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Definicio d’espai afi

Ingredients

K, un cos (dels seus elements en diem escalars)

A, un conjunt (dels seus elements en diem punts)

V, un K-espai vectorial (dels seus elements en diem vectors)

Una aplicacid

S:AXA >V, (P,Q)»v=P0

(en diem aplicacio estructural).



Axiomes

Axioma d’homogeneitat. Per a tot punt P i tot /Q
vector v existeix un unic punt Q tal que P_Q) = .

o
Aquest punt Q sera denotat P + v, o, per raons P

que veurem després (pag. 8), t,(P).

L’axioma d’homogeneitat també es pot expressar dient que per a tot
punt P, I'aplicacio

Sp:A >V, Q- PO,

és bijectiva.

Llei d’addicié. PQ + QR = PR . u+v %
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Dimensid. La dimensio de I'espai afi (A, V, ) és, per definicid, dimg (V).
Posarem dim(A) per denotar-la, és a dir,

B Un espai afi de dimensié 0 es redueix a un punt.
B Una recta afi és un espai afi de dimensid 1.
B Un pla afi és un espai afi de dimensié 2.



Exemple: classe lateral d’un subespai vectorial

Sigui V un subespai vectorial® d’un K-espai vectorial E.

Sigui a un vector de E i posem
A=a+V={a+v|lveV}

(és la classe lateral de a modul V). Com que la diferencia Q — P de dos
elementsP =a+xiQ =a+yes

Q-P=(@+y)—(a+x)=y—x€V,
podem considerar I'aplicacio 6:A XA -V, (P,Q) » Q — P.
(A,V,8) és un espai afi.”

Elcasa =0 iV = E ens mostra, en particular, que tot espai vectorial E
es pot considerar com un espai afi. En aquest cas els punts i els vectors

son la mateixacosa: A =E,V=EisiP,Q € E,6(P,Q) =Q — P.



Algunes propietats del vector P—Q>
Proposicio
1.P0=0(Q=P

2.PQ = —QP

3.PQ = RS © PR = (S.
P Q

1. PP + PP = PP (addicid); per tant, PP =0.1si P_Q> = 0, llavors

Prova

ﬁ)) =0= ﬁ, d’on P = Q per I'axioma d’homogeneitat.

2.PQ + QP = PP =0,d’on QP = —PQ.

3. PQ =RS = PR =PQ+ QR =RS+ QR = QR + RS = (0S.



Diferencia de punts

Escollim un punt O com a origen, i posem, per a tot punt P,
P = OP.

Com que

P+PQ=0P+PQ=0Q=0Q,

tenim la relacio ﬁ)) = 6 — P. Com que I'expressio ﬁ)) no depen de O,
aix0 suggereix que una notacié adient per al vector P_Q> és Q—P
(diferencia de punts). D’ara endavant usarem les dues notacions

indistintament. 1.0—P=00Q=P

(Q-P)+(R-Q)=R—-P ||22Q—-P=—-(P-Q).
R-Q=(R-P)—(Q—-P)||3.0—=P=R-S©R-P=Q-S5




Translacions
La translacio definida per un vector v és 'aplicacid

t, : A — Atalquet,(P) =0Q @vzﬁj:Q—P.
(notacio : Q = t,(P) també es denota Q = P + v).

Proposicio. Son equivalents
1. v=0
2. t,=1d
3. t, té punts fixos.
Prova. 1= 2. Siv=20,iQ =ty(P), llavors 0 = P_Q) i Q = P. Per tant,
to(P) = P per atot punt P.
2 = 3. Obvia.

3=1.Sit,(P) =PperalgunP,v = PP = 0.



