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Definicié d’espai euclidia
Un espai euclidia és un espai afi real (A, V)" dotat d’una aplicacié bilineal
simetrica

g:VxV->R
(dita producte escalar o metrica) tal que

g(x,x) >0peratotx € V — {0}
(aguesta condicié I'expressem dient que g és definida positiva).”
Notem que peratotx € V tenim g(x,x) = 0, i que

g(x,x) = 0valsiinoméssix = 0.
En lloc de g(x, y) sovint escriurem x - y, i x? en lloc de x - x.
Matriu de la metrica i calcul del producte escalar

Sie = (eq,...,e,) ésuna base de V, posarem

gij = g(ei,ej) = €€



i direm que G = (gl-j) és la matriu de la metrica g respecte de la base e.

Notem que en notacio matricial podem escriure
G=el- e

Siguin ara x = (x4, ..., X,,) i y = (y4, ..., V) les components dels vectors
x i y respecte de e, de forma que x = ex! i y = ey’ Llavors, fixant-nos
que també podem escriure x = xe’, tenim

x-y=(xe")-(ey") = xGy".
En particular,

x% = xGxT.

Construccio de productes escalars
Reciprocament, donada qualsevol matriu G € M,,(R), I'aplicacié

g:V xV - Rtalque g(x,y) = xGy*
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és bilineal. Si a més G és simetrica, llavors g és simetrica (és a dir,
gx,y) =gy, x)).

El problema de saber, en termes de G, si g és definida positiva, és més
complicat i el resoldrem posteriorment (tanmateix, si g é€s definida posi-
tiva direm que G és definida positiva).

Exemple. Si G = I, llavors g(x,y) = xy" = x;y; + -+ x,y,, i és clar
que aquesta és definida positiva. Per tant, la matriu I,, és definida positi-
va.

Matriu de la metrica en una altra base

Sigui ' una altra base de V i G' la matriu de la métrica respecte de e’. Si
A és la matriu de e’ respecte de e, llavors e’ = e4 i, per tant,

G'=eT-e =(A4Tel) - (ed) = ATGA4,

on en la darrera igualtat hem usat la bilinealitat del producte escalar. Aixi,
doncs, I'expressié de G' en termes de G i A és

G' =A"TGA.
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Remarca. En particular tenim que si A és invertible, llavors AT A és defini-
da positiva. Més endavant veurem que tota matriu definida positiva té
aquesta forma.

1 -2

;1) tavors ATA = ( 2 72) és definida

Exemple. Si posem A = ( 3 5

positiva. Per tant

2 =3\ ()1
g(x,y) = (x1,x3) (_3 5) ()’2) = 2X1y1 — 3X1Y2 — 3x2y1 + 5x2);

és una metrica.

Norma o longitud

Definim la longitud, o norma, d’un vector v, i posarem |v| per denotar-Ia,
per la formula

vl =g v).

Un vector u es diu unitari si [u| = 1.

B |v| =0,ilaigualtat val sii noméssiv = 0.
B |Av| = |A]|v]|, qualssevol que siguin A € Riv € V. En particular,



| —v|=[v].
B Per a tot vector v # 0 hi ha exactament dos vectors unitaris propor-
cionalsav: +Av, A = 1/|v| (és a dir, £v/|v]).

Exemple. La norma del vector a = (a4, ...,a,) € R" és

la| =/a? + - +aZ.
Exemple. En el cas de |la metrica

g(x,y) = 2x1y1 — 3x1Y, — 3x3y1 + 5x3¥5,

x| = /2x2 — 6x;%, + 5x2 .
Six = (2,1), llavors |x| = 1;siy = (1, 2), llavors |y| = v10.

Teorema (Desigualtat de Schwarz). Donats dos vectors v i w qualssevol,
es compleix la desigualtat

lv-w| < |v||wl].

La igualtat |v - w| = |v||w| es compleix si i només si v i w son linealment
dependents.
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Remarca. Si els vectors v i w son no nuls, la desigualtat de Schwarz equi-
val a les desigualtats

v-w

-1 < <1
lvllwl

Remarca

La igualtat —1 = v -w/|v||w]| (respectivament 1 =v- -w/|v||lw|) es
compleix si i només si w = Av, per a un cert A € R, 1 < 0 (respectiva-
ment A > 0).

