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Geometria y Fisica del espacio-tiempo de Minkowski

por

Sebastia Xambd

A la memoria de Waldyr Alves Rodrigues Jr. (1946-2017),
cuya obra pervivird como un ejemplar referente en el
ambito de la fisica matemdtica.

RESUMEN. El propésito de este articulo es urdir una presentacién elemental
del espacio-tiempo (en el sentido de Minkowski) que subraye los aspectos geo-
métricos y fisicos fundamentales que concurren en su estructura. El lenguaje
utilizado es el dlgebra lineal y su extensién en el dlgebra geométrica. Es el mé-
todo que nos parece mas idéneo para formular y manejar las transformaciones
de Lorentz, la electrodinamica relativista y la teoria del electrén de Dirac.

1. INTRODUCCION

Este articulo estd destinado primariamente a matemaéticos interesados en acceder
a presentaciones de temas de fisica matemdtica (relatividad especial en esta ocasién)
usando las estructuras matematicas que resultan mas efectivas para formularlas.

Como punto de partida tomamos el espacio vectorial lorentziano Ej 3, esto es,
un espacio vectorial real de dimensién 4 dotado de una métrica (forma bilineal
simétrica) de signatura (1,3), y el espacio afin M (espacio de Minkowski) cuyo
espacio vectorial asociado es F 3. Esta estructura, una de las premisas del articulo
original de Minkowski [14], incorpora, como se ird viendo, avances debidos a nombres
como Maxwell, Lorentz, Poincaré y Einstein, entre otros.

Tal enfoque no debiera sorprender a un lector con formaciéon matemaética, acos-
tumbrado seguramente a tomar como punto de partida para el estudio de la geome-
tria euclidea un espacio vectorial euclidiano E,, esto es, un espacio vectorial real de
dimensién n (témese n = 3 si se desea reforzar la analogia) dotado de una métrica
definida positiva, junto con el correspondiente espacio afin (espacio euclideo). En es-
te caso el enunciado sintetiza la comprensién de la geometria euclidea conseguida a
lo largo de milenios, desde los griegos (Pitdgoras, Euclides, Arquimedes,. .. ), pasan-
do por la «revolucién analitica» (R. Descartes, B. Pascal, I. Newton, L. Euler,...),
y cristalizada con el desarrollo de estructuras algebro-geométricas «intrinsecas» a
partir de aportaciones seminales como las de H. Grassmann y B. Riemann.

La métrica propuesta por Minkowski es, usando sus propios términos, la dada
por la forma cuadrética

AP — (2 + P + 27, (1)
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siendo x, ¥y, z coordenadas cartesianas rectangulares respecto de una referencia iner-
cial, t el tiempo relativo a la misma y ¢ la velocidad de la luz en el vacio. Es crucial
sefialar que ¢ es una constante universal, en el sentido de que no depende del sis-
tema de referencia inercial en el cual se mida ni de la velocidad del foco emisor.
Este sorprendente hecho es una de las predicciones de la teoria de Maxwell. En
efecto, Maxwell encontré que la velocidad ¢ de las ondas electromagnéticas en el
vacio predichas por su teoria debia ser, independientemente del modo de generarlas,
c = (eo,uo)_l/ 2. siendo €y y o constantes medibles en el laboratorio y cuyo valor
es universal (admitiendo el principio de relatividad segin el cual las leyes fisicas
tienen la misma forma en cualquier sistema inercial). La conclusién de que la luz es
una onda electromagnética, incorporando asi la 6ptica a su teoria, la alcanzd Max-
well al comprobar que el valor numérico de ¢ coincidia con la velocidad de la luz
en el vacio. Ademés de la prediccién tedrica, la universalidad de ¢ se ha verifica-
do, directa o indirectamente, con una variedad de experimentos que van desde el
de Michelson-Morley [13] hasta los sofisticados sistemas de GPS actuales (cf. [16]).
Digamos también que Einstein tomé el principio de relatividad y la universalidad de
¢ como axiomas en su trabajo [4], pudiendo asi obtener facilmente las transforma-
ciones de Lorentz que relacionan los valores x,y, z,t relativos a un sistema inercial
S con los valores z’, 9/, 2/, t' relativos a otro sistema inercial S’. Si el tiempo no es
absoluto, estas transformaciones se pueden deducir sin suponer la constancia de ¢,
como se hace por ejemplo en [17].

La relevancia de la métrica de Lorentz radica en que la transformacion de Lorentz
especial (boost de Lorentz segtn la terminologia usual) es una isometria de la misma.
Esta afirmacién se comprueba con un simple célculo a partir de la expresion de dicho
boost. En unidades tales que ¢ = 1 (lo que equivale a medir las distancias en unidades
de tiempo), las ecuaciones del boost de Lorentz son las siguientes (cf. [4]):

t=pB{t +ux'), z=p8" +ut'), y=1vy', 2=7, (2)

siendo u, que necesariamente ha de cumplir |u| < 1, la velocidad del sistema inercial
S’ respecto del sistema inercial S y 8 = (1 — u?)~'/2. De ello se sigue que las
transformaciones de Lorentz, que son composicién de rotaciones espaciales y boosts
de Lorentz, son isometrfas de t? — (22 + y? + 22). De hecho son isometrias propias
(su determinante es 3%(1 —u?) = +1) y ortocronas (las variaciones de t y ¢’ tienen el
mismo signo, pues 8 > 0). Reciprocamente, una isometria propia y ortocrona es una
transformacién de Lorentz, pues se constata sin dificultad que compuesta con una
rotacién apropiada es una isometria (propia y ortocrona) que cumple y =y, z = 2/,
12— a2 =1%o 2, y por consiguiente basta probar, como se detalla a continuacion,
que esta transformacién es un boost de Lorentz.

PROPOSICION 1.1. Sean t = 6t' +6'x’, x = &' +&'2' las ecuaciones de una isometria
f propia y ortocrona. Entonces f es un boost de Lorentz.

