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Geometría y Física del espacio-tiempo de Minkowski

por

Sebastià Xambó

A la memoria de Waldyr Alves Rodrigues Jr. (1946–2017),
cuya obra pervivirá como un ejemplar referente en el

ámbito de la física matemática.

Resumen. El propósito de este artículo es urdir una presentación elemental
del espacio-tiempo (en el sentido de Minkowski) que subraye los aspectos geo-
métricos y físicos fundamentales que concurren en su estructura. El lenguaje
utilizado es el álgebra lineal y su extensión en el álgebra geométrica. Es el mé-
todo que nos parece más idóneo para formular y manejar las transformaciones
de Lorentz, la electrodinámica relativista y la teoría del electrón de Dirac.

1. Introducción

Este artículo está destinado primariamente a matemáticos interesados en acceder
a presentaciones de temas de física matemática (relatividad especial en esta ocasión)
usando las estructuras matemáticas que resultan más efectivas para formularlas.

Como punto de partida tomamos el espacio vectorial lorentziano E1,3, esto es,
un espacio vectorial real de dimensión 4 dotado de una métrica (forma bilineal
simétrica) de signatura (1, 3), y el espacio afín M (espacio de Minkowski) cuyo
espacio vectorial asociado es E1,3. Esta estructura, una de las premisas del artículo
original de Minkowski [14], incorpora, como se irá viendo, avances debidos a nombres
como Maxwell, Lorentz, Poincaré y Einstein, entre otros.

Tal enfoque no debiera sorprender a un lector con formación matemática, acos-
tumbrado seguramente a tomar como punto de partida para el estudio de la geome-
tría euclídea un espacio vectorial euclidiano En, esto es, un espacio vectorial real de
dimensión n (tómese n = 3 si se desea reforzar la analogía) dotado de una métrica
definida positiva, junto con el correspondiente espacio afín (espacio euclídeo). En es-
te caso el enunciado sintetiza la comprensión de la geometría euclídea conseguida a
lo largo de milenios, desde los griegos (Pitágoras, Euclides, Arquímedes,. . . ), pasan-
do por la «revolución analítica» (R. Descartes, B. Pascal, I. Newton, L. Euler,. . . ),
y cristalizada con el desarrollo de estructuras álgebro-geométricas «intrínsecas» a
partir de aportaciones seminales como las de H. Grassmann y B. Riemann.

La métrica propuesta por Minkowski es, usando sus propios términos, la dada
por la forma cuadrática

c2t2 − (x2 + y2 + z2), (1)
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siendo x, y, z coordenadas cartesianas rectangulares respecto de una referencia iner-
cial, t el tiempo relativo a la misma y c la velocidad de la luz en el vacío. Es crucial
señalar que c es una constante universal, en el sentido de que no depende del sis-
tema de referencia inercial en el cual se mida ni de la velocidad del foco emisor.
Este sorprendente hecho es una de las predicciones de la teoría de Maxwell. En
efecto, Maxwell encontró que la velocidad c de las ondas electromagnéticas en el
vacío predichas por su teoría debía ser, independientemente del modo de generarlas,
c = (ε0µ0)−1/2, siendo ε0 y µ0 constantes medibles en el laboratorio y cuyo valor
es universal (admitiendo el principio de relatividad según el cual las leyes físicas
tienen la misma forma en cualquier sistema inercial). La conclusión de que la luz es
una onda electromagnética, incorporando así la óptica a su teoría, la alcanzó Max-
well al comprobar que el valor numérico de c coincidía con la velocidad de la luz
en el vacío. Además de la predicción teórica, la universalidad de c se ha verifica-
do, directa o indirectamente, con una variedad de experimentos que van desde el
de Michelson-Morley [13] hasta los sofisticados sistemas de GPS actuales (cf. [16]).
Digamos también que Einstein tomó el principio de relatividad y la universalidad de
c como axiomas en su trabajo [4], pudiendo así obtener fácilmente las transforma-
ciones de Lorentz que relacionan los valores x, y, z, t relativos a un sistema inercial
S con los valores x′, y′, z′, t′ relativos a otro sistema inercial S′. Si el tiempo no es
absoluto, estas transformaciones se pueden deducir sin suponer la constancia de c,
como se hace por ejemplo en [17].

La relevancia de la métrica de Lorentz radica en que la transformación de Lorentz
especial (boost de Lorentz según la terminología usual) es una isometría de la misma.
Esta afirmación se comprueba con un simple cálculo a partir de la expresión de dicho
boost. En unidades tales que c = 1 (lo que equivale a medir las distancias en unidades
de tiempo), las ecuaciones del boost de Lorentz son las siguientes (cf. [4]):

t = β(t′ + ux′), x = β(x′ + ut′), y = y′, z = z′, (2)

siendo u, que necesariamente ha de cumplir |u| < 1, la velocidad del sistema inercial
S′ respecto del sistema inercial S y β = (1 − u2)−1/2. De ello se sigue que las
transformaciones de Lorentz, que son composición de rotaciones espaciales y boosts
de Lorentz, son isometrías de t2 − (x2 + y2 + z2). De hecho son isometrías propias
(su determinante es β2(1−u2) = +1) y ortocronas (las variaciones de t y t′ tienen el
mismo signo, pues β > 0). Recíprocamente, una isometría propia y ortocrona es una
transformación de Lorentz, pues se constata sin dificultad que compuesta con una
rotación apropiada es una isometría (propia y ortocrona) que cumple y = y′, z = z′,
t2− x2 = t′

2− x′2, y por consiguiente basta probar, como se detalla a continuación,
que esta transformación es un boost de Lorentz.
Proposición 1.1. Sean t = δt′+δ′x′, x = ξt′+ξ′x′ las ecuaciones de una isometría
f propia y ortocrona. Entonces f es un boost de Lorentz.

Demostración. Los coeficientes de la matriz de f cumplen D = δξ′− δ′ξ = 1 (por
ser propia) y δ > 0 (por ser ortocrona). Además, por la condición de isometría se tiene
la relación t′2−x′2 = (δt′+ δ′x′)2− (ξt′+ ξ′x′)2 idénticamente en t′ y x′. Igualando
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coeficientes, vemos que esta relación es equivalente a las ecuaciones δ2 − ξ2 = 1,
δδ′−ξξ′ = 0 y δ′2−ξ′2 = −1. La primera ecuación y la condición δ > 0 nos permiten
afirmar que existe un único ρ ∈ R tal que δ = cosh ρ, ξ = senh ρ. De la segunda
ecuación se infiere que existe λ ∈ R tal que δ′ = λξ = λ senh ρ y ξ′ = λδ = λ cosh ρ.
Sustituyendo estos valores en D, obtenemos λ = 1, con lo cual la tercera ecuación
se satisface automáticamente. Así pues la matriz de f tiene la forma β

( 1 u
u 1
)
, con

β = cosh ρ y u = tanh ρ. Puesto que |u| < 1 y que β = (1− u2)−1/2, está claro que
f es un boost de Lorentz de velocidad u.

En suma, la noción intrínseca que corresponde al grupo de las transformaciones
de Lorentz (denotado Gc en [14]) es el grupo SO+

1,3 de las isometrías propias y
ortocronas de E1,3. Es un subgrupo normal del grupo O1,3 de las isometrías de E1,3
y del subgrupo SO1,3 ⊂ O1,3 de las isometrías propias. La esencia de la relatividad
especial es el estudio de los conceptos y relaciones que son invariantes por la acción
de SO+

1,3. Se trata, pues, de un caso particular de geometría de Klein, pero su mismo
origen explica su extraordinario potencial para expresar enunciados de contenido
geométrico y físico. Es lo que tratamos de mostrar en las páginas que siguen.

2. Vocabulario básico

A los puntos de M es costumbre llamarlos sucesos (events en inglés) y aquí serán
denotados con letras mayúsculas. Los elementos de E1,3 son denominados vectores,
y los denotamos por letras minúsculas (o mayúsculas con un punto cuando sean
derivadas de puntos variables). Este reparto de papeles es necesario, lo mismo que en
geometría euclídea, para garantizar que no existen sucesos (o puntos) privilegiados.
La separación vectorial entre dos sucesos P y Q, denotada Q−P , es el único vector
a tal que Q = P + a. Recordemos que en un espacio afín la suma de puntos no está
definida, y que P+0 = P y (P+a)+b = P+(a+b) para todo punto P y cualesquiera
vectores a y b. Si usamos η para denotar la métrica de E1,3, la separación escalar
(o, simplemente, separación) entre dos sucesos P y Q, denotada σ(P,Q), se define
como η(a) = η(a, a), siendo a = Q − P . Como se puede anticipar por lo que se ha
dicho, y como veremos después, la noción de separación juega un papel fundamental
en la cronometría y geometría relativistas.

Para estudiar las propiedades de la separación, procede pues estudiar las propie-
dades de η. Dado a ∈ E1,3, sea εa el signo de η(a). La magnitud de a, denotada |a|, se
define como el número no negativo |a| = +

√
εaη(a). Esta definición, que equivale a

η(a) = εa|a|2, es válida para cualquier métrica de un espacio vectorial real y coincide
con la longitud o norma de un vector en el caso de un espacio euclidiano En. De los
vectores de magnitud 1 diremos que son unitarios.