Corol-lari (desigualtat triangular de la norma). Siguin v i w vectors arbi-
traris. Llavors |v + w| < |v| + |w].

La igualtat |v + w| = |v| + |w| és valida si i només si o bé un dels dos
vectors és nul o bé existeix un nombre real A > 0 tal gue w = Av.

Prova. [lv+wl?=@W+w)-(w+w) =v|?+|w|*?+2v-w
< |[v]* + [w]* + 2|v[lw]| = (Jv] + [w])?,

d’on la desigualtat enunciada en resulta immediatament.
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Per tal que valgui la igualtat |v+w|=]|v|+|w|, és clar, per la deduccié pre-
cedent, que és necessari i suficient que v-w = |v||w|. Ara bé, aquesta
condicio es compleix si i nomeés si 0 bé un dels dos vectors és nul o bé si v
i W sOn no nuls i proporcionals segons un factor positiu.

Remarca. Els dos primers passos de la prova anterior mostren que Si
v,w €V, llavors

1
vow = (v +wl2 = vl = w]?).

Teorema de Pitagores. Si v i w son vectors, llavors
v +wl|? = |v]* + |wl|?
siinoméssiv-w = 0.

Més en general, si vy, ..., V- son vectors tals que v; - v; = 0 pertot i # j,
llavors
2 _ 2 2
|U1 Tt vrl — |U1| palii o |vr| .

Prova. Si v,w € V, llavors



v+w|]? =2+ |w|*+2v-w
i d’aqui I’enunciat en resulta immediatament.

Definicio. Quan v -w = 0, diem que els vectors v i w son ortogonals o
perpendiculars.

Distancia

La distancia entre dos punts P i Q, que denotarem d(P, Q), es defineix
per la formula

d(P,Q) = |Q — P| = |PQ|.

Exemple. La distancia entre els punts (aq, ..., a,,) i (b4, ..., b,;) de R" és

\/(al R b1)2 + -+ (an R bn)z

B De les propietats de la norma resulta que d(P,Q) =0 i que
d(P,Q) = 0siinoméssi P = (. També tenim que d(P,Q) = d(Q, P).
B d(P,R) <d(P,Q)+d(Q,R) (desigualtat triangular de la distancia):

diP,R)=|R=P|=|R-Q)+@—-P)|=|R-0Q|+[Q—P|=d(P,Q) +d(Q,R).
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Quan val la igualtat en la desigualtat triangular de la distancia?

SiinoméssiP =0Q,00 =R o, altrament, si P, Q, R son tres punts aline-
ats distintsamb o(P,Q,R) > 1.

En efecte, per la desigualtat triangular (de la norma) la igualtat es déna si
inoméssiobé ) —P=00R—-Q=0(ésadir, Q) =PoR=20),o, al-
trament, siR — Q = A(Q — P), per algun A € R, A > 0. En aquest darrer
cas, R=Q+AQ—-P)=P+(1+A1)Q@—-P)ic(P,Q,R)=1+1>1.

Reciprocament, si R=P+o0(Q —P), amb o > 1, llavors, posant
A=0c—-1,tenimA>0iR=P+(Q—P)+A(Q—-—P)=Q +A(Q — P),
d’on es despren que R — Q = A(Q — P) i, per tant, d(Q,R) = Ad(P, Q).
Llavors d(P,Q) +d(Q,R) =d(P,Q) + Ad(P,Q) = od(P,Q) =d(P,R),
i aix0 acaba la prova de |'afirmacio.
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Bases ortonormals

Direm que la base e és ortonormal quan G = I,,, és a dir, quan els vectors

e; son unitaris i dos a dos ortogonals:
0sii#]
ei'ef=5if={1 si i=j
Exemple. Els vectors
e; = (1,0,...,0), ¢, = (0,1,0,...,0), ..., ¢, = (0,0, ...,1)

sOn una base ortonormal de R".