DEMOSTRACION. Los coeficientes de la matriz de f cumplen D = ¢’ —§'¢€ =1 (por
ser propia) y 6 > 0 (por ser ortocrona). Ademas, por la condicién de isometria se tiene
la relacién /% — 2/ = (6t' + 0'a')2 — (&' + £'a’)? idénticamente en ¢ y 2. Igualando
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coeficientes, vemos que esta relacién es equivalente a las ecuaciones 62 — €2 = 1,
68’ —¢€ =0y 8" —¢* = —1. La primera ecuacién y la condicién § > 0 nos permiten
afirmar que existe un tnico p € R tal que § = cosh p, £ = senh p. De la segunda
ecuacion se infiere que existe A € R tal que 6’ = A\{ = Asenhp y £ = Ad = Acosh p.
Sustituyendo estos valores en D, obtenemos A = 1, con lo cual la tercera ecuacién
se satisface autométicamente. Asi pues la matriz de f tiene la forma (i ‘f), con
B = cosh p y u = tanh p. Puesto que |u| < 1y que 8 = (1 —u?)~/2, esta claro que
f es un boost de Lorentz de velocidad u. O

En suma, la nocién intrinseca que corresponde al grupo de las transformaciones
de Lorentz (denotado G, en [14]) es el grupo SOIP) de las isometrias propias y
ortocronas de E; 3. Es un subgrupo normal del grupo Oq 3 de las isometrias de E 3
y del subgrupo SO 3 C O; 3 de las isometrias propias. La esencia de la relatividad
especial es el estudio de los conceptos y relaciones que son invariantes por la acciéon
de SOfg. Se trata, pues, de un caso particular de geometria de Klein, pero su mismo
origen explica su extraordinario potencial para expresar enunciados de contenido
geométrico y fisico. Es lo que tratamos de mostrar en las paginas que siguen.

2. VOCABULARIO BASICO

A los puntos de M es costumbre llamarlos sucesos (events en inglés) y aqui serdn
denotados con letras mayusculas. Los elementos de E5 3 son denominados vectores,
y los denotamos por letras mintisculas (o maytsculas con un punto cuando sean
derivadas de puntos variables). Este reparto de papeles es necesario, lo mismo que en
geometria euclidea, para garantizar que no existen sucesos (o puntos) privilegiados.
La separacion vectorial entre dos sucesos P y ), denotada @ — P, es el tnico vector
a tal que @ = P + a. Recordemos que en un espacio afin la suma de puntos no esta
definida, y que P40 = Py (P+a)+b = P+(a+b) para todo punto P y cualesquiera
vectores a y b. Si usamos 7 para denotar la métrica de E 3, la separacion escalar
(o, simplemente, separacién) entre dos sucesos P y @, denotada o(P,Q), se define
como 7n(a) = n(a,a), siendo a = Q — P. Como se puede anticipar por lo que se ha
dicho, y como veremos después, la nocién de separacién juega un papel fundamental
en la cronometria y geometria relativistas.

Para estudiar las propiedades de la separacién, procede pues estudiar las propie-
dades de 7. Dado a € E 3, sea ¢, el signo de n(a). La magnitud de a, denotada |a/, se
define como el nimero no negativo |a| = ++/€,n(a). Esta definicién, que equivale a
n(a) = €q|al?, es vélida para cualquier métrica de un espacio vectorial real y coincide
con la longitud o morma de un vector en el caso de un espacio euclidiano F,,. De los
vectores de magnitud 1 diremos que son unitarios.

Un vector a € Eq 3 se dice que es positivo cuando n(a) > 0; negativo cuando
n(a) < 0; y nulo o isétropo cuando n(a) = 0. Si a es un vector no nulo, a/|a| es un
vector unitario, y de este vector se dice que es la normalizacion de a. Notese que
un vector es nulo si y s6lo si su magnitud es nula. Por razones histéricas (aclaradas
més adelante), de los vectores positivos, negativos y nulos se dice también que son
temporales, espaciales y luminicos, respectivamente.



542 GEOMETRIA Y FiSICA DEL ESPACIO-TIEMPO DE MINKOWSKI

Sia,be Ey3yn(a,b) =0, decimos que a y b son ortogonales. Si a es un vector
no isétropo, at = {z € E13 : n(a,z) = 0} tiene dimensién 3 y contiene vectores
no isétropos a’. Prosiguiendo recursivamente, obtenemos una base a,a’,a”,a”’ de
E4 3 cuyos vectores son dos a dos ortogonales (decimos que es una base ortogonal).
Normalizando estos vectores, obtenemos una base de vectores unitarios dos a dos
ortogonales (base ortonormal). Dado que la signatura de n es (1,3), en una base
ortogonal uno de los vectores es positivo y los demas negativos. Cambiando el orden
si hace falta, podemos suponer que el primero es positivo y los restantes negativos.

En lo que sigue supondremos que v = 79,71, 72,73 €S una base ortonormal con
Yo positivo. De tales bases se dice que son referencias inerciales, o simplemente
referencias. Con el uso de los simbolos v, seguimos la practica de muchos autores
que los escogen para subrayar su estrecha relacién con las matrices I' de Dirac
(esta relacién se detalla en una seccién posterior). También seguiremos el criterio de
sumacién de Einstein (un indice repetido comporta un sumacién respecto del mismo,
a no ser que se indique lo contrario) y la convencién de que los indices designados
con letras griegas varian en el conjunto {0, 1,2,3}, mientras que los indicados por
letras latinas lo hacen en {1,2,3}. Por ejemplo, si las componentes de un vector
a € F,3 se denotan a*, entonces a = a*vy,, mientras que a*y, = a — a%yy. En
lugar de a°, también se suele usar t, y x,y,2 en lugar de a1, as,as. Por ejemplo,
n(a) = t? — (22 + y? + 2?) tiene el mismo significado que

n(a) = n(a~,) = (a°)* = ((a")* + (a*)* + (a*)?).