Un vector a ∈ E1,3 se dice que es positivo cuando η(a) > 0; negativo cuando
η(a) < 0; y nulo o isótropo cuando η(a) = 0. Si a es un vector no nulo, a/|a| es un
vector unitario, y de este vector se dice que es la normalización de a. Nótese que
un vector es nulo si y sólo si su magnitud es nula. Por razones históricas (aclaradas
más adelante), de los vectores positivos, negativos y nulos se dice también que son
temporales, espaciales y lumínicos, respectivamente.
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Si a, b ∈ E1,3 y η(a, b) = 0, decimos que a y b son ortogonales. Si a es un vector
no isótropo, a⊥ = {x ∈ E1,3 : η(a, x) = 0} tiene dimensión 3 y contiene vectores
no isótropos a′. Prosiguiendo recursivamente, obtenemos una base a, a′, a′′, a′′′ de
E1,3 cuyos vectores son dos a dos ortogonales (decimos que es una base ortogonal).
Normalizando estos vectores, obtenemos una base de vectores unitarios dos a dos
ortogonales (base ortonormal). Dado que la signatura de η es (1, 3), en una base
ortogonal uno de los vectores es positivo y los demás negativos. Cambiando el orden
si hace falta, podemos suponer que el primero es positivo y los restantes negativos.

En lo que sigue supondremos que γ = γ0, γ1, γ2, γ3 es una base ortonormal con
γ0 positivo. De tales bases se dice que son referencias inerciales, o simplemente
referencias. Con el uso de los símbolos γµ seguimos la práctica de muchos autores
que los escogen para subrayar su estrecha relación con las matrices Γ de Dirac
(esta relación se detalla en una sección posterior). También seguiremos el criterio de
sumación de Einstein (un índice repetido comporta un sumación respecto del mismo,
a no ser que se indique lo contrario) y la convención de que los índices designados
con letras griegas varían en el conjunto {0, 1, 2, 3}, mientras que los indicados por
letras latinas lo hacen en {1, 2, 3}. Por ejemplo, si las componentes de un vector
a ∈ E1,3 se denotan aµ, entonces a = aµγµ, mientras que akγk = a − a0γ0. En
lugar de a0, también se suele usar t, y x, y, z en lugar de a1, a2, a3. Por ejemplo,
η(a) = t2 − (x2 + y2 + z2) tiene el mismo significado que

η(a) = η(aµγµ) = (a0)2 −
(
(a1)2 + (a2)2 + (a3)2) .

Estas expresiones de η(a) nos permiten concluir que H = {a ∈ E1,3 : η(a) = 1}
es un hiperboloide de dos hojas. Con referencia a la base γ, estas hojas se distinguen
por el signo de t, pero este signo no es intrínseco, ya que si cambiamos γ0 por
−γ0 entonces t cambia a −t. Esta indeterminación (entre dos posibles orientaciones
temporales indistinguibles) compele a escoger una de las dos (llamémosla H+) como
orientación temporal positiva. Esto en la práctica significa que sólo se usarán bases γ
que cumplan γ0 ∈ H+. También supondremos, para tener en cuenta las conclusiones
al final de la Introducción, que dos cualesquiera de estas bases (digamos γ y γ′)
tienen la misma orientación global, pues las dos suposiciones juntas equivalen a que
la isometría determinada por γ 7→ γ′ es propia y ortocrona. Como se verá, H+ juega
un papel análogo al de la esfera S2 de E3 y es por ello que lo llamaremos esfera de
Lorentz. También pondremos F+ = R+H+ = {λu : u ∈ H+, λ ∈ R+} (sus elementos
son los vectores no nulos orientados al futuro) y F− = −F+ (vectores orientados al
pasado). El abierto F+ ∪ F− es el interior del cono de luz C = {a ∈ E : η(a) = 0}.
El exterior de C es el allende (v. Figura 1 (a)).

La proposición y corolarios que siguen son la contrapartida matemática en que
se basa la explicación de fenómenos relativistas poco intuitivos en el marco de la
experiencia ordinaria, como por ejemplo el retraso de los relojes en movimiento y,
en particular, la llamada paradoja de los mellizos.
Proposición 2.1 (Desigualdad de Schwarz hiperbólica). (1) Si a, b ∈ F+, entonces
η(a, b) ≥ |a||b|.

(2) La igualdad ocurre si y sólo si b = λa, λ ∈ R+.
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Cono de luz: t2 − x2 = 0
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Figura 1: (a) Esfera de Lorentz y tipos de vectores. (b) Desigualdad triangular
hiperbólica (Corolario 2.4 y Ejemplo 2.5). (c) Medida de la distancia espacial AB
con fotones (PB y BQ) y relojes en el segmento temporal PQ (Ejemplo 2.7).

Demostración. (1) No se pierde generalidad suponiendo que a, b ∈ H+, esto es,
η(a) = η(b) = 1 y a0, b0 > 0 (γ0-componentes). Pongamos ā = a−a0γ0, b̄ = b−b0γ0,
α = |ā| y β = |b̄|, con lo cual−η(ā) = α2,−η(b̄) = β2 y−η(ā, b̄) ≤ αβ, α, β ≥ 0 (pues
−η es positiva en 〈γ1, γ2, γ3〉 y por tanto podemos aplicarle la desigualdad de Schwarz
ordinaria). Dado que 1 = η(a) = (a0)2 + η(ā) = (a0)2 − α2, se tiene (a0)2 = 1 + α2,
y análogamente (b0)2 = 1 +β2. De ahí que η(a, b) = a0b0 +η(ā, b̄) ≥ a0b0−αβ. Pero
(a0)2(b0)2 = (1 + α2)(1 + β2) = 1 + α2 + β2 + α2β2 ≥ 1 + 2αβ + α2β2 = (1 + αβ)2,
es decir, a0b0 ≥ 1 + αβ. Por tanto, η(a, b) ≥ 1.

(2) Suponiendo que a y b son unitarios, se trata de ver que la igualdad se cumple
si y sólo si a = b. Para que se cumpla la igualdad, las dos desigualdades utilizadas en
la demostración tienen que ser una igualdad. La segunda es una igualdad si y sólo
si α = β, y esto nos da a0 = b0, pues a2

0 = 1 + α2 = 1 + β2 = b2
0. Por otra parte,

la igualdad −η(ā, b̄) = αβ se cumple si y sólo si ā = 0 o b̄ = 0 o b̄ = λā, λ > 0, y
es inmediato comprobar que en todos estos casos se tiene a = b: si ā = 0, entonces
b̄ = 0, pues β = α = 0, de donde a = a0γ0 = b0γ0 = b; el caso b̄ es análogo; y en el
tercer caso, β = |b̄| = λ|ā| = λα, de donde λ = 1 y a = a0γ0 + ā = b0γ0 + b̄ = b.

Corolario 2.2 (Ángulo hiperbólico). Si a, b ∈ F+, existe un único número real
positivo δ tal que cosh(δ) = η(a, b)/(|a||b|). Diremos que δ es el ángulo hiperbólico
formado por a y b, y pondremos δ(a, b) para denotarlo.
Corolario 2.3 (Teorema del coseno hiperbólico). Si a, b ∈ F+, y ponemos δ =
δ(a, b), entonces (a + b)2 = a2 + b2 + 2|a||b| cosh(δ). En particular tenemos que
a+ b ∈ F+.
Corolario 2.4 (Desigualdad triangular hiperbólica). Si a, b ∈ F+, entonces |a +
b| ≥ |a|+ |b|, valiendo la igualdad si y sólo si b = λa, λ > 0.
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Necesitamos también unas nociones básicas de cinemática y cronometría rela-
tivistas. Sea X = X(s) ∈ M , s ∈ [a, b] ⊆ R, con X(s) dos veces diferenciable con
continuidad respecto de s. Dado que el espacio tangente TXM a M en cualquier
suceso X es canónicamente isomorfo a E1,3, se tiene que dX/ds ∈ E1,3. Diremos que
X(s) es una historia, o línea de universo, si dX/ds ∈ F+. Nótese que esta condición
es invariante por reparametrizaciones s = s(τ) estrictamente crecientes, pues en tal
caso dX/dτ = (dX/ds)(ds/dτ) y ds/dτ > 0. El tiempo propio de una historia X(s)
es la función τ : [a, b]→ [0, T ] definida por

τ(ξ) =
∫ ξ

0
|dX/ds| ds =

∫ ξ

0
η (dX/ds)1/2

ds, T = τ(b). (3)

Siendo τ(s) una función estrictamente creciente de s, podemos considerar su
inversa, s = s(τ), τ ∈ [0, T ], y la parametrización X(τ) = X(s(τ)). Entonces dX/dτ ,
que denotamos Ẋ, cumple Ẋ ∈ H+, y en particular η(Ẋ) = 1:

Ẋ = dX/dτ = (dX/ds)(ds/dτ) = (dX/ds)/(dτ/ds) = (dX/ds)/|dX/ds|.

Físicamente, τ(s) se interpreta como el tiempo marcado por el cronómetro que viaja
con la historia y puesto a 0 en X(a). Como el tiempo propio τ(b) sólo depende de
la curva X trazada por X(s), podemos poner τ(X ) para indicarlo.
Ejemplo 2.5 (Teorema de los mellizos). Sean P,Q ∈ M y supongamos que a = Q−
P ∈ F+. Entonces X(s) = P + sa, s ∈ [0, 1] (geométricamente es la parametrización
del segmento PQ que une P yQ) es una historia y τ(s) = s|a|, ya que dX/ds = a para
todo s y η (dX/ds)1/2 = |a|. En particular, τ(PQ) = |a|. De este tipo de historias
diremos que son uniformes o rectilíneas. Si b ∈ F+, y ponemosR = Q+b = P+(a+b),
entonces a + b ∈ F+ y se tiene τ(PR) ≥ τ(PQ) + τ(QR) con igualdad si y sólo si
Q ∈ PR (v. Figura 1 (b)). En efecto, τ(PQ) = |a|, τ(QR) = |b|, τ(PR) = |a+ b|, y
sabemos que |a+ b| ≥ |a|+ |b|, con igualdad si y sólo si b = λa, λ > 0.