El grup T (A) de les translacions
El conjunt II(A) de les aplicacions bijectives de A en A forma un grup’
amb la composicio:
(teo)(P) =1(a(P)).
Proposicio. L’aplicacio
V->1I(A), vet,

és un monomorfisme de grups (homomorfisme® injectiu).
La imatge T'(A) d’aquest homomorfisme és el

grup de les translacions de A.
Prova

Sit,(P)=0it,(Q) =R, IIavorsv=P_Q)iw=Q_R),
v+w = PQ + QR = PR, |

(tw © t,)(P) =ty (t,(P)) = R = tyu (P).
Per tant, t,, ot, = t,;., | l'aplicacié és un homomorfisme. Com que

t, = Id equival a v = 0, aquest homomorfisme és injectiu.
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Complements

A. Definicio alternativa d’espai afi

Un espai afi es pot també definir partint de les propietats basiques de
I'operacié P + v introduida a la pagina 3. Aquesta aplicacié satisfa les
propietats seglients:

e(P+v)+w=P+ (v+w)peraqualssevolPE Aiv,weV.

e Peratot P € A, l'aplicacio V — A tal que v = P + v és bijectiva.
Doncs bé, si en la definicid d’espai afi canviem I'aplicacié 6 per una
aplicacio g: A X V — A tal que:

1) o(o(P,v),w)=0(P,v+w),i

2) peratotP € A, I'aplicacido op:V = A, v » a(P,v), és bijectiva,
llavors I'estructura (A, V, o) defineix un espai afi (A, V, §) posant

5(P,Q) = 05" (Q).
L’axioma 1) es correspon a |'axioma d’addiciéo de 6 i I'axioma 2) a la
propietat d’homogeneitat.
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B. un altre exemple d’espai afi

Sigui E un espai vectorial de dimensié n i F € E un subespai vectorial.
Sigui A =A(E,F) el conjunt de les aplicacions lineals” P:E - F
tals que P(x) = x per a tot x de F. Sigui V =V (E, F) el conjunt de les
aplicacions lineals v: E — F tals que v(x) = 0 per a tot x de F. Notem
que A i V son subconjunts de I'espai vectorial L(E, F) de les aplicacions
lineals de E en F i que V és subespai vectorial. Definim 6:A XA -V
de manera que 6(P,Q) = Q — P. Notem que Q — P és efectivament de
V. Llavors (A,V, ) és un espai afi.

La dimensio d’aquest espai afi és k(n — k), on posem k per denotar la
dimensié de F. En efecte, hi ha un isomorfisme natural L(E/F,F) & Vi
L(E/F,F) té dimensido k(n — k).

l'isomorfisme L(E/F,F) <V ve donat per v—>v=vom, on
m:E - E/F és la projeccid natural (recordem que una aplicacio lineal
vV:E—>F té la forma v=vom, amb v € L(E/F,F), si i només si
ker(v) 2 F, és a dir, siinoméssiv € V).
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Remarca. Donada una aplicacié lineal P: E — F tal que P(x) = 1 per a
tot x € F, posem U = Kker P. Llavors tenim
UNF={0}idim(U)=n—-k o E=U®F.
Es clar, a més, que P =my, on my:E > F és la projeccié de E en F
corresponent a la descomposicio E =U @ F.
Posant
A(E,F)={UCS E|UNnF ={0},dim(U) =n—k},
resulta que tenim una bijeccid
A(E,F) & A'(E,F),P » ker P
(en I'altre direccio, my « U). Per tant, A'(E, F) té estructura d’espai afi
de dimensio k(n — k).
Els dibuixos de |la pagina seglient ho il-lustren per diversos casos.
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Notes

1. Q denota el cos dels nombres racionals, R el cos dels nombres reals i
C el cos dels nombres complexos.

El cos dels residus de nombres enters modul un nombre primer p, Z,,, €s
un cos de p elements, que usualment denotem O, 1,..., p — 1, pero en el
benentes que la suma i el producte es fan modul p. Per exemple,
Z, ={0,1}, amb 1+1=0; Z3 ={0,1,2}, amb 1+2=0,2+2=1 i
2-2=1.

Un nombre enter positiu g és el cardinal d’un cos si i només si té la forma
g =p'", on p és un nombre primer i r un nombre enter positiu. A més,
aquest cos és unic llevat isomorfisme, i es denota [F,,r (es diu que és, en

honor al seu descobridor, el cos de Galois de p" elements, i per aixo
també es denota GF (p"), de les inicials angleses de Galois Field).