Estas expresiones de n(a) nos permiten concluir que H = {a € Eq 3 : n(a) = 1}
es un hiperboloide de dos hojas. Con referencia a la base =, estas hojas se distinguen
por el signo de t, pero este signo mo es intrinseco, ya que si cambiamos 7g por
—70 entonces ¢t cambia a —t. Esta indeterminacién (entre dos posibles orientaciones
temporales indistinguibles) compele a escoger una de las dos (llamémosla HT) como
orientacién temporal positiva. Esto en la practica significa que s6lo se usaran bases ~
que cumplan g € H*. También supondremos, para tener en cuenta las conclusiones
al final de la Introduccién, que dos cualesquiera de estas bases (digamos v y v)
tienen la misma orientacién global, pues las dos suposiciones juntas equivalen a que
la isometria determinada por 4 — ~’ es propia y ortocrona. Como se verd, H juega
un papel analogo al de la esfera S2 de E3 y es por ello que lo llamaremos esfera de
Lorentz. También pondremos F* = RTH+ = {\u:u € HT, A € RT} (sus elementos
son los vectores no nulos orientados al futuro) y F~ = —FT (vectores orientados al
pasado). El abierto F'* U F~ es el interior del cono de luz C = {a € E : n(a) = 0}.
El exterior de C es el allende (v. Figura 1 (a)).

La proposicién y corolarios que siguen son la contrapartida matemaética en que
se basa la explicaciéon de fenémenos relativistas poco intuitivos en el marco de la
experiencia ordinaria, como por ejemplo el retraso de los relojes en movimiento vy,
en particular, la llamada paradoja de los mellizos.

PROPOSICION 2.1 (Desigualdad de Schwarz hiperbdlica). (1) Sia,b € F, entonces
n(a,b) > |al[b].
(2) La igualdad ocurre si y sélo si b= la, A\ € RT.
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Figura 1: (a) Esfera de Lorentz y tipos de vectores. (b) Desigualdad triangular
hiperbdlica (Corolario 2.4 y Ejemplo 2.5). (¢) Medida de la distancia espacial AB
con fotones (PB y BQ) y relojes en el segmento temporal PQ (Ejemplo 2.7).

DEMOSTRACION. (1) No se pierde generalidad suponiendo que a,b € H™T, esto es,
n(a) = n(b) = 1y a°,b° > 0 (yo-componentes). Pongamos a@ = a —a’yy, b = b— b,
o =la|y B = |b], conlo cual —n(a) = o2, —n(b) = A%y —n(a,b) < af, a, f > 0 (pues
—n es positiva en (71,72, v3) y por tanto podemos aplicarle la desigualdad de Schwarz
ordinaria). Dado que 1 = n(a) = (a®)? + n(a) = (a®)? — a?, se tiene (a°)? = 1 + a?,
y andlogamente (b°)? = 1+ 2. De ahi que n(a, b) = a®b° +n(a, b) > a°b° — af. Pero
(@)@ = (1+a®)(1+ %) =1+ + 5>+ > > 1+ 208+ o?5% = (1 + af)?,
es decir, a®® > 1+ a. Por tanto, n(a,b) > 1.

(2) Suponiendo que a y b son unitarios, se trata de ver que la igualdad se cumple
si y s6lo si a = b. Para que se cumpla la igualdad, las dos desigualdades utilizadas en
la demostracion tienen que ser una igualdad. La segunda es una igualdad si y sélo
si @ = 8, y esto nos da ag = by, pues a3 = 1 + a? = 1+ 32 = bZ. Por otra parte,
la igualdad —7(a@,b) = af se cumple si y sélosia=00b=00b=Xa, A >0,y
es inmediato comprobar que en todos estos casos se tiene a = b: si a = 0, entonces
b=0, pues B =a =0, de donde a = agyo = boyo = b; el caso b es andlogo; y en el
tercer caso, 3 = |b| = Aa| = A, de donde A\=1y a =agyo+a=byy +b=>b. O

COROLARIO 2.2 (Angulo hiperbélico). Si a,b € F*, existe un tinico nimero real
positivo 0 tal que cosh(d) = n(a,b)/(|al|b|). Diremos que 6 es el dngulo hiperbdlico
formado por a y b, y pondremos d(a, b) para denotarlo.

COROLARIO 2.3 (Teorema del coseno hiperbélico). Si a,b € F*, y ponemos § =
§(a,b), entonces (a + b)?> = a® + b* + 2|a||b| cosh(d). En particular tenemos que
a+beFT.

COROLARIO 2.4 (Desigualdad triangular hiperbélica). Si a,b € FT, entonces |a +
b| > |a| + |b], valiendo la igualdad si y sdélo si b= ha, A > 0.
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Necesitamos también unas nociones basicas de cinemdtica y cronometria rela-
tivistas. Sea X = X(s) € M, s € [a,b] C R, con X (s) dos veces diferenciable con
continuidad respecto de s. Dado que el espacio tangente Tx M a M en cualquier
suceso X es canénicamente isomorfo a E 3, se tiene que dX/ds € E; 3. Diremos que
X (s) es una historia, o linea de universo, si dX/ds € F*. Nétese que esta condicién
es invariante por reparametrizaciones s = s(7) estrictamente crecientes, pues en tal
caso dX/dr = (dX/ds)(ds/dr) y ds/dT > 0. El tiempo propio de una historia X (s)
es la funcién 7 : [a,b] — [0,T] definida por

13 13
T(g):/o |dX/ds|ds:/O n(dX/ds)"*ds, T =7(b). (3)

Siendo 7(s) una funcién estrictamente creciente de s, podemos considerar su
inversa, s = s(7), 7 € [0, T], y la parametrizacién X (7) = X (s(7)). Entonces dX/dr,

que denotamos X, cumple X € H*, y en particular n(X) = 1:
X = dX/dr = (dX/ds)(ds/dr) = (dX/ds)/(dr/ds) = (dX/ds)/|dX/ds|.

Fisicamente, 7(s) se interpreta como el tiempo marcado por el cronémetro que viaja
con la historia y puesto a 0 en X (a). Como el tiempo propio 7(b) s6lo depende de
la curva X trazada por X(s), podemos poner 7(X) para indicarlo.