Remarca. Més endavant estudiarem un procediment per obtenir una ba-
se ortonormal a partir d’una base qualsevol de V.

Remarca. En el cas que uq, ..., Uy, sigui una base ortonormal de V/,

(X1uq + -+ x0uUy) - (V1Ug + o+ YpUy) = X1y1 + 0+ XV
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Matrius ortogonals

Suposem que e = (e, ...,e,) i u = (uUq, ..., U,) sOn bases de V. Sigui A la
matriu de u respecte de e, és a dir, u = eA, i sigui G la matriu de la me-
trica respecte de e. Llavors sabem que AT GA és la matriu de la métrica
respecte de la base u. Obtenim aixi que u és una base ortonormal de V si
i NOMES Si

ATGA =1,,.
En particular resulta que si e és una base ortonormal, llavors u és orto-
normal si i només si

T _
A A — n )
és a dir, sii només si A és invertiblei A=1 = AT .

Les matrius que compleixen aquesta propietat s"anomenen matrius orto-
gonals.

Remarca. Si A és una matriu ortogonal, llavors det(4)? = 1. Per tant

det(4) = +1.
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El grup O,

Posarem O,, per denotar el conjunt de matrius ortogonals d’ordre n i O,
per denotar el subconjunt de O,, format per les matrius ortogonals que
tenen determinant 1. Remarquem que 0 = {1} i 0, = {+1}.

B SiAiB son matrius ortogonals, llavors AB també ho és, ja que
(AB)T(AB) = BTATAB = B'B =1,.

B Si A és ortogonal, llavors A~ també ho és, ja que
(A—l)TA—l — (AT)—lA—l — (A—l)—lA—l — AA—l — In'

Ates que I, és clarament ortogonal, tenim que O,, és un grup amb el pro-
ducte de matrius. Direm que O,, és el grup ortogonal d’ordre n.

De les propietats dels determinants es dedueix facilment que O, és un
subgrup de O0,,: ésclarque I, € 0,7, isi A,B € 0,F, llavors de

det(AB) = det(A)det(B) =1 i det(4™1) = 1/det(4) = 1

resulta que A~1, AB € O0,F. Direm que 0,7 és el grup ortogonal especial
d’ordre n (també es denota SO,,).
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Remarques

B La matriu J,, = diag(1,...,1,—1) és ortogonal i det(J,,) = —1

m /., 07 ={,AlA €0} és el subconjunt 0,; de 0, format per les
matrius ortogonals el determinant de les quals és —1.

B 0, =0, UO0,;.Remarquem que {I,,],} és un subgrup de 0,,, ja que
Ji = In.

B O, éselnuclide ’lhomomorfisme det : 0,, » {+1}.

B O ésun subgrup normal de O,,.

m 0,/0; ésisomorfal grup {I,,,/,} = {+1}.

Definicio. Una referencia [O;u] es diu que és rectangular si u és orto-
normal, i en aquest cas diem que les corresponents coordenades son car-
tesianes rectangulars.



15

El grup O,

a c
b d

a’+b’=1,ac+bd=0ic*+d*=1.

Una matriu A = ( ) és ortogonal si i només si

Les solucions de 'equacié a? + b? = 1 estan en correspondéncia bijecti-
va amb els a € [0,2m), segons les relacions a = cos(a), b = sin(a).
L’equacié ac + bd =0 ens dona c=—Ab i d =Aa, on L €ER, i amb
'equacié c? + d? = 1 obtenim A2 = 1. Fent 1 =1, 4 = p(a) € 05, on

_ (cos(a) —sin(a)
pla) = (sin(a) cos(a)) ’
mentre que sifem A = —1,

_(cos(a) sin(a)\ _ (cos(a) —sin(a)\ /1 O
4= (sin(a) —cos(a)) B (sin(a) cos(a)) (0 —1

Aixo determina l'estructura de 0,. D’una banda p(a)p(B) = p(a + ),
on la suma a + B s’ha d’efectuar modul 21 (en particular tenim que 05
és commutatiu). D’altra banda,

) = p(a)], € 03



(1 0\ /(cos(a) —sin(a)\ [ cos(a) —sin(a)
Jap(@) = (O —1) (sin(a) cos(a)) B (—Sin(a) —cos(a))
_ (cos(—a) sin(—a)) _ .