2. Recordem que un espai vectorial sobre K, o un K-espai vectorial, és un
conjunt E dotat d’una suma x + y € E definida per a qualssevol x,y € E i
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un producte Ax € E definit peratotx € EF itot A € K, amb les propietats

seguents:

e £ és un grup abelia respecte de la suma, és a dir, es compleixen les

propietats

associativa: (x +y)+z=x+ (y + z)

commutativa: x +y =y + x

element neutre: Existeix 0 € E tal que x + 0 = x (aguest element 0
és unic)

existencia d’oposat: per atot x € E, existeix—-x € E ambx + (—x) =

0 (no és dificil provar que, per a cada x, I'element — x és Unic).

o distributiva: A(x +y) =Ax + Ay i (A+ w)x = Ax + ux.
(és facil veure que (—1)x = —x peratotx € E).

e jdentitat: 1x = x.
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3.Si F € E, diem que F és un subespai vectorialsi0 € F, x +y € F quan
x,yEFiAx e Fquanx € FileK.
Per exemple, sieq, ..., e,, € E, llavors el conjunt

(eq, ...,k = {A1e1 + -+ e, | A4, ..., A, € K},
és a dir, el conjunt de totes les combinacions lineals de ey, ..., e,, €és un
subespai vectorial de E.

4. Siguin P,Q,R € A. Llavors, en aquest cas, P_Q) =(Q —P, Q_R> =R—-0Q
PR=R—P, de manera que PQ+QR=(Q—-P)+(R—-0Q)=
(R — P) = PR. Aixd prova que & compleix la llei de I'addicié.

Fixem ara P=a+veEeA (veV). Per un Q =a+x € A variable

(& x € V variable), P_Q) =x—v €V, de manera que 0p:A -V és
I"aplicacio

a+xmHx—v,
que és bijectiva (I'aplicacié inversaés w » a + v + w).
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5. Un conjunt G dotat d’una operacio interna G X G = G, (x,y) » x *y
és diu que és un grup si I'operacio * és

- associativa:(x * y) * z = x * (y * z), qualssevol que siguin x,y,z € G.
-té element neutree:exx = x *e = x peratotx € G.

-tot element x € G té unsimétricx: x xx' = x" *xx = e.

L’element neutre és unic. Cada element x € G té un unic simetric, el qual
usualment es denota x 1.

Un subconjunt H de G és un subgrupsie € G, x *y € G quan x,y € G i
x 1 eGquanx €Q.

6.Si (G,*) i (G',0) son dos grups, es diu que una aplicacido h: G — G' és un
homomorfismes si i només si h(x = y) = h(x) o h(y) per a qualssevol
X,y € G. El nucli de h és ker(h) = {x € G|h(x) = €'}, on e’ és el neutre
de G'. Es immediat comprovar que ker(h) és un subgrup de G.

7.Si E i E' son K-espais vectorials i f: E — E' una aplicacid, diem que f
és lineal si f(x+y)=f(x)+f(y) i f(Ax) = Af(x) qualssevol que
siguin x,y € E i A € K. Adonem-nos que la primera condicio és que sigui
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un homomorfisme de grups additius. El nucli de f, ker(f) =
{x € E|f(x) =0}, és un subespai vectorial de E i la imatge de f,
im(f) = f(E) = {f(x)|x € E}, és un subespai de E’.
El conjunt L(E,E") de les aplicacions lineals de E en E’ té estructura
d’espai vectorial amb les operacions f + g i Af definides per les regles
F+9)x)=fl)+gx) i (Af)(x) =Af(x) peratotx €E
(f,g € L(E,E"), A € K).
Si eq,...,e, és una base de E i xq,...,X;, sOn vectors arbitraris de E’,
existeix una Unica aplicacid lineal f: E — E' tal que f(e;) = x;.
De fet, si existeix f ha de complir
flies + -+ A,ey) = Ax) + -+ Ax,
i aquesta relacio ens dona la unicitat i I'existencia ja que, en variar
Ay, o, Ay € K, la combinacio lineal x = A,e4 + -+ A,,e,, ens ddéna tots
els vectors de E i, per un x donat, els coeficients 14, ..., 4,, sOn Unics.

Proposicio. dim L(E,E') = dim(E) - dim(E").