EJEMPLO 2.5 (Teorema de los mellizos). Sean P, @ € M y supongamos que a = ) —
P € F*. Entonces X (s) = P+ sa, s € [0,1] (geométricamente es la parametrizacion
del segmento PQ que une Py Q) es una historia y 7(s) = sla|, ya que dX/ds = a para
todo sy n (dX/ds)l/2 = |a|. En particular, 7(PQ) = |a|. De este tipo de historias
diremos que son uniformes o rectilineas. Sib € FT,y ponemos R = Q+b = P+(a+b),
entonces a + b € F* y se tiene 7(PR) > 7(PQ) + 7(QR) con igualdad si y sélo si
Q@ € PR (v. Figura 1 (b)). En efecto, 7(PQ) = |a|, T(QR) = |b|, 7(PR) = |la + b, y
sabemos que |a + b| > |a| + |b|, con igualdad si y sélo si b = Aa, A > 0.

Con las mismas notaciones que para las historias, diremos que X (s) es un trayecto
si dX/ds es negativo (o espacial). Esta condicién es también invariante por repara-

metrizaciones s = s(p) estrictamente crecientes y el recorrido propio del trayecto
X(s) es la funcién p : [a,b] — [0, T] definida por

3 3
p(6) = / |dX /ds| ds = / (—n(dX /ds))"/* ds, T = p(b). (4)

Como el recorrido propio p(b) sélo depende de la curva X trazada por X (s), podemos
poner p(X) para indicarlo. En el caso de un recorrido uniforme (X(s) = P + sa,
n(a) <0,s€(0,1,Q =P +a), p(PQ) = |a.

OBSERVACION 2.6 (Significado del tiempo propio). El tiempo propio de un segmento
infinitesimal X (s)X (s + ds) de una historia X (s) es

(X ()X (s +ds)) = | X (s + ds) — X(s)| = ds |dX/ds| = ds n(dX/ds)'/?,

que es el integrando de (3). Por tanto, el tiempo propio es la integral de tiempos
propios uniformes infinitesimales.
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Una historia X (s) es luminica si el vector dX/ds € C (cono de luz). En este caso
no existe ningin parametro distinguido en general. Fisicamente, son las historias de

los fotones o de las particulas de masa 0, y las curvas que trazan son generatrices
de C.

EJEMPLO 2.7 (Medida de recorridos con relojes y fotones). Sean P,Q € M y su-
pongamos que a = @) — P es positivo (temporal). Sea A = P+ Xa, 0 < A < 1y
B € M un suceso tal que B— Py @ — B son luminicos (v. Figura 1 (¢)). Entonces
x = B — A es espacial y p(AB)? = 7(PA)T(AQ). En efecto, de las hipStesis se
desprende directamente que 7(PA) = Aal, 7(AQ) = (1 — N|a|, n(Aa+2) =0y
n((1 — Na — ) = 0. Las dos tltimas ecuaciones nos dan las relaciones

n(x) + Xn(a) + 2xn(a,2) =0y n(@)+ (1= X)*na) = 2(1 = Mn(a,z) = 0.
Multiplicando la primera por 1 — A, la segunda por A y sumando, se obtiene
n(z) + A(1 — A)n(a) = 0.
Por tanto n(z) = —A(1 — A\)n(a) < 0 (esto prueba que z es espacial) y

p(AB)* = M1 = Nn(a) = M1 = N)]a]® = 7(PA)T(AQ).

3. ALGEBRA DE DIRAC

En su busqueda de un tratamiento cudntico del espin del electrén, Pauli redes-
cubri6 el algebra geométrica de FE3, pero disfrazada como una representacion en
el dlgebra de matrices complejas 2 x 2 (v. [15]). Desafortunadamente, este embo-
zo matricial oculta la rica estructura del algebra que representa y hace aparecer
equivocamente la unidad imaginaria /—1 como ingrediente necesario para la teoria
cuantica del espin. Un acontecimiento parecido se repitié un ano después, cuando
Dirac redescubrié, en su bisqueda de una ecuacion relativista del electron, el dlge-
bra geométrica de F 3, esta vez disfrazada como una representacion en el dlgebra de
matrices complejas 4 x 4 (v. [2]). Este trabajo fue un gran paso, ya que poco después
Dirac lo usé para predecir la existencia del positrén (antiparticula del electrén detec-
tada por C. D. Anderson en 1932), pero su mdscara matricial y el equivoco sobre el
papel de v/—1 no favorecieron el aprecio del dlgebra geométrica como el medio més
idéneo para formular dichas teorias, o para poder descubrir nuevas proposiciones,
como por ejemplo la admirable relacién que existe entre las dos algebras.

El hilo conductor en lo que sigue de este articulo es describir la estructura y
manejo efectivo del dlgebra geométrica D de Ey 3 (dlgebra de Dirac), asi como indicar
sus aplicaciones a las temdticas anunciadas en el resumen inicial. Aunque D es un
caso particular del dlgebra geométrica en el sentido de [19], en la exposicién que
sigue se minimizan las referencias a este articulo aportando diversas construcciones
y argumentos que resultan méas simples en este caso particular. Para simplificar las
notaciones, ponemos E = E 3.
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D.1. REGLA DE CONTRACCION Y RELACIONES DE CLIFFORD. La R-dlgebra D es
asoctiativa y unitaria, contiene a E' como subespacio vectorial de modo que RNE =
{0}, y estd generada, como R-élgebra, por R y E. El producto de D, llamado producto
geométrico, se denota por simple yuxtaposiciéon de sus factores. Si a € E, a® = n(a)
(regla de contraccién de Clifford). Estas son las propiedades basicas de D, ya que,
como se ird viendo en esta seccién, las deméds propiedades se deducen de ellas.

La regla de contraccién implica las relaciones de Clifford: ab + ba = 2n(a,b),
cualesquiera que sean a,b € E. El argumento es muy simple: basta igualar n(a+0b) =
n(a) + n(b) + 2n(a,b) = a® + b? + 2n(a,b), que resulta de la bilinealidad de 7, con
(a + b)? = a® + b* + ab + ba, y simplificar los términos comunes. Nétese que la
relacion de Clifford para b = a equivale a la regla de contracciéon. La aplicaciéon
més importante de la regla de contraccién es que si a es no isétropo (n(a) # 0),
entonces a es invertible y a~' = a/n(a). Andlogamente, la consecuencia més 1til
de las relaciones de Clifford es que dos vectores a,b € E anticonmutan (es decir,
ab = —ba) si y sdlo si son ortogonales. Para referirnos a este enunciado diremos que
es la regla de anticonmutacion.