Con las mismas notaciones que para las historias, diremos queX(s) es un trayecto
si dX/ds es negativo (o espacial). Esta condición es también invariante por repara-
metrizaciones s = s(ρ) estrictamente crecientes y el recorrido propio del trayecto
X(s) es la función ρ : [a, b]→ [0, T ] definida por

ρ(ξ) =
∫ ξ

0
|dX/ds| ds =

∫ ξ

0
(−η(dX/ds))1/2

ds, T = ρ(b). (4)

Como el recorrido propio ρ(b) sólo depende de la curva X trazada porX(s), podemos
poner ρ(X ) para indicarlo. En el caso de un recorrido uniforme (X(s) = P + sa,
η(a) < 0, s ∈ [0, 1], Q = P + a), ρ(PQ) = |a|.
Observación 2.6 (Significado del tiempo propio). El tiempo propio de un segmento
infinitesimal X(s)X(s+ ds) de una historia X(s) es

τ(X(s)X(s+ ds)) = |X(s+ ds)−X(s)| = ds |dX/ds| = ds η(dX/ds)1/2,

que es el integrando de (3). Por tanto, el tiempo propio es la integral de tiempos
propios uniformes infinitesimales.
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Una historia X(s) es lumínica si el vector dX/ds ∈ C (cono de luz). En este caso
no existe ningún parámetro distinguido en general. Físicamente, son las historias de
los fotones o de las partículas de masa 0, y las curvas que trazan son generatrices
de C.
Ejemplo 2.7 (Medida de recorridos con relojes y fotones). Sean P,Q ∈ M y su-
pongamos que a = Q − P es positivo (temporal). Sea A = P + λa, 0 < λ < 1 y
B ∈ M un suceso tal que B − P y Q−B son lumínicos (v. Figura 1 (c)). Entonces
x = B − A es espacial y ρ(AB)2 = τ(PA)τ(AQ). En efecto, de las hipótesis se
desprende directamente que τ(PA) = λ|a|, τ(AQ) = (1 − λ)|a|, η(λa + x) = 0 y
η((1− λ)a− x) = 0. Las dos últimas ecuaciones nos dan las relaciones

η(x) + λ2η(a) + 2λη(a, x) = 0 y η(x) + (1− λ)2η(a)− 2(1− λ)η(a, x) = 0.

Multiplicando la primera por 1− λ, la segunda por λ y sumando, se obtiene

η(x) + λ(1− λ)η(a) = 0.

Por tanto η(x) = −λ(1− λ)η(a) < 0 (esto prueba que x es espacial) y

ρ(AB)2 = λ(1− λ)η(a) = λ(1− λ)|a|2 = τ(PA)τ(AQ).

3. Álgebra de Dirac

En su búsqueda de un tratamiento cuántico del espín del electrón, Pauli redes-
cubrió el álgebra geométrica de E3, pero disfrazada como una representación en
el álgebra de matrices complejas 2 × 2 (v. [15]). Desafortunadamente, este embo-
zo matricial oculta la rica estructura del álgebra que representa y hace aparecer
equívocamente la unidad imaginaria

√
−1 como ingrediente necesario para la teoría

cuántica del espín. Un acontecimiento parecido se repitió un año después, cuando
Dirac redescubrió, en su búsqueda de una ecuación relativista del electrón, el álge-
bra geométrica de E1,3, esta vez disfrazada como una representación en el álgebra de
matrices complejas 4×4 (v. [2]). Este trabajo fue un gran paso, ya que poco después
Dirac lo usó para predecir la existencia del positrón (antipartícula del electrón detec-
tada por C. D. Anderson en 1932), pero su máscara matricial y el equívoco sobre el
papel de

√
−1 no favorecieron el aprecio del álgebra geométrica como el medio más

idóneo para formular dichas teorías, o para poder descubrir nuevas proposiciones,
como por ejemplo la admirable relación que existe entre las dos álgebras.

El hilo conductor en lo que sigue de este artículo es describir la estructura y
manejo efectivo del álgebra geométrica D de E1,3 (álgebra de Dirac), así como indicar
sus aplicaciones a las temáticas anunciadas en el resumen inicial. Aunque D es un
caso particular del álgebra geométrica en el sentido de [19], en la exposición que
sigue se minimizan las referencias a este artículo aportando diversas construcciones
y argumentos que resultan más simples en este caso particular. Para simplificar las
notaciones, ponemos E = E1,3.
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D.1. Regla de contracción y relaciones de Clifford. La R-álgebra D es
asociativa y unitaria, contiene a E como subespacio vectorial de modo que R∩E =
{0}, y está generada, como R-álgebra, por R y E. El producto de D, llamado producto
geométrico, se denota por simple yuxtaposición de sus factores. Si a ∈ E, a2 = η(a)
(regla de contracción de Clifford). Éstas son las propiedades básicas de D, ya que,
como se irá viendo en esta sección, las demás propiedades se deducen de ellas.

La regla de contracción implica las relaciones de Clifford: ab + ba = 2η(a, b),
cualesquiera que sean a, b ∈ E. El argumento es muy simple: basta igualar η(a+b) =
η(a) + η(b) + 2η(a, b) = a2 + b2 + 2η(a, b), que resulta de la bilinealidad de η, con
(a + b)2 = a2 + b2 + ab + ba, y simplificar los términos comunes. Nótese que la
relación de Clifford para b = a equivale a la regla de contracción. La aplicación
más importante de la regla de contracción es que si a es no isótropo (η(a) 6= 0),
entonces a es invertible y a−1 = a/η(a). Análogamente, la consecuencia más útil
de las relaciones de Clifford es que dos vectores a, b ∈ E anticonmutan (es decir,
ab = −ba) si y sólo si son ortogonales. Para referirnos a este enunciado diremos que
es la regla de anticonmutación.

D.2. Fórmula de Artin. Sea γI = γi1 · · · γil para cualquier secuencia i1, . . . , il ∈
N = {0, 1, 2, 3}, conviniendo que γ∅ = 1. En particular tenemos 24 = 16 produc-
tos con i1 < · · · < il, l = 0, . . . , 4 (de tales secuencias I se dice que son mul-
tiíndices y ponemos I para denotar el conjunto que forman). También ponemos
ηI = η(γi1) · · · η(γil)) = (−1)s(I), siendo s(I) el número de los índices i de I tales
que η(γi) = −1.
Proposición 3.1. (1) Si I, J ∈ I,

γIγJ = (−1)t(I,J) ηI∩J γI M J ,

siendo I M J la diferencia simétrica (ordenada) de I y J , y t(I, J) el número de
inversiones en la secuencia I, J que resulta de concatenar I y J .

(2) En particular, γ2
I = (−1)l//2ηI = (−1)s(I)+l//2, siendo l//2 = bl/2c el cociente

entero de l = |I| por 2.

Demostración. (1) El signo (−1)t(I,J) resulta de aplicar la regla de anticonmuta-
ción repetidamente hasta conseguir ordenar I, J en orden no decreciente, el signo
ηI∩J resulta de aplicar la regla de contracción a los vectores repetidos, y lo que queda
es claramente γI M J .

(2) Se tiene t(I, I) =
(
l
2
)
, con l = |I|, y ηI = (−1)s(I), de modo que γ2

I =
(−1)s(I)+(l

2), y ahora basta observar que
(
l
2
)
tiene la misma paridad que l//2.

Es un buen momento para introducir i = γ0γ1γ2γ3 = γ0123, al que llamamos seu-
doescalar. Sus dos propiedades fundamentales son que anticonmuta con los vectores
(basta comprobar que anticonmuta con los vectores γµ de la base) y que i2 = −1
(pues s(0123) = 3 y 4//2 = 2). Otro ejemplo es que si γ2

ijk = 1, necesariamente ha
de ser ijk = 123, pues (3//2 = 1 y por tanto s(ijk) ha de ser impar).
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D.3. Base de Clifford. Necesitamos el siguiente resultado auxiliar:
Lema 3.2. (1) Para todo I 6= ∅, γI 6= ±1. (2) Si I 6= J , entonces γI 6= ±γJ .

Demostración. (1) Si γI = ±1, γ2
I = 1. Esto descarta los I tales que γ2

I = −1. Es
además inmediato que γI = ±1 sólo puede ocurrir si |I| > 2: es claro que γ0 6= ±1;
y si fuese γjγk = ±1 (j 6= k), entonces tendríamos la contradicción γj = ±γk. El
único caso que queda por discutir, por los ejemplos ya vistos, es γ123. Pero éste tam-
bién se descarta fácilmente: si fuese γ123 = ±1, multiplicando por γ0 a la izquierda
tendríamos i = ±γ0, que no puede ocurrir, ya que i2 = −1 y (±γ0)2 = γ2

0 = 1.
(2) La igualdad γI = ±γJ implica que ±1 = γ2

I = ±γIγJ = ±γI M J , y por (1)
esto sólo es posible si I M J = ∅, es decir, si I = J .

Proposición 3.3. El conjunto B = {γI : I ∈ I} es linealmente independiente.

Demostración. Supongamos que se verifica una relación lineal
∑
I λIγI = 0. Que-

remos mostrar que entonces λI = 0 para cualquier I. A tal fin, bastará ver que
λ∅ = 0, pues el lema anterior asegura que si multiplicamos la relación inicial por
un γI cualquiera, entonces se obtiene una relación similar cuyo término γ∅ tiene
coeficiente ±λI .

