥܤܣ ve dona‐
da per la fórmula 

    ܵ ൌ ଵଶ ฬܾଵ െ ܽଵ ܾଶ െ ܽଶܿଵ െ ܽଵ ܿଶ െ ܽଶฬ . 
Observem... ܵ݅ ܣሺ0,0ሻ, ܤሺܾ, 0ሻ i ܥሺݔ, ݄ሻ, la 

fórmula ens dóna l’expressió familiar ܵ ൌ ܾ݄/2 (notem que ܵ ൐ 0 si el 
triangle és antihorari i ܵ ൏ 0 si és horari. 

Una meravellosa fórmula. L’àrea (orientada) d’un polígon de ܰ costats 
ve donada per la fórmula ܵ ൌ ଵଶ ∑ ቤ ௝ܽ ௝ܾ௝ܽାଵ ௝ܾାଵቤே௝ୀଵ   

on ௝ܲ൫ ௝ܽ, ௝ܾ൯ ሺ݆ ൌ 1, … , ܰሻ són els vèrtexs consecutius del polígon i on ேܲାଵ ൌ ଵܲ per convenció. Notem que el ݆‐èsim sumand és l’àrea orienta‐
da del triangle ܱ ௝ܲ ௝ܲାଵ, ܱ l’origen de coordenades.2 

ሺ0,0ሻܣ ݄
 ݔ

,ሺܾܤ 0ሻ
,ݔሺܥ ݄ሻ
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Exemple: el cas d’un triangle 

  
ଵଶ ൬ฬܽଵ ܾଵܽଶ ܾଶฬ ൅ ฬܽଶ ܾଶܽଷ ܾଷฬ ൅ ฬܽଷ ܾଷܽଵ ܾଵฬ൰ 

   ൌ ଵଶ อܽଵ ܾଵ 1ܽଶ ܾଶ 1ܽଷ ܾଷ 1อ ൌ ଵଶ ฬܽଶ െ ܽଵ ܾଶ െ ܾଵܽଷ െ ܽଵ ܾଷ െ ܾଵฬ ,  
que coincideix amb l’àrea orientada del triangle.  
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Notes 

1. Aquesta base és també denotada ࢏, ࢐, ࢑, especialment en les llibres de   
física. 

2. La figura representa un polígon amb ܰ ൌ 10 vèrtexs. Adonem‐nos que 
l’àrea del polígon ܱ ଶܲ ଷܲ ସܲ ହܲ és efectiva‐
ment la suma de les àrees orientades dels 
triangles ܱ ଶܲ ଷܲ, ܱ ଷܲ ସܲ i ܱ ସܲ ହܲ (la suma 
dels dos primers equival a l’àrea de ܱ ଶܲܺ, 
positiva, més la de ܺ ଷܲ ସܲ, negativa, i al su‐
mar l’àrea de ܱ ସܲ ହܲ, que és positiva, resti‐
tuïm la de ܱܺ ଷܲ i cancel·lem la de ܺ ଷܲ ସܲ).     

  

ଵܲଶܲଷܲ 
ସܲହܲ 

଺ܲ଻ܲ 

଼ܲ ଽܲ 

ଵܲ଴ܱ 

ܺ 
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  ܲ ܳ
ܳԢ 

࢝ 

࢝Ԣ ࢝ᇱ െ ࢝ ܮ

ݔ
Ԣݔܹ

ݔ െ Ԣݔ
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 ݔ

ܲ
ܳ
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ݔ ൌ ܳ െ ܲ 

ᇱݔܮ ൌ ሻݔௐሺ݌
ݔ െ Ԣݔ

ܲ

ொୄܮܳ

௅ሺܳሻ݌

࢞ 

࢛
݄ ,ݑሺܣ ሻݔ

ଵࢋ
ଶࢋ

ଷࢋ ଷᇱᇱࢋ
ଷᇱࢋ
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 ݔ

ܱ
 ݕ

ሺ0,0ሻܣ݄
ݔ

,ሺܾܤ 0ሻ
,ݔሺܥ ݄ሻ

ଵܲଶܲଷܲ ସܲହܲ

଺ܲ 

଻ܲ

଼ܲ ଽܲ
ଵܲ଴

࢞ 

࢟
࢞ ר ࢟