D.2. FORMULA DE ARTIN. Seay; = 7, - - -7, para cualquier secuencia i1, ...,4 €
N = {0,1,2,3}, conviniendo que vy = 1. En particular tenemos 2* = 16 produc-
tos con i3 < -+ < 4, I = 0,...,4 (de tales secuencias I se dice que son mul-

tiindices y ponemos Z para denotar el conjunto que forman). También ponemos
nr = n(vi,)---n(v,)) = (=1)°D), siendo s(I) el niimero de los indices i de I tales
que 7(7;) = —1.

PROPOSICION 3.1. (1) SiI,J €I,

t(I,J)

YivJg = (*1) Ning Y1aJ,

siendo I A J la diferencia simétrica (ordenada) de I y J, y t(I,J) el nimero de
inversiones en la secuencia I, J que resulta de concatenar I y J.

(2) En particular, 43 = (=1)/?n; = (=1)*D+/2 siendo 1//2 = |1/2] el cociente
entero de | = |I| por 2.

DEMOSTRACION. (1) El signo (—1)*":/) resulta de aplicar la regla de anticonmuta-
cién repetidamente hasta conseguir ordenar I,J en orden no decreciente, el signo
1A resulta de aplicar la regla de contraccion a los vectores repetidos, y lo que queda
es claramente vy, ;.

(2) Se tiene ¢(I,1) = (é), conl = |I|, y nr = (=1)*D, de modo que ~? =

(71)s(1)+(§)’ y ahora basta observar que (é) tiene la misma paridad que 1//2. O

Es un buen momento para introducir i = y9y1727v3 = Y0123, al que llamamos seu-
doescalar. Sus dos propiedades fundamentales son que anticonmuta con los vectores
(basta comprobar que anticonmuta con los vectores v, de la base) y que i?=-1
(pues 5(0123) = 3 y 4//2 = 2). Otro ejemplo es que si 77}, = 1, necesariamente ha
de ser ijk = 123, pues (3//2 =1 y por tanto s(ijk) ha de ser impar).
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D.3. BASE DE CLIFFORD. Necesitamos el siguiente resultado auxiliar:
LEMA 3.2. (1) Para todo I # 0, v; # £1. (2) Si I # J, entonces y1 # +7;.

DEMOSTRACION. (1) Siv; = +1, 47 = 1. Esto descarta los I tales que v = —1. Es
ademés inmediato que yr = £1 sélo puede ocurrir si |I| > 2: es claro que vy # +1;
y si fuese vy, = £1 (j # k), entonces tendriamos la contradiccién v; = £;. El
unico caso que queda por discutir, por los ejemplos ya vistos, es y123. Pero éste tam-
bién se descarta facilmente: si fuese 123 = +1, multiplicando por ”yo a la izquierda

tendriamos i = 479, que no puede ocurrir, ya que i = —1y (&70)? = 'yg =1.
(2) La igualdad v; = £+, implica que +1 = 72 = +vy;v; = £y, 4, y por (1)
esto so6lo es posible si I A J = (), es decir, si I = J. O

PROPOSICION 3.3. El conjunto B = {vy; : I € I} es linealmente independiente.

DEMOSTRACION. Supongamos que se verifica una relacién lineal >, A;yr = 0. Que-
remos mostrar que entonces A; = 0 para cualquier I. A tal fin, bastard ver que
Ag = 0, pues el lema anterior asegura que si multiplicamos la relacién inicial por
un vy cualquiera, entonces se obtiene una relacién similar cuyo término vy tiene
coeficiente ;.

Para cada indice k, la relacién original implica Y ; Aryvrv, 1 = 0. Dado que v
conmuta o anticonmuta con 77, es inmediato inferir la relacion > ; A;yr = 0 en la
que la suma se extiende a los 77 que conmutan con todos los 7. Ahora notemos
que 7y anticonmuta con cualquiera de sus factores cuando |I| es par y positivo, y
que anticonmuta con cualquier v tal que k ¢ I cuando cuando |I| es impar. Puesto
que tales k existen (cualquier K € N — I # (), pues |N| = 4), s6lo queda la relacion
Ap = 0, como se queria ver. O

COROLARIO 3.4. B es una base de D y por tanto dimD = 16. Nos referiremos a B
como la base de Clifford de D asociada a ~.

DEMOSTRACION. Dado que D estd generada por R y E, todo elemento de D es
una combinacién lineal de productos de vectores, y por tanto de productos de la
forma vy = v, -+ vj,, 41,-- -, J1 € N. Este producto se puede reordenar en orden no
decreciente de los indices, salvo un signo, aplicando la regla de anticonmutacion. A
continuacion se pueden simplificar los vectores repetidos por la regla de contraccién,
lo cual conlleva a lo mas un cambio de signo, asi que 7, es igual a +v;, con v; € B.
Esto prueba que B es un sistema de generadores de D como espacio vectorial. Pero,
por la proposicién anterior, los elementos de B son linealmente independientes. [

D.4. PRODUCTO EXTERIOR. Consideremos la aplicaciéon A : E' — D tal que
A(ela"'7 l' Z t(p)epl “Cprs

donde la suma se extiende a todas las permutaciones p de {1,...,1} y siendo ¢(p) el
nimero de inversiones en p. Esta aplicacion es multilineal alternada y por tanto in-
duce una tnica aplicacién lineal gr : A'E — D tal que gr(e; A---Aep) = Aleq, ..., e).
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Puesto que el producto geométrico de vectores dos a dos ortogonales es alternado,
resulta en particular que para todo multiindice I de longitud I se tiene gr(v;) = 71,
siendo v; = i, A -+ A;,. Dado que los [-vectores 74, |I| = I, forman una base de
A'E, si ponemos D' = (yr : |I| = I) tenemos que gr establece un isomorfismo lineal
canénico A'E ~ D!. En particular resulta que D' no depende de la base ortonormal
~, de modo que la descomposicién lineal D = D° + D! + D? + D3 + D* es canédni-
ca. El isomorfismo lineal graduado canénico resultante AF ~ D permite injertar el
producto exterior de AE en D. De este modo D se enriquece con otra estructura de
algebra asociativa y unitaria, a cuyo producto seguiremos llamando producto exte-
rior, y denotdndolo A. En el célculo de un producto exterior, interviene, en tltima
instancia, la regla ; = 7, que por definicién es valida para la base de Clifford. Re-
cordemos también que el producto exterior es graduado y anticonmutativo: si z € D
ey € D™ entonces c Ay € DFTME yx Ay = (—1)"y A