Para cada índice k, la relación original implica
∑
I λIγkγIγ

−1
k = 0. Dado que γk

conmuta o anticonmuta con γI , es inmediato inferir la relación
∑
I λIγI = 0 en la

que la suma se extiende a los γI que conmutan con todos los γk. Ahora notemos
que γI anticonmuta con cualquiera de sus factores cuando |I| es par y positivo, y
que anticonmuta con cualquier γk tal que k /∈ I cuando cuando |I| es impar. Puesto
que tales k existen (cualquier k ∈ N − I 6= ∅, pues |N | = 4), sólo queda la relación
λ∅ = 0, como se quería ver.

Corolario 3.4. B es una base de D y por tanto dimD = 16. Nos referiremos a B
como la base de Clifford de D asociada a γ.

Demostración. Dado que D está generada por R y E, todo elemento de D es
una combinación lineal de productos de vectores, y por tanto de productos de la
forma γJ = γj1 · · · γjl

, j1, . . . , jl ∈ N . Este producto se puede reordenar en orden no
decreciente de los índices, salvo un signo, aplicando la regla de anticonmutación. A
continuación se pueden simplificar los vectores repetidos por la regla de contracción,
lo cual conlleva a lo más un cambio de signo, así que γJ es igual a ±γI , con γI ∈ B.
Esto prueba que B es un sistema de generadores de D como espacio vectorial. Pero,
por la proposición anterior, los elementos de B son linealmente independientes.

D.4. Producto exterior. Consideremos la aplicación A : El → D tal que

A(e1, . . . , el) = 1
l!
∑
p

(−1)t(p)ep1 · · · epl
,

donde la suma se extiende a todas las permutaciones p de {1, . . . , l} y siendo t(p) el
número de inversiones en p. Esta aplicación es multilineal alternada y por tanto in-
duce una única aplicación lineal gr : ΛlE → D tal que gr(e1∧· · ·∧el) = A(e1, . . . , el).
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Puesto que el producto geométrico de vectores dos a dos ortogonales es alternado,
resulta en particular que para todo multiíndice I de longitud l se tiene gr(γÎ) = γI ,
siendo γÎ = γi1 ∧ · · · ∧ γil . Dado que los l-vectores γÎ , |I| = l, forman una base de
ΛlE, si ponemos Dl = 〈γI : |I| = l〉 tenemos que gr establece un isomorfismo lineal
canónico ΛlE ' Dl. En particular resulta que Dl no depende de la base ortonormal
γ, de modo que la descomposición lineal D = D0 + D1 + D2 + D3 + D4 es canóni-
ca. El isomorfismo lineal graduado canónico resultante ΛE ' D permite injertar el
producto exterior de ΛE en D. De este modo D se enriquece con otra estructura de
álgebra asociativa y unitaria, a cuyo producto seguiremos llamando producto exte-
rior, y denotándolo ∧. En el cálculo de un producto exterior, interviene, en última
instancia, la regla γÎ = γI , que por definición es válida para la base de Clifford. Re-
cordemos también que el producto exterior es graduado y anticonmutativo: si x ∈ Dl
e y ∈ Dm, entonces x ∧ y ∈ Dl+mE y x ∧ y = (−1)rsy ∧ x.

D.5. Multivectores. La copia del producto exterior de ΛE en D nos faculta
para usar la terminología habitual del álgebra exterior en D. Por ejemplo, de los
elementos de D se dice que son multivectores y de los de Dl, que son l-vectores.
También se dice que l es el grado de los elementos de Dl. Los l-vectores no nulos de
la forma e1 ∧ · · · ∧ el se denominan l-aspas (o bien l-vectores descomponibles). Los
0-vectores son los escalares, pues D0 = 〈1〉 = R. Los 1-vectores son los elementos de
E, pues D1 = 〈γ0, γ1, γ2, γ3〉 = E, y se les llama simplemente vectores. En lugar de
2-vectores y 3-vectores es usual decir bivectores y trivectores. Los 4-vectores forman
un espacio de dimensión 1 y sus elementos son los seudoescalares: D4 = 〈i〉.

La métrica η se extiende de manera natural a una métrica de ΛE, y por tanto de
D, que seguimos denotando η. Tal extensión queda caracterizada por dos condiciones:
que los espacios Dl y Dm sean ortogonales para l 6= m y que el producto escalar de
dos aspas del mismo grado venga dado por la llamada fórmula de Gram, que aquí
será suficiente escribir para grado 2:

η(e1 ∧ e2, e
′
1 ∧ e′2) =

∣∣∣∣η(e1, e
′
1) η(e1, e

′
2)

η(e2, e
′
1) η(e2, e

′
2)

∣∣∣∣ , η(e1 ∧ e2) =
∣∣∣∣ η(e1) η(e1, e2)
η(e2, e1) η(e2)

∣∣∣∣ .
En particular, resulta que η(γI , γJ) = 0 si I 6= J y η(γI) = (−1)s(I). Por ejemplo,
η(γ0 ∧ γ1) = η(γ0)η(γ1) − η(γ0, γ1)2 = −1 y η(γ0 ∧ γ1, γ0 ∧ γ2) =

∣∣ 1 0
0 0

∣∣ = 0. Vemos
pues que la base de Clifford es ortonormal. Por otra parte, comparando la fórmula
para γ2

I y la de η(γI), vemos que se tiene la relación

γ2
I = (−1)l//2η(γI), l = |I|. (5)

D.6. Producto Interior. El álgebra D está dotada de otro producto bilineal,
x ·y, denominado producto interior. No es ni asociativo ni unitario, pero es, como ve-
remos, un ingrediente fundamental. Debido a la bilinealidad, basta que lo definamos
para dos elementos de la base de Clifford.

Pongamos l = |I| y m = |J |. Las reglas para el cálculo de x = γI · γJ son las
siguientes: Si l = 0 om = 0, x = 0; esto es, 1·γJ = γI ·1 = 0 (esta regla puede parecer
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un poco extraña, pero es la que conviene para garantizar la validez sin excepciones
de fórmulas que se verán luego). Si l,m ≥ 1, entonces x = γIγJ si I ⊆ J o J ⊆ I,
y x = 0 en cualquier otro caso. La explicación de esta regla es que si fijamos l y m,
entonces el grado de γIγJ es l+m− 2ν, siendo ν = |I ∩ J |, de modo que el mínimo
grado posible es cuando ν es máximo, lo cual ocurre precisamente cuando I ⊆ J (y
entonces el grado es m− l) o J ⊆ I (y entonces el grado es l −m). En definitiva,

γI · γJ =
{

0, si l = 0 o m = 0,
(γIγJ)|l−m|, si l,m ≥ 1.

En particular se tiene, si l ≥ 1, γI · γI = γ2
I . Nótese que el máximo grado posible de

γIγJ es l+m, y que éste se alcanza si y sólo si ν = 0, es decir, si y sólo si I ∩ J = ∅.
Además, en tal caso γIγJ = γI ∧ γJ . Todas estas consideraciones se pueden resumir
como sigue:
Proposición 3.5 (Grados de un producto). Sean x ∈ Dl, y ∈ Dm. Si j ∈ {0, 1, 2, 3, 4}
y (xy)j 6= 0, entonces j = |m−l|+2ν con ν ≥ 0 y j ≤ r+s. Además, (xy)|l−m| = x·y
si l,m > 0 y (xy)l+m = x ∧ y.
Observación 3.6. Hemos usado sistemáticamente la métrica η para evitar la con-
fusión con el producto interior. La diferencia más importante es que si x ∈ Dl e
y ∈ Dm, entonces η(x, y) = 0 cuando l 6= m, pero en general x · y puede ser 6= 0.
Por ejemplo, γ1 · γ0γ1γ2 = γ0γ2. En tal caso, y · x = ±x · y (después daremos una
expresión para el signo). En el caso l = m, veremos que x · y = y · x = ±η(x, y),
siendo el signo (−1)l//2.
Proposición 3.7 (Fórmula clave). Si a es un vector y x un multivector, entonces

ax = a · x+ a ∧ x y xa = x · a+ x ∧ a.

Demostración. Por bilinealidad podemos suponer que a = γµ y x = γK . SiK = ∅,
los productos interiores son nulos y tanto el producto geométrico como el exterior
son iguales a γµ. Si K 6= ∅, distingamos los casos µ ∈ K y µ /∈ K. En el primer caso,
γµ ·γK = γµγK y γK ·γµ = γKγµ, mientras que γµ∧γK = γK∧γµ = 0. En el segundo
caso, γµ · γK = γK · γµ = 0, mientras que γµγK = γµ ∧ γK y γKγµ = γK ∧ γµ.

D.7. Involuciones. La involución lineal D → D, x 7→ x̂, donde x̂ = (−1)lx si
x ∈ Dl, resulta ser un automorfismo de D (involución de paridad), en el sentido que

x̂y = x̂ ŷ, x̂ ∧ y = x̂ ∧ ŷ, x̂ · y = x̂ · ŷ.

De modo similar, la involución lineal D → D, x 7→ x̃, donde x̃ = (−1)l//2x si x ∈ Dl,
resulta ser un antiautomorfismo de D (involución de reversión), en el sentido que

x̃y = ỹ x̃, x̃ ∧ y = ỹ ∧ x̃, x̃ · y = ỹ · x̃.

Para las dos afirmaciones, es suficiente comprobar las identidades para dos elementos
de la base de Clifford, digamos x = γI ∈ Dl, y = γJ ∈ Dm. Para la involución de
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paridad, nótese que los grados de γIγJ , γI ∧γJ y γI ·γJ son l+m−2ν (ν = |I ∩J |),
l+m y |l−m|, respectivamente, y que los tres son congruentes con l+m módulo 2.
En el caso de la inversión de reversión, el argumento es similar si tenemos en cuenta
que γ̃I = γ

Ĩ
, donde Ĩ es el reverso de I, pues la reordenación Ĩ comporta

(
l
2
)
cambios

de signo.
Proposición 3.8 (Forma alternativa de la métrica). Sean x, y ∈ D. Entonces
η(x, y) = (xỹ)0 = (x̃y)0.