- (sin(—a) —COS(—CX)) — P(—C()]Z - P(a)]z,

onposema =2t —asia>0i0 =0.

p(B) p(B)];
p(a) | pla+p) pla+p)];
pla)], pla—PB), pla—Pp)

Angles: definicid i calcul T

La funcio cos(x). La grafica de cos(x) entre
x =0 i x =m és estrictament decreixent, amb
cos(0) =1, cos(m/2) =0 i cos(m) = —1. Aixi, , /2

doncs, per a tot valor ¢ € [—1,1] existeix un Unic
a € |0,r] tal que ¢ =cos(a). Posarem
a = acos(c). En particular tenim acos(0) =/
2,acos(1) = 0,acos(—1) =m.




17

v-w

Angles. L ' —-1< <1
ngles. Les desigualtats S Sl =

ens mostren que si v i w son dos vectors no nuls, llavors existeix un unic
nombre real a € [0, ] tal que

v-w

cos(a) = STl

Diem que «a és 'angle (expressat en radians) determinat pels vectors v |
w, i posarem a(v,w), o Dw, per denotar-lo.

Exemple. Angle a entre els vectors (a4, ...,a,) i (bq, ..., b,) de R™:

a1b1+"'+anbn

\/a§+---+a,%\[bf+---+b,% |

Remarca. L'expressio d’un angle en graus sexagesimals es fara amb la
convencio habitual que 180° = m rad.

Aixi, si a és I'angle entre els vectors (1,1,—2) i (2,—1,1) de R3, llavors
cosa =—1/6ia =1,7382444rad = 99° 35’ 38,64"".

cos(a) =

Definicio. Si P,Q i R sén punts, Q,R # P, posarem QPR per denotar
I'angle a(Q — P, R — P) determinat pels vectors Q — PiR — P.
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Propietats dels angles

a(v,w) = a(w, v) per la simetria del producte escalar.

Sid > 0,llavors a(Av,w) = a(v,w).

Siguin u i v vectors linealment independents i suposem que |u| = |v|.
Llavors a(u,u +v) =a(u+v,v)i a(u,u—v) = a(v —u,v).
Donats vectors viw no nuls, a(—v,w) = & — a(v,w) (direm que els
angles a(—v,w) i a(v,w) son suplementaris).

Donats vectors v i w no nuls, a(v,w) =0 (respectivament
a(v,w) = m) si i només si existeix un nombre real A > 0 (A < 0) tal
que w = Av.

a(v,w) =m/2siinoméssiv-w =0 (és adir, siinoméssiviwson
perpendiculars).
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Proposicio (Addtivitat dels angles). Siguin x,y € V vectors linealment in-
dependents, s i t nombres reals positius, i z = sx + ty. Siguin a =

a(x,z), f =a(z,y)iy = a(x,y). Llavorsy = a + L.
Prova. Podem suposar que x i y son unitaris. Posant £ = |z|, tenim

x -y =cos(y),
£ cos(a) = s+ tcos(y),fcos(f) =scos(y) +t,
£? = 5% + t% + 2st cos(y)

D’aquestes igualtats i

sin(u) = +4/1 — cos?(u)
se n’extreu que
¢ sin(a) = tsin(y), £sin(B) = s sin(y).
Ara amb la formula

cos(a + f) = cos(a)cos(f) — sin(a)sin(f) o

s’obté
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£2cos(a + B) = (s + t cos(y))(s cos(y) + t) — st sin?(y) = £?cos(y),
d’on cos(a + ) = cos(y).

P Y~ Que sin(a + pB) =sin(y) s’'obté per un
////ﬁ ){,\/’ calcul similar, usant la formula
. x sin(a + B) = sin(a)cos(B) + cos(a)sin(f).