D.5. MULTIVECTORES. La copia del producto exterior de AE en D nos faculta
para usar la terminologia habitual del algebra exterior en D. Por ejemplo, de los
elementos de D se dice que son multivectores y de los de D!, que son I-vectores.
También se dice que [ es el grado de los elementos de D'. Los [-vectores no nulos de
la forma e; A --- A e, se denominan [-aspas (o bien [-vectores descomponibles). Los
0-vectores son los escalares, pues DY = (1) = R. Los 1-vectores son los elementos de
E, pues D! = (70,71,72,73) = E, y se les llama simplemente vectores. En lugar de
2-vectores y 3-vectores es usual decir bivectores y trivectores. Los 4-vectores forman
un espacio de dimensién 1 y sus elementos son los seudoescalares: D* = (i).

La métrica 7 se extiende de manera natural a una métrica de AFE, y por tanto de
D, que seguimos denotando 7. Tal extensién queda caracterizada por dos condiciones:
que los espacios D' y D™ sean ortogonales para | # m y que el producto escalar de
dos aspas del mismo grado venga dado por la llamada formula de Gram, que aqui
sera suficiente escribir para grado 2:

n(er, 1)  nleres)

n(e1) n(er,e2)
n(es,€1) nlez,es)|’ '

merhe2) =y, o) n(ea)

nler Aes,e] Aeb) =

En particular, resulta que 7(y7,7s) = 0si I # J y n(yr) = (=1)*D. Por ejemplo,
n(vo Am) =n(v0)n(1) = 1(v0,7)* = =1y n(yo Av1,7% Av2) = | ¢ | = 0. Vemos
pues que la base de Clifford es ortonormal. Por otra parte, comparando la férmula
para 77 y la de 7(y;), vemos que se tiene la relacién

v = (=1)"Py(vp), 1=]1]. (5)

D.6. ProDUCTO INTERIOR. El algebra D esta dotada de otro producto bilineal,
z -y, denominado producto interior. No es ni asociativo ni unitario, pero es, como ve-
remos, un ingrediente fundamental. Debido a la bilinealidad, basta que lo definamos
para dos elementos de la base de Clifford.

Pongamos [ = |I| y m = |J|. Las reglas para el cdlculo de = ~; - v, son las
siguientes: Sil =00m =0,z = 0; esto es, 1-7; = v-1 = 0 (esta regla puede parecer
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un poco extrana, pero es la que conviene para garantizar la validez sin excepciones
de férmulas que se verdn luego). Si l,m > 1, entonces x = v;yy siI CJo J C I,
y © = 0 en cualquier otro caso. La explicacion de esta regla es que si fijamos [ y m,
entonces el grado de vy es | + m — 2v, siendo v = |I N J|, de modo que el minimo
grado posible es cuando v es maximo, lo cual ocurre precisamente cuando I C J (y
entonces el grado es m — 1) o J C I (y entonces el grado es | —m). En definitiva,

07 si l =0om= 0’
Y1 YJ = )
(717])|zfm|, sil,m>1.

En particular se tiene, sil > 1, y7 -y = 77. Né6tese que el méximo grado posible de
~vrvs es I +m, vy que éste se alcanza si y sélo si v = 0, es decir, siy sélosi INJ = 0.
Ademés, en tal caso vy = v A vy. Todas estas consideraciones se pueden resumir
como sigue:

PROPOSICION 3.5 (Grados de un producto). Seanx € D!,y € D™. Sij € {0,1,2,3,4}
y (xy); # 0, entonces j = |m—I|+2v conv > 0y j < r+s. Ademds, (xy)1—m| = -y
silym >0y (zy)iem = A Y.

OBSERVACION 3.6. Hemos usado sistemdticamente la métrica 7 para evitar la con-
fusién con el producto interior. La diferencia més importante es que si z € D' e
y € D™, entonces n(z,y) = 0 cuando | # m, pero en general x - y puede ser # 0.
Por ejemplo, 1 - Y0172 = Yo72- En tal caso, y - ¢ = £z - y (después daremos una
expresién para el signo). En el caso | = m, veremos que z -y = y -z = +n(x,y),
siendo el signo (—1)"/2.

PROPOSICION 3.7 (Férmula clave). Sia es un vector y x un multivector, entonces
ar=a-r+alNx Yy xza=T-a+TANa.

DEMOSTRACION. Por bilinealidad podemos suponer que a = v, y ¢ = yx. Si K = 0,
los productos interiores son nulos y tanto el producto geométrico como el exterior
son iguales a ~,. Si K # 0, distingamos los casos p € K y u ¢ K. En el primer caso,
Vi YK = VYK Y VK *Vu = YK Yu, Mientras que v, Ak = vx Ay, = 0. En el segundo
€aso, Yy - YK = VK - Y = 0, mientras que v, Yk = Y AVK ¥ VKV = VK NV 0
D.7. INVOLUCIONES. La involucién lineal D — D, x ~ 7, donde 7 = (—1)'z si
x € D!, resulta ser un automorfismo de D (involucion de paridad), en el sentido que

Ty=1y, TAY=TAY, T-y=2-7.
De modo similar, la involucién lineal D — D, z + Z, donde T = (—1)!/2x si 2 € D',
resulta ser un antiautomorfismo de D (involucion de reversién), en el sentido que

— ~~ — ~

TY=9x, TAYy=yAIL, T -y=79- 1T

Para las dos afirmaciones, es suficiente comprobar las identidades para dos elementos
de la base de Clifford, digamos = v; € D!, y = 5 € D™. Para la involucién de
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paridad, ndtese que los grados de vy, v AYs y v+ sonl+m—2v (v =|INJ]|),
I+ my |l —m|, respectivamente, y que los tres son congruentes con ! +m mdédulo 2.
En el caso de la inversion de reversion, el argumento es similar si tenemos en cuenta
que vy = 5 donde I es el reverso de I, pues la reordenacién I comporta (é) cambios
de signo.