Demostración. Dado que las tres expresiones son bilineales, basta ver que coinci-
den para x = γI e y = γJ . Esto se reduce a comprobar que (γI γ̃J)0 y (γ̃IγJ)0 son 0
si J 6= I e iguales a η(γI) is J = I. La primera relación es consecuencia de que los
grados de γI γ̃J y γ̃IγJ son no nulos si J 6= I. Por lo que se refiere a la segunda, es
claro que γI γ̃I = γ̃IγI = (−1)s(I) y sabemos que este valor coincide con η(γI).

D.8. Dualidad de Hodge. La fórmula de Artin muestra que si γI tiene grado l,
entonces γI i tiene grado 4− l. Tenemos pues una aplicación lineal

Dl → D4−l, x 7→ x∗ = xi.

Esta aplicación, llamada dualidad de Hodge, es un isomorfismo lineal, ya que su
inversa es la aplicación y 7→ −yi. De hecho:
Proposición 3.9. La dualidad de Hodge es una antiisometría.

Demostración. η(x∗) = η(xi) = (xi x̃i )0 = −(xx̃)0 = −η(x).

En la Figura 2 se muestra la base de Clifford de D según los distintos grados.
Para grado 2, σk = γkγ0 da tres bivectores de la base y sus duales σ∗k, los otros tres.
La significación del orden γkγ0 se verá en la sección siguiente.

Grado Nombre Base
0 Escalares 1
1 Vectores γ0, γ̄1, γ̄2, γ̄3

2 Bivectores σ̄1, σ̄2, σ̄3, σ∗1, σ∗2, σ∗3
3 Seudovectores γ̄∗0 , γ̄∗1 , γ̄∗2 , γ̄∗3
4 Seudoescalares 1∗

Figura 2: Base de Clifford de D (salvo algunos cambios de signo). Para un elemento
x de la base, ponemos x̄ para denotar que η(x) = −1.
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4. Espacio relativo y álgebra de Pauli

Definamos D+ = D0 + D2 + D4. Dado que D+ = {x ∈ D : x̂ = x}, y que
x 7→ x̂ es un automorfismo de D, D+ es una subálgebra de D, la llamada subál-
gebra par. Por lo que hemos visto al final de la sección anterior, tenemos que
D2 = 〈σ1,σ2,σ3,σ1i,σ2i,σ3i〉 = E + Ei, donde E = Eγ0 es el espacio 〈σ1,σ2,σ3〉.
Dado que σ2

k = −η(σk) = 1, resulta que E es un espacio euclidiano de dimensión
3 con la métrica g = −η|E y que σ1,σ2,σ3 es una base g-ortonormal. Diremos que
E es el espacio relativo de γ0. Como se irá viendo, es el espacio en que la referencia
inercial γ representa las relaciones físico-geométricas del univero inmutable M , con
un diccionario preciso de ida y vuelta.
Proposición 4.1. D+ es el álgebra geométrica de (E , g) y su seudoescalar es i.

Demostración. Está claro que D+ es una R-álgebra asociativa y unitaria, que
contiene a E como subespacio, y que R ∩ E = {0}. También es inmediato que D+

está generada por R y E como R-álgebra, pues σji = σkσl (si jkl es una permutación
cíclica de 123) e i = σ1σ2σ3, como se comprueba inmediatamente. Finalmente, el
hecho de que σ1,σ2,σ3 sea una base g-ortonormal de E , y que σ2

k = 1 = g(σk),
implican que D+ verifica la regla de contracción respecto de g: a2 = g(a) para todo
a ∈ E . La relación σ1σ2σ3 = i muestra que el seudoescalar de E coincide con i.

P.1. Álgebra de Pauli. Pondremos P = D+ y diremos que es el álgebra de
Pauli. La graduación de esta álgebra viene dada por P0 = R, P1 = E , P2 = Ei,
P3 = 〈i〉 = D4.
Proposición 4.2. El álgebra par del álgebra de Pauli, P+ = P0 + P2, es isomorfa
al cuerpo H de los cuaterniones.

Demostración. Pongamos ik = σki, de modo que P+ = P0 + P2 = 〈1, i1, i2, i3〉.
Entonces i2k = σkiσki = σ2

ki2 = −1 e i1i2 = σ1σ2 = σ3i = i3 (y permutaciones
cíclicas). Esto es, i1, i2, i3 cumplen las relaciones de los símbolos i, j,k introducidos
por Hamilton el día del bautismo de H.

Observación 4.3. El producto geométrico de P es la restricción del producto geo-
métrico de D. Además, P es claramente cerrada por el producto exterior y el pro-
ducto interior de D (cf. D.7). Pero las restricciones de los dos últimos productos a P
no coinciden con los productos exterior e interior de P. Para distinguir entre los dos
productos exteriores e interiores, la convención que seguiremos es escribir σ1, σ2, σ3
para denotar que los vectores relativos σ1,σ2,σ3 se consideran bivectores de D. De
este modo, en una expresión como σ1 ∧ σ2 el producto exterior es el de P, y el
resultado es el bivector σ1σ2 = σ3i ∈ P2 (ponemos i para denotar el seudoescalar
de D cuando lo consideramos como el seudoescalar de P). Notemos, sin embargo,
que σ1 ∧ σ2 = γ1 ∧ γ0 ∧ γ2 ∧ γ0 = 0 en D. Análogamente, σ2 = σ1 · σ1σ2, mientras
que σ1 · σ1σ2 = −γ1γ0 · γ1γ2 = 0.
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P.2. Representación de Pauli. El álgebra P fue descubierta como un álge-
bra de matrices. En términos de álgebra geométrica, dichas matrices proporcionan
una representación matricial de P. En detalle, la representación es 1,σ1,σ2,σ3 7→
σ0, σ1, σ2, σ3, siendo aquí σk las matrices de Pauli:

σ0 =
[
1

1

]
, σ1 = σx =

[
1

1

]
, σ2 = σy =

[
−i

i

]
, σ3 = σz =

[
1
−1

]
.

Esto muestra que P ' C(2) (álgebra de matrices 2 × 2 complejas). Nótese que
i = σ1σ2σ3 7→ σ1σ2σ3 = iσ0.
Observación 4.4. Los valores propios de σj son ±1 y los correspondientes vecto-
res propios en C2 (espacio de espinores de Pauli) son [1,±1], [1,±i], y {[1, 0], [0, 1]},
respectivamente. Estos vectores propios (normalizados) representan los estados cuán-
ticos del espín 1/2 (cf. [18]) que tienen como imagen los puntos unidad de los ejes
x, y, z por la aplicación espinorial S3 → S2 (llamada fibración de Hopf en topolo-
gía). Esta aplicación se define de la siguiente manera: si ψ = [ξ0, ξ1] ∈ S3 ⊆ C2 (es
decir, ξ0ξ̄0 + ξ1ξ̄1 = 1), entonces

x = ξ0ξ̄1 + ξ̄0ξ1, y = i(ξ0ξ̄1 − ξ̄0ξ1), z = ξ1ξ̄1 − ξ0ξ̄0. (6)

Observación 4.5 (Representación de Dirac). En 1928, Dirac introdujo sus famosas
matrices Γµ ∈ C(4),

Γ0 =
[
σ0

−σ0

]
, Γk =

[
−σk

σk

]
. (7)

Las matrices Γµ satisfacen las relaciones de Clifford para la signatura η = (+,−,−,−),

ΓµΓν + ΓνΓµ = 2ηµν , (8)

y por tanto tenemos una representación D → C(4) tal que γµ 7→ Γµ. Dirac llegó a las
relaciones de Clifford tras introducir el operador Γµ∂µ e imponer que su cuadrado
fuese el dalembertiano � = ∂2

0 − (∂2
1 + ∂2

2 + ∂2
3). Una buena parte del mérito de

su trabajo está en la forma explícita que descubrió para sus matrices. Volveremos a
estas cuestiones en la última sección.

P.3. El punto de vista relativo. La aplicación E1,3 → E , x 7→ x = x ∧ γ0, es
suprayectiva, y su núcleo es 〈γ0〉. Si x = xµγµ, está claro que x = xkσk. Poniendo
t = x · γ0, se tiene xγ0 = x · γ0 + x ∧ γ0 = t + x, que es la representación relativa
a γ (también llamada del laboratorio) de x. Tomando un suceso O como origen, la
representación relativa de un suceso cualquiera P es la de x = P −O. Por ejemplo,
la de P = O + τγ0 es t = τ y x = 0, que se interpreta como el tiempo marcado por
un reloj inmóvil respecto de γ (en el sentido de que su posición en el espacio relativo
es constante). Otro ejemplo: la representación relativa de la forma cuadrática de
Lorentz concuerda con la usada por Minkowski,

η(x) = x2 = xγ0γ0x = (t+ x)(t− x) = t2 − x2.



La Gaceta ? Artículos 553

La expresión relativa de la velocidad relativista ẋ = dx/dτ es

ẋγ0 = d(xγ0)/dτ = d(t+ x)/dτ.

Por tanto
dt

dτ
= ẋ · γ0,

dx

dτ
= ẋ ∧ γ0 .

Si v = dx/dt (velocidad relativa),

v = dx

dt
= dx

dτ

dτ

dt
= ẋ ∧ γ0

ẋ · γ0
.