Proposicio. Siguin A, B i C tres punts diferents i posem a = BAC,
f =ABC i y = BCA.

a +y

Llavorsa + [ +y = .
Prova. Si posem
u=B-Aiv=C-A,

tenim
a = BAC = a(u,v), -
g =A4BC = a(v —u, —u)
v = BCA = a(—v,u —v) = a(v,v — u).

—Uu
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Com que
a+y=awv)+alv,v—u)=alu,v—u),
finalment tenim
a+pB+y=alu,v—u)+alv—u—u)=a(u,—u) =m.

Triangles: recuperant la terminologia. Una terna {4, B, C} no ordenada
de punts diferents determina un triangle, que el denotarem T = AABC, o
simplement ABC. Els vertexs de T son els punts A, B i C; els costats de T
son les rectes BC, CA i AB, dels quals direm que son oposats als vertexs
A, B i C, respectivament; els angles de T son els angles «, [ i y definits a
la proposicié anterior i sovint posarem A, B i C per denotar-los; les longi-
tuds dels costats de T sén els nombres a =d(B,C), b =d(A,C) i
c =d(A,B).

Un triangle ABC es diu que és rectangle si té un angle igual a /2 (angle
recte). Si suposem que I'angle recte és 4, llavors B + C = /2 (direm que
B i C sén complementaris), la qual cosa en particular ens diu que els an-

" Segons el context, també es diu que els costats sén els segments [BC], [AC] i [BA].
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gles B i C sén aguts (és a dir, inferiors a w/2). Direm que a = d(B, C) és
la hipotenusa del triangle rectangle i que b = d(A4,C) i c = d(A,B) sén
els catets. Notem que el teorema de Pitagores (per a vectors) ens diu que
a’ = b? + ¢, que és una forma més familiar.

Una demostracio de la desigualtat de Schwarz (v. pag. 7)

Si w = 0, la desigualtat que volem establir és una igualtat (els dos mem-
bres valen 0) i és clar que v i w son linealment dependents. Podem,
doncs, suposar que w és no nul.

Ates que g és definida positiva, per a tot t € R tenim la desigualtat
gw+tw,v+tw) = 0.

Tenint en compte que g és bilineal i simetrica, aquesta desigualtat és
equivalent a la desigualtat

lv]? + 2(v - w)t + |w|?t? > 0.

Com que t € R és arbitrari, resulta que (v - w)? — |v]|?|w|* < 0, [%]
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car si I'expressio de I'esquerra fos positiva, llavors el polinomi real
v|? + 2(v - w)T + |w|?T?

tindria dues arrels reals distintes (recordem que |w| # 0), i per tant
prendria valors positius i valors negatius. Aixo prova la desigualtat
|lv - w| < |v||lw], ja que aquesta i [*] son clarament equivalents.

Ara, si es compleix la igualtat |v - w| = |v||w]|, llavors existeix un t € R
tal que |[v|? + 2(v - w)t + |w|?t? =0, és a dir, tal que g(v + tw,v +
tw) = 0 i, per tant, tal que v + tw = 0, amb la qual cosa v i w son line-
alment dependents.

Reciprocament, si v i w son linealment dependents, llavors existeix A € R
tal que v = Aw (recordem que w # 0) i és immediat verificar que
lv-w| = |v]|w].



24

Notes

1. Els espais afins reals gaudeixen de propietats especials derivades de les
caracteristiques particulars del cos R. p 0 PQ

Per exemple, donats dos punts P,Q € A, —  ¢=———————¢

p
es defineix el segment d’extrems els [PQ]
punts P i Q, i es denota [P,Q], o [PQ], com el conjunt dels punts

P+A(Q—P)=((1—-A)P + AQ talsque A € [0, 1].

Més endavant veurem altres propietats i construccions, com per exemple
la nocio de poliedre o la d’orientacio.

2. En coordenades cartesianes usuals, la distancia s d’un punt (x,y) a
'origen ve donada per s? = x2 + y2. En coordenades afins (u, v) quals-
sevol té la forma s? = au? + 2buv + cv?, que és una expressid bilineal
en (u, v), positiva si (u, v) # (0,0).