PROPOSICION 3.8 (Forma alternativa de la métrica). Sean z,y € D. Entonces
n(z,y) = (xy)o = (Ty)o-

DEMOSTRACION. Dado que las tres expresiones son bilineales, basta ver que coinci-
den para x = vy e y = 7. Esto se reduce a comprobar que (v/7.5)o v (317.7)o son 0
si J # I eiguales a n(yy) is J = I. La primera relacién es consecuencia de que los

grados de v7ys y Y1y son no nulos si J # I. Por lo que se refiere a la segunda, es
claro que v/7; = Jry; = (—1)*) y sabemos que este valor coincide con n(y;). O

D.8. DUALIDAD DE HODGE. La férmula de Artin muestra que si «y; tiene grado I,
entonces ~y;i tiene grado 4 — [. Tenemos pues una aplicacién lineal

D' Dl s 2f = 2

Esta aplicacién, llamada dualidad de Hodge, es un isomorfismo lineal, ya que su
inversa es la aplicaciéon y — —yi. De hecho:

PROPOSICION 3.9. La dualidad de Hodge es una antiisometria.
DEMOSTRACION. n(z*) = n(xi) = (zizi)y = — ()0 = —n(z). O

En la Figura 2 se muestra la base de Clifford de D segtn los distintos grados.
Para grado 2, o, = ;70 da tres bivectores de la base y sus duales o7, los otros tres.
La significacién del orden 5o se vera en la seccién siguiente.

Grado | Nombre Base
0 Escalares 1
1 Vectores Y05 Y15 V25 V3
2 Bivectores 01,02,03,07, 05, 0%
3 Seudovectores 5 Y15 Vs V3
4 Seudoescalares 1*

Figura 2: Base de Clifford de D (salvo algunos cambios de signo). Para un elemento
z de la base, ponemos = para denotar que n(z) = —1.



LA GACETA % ARTICULOS 551

4. ESPACIO RELATIVO Y ALGEBRA DE PAULI

Definamos D+ = DY + D? + D* Dado que Dt = {x € D : T = 2}, y que
2z + 7 es un automorfismo de D, DT es una subdlgebra de D, la llamada subdl-
gebra par. Por lo que hemos visto al final de la secciéon anterior, tenemos que
D? = (01,02,03,01i,091,031) = £ + €i, donde € = &, es el espacio (01,02,03).
Dado que 0% = —n(oy) = 1, resulta que £ es un espacio euclidiano de dimensién
3 con la métrica g = —n|s y que 01,02, 03 es una base g-ortonormal. Diremos que
& es el espacio relativo de ~y. Como se ird viendo, es el espacio en que la referencia
inercial « representa las relaciones fisico-geométricas del univero inmutable M, con
un diccionario preciso de ida y vuelta.

PROPOSICION 4.1. DT es el dlgebra geométrica de (€, g) y su seudoescalar es i.

DEMOSTRACION. Estd claro que Dt es una R-4lgebra asociativa y unitaria, que
contiene a £ como subespacio, y que RN E = {0}. También es inmediato que DT
estd generada por R y £ como R-algebra, pues ;i = o0 (si jkl es una permutacion
ciclica de 123) e i = 010203, como se comprueba inmediatamente. Finalmente, el
hecho de que 1,092,053 sea una base g-ortonormal de &, y que o7 = 1 = g(oy),
implican que D verifica la regla de contraccién respecto de g: a? = g(a) para todo
a € £. La relaciéon o10203 = i muestra que el seudoescalar de £ coincide con i. [

P.1. ALGEBRA DE PAULL. Pondremos P = DT y diremos que es el dlgebra de
Pauli. La graduacién de esta &lgebra viene dada por P° = R, P! = &, P2 = &i,
P3 = (i) = D

PROPOSICION 4.2. El dlgebra par del dlgebra de Pauli, Pt = PO 4+ P2, es isomorfa
al cuerpo H de los cuaterniones.

DEMOSTRACION. Pongamos ij, = ai, de modo que P+ = P° + P2 = (1,41, 49, 3).

Entonces 1% = oLioil = o’ﬁi2 = —1e i1ty = 0102 = o3i = i3 (y permutaciones
ciclicas). Esto es, i1, 42,43 cumplen las relaciones de los simbolos 4, j, k introducidos
por Hamilton el dia del bautismo de H. O

OBSERVACION 4.3. El producto geométrico de P es la restriccién del producto geo-
métrico de D. Ademads, P es claramente cerrada por el producto exterior y el pro-
ducto interior de D (cf. D.7). Pero las restricciones de los dos tltimos productos a P
no coinciden con los productos exterior e interior de P. Para distinguir entre los dos
productos exteriores e interiores, la convencién que seguiremos es escribir o1, 02, 03
para denotar que los vectores relativos o1, o2, o3 se consideran bivectores de D. De
este modo, en una expresién como oy A o2 el producto exterior es el de P, y el
resultado es el bivector o105 = 31 € P? (ponemos i para denotar el seudoescalar
de D cuando lo consideramos como el seudoescalar de P). Notemos, sin embargo,
que 01 Aog =1 Ay Av2 Ay = 0 en D. Anédlogamente, oo = 01 - 0102, mientras
que 010102 = =717 - 717Y2 = 0.
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P.2. REPRESENTACION DE PAULI. El dlgebra P fue descubierta como un dlge-
bra de matrices. En términos de dlgebra geométrica, dichas matrices proporcionan
una representaciéon matricial de P. En detalle, la representacién es 1,01,02,03 —
09,01, 03,03, siendo aqui o}, las matrices de Pauli:

1 1 —1 1
0—0|: 1:|30—10—z|:1 :|70—20y|:l- :|ao—30z|: _1:|

Esto muestra que P ~ C(2) (dlgebra de matrices 2 x 2 complejas). Nétese que
1= 010203 > 010203 = 0.