Dado que v2 = −η(v) = −η(ẋ ∧ γ0)/(ẋ · γ0)2 = 1− (ẋ · γ0)−2, se tiene v2 < 1 y

ẋ · γ0 = 1/
√

(1− v2), (9)

que es el factor de Lorentz de v (usualmente se denota γ = γ(v), pero aquí será
denotado β para evitar confusiones con los símbolos γµ). En particular, dt = β(v) dτ ,
o bien dτ = dt

√
1− v2, lo cual da la relación precisa entre el ritmo del tiempo propio

y el ritmo del tiempo en el laboratorio. Puesto que β > 1 si v 6= 0, el tiempo medido
en el laboratorio es menor que el tiempo propio.

El momento relativista de una partícula se define por la fórmula p = m0ẋ, siendo
m0 su masa en reposo. Dado que ẋγ0 = d(t+ x)/dτ = β + βv, donde β es el factor
de Lorentz de v (fórmula (9)) y v = dx/dt la velocidad relativa al laboratorio, se
tiene pγ0 = m0β + m0βv = m + mv = m + p, siendo m = m0β la llamada masa
relativista de la partícula y p = mv su momento (relativo al laboratorio). De ello
resulta inmediatamente que

ṗγ0 = β dm/dt+ β dp/dt. (10)

P.4. Estructura compleja de D. C = 〈1, i〉 = D0 + D4 = P0 + P3 es una
subálgebra de P y D (recordemos que i = i) isomorfa al cuerpo complejo C. Sus
elementos tienen la forma α + βi (α, β ∈ R) y los llamamos escalares complejos. El
espacio D1 +D3 = D1 +D1i es cerrado por la multiplicación por i y diremos que es
el espacio de vectores complejos. Sus elementos tienen la forma a+ bi, a, b ∈ D1. Los
elementos del espacio D2 = E +Ei, que también es cerrado por la multiplicación por
escalares complejos (ya que lo es por la multiplicación por i), tienen la forma x+yi,
x,y ∈ E . En suma, todo multivector de D se puede representar de manera única en
la forma (α+ βi) + (a+ bi) + (x+ yi), α, β ∈ R, a, b ∈ D1, x,y ∈ E .

P.5. Rotores. Un elemento R ∈ D+ se dice que es un rotor si RR̃ = 1. Este
concepto es importante debido a que permite construir isometrías que se pueden
manejar ventajosamente tanto en consideraciones teóricas como computacionales
(Teorema 4.7). Aunque no es difícil construir todos los rotores (véase, por ejemplo,
[19], §4), aquí vamos a seguir un procedimiento alternativo que es suficiente para
nuestros propósitos.
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Dado un bivector z = x + yi, se tiene z2 = x2 − y2 + 2(x · y)i ∈ C (pues i
conmuta con los bivectores, xy + yx = 2(x · y), donde el producto interior es el
relativo a E , y x2,y2,x · y ∈ R). Vemos que z2 es real si y sólo si x · y = 0, y en tal
caso diremos que z es un bivector de Lorentz. Atendiendo al signo εz de z2, se dice
que los bivectores de Lorentz son positivos (o temporales), negativos (o espaciales),
o nulos (o isótropos) según que εz = 1, 0,−1. La magnitud |z| de un bivector de
Lorentz se define como en el caso de un vector: |z| = +

√
εzz2. De un bivector de

Lorentz se dice que es unitario si z2 = ±1 = εz. Nótese que si z es un bivector de
Lorentz no nulo, entonces z/|z| es unitario, con el mismo signo que z. Por ejemplo,
si v ∈ E es unitario, entonces v y vi son vectores de Lorentz unitarios, positivo el
primero y negativo el segundo.
Lema 4.6. Si z es un bivector de Lorentz unitario y α ∈ R, Rz,α = eαz/2 es un
rotor (el denominador 2 en el exponente se pone para que el parámetro significativo
sea α, y no 2α). Además, Rz,α = cosε(α/2)+z senε(α/2), donde cosε y senε denotan
cosh y senh si εz = 1 y cos y sen si εz = −1.

Demostración. Sea R = Rz,α. Dado que z̃ = −z, R̃ = e−αz/2 y es claro que
RR̃ = 1. Ahora, en el desarrollo de la exponencial eαz/2 todos los términos tienen
signo positivo si z2 = 1, los de exponente par tienen la forma 1

(2k)! (α/2)2k, y los de
exponente impar z 1

(2k+1)! (α/2)2k+1, obteniéndose R = cosh(α/2) + z senh(α/2). El
caso z2 = −1 se razona de un modo similar.

Teorema 4.7 (Isometría asociada a Rz,α). Con la mismas notaciones que el lema
anterior, sea R = Rz,α y definamos R : D → D por R(x) = RxR−1 = RxR̃.
Entonces:
(1) R es un automorfismo de D y RD1 = D1.
(2) La aplicación R : D1 → D1 es una isometría propia y ortocrona (R ∈ SO+

1,3).

Demostración. (1) La primera parte es inmediata, pues R es lineal y R(xy) =
RxyR−1 = RxR−1RyR−1 = R(x)R(y). Para ver que R(a) ∈ D1 si a ∈ D1, notemos
que R̂a = R̂â

̂̃
R = −RaR̃ = −Ra, por lo que Ra sólo puede tener componentes de

grado impar (1 o 3), mientras que R̃a = ˜̃
RãR̃ = RaR̃ = Ra, lo cual muestra que la

componente de grado 3 es nula. Esto prueba que Ra ∈ D1.
(2) El cálculo (Ra)2 = RaR−1RaR−1 = Ra2R−1 = a2 prueba que R es una

isometría y det(R)i = Ri = RiR−1 = i, que es propia. Por último, s 7→ Rz,sαγ0,
s ∈ [0, 1], es un camino continuo sobre el hiperboloide de dos hojas η(x) = 1 que
conecta γ0 ∈ H+ con Rγ0. Se desprende que Rγ0 ∈ H+ y así R es ortocrona.

Ejemplo 4.8 (Boosts de Lorentz). Sea v ∈ E unitario y pongamos v = vγ0 ∈
〈γ1, γ2, γ3〉. Nótese que v es el vector relativo de v, pues v ∧ γ0 = vγ0 = v. Ve-
remos que Rv,α es el boost de Lorentz en la dirección v de velocidad u = tanhα
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(cf. Proposición 1.1). En efecto, usando que γ0 anticonmuta con v, se tiene

Rγ0 = R2
v,αγ0 = eαvγ0 = cosh(α)γ0 + senh(α)v,

Rv = eαv/2ve−αv/2 = eαv/2veαv/2γ0 = eαvv = senh(α)γ0 + cosh(α)v.

Finalmente, los vectores a ∈ 〈γ0, v〉⊥ son fijos por R, pues conmutan con v.
La llamada fórmula de composición de velocidades relativistas es una conse-

cuencia immediata de esta representación. En efecto, si αi ∈ R, Ri = eαiv/2 y
ui = tanh(αi) (i = 1, 2), entonces R2R1 = e(α1+α2)v/2 y por tanto R2R1 es el boost
de velocidad tanh(α1 + α2) = (u1 + u2)/(1 + u1u2) en la misma dirección v.
Ejemplo 4.9 (Rotaciones). Sea v ∈ E unitario y pongamos z = vi. Como z2 =
−v2 = −1, z es un bivector de Lorentz con ε = −1. Sea R = Rz,α. En este caso γ0
conmuta con z y, por tanto,

Rγ0 = eαz/2γ0e
−αz/2 = eαz/2e−αz/2γ0 = γ0.

Como consecuencia, R induce una rotación de γ⊥0 = 〈γ1, γ2, γ3〉. El eje de esta
rotación es v = vγ0, pues v también conmuta con z. Finalmente, la amplitud de la
rotación es α, ya que si x ∈ 〈γ1, γ2, γ3〉 es ortogonal a v, entonces x anticonmuta
con z y Rx = eαzx = cos(α)x+ zx sen(α). Nótese que zx = vix ∈ 〈γ1, γ2, γ3〉, pues
es combinación lineal x y Rx, y que es ortogonal a v y a x, pues anticonmuta con
ambos.

5. Electrodinámica

La referencia dual (o recíproca) de γ0, γ1, γ2, γ3 es la referencia γ0, γ1, γ2, γ3 tal
que γ0 = γ0 y γj = −γj . En general queda caracterizada por las relaciones γµ · γν =
δµν . Las componentes de un vector a respecto de la referencia dual se denotan aµ, es
decir, a = aµγ

µ. Está claro, pues, que a0 = a0 y ak = −ak.

Operador de Dirac. Si f es un función diferenciable definida en un abierto U de
M , df = (∂µf) dxµ, siendo ∂µ = ∂/∂xµ. Es una 1-forma definida en U , de modo que,
para cada punto x ∈ U , df nos da una forma lineal dxf : E → R. El valor de esta
forma para un vector a es (dxf)(a) = df(x+ at)/dt|t=0, dado que por definición de
diferencial se tiene que f(x+at)−f(x) = t(dxf)(a)+o(t). Podemos pues representar
el operador d (diferencial) en la forma dxµ∂µ. En esta expresion, dxµ es la forma
lineal de E tal que (dxµ)(γν) = δµν , lo cual coincide con γµ· . Esto sugiere formar la
expresión ∂ = ∂D = γµ∂µ (operador de Dirac), la cual, por definición, cumple que
(∂f) · a = a · (∂f) es la derivada direccional de f en la dirección a. De hecho, esto
muestra que el operador a · ∂ = (a · γµ)∂µ = aµ∂µ da, aplicado a una función f , su
derivada en la dirección a.

El empleo de ∂ en lugar de d tiene otras ventajas en el contexto de D. La más
relevante es que podemos formar, para cualquier campo multivectorial F = F (x),
los productos ∂F , ∂ · F y ∂ ∧ F . Por ejemplo, si F = F JγJ , entonces

∂ · F = γµ∂µF
J · γJ = ∂µF

J γµ · γJ .
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De hecho, dado que γµγJ = γµ · γJ + γµ ∧ γJ , se tiene la relación

∂F = ∂ · F + ∂ ∧ F

para cualquier F .
Si F = F νγν es un campo vectorial, ∂ · F = ∂µF

νγµ · γν = ∂µF
νδµν = ∂µF

µ, que
es la divergencia (lorentziana) de F . Análogamente se ve, en este mismo caso, que
∂ ∧ F = ∂µF

νγµν =
∑
µ<ν(∂µF ν − ∂νFµ)γµν . Nótese que en el espacio euclídeo de

dimensión 3 esta expresión es el (bivector) rotacional de F . De ahora en adelante,
diremos que ∂ · F y ∂ ∧ F son la divergencia y el rotacional de F . En particular ∂
resuelve el sueño de Dirac (encontrar una raíz cuadrada del dalembertiano �):

∂2 = ∂ · ∂ = ∂2
0 − (∂2

1 + ∂2
2 + ∂2

3) = �.

La representación relativa del operador vectorial ∂ es ∂γ0 = ∂ ·γ0+∂∧γ0 = ∂0+∂.
En este caso, ∂ = ∂∧γ0 = γk∧γ0 ∂k = −σk∂k = −∇, donde ∇ = σk∂k (el operador
vectorial del espacio relativo). También se tiene que γ0∂ = ∂0 − ∂ = ∂0 + ∇.
Teorema 5.1 (Ecuación de Maxwell-Riesz). Sean E,B, j ∈ E vectores relativos
dependientes del tiempo y ρ = ρ(x, t) una función diferenciable de x ∈ E y t ∈ R.
Pongamos F = E+Bi (bivector de Faraday) y J = (ρ+j)γ0. Entonces la ecuación
∂F = J es equivalente a las cuatro ecuaciones de Maxwell para los campos eléctrico
E y magnético B creados por la densidad de carga ρ el vector de corriente j.

Demostración. Puesto que Jγ0 = ρ+j, se tiene ρ = J ·γ0 y j = J∧γ0. Además, de
(ρ+j)γ0 = γ0(ρ−j) obtenemos que γ0J = ρ−j. Multiplicando la ecuación ∂F = J
por γ0 a la izquierda, nos queda la relación equivalente (∂0 + ∇)(E + iB) = ρ− j.
Desarrollando los productos, obtenemos

∂0E + ∇ ·E + ∇ ∧E + i(∂0B + ∇ ·B + ∇ ∧B) = ρ− j.

Igualando los distintos grados de ambos miembros, esta ecuación resulta equivalente
a las ecuaciones

∇ ·E = ρ, ∂0E + i∇ ∧B = −j, i∂0B + ∇ ∧E = 0, i∇ ·B = 0.

Ahora basta observar que ∇· es el operador divergencia en el espacio relativo y que
i∇∧B = −∇×B = − rot(B) (rotacional de B) para concluir que estas ecuaciones
son equivalentes a

div(E) = ρ (Ley de Gauss para E)
rot(B)− ∂tE = j (Ley de Ampère-Maxwell)
∂tB + rot(E) = 0 (Ley de inducción de Faraday)
div(B) = 0 (Ley de Gauss para B)

que son las ecuaciones de Maxwell (en unidades en las que c = ε0 = µ0 = 1) para el
campo electromagnético creado por ρ y j.
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Observación 5.2 (Invariantes). La expresión F 2 es claramente invariante Lorentz.
En términos de la expresión relativa F = E+Bi, F 2 = E2−B2 +2(E ·B)i (cf. P.6,
página 553), de lo cual se infiere que E2 −B2 y E ·B son invariantes Lorentz.

Ilustremos las ventajas que ofrece la ecuación de Maxwell-Riesz respecto de las
ecuaciones de Maxwell con otros ejemplos.

Ecuación de continuidad. En primer lugar, multiplicando ∂F = J por ∂ a la
izquierda, se obtiene �F = ∂ · J + ∂ ∧ J . Como el término de la izquierda es un
bivector (� es un operador escalar), la parte escalar de la derecha se ha de anular:
∂ · J = 0. Esta ecuación es la ecuación de continuidad de la carga, pues equivale, en
términos relativos, a la ecuación ∂tρ+ ∇ · j = 0.

Ley de Einstein-Lorentz. Consideremos una partícula con carga eléctrica q
sometida en un campo electromagnético F . La ley de Einstein-Lorentz es la relación
ṗ = qF · ẋ, siendo ẋ y ṗ la velocidad propia y la derivada propia del momento,
respectivamente. La significación de esta relación para el laboratorio la proporciona
el enunciado que sigue.
Teorema 5.3. Si F = E+iB es la expresión de F en términos de la descomposición
relativa D2 = E + iE, la ley de Einstein-Lorentz equivale a las relaciones

dm/dt = q(E · v) y dp/dt = q(E +B × v). (11)

Demostración. La expresión relativa del vector qF ·ẋ es q(F ·ẋ)·γ0+q(F ·ẋ)∧γ0. La
parte escalar es igual a q(F ·ẋ)·γ0 = qF ·(ẋ∧γ0) = βqF ·v = βqE·v, ya que iB y v son
ortogonales. Esto, y la fórmula (10), prueban que la primera fórmula del enunciado
equivale a la igualdad de las γ0-componentes de la relación de Einstein-Lorentz.
Examinenos ahora q(F · ẋ)∧ γ0 = q(E · ẋ)∧ γ0 + q(iB · ẋ)∧ γ0. El primer sumando
es igual a βqE, ya que (σk · ẋ)∧ γ0 = (γkγ0 · ẋ)∧ γ0 = ẋ0γkγ0 = βσk. Y el segundo
es igual a βqB × v, ya que un cálculo similar nos da, siendo jkl una permutación
cíclica de 123, que (iσj · ẋ)∧ γ0 = ẋkσl − ẋlσk = β(σlvk −σkvl) = βσj × v. Estas
dos relaciones, junto con la fórmula (10), concluyen la demostración.

Observación 5.4. En la segunda fórmula (11), el término f = dp/dt es la fuerza
ejercida por el campo electromagnético sobre la partícula y el segundo miembro es la
ley de Lorentz para esta fuerza. La potencia de la fuerza de Lorentz viene dada por
f ·v = qE·v, ya queB×v es perpendicular a v. Ahora, la primera de las fórmulas (11)
nos dice que esa potencia es igual a dm/dt, lo cual nos dice que las variaciones de
la masa equivalen a energía. De hecho, el trabajo ejercido por la fuerza de Lorentz
entre dos instantes, es decir, la integral de la potencia, es igual a la variación de la
masa entre dichos instantes. Podemos concluir que p0 = p · γ0 = m tiene la forma
m = ε+ ε0, siendo ε la energía dinámica de la partícula y ε0 una constante que sólo
depende de la masa en reposo m0. Siendo m0 a su vez una masa, se puede igualar a
energía (podemos pensar que es la energía necesaria para su creación, o la liberada
en su desintegración), de manera que finalmente tiene sentido escribir m = E, siendo
E la suma de la energía dinámica ε y la energía que corresponde a m0. En unidades
del SI, la fórmula resulta familiar: E = mc2.



558 Geometría y Física del espacio-tiempo de Minkowski

Potenciales. Igualando componentes de los dos miembros de ∂F = J , vemos que
esta igualdad equivale a las ecuaciones ∂ · F = J y ∂ ∧ F = 0 (que corresponden al
primer y segundo par de las ecuaciones de Maxwell, no homogéneas y homogéneas,
respectivamente). La segunda ecuación (y el lema de Poincaré) nos da que existe un
campo vectorial A (del cual diremos que es un potencial de F ) tal que F = ∂ ∧ A.
En esta forma, la ecuación ∂ ∧ F = 0 es tautológica, pues ∂ ∧ ∂ = 0, y la ecuación
∂ · F = J se traduce en ∂ · (∂ ∧ A) = J , esto es, (∂ · ∂)A − ∂(∂ · A) = J , o bien
�A−∂(∂ ·A) = J . Veamos que se puede escoger A de modo que se cumpla ∂ ·A = 0
(condición de Lorentz). En efecto, si f es una función escalar, entonces ∂ ∧ ∂f = 0
y por tanto ∂ ∧ (A+ ∂f) = ∂ ∧ A = F , y el caso es que se puede hallar f de modo
que ∂ · (A+ ∂f) = 0, pues esta condición equivale a la ecuación �f = −∂ ·A (para
la existencia de solución de esta ecuación, véase [12], por ejemplo). Con la condición
de Lorentz, F = ∂A, y la primera de las dos ecuaciones aludidas (la no homogénea),
deviene �A = J . Ésta es la ecuación de ondas (no homogénea) de A. Obtenida
su solución, dado J y condiciones de contorno adecuadas, basta calcular ∂A para
obtener F .

En términos relativos, Aγ0 = φ + A, con φ = A · γ0 y A = A ∧ γ0 ∈ E .
Entonces ∂A = ∂γ0γ0A = (∂t − ∇)(φ − A) = −(∇φ + ∂tA) + ∇ ∧ A, ya que
∂tφ+ ∇ ·A = ∂ · A = 0 (condición de Lorentz). Igualando con E +Bi, vemos que
la relación ∂A = F equivale a las ecuaciones

E = −(∇φ+ ∂tA), B = −i(∇ ∧A) = ∇×A = rot(A), (12)

que son las relaciones que dan el campo eléctrico y el campo magnético en el labo-
ratorio a partir de los potenciales φ (potencial escalar) y A (potencial vector).