OBSERVACION 4.4. Los valores propios de o, son £1 y los correspondientes vecto-
res propios en C? (espacio de espinores de Pauli) son [1,=+1], [1,4i], y {[1,0],[0,1]},
respectivamente. Estos vectores propios (normalizados) representan los estados cudn-
ticos del espin 1/2 (cf. [18]) que tienen como imagen los puntos unidad de los ejes
2,9,z por la aplicacién espinorial S* — S? (llamada fibracién de Hopf en topolo-
gfa). Esta aplicacién se define de la siguiente manera: si ¢ = [€g,&1] € S C C? (es
decir, &€y + €16 = 1), entonces

z = &1 + &or, y = i(€oé1 — L&), 2= && — &obo. (6)

OBSERVACION 4.5 (Representacién de Dirac). En 1928, Dirac introdujo sus famosas

matrices I', € C(4),
_ |90 _ —0k
e L I g

Las matrices I',, satisfacen las relaciones de Clifford para la signaturan = (4, —, —, —),
FILLFD + Fr/Fu = 27];41/7 (8)

y por tanto tenemos una representacién D — C(4) tal que y,, + I',,. Dirac llegé a las
relaciones de Clifford tras introducir el operador I',,0,, e imponer que su cuadrado
fuese el dalembertiano O = 92 — (07 + 93 4+ 03). Una buena parte del mérito de
su trabajo esta en la forma explicita que descubri6é para sus matrices. Volveremos a
estas cuestiones en la ultima seccién.

P.3. EL PUNTO DE VISTA RELATIVO. La aplicacién Ej 3 =&, 2 — T =2 A, €s
suprayectiva, y su nucleo es (y). Si © = a7y, estd claro que & = x*o},. Poniendo
t =ux -, se tiene g = x -y +x Ay =t + @, que es la representacion relativa
a « (también llamada del laboratorio) de x. Tomando un suceso O como origen, la
representacion relativa de un suceso cualquiera P es la de x = P — O. Por ejemplo,
lade P=0O+ 7y est=7yax =0, que se interpreta como el tiempo marcado por
un reloj inmévil respecto de « (en el sentido de que su posicién en el espacio relativo
es constante). Otro ejemplo: la representacién relativa de la forma cuadritica de
Lorentz concuerda con la usada por Minkowski,

n(LU) = 1‘2 = TYoYox = (t + w)(t _ SC) — t2 _ IBQ.
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La expresién relativa de la velocidad relativista © = dx/dr es
y0 = d(zy0)/dT = d(t + x) /dT.

Por tanto
i
dr
Si v = da/dt (velocidad relativa),

. de |
-0, sz/\%

_dx _dxdr A

YT T drdt iy

Dado que v? = —n(v) = —n(i Av)/(&-7)% =1 — (& - v0) 2, se tiene v < 1y

i-70 = 1/1/(1— ), (9)

que es el factor de Lorentz de v (usualmente se denota v = (v), pero aqui serd
denotado /3 para evitar confusiones con los simbolos 7,,). En particular, dt = 3(v) dr,
o bien dr = dt /1 — v2, lo cual da la relacién precisa entre el ritmo del tiempo propio
y el ritmo del tiempo en el laboratorio. Puesto que 5 > 1 si v # 0, el tiempo medido
en el laboratorio es menor que el tiempo propio.

El momento relativista de una particula se define por la formula p = mgz, siendo
mg su masa en reposo. Dado que vy = d(t + x)/dr = S + v, donde 3 es el factor
de Lorentz de v (férmula (9)) y v = da/dt la velocidad relativa al laboratorio, se
tiene pyy = mof + mofv = m + mv = m + p, siendo m = mpS la llamada masa
relativista de la particula y p = mw su momento (relativo al laboratorio). De ello
resulta inmediatamente que

Pyo = Bdm/dt + B dp/dt. (10)

P.4. ESTRUCTURA COMPLEJA DE D. C = (1,i) = D’ + D* = P° + P3 es una
subélgebra de P y D (recordemos que ¢ = i) isomorfa al cuerpo complejo C. Sus
elementos tienen la forma o + Si (a, 5 € R) y los llamamos escalares complejos. El
espacio D! + D3 = D! 4+ D' es cerrado por la multiplicacién por i y diremos que es
el espacio de vectores complejos. Sus elementos tienen la forma a + bi, a,b € D'. Los
elementos del espacio D? = £ + £i, que también es cerrado por la multiplicacién por
escalares complejos (ya que lo es por la multiplicacién por i), tienen la forma x + yi,
x,y € £. En suma, todo multivector de D se puede representar de manera tnica en
la forma (a + Bi) + (@ + bi) + (¢ + yi), o, BER, a,b € D!, x,y € €.

P.5. ROTORES. Un elemento R € DT se dice que es un rotor si RR = 1. Este
concepto es importante debido a que permite construir isometrias que se pueden
manejar ventajosamente tanto en consideraciones tedricas como computacionales
(Teorema 4.7). Aunque no es dificil construir todos los rotores (véase, por ejemplo,
[19], §4), aqui vamos a seguir un procedimiento alternativo que es suficiente para
nuestros propoésitos.
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Dado un bivector z = x + i, se tiene 22 = x% — y?> + 2(z - y)i € C (pues i
conmuta con los bivectores, zy + yx = 2(x - y), donde el producto interior es el
relativo a £, y 2, y?, ¢ -y € R). Vemos que 22 es real si y s6lo si & -y = 0, y en tal
caso diremos que z es un bivector de Lorentz. Atendiendo al signo e, de 22, se dice
que los bivectores de Lorentz son positivos (o temporales), negativos (o espaciales),
o nulos (o isdtropos) segin que €, = 1,0,—1. La magnitud |z| de un bivector de
Lorentz se define como en el caso de un vector: |z| = ++/€,22. De un bivector de
Lorentz se dice que es unitario si z2 = +1 = ¢,. Nétese que si z es un bivector de
Lorentz