Transformación del campo electromagnético. Uno de los resultados más
emblemáticos de la teoría de la relatividad restringida de Einstein [4] es la relación
entre los campos eléctrico y magnético observados en dos referencias inerciales. La
obtención de dichas relaciones se puede plantear de la siguiente manera. Sabemos que
la transformación que aplica γ en otra referencia inercial γ′ es propia y ortocrona.
Por tanto viene dada por un rotor R:

γ′µ = Rγµ = RγµR̃.

Ahora, la observación fundamental es la siguiente (usamos que R conserva el pro-
ducto interior):

E′k = σ′k · F = Rσk · F = σk · R̃F = σk · R̃FR,

B′k = σ′∗k · F = R(σ∗k) · F = σ∗k · R̃FR.

Así pues el problema queda reducido al cálculo de R̃FR. Veamos en detalle el caso
en que R sea un boost de Lorentz, digamos (con notaciones del Ejemplo 4.8),

R = Rσ1,α = eασ1/2.
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Recordemos que R es el boost de Lorentz en la dirección γ1 = σ1γ0 de velocidad
u = tanhα y β = coshα.

Relativamente a γ, podemos escribir

F = E1σ1 + E2σ2 + E3σ3 +B1σ
∗
1 +B2σ

∗
2 +B3σ

∗
3.

Puesto que R conmuta con σ1 y anticonmuta con σ2 y σ3,

R̃FR = E1σ1 + e−ασ1(E2σ2 + E3σ3) +B1σ
∗
1 + e−ασ1(B2σ

∗
2 +B3σ

∗
3).

Para transformar esta expresión tenemos

e−ασ1 = coshα− σ1 senhα = β(1− uσ1)

y las relaciones

σ1σ2 = σ∗3, σ1σ3 = −σ∗2, σ1σ
∗
2 = −σ3, σ1σ

∗
3 = σ2.

Con esto se obtiene que

R̃FR = E1σ1 + β(E2σ2 + E3σ3)− βu(E2σ
∗
3 − E3σ

∗
2)

+B1σ
∗
1 + β(B2σ

∗
2 +B3σ

∗
3) + βu(B2σ3 −B3σ2).

Poniendo E‖ = E1σ1 y E⊥ = E2σ2 + E3σ3, con notaciones análogas para B, y
teniendo en cuenta que E2σ3−E3σ2 = σ1×E, y análogamente para B, finalmente
obtenemos, poniendo u = uσ1, las fórmulas de Einstein:

E′ = E‖ + βE⊥ + u×B,
B′ = B‖ + βB⊥ − u×E.

Observación 5.5. Estas fórmulas ponen de manifiesto que tanto en el cálculo de
E′ como en el de B′ intervienen E y B. Un caso especialmente revelador es el de
una partícula que en el sistema γ′ está en reposo en el origen, con lo cual el campo
F se reduce, relativamente a γ′, a un campo eléctrico E′. La segunda fórmula de
Einstein nos da (invirtiendo los papeles de γ y γ′)

B = u×E′,

lo cual muestra que en el sistema γ se percibe, además del campo eléctrico E =
E′‖ + βE′⊥, también un campo magnético. Este ejemplo certifica que los campos
magnéticos creados por cargas en movimiento no son más que efectos relativistas del
campo de Coulomb creado por las cargas estacionarias.
Observación 5.6. Las fórmulas de Einstein son válidas para cualquier boost de
Lorentz sin más que cambiar σ1 por el vector unitario û de la dirección del boost
y definir las partes paralela y perpendicular de E y B respecto del mismo. En este
caso u = uû es la velocidad del boost. La demostración es similar, pero usando el
rotor Rû,α en lugar de Rσ1,α.
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6. Ecuación de Dirac

En la teoría de Schrödinger, los valores de la función de onda ψ(x), x ∈ M , son
números complejos. Al introducir el espín, Pauli fue llevado a cambiar C por C2, y
de ahí el nombre de espinores de Pauli para referirse a los elementos (normalizados)
de C2. El cambio de C2 por C4 (espacio de espinores de Dirac, o biespinores) fue
introducido por Dirac forzado por el hecho de que sus matrices Γµ ∈ C(4). Los hitos
del camino seguido por Dirac se pueden resumir como sigue.

Como punto de partida, tomó la ecuación de Klein-Gordon, (� + m2)ψ = 0.
Esta ecuación es la ecuación de Schrödinger de un electrón, siendo m = me/~, me

la masa en reposo del electrón, y ~ = h/(2π) la constante de Planck (normalizada).
Es una ecuación en derivadas parciales de segundo orden, pero Dirac argumentó
que precisaba una ecuación lineal en ∂t y, requiriendo que fuese relativista, lineal
también en ∂x, ∂y y ∂z. Formó, pues, el operadorD = dµ∂µ, y al imponer queD2 = �
descubrió que la solución más simple era poner dµ = Γµ (las matrices (7) que se han
comentado en la Observación 4.5). Con esto, la ecuación de Klein-Gordon factoriza
en la forma (D − im)(D + im)ψ = 0, y Dirac simplemente postuló la ecuación
(D + im)ψ = 0, equivalente a la forma en que la escribió: i~Dψ = meψ. Pero,
para que esta relación tenga algún sentido, ψ ha de tomar valores en C4, y con esta
suposición es la ecuación de Dirac. En presencia de un potencial electromagnético
A, la ecuación de Dirac lo incorpora en la forma i~(D − eA)ψ = meψ, siendo e la
carga del electrón, pero esto también exige expresar A en la forma AµΓµ.

El problema de expresar la ecuación de Dirac puramente en términos del álgebra
D fue enfocado correctamente por primera vez en [5] e investigado por muchos otros
posteriormente, siendo [1, 6, 7, 8, 10, 11, 9, 3] los que nos han resultado más instruc-
tivos. El esfuerzo vale la pena, ya que por un lado se puede prescindir de lastres que
son accidentales al problema (algunos se han comentado anteriormente), y por otro
se puede explotar la rica estructura de D para seguir ahondando en la comprensión
de los fenómenos.

La formulación de Hestenes de la ecuación de Dirac es la siguiente (cf. [7], §2):

∂ψ i ~− eAψ = meψγ0. (13)

La naturaleza de sus ingredientes es como sigue. El campo ψ toma valores en el
álgebra de D+ (ψ : M → D+). Nótese que la dimensión compleja de D+ es 4, lo
mismo que C4. El producto ∂ψ es el producto geométrico del operador de Dirac ∂
con ψ. El producto Aψ es el producto geométrico del vector potencial A que hemos
estudiado anteriormente y ψ. El símbolo i es una unidad imaginaria geométrica (no
la de C): i = γ2γ1 = iγ3γ0 = iσ3 = σ1σ2. Por tanto, en la ecuación (13), que Hestenes
llama ecuación de Dirac real y que aquí denominaremos ecuación de Hestenes-Dirac,
ya no aparecen matrices ni la unidad imaginaria formal i.

Pero el valor ganado con (13) es la posibilidad de aprovechar la estructura de D+.
El primer resultado básico en esta dirección es el siguiente:
Teorema 6.1 (Forma canónica de ψ, [7]). Si ψ ∈ D+ y ψψ̃ 6= 0, existen ρ ∈ R+,
β ∈ [−π, π] y un rotor R tales que ψ = ρ1/2eβi/2R. Además, esta expresión es única.
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Demostración. El producto ψψ̃ es un escalar complejo (no puede contener térmi-
nos de grado 2 porque es invariante por reversión), y por tanto lo podemos poner
en forma polar: ψψ̃ = ρeβi, con ρ > 0 y β ∈ [0, 2π). Pongamos R = ψρ−1/2e−βi/2.
Entonces R es un rotor, ya que R̃ = ρ−1/2e−βi/2ψ̃ y RR̃ = ψρ−1e−βiψ̃ = 1. La
unicidad es también clara, ya que ρ y β quedan unívocamente determinados por ψψ̃,
y R queda unívocamente determinado por la relación R = ψρ−1/2e−βi/2.

El papel de R en el estudio de la ecuación de Dirac-Hestenes es que R es una
isometría propia y ortocrona. Para ver que es una isometría propia, el argumento
es el mismo que el de la demostración del Teorema 4.7. Que es ortocrona resulta de
que todo rotor está conectado (por un camino continuo) con 1 ([19], Teorema 4.3),
lo cual permite adaptar la parte final de la demostración aludida.

El rotor R es de hecho un campo de rotores y nos permite construir el campo de
referencias e(x) = Rγ, todas con la misma orientación y orientación temporal que γ.
Además, se cumple que ψγµψ̃ = ρeµ(x): dado que i anticonmuta con los vectores y
que ĩ = i,

ψγµψ̃ = ρeβi/2RγµR̃e
βi/2 = ρeβi/2e−βi/2RγµR̃ = ρeµ(x).

En particular tenemos, poniendo v = e0, ψγ0ψ̃ = ρv, que es la llamada corriente de
Dirac. El vector s = ~

2Rγ3R̃ = ~
2 e3(x) es el vector de espín. El rotor R transforma

la unidad geométrica i = γ2γ1 en ι = RiR̃ = e2e1 y el vector S = ~
2 ι es el bivector

de espín. La relación entre el vector de espín y el bivector de espín es S = isv. En
efecto,

isv = ~
2 iRγ3R̃Rγ0R̃ = ~

2Riγ3γ0R̃ = ~
2Rγ2γ1R̃ = ~

2RiR̃ = ~
2 ι = S.

Agradecimientos. A Xavier Gràcia, que además de señalar algunas erratas, su-
girió usar «Allende», como así se ha hecho, para referirse al exterior del cono de luz,
esto es, al Elsewhere de los textos en inglés (cf. Figura 1); y a Fernando Pascual, por
proponer diversas mejoras de la terminología.
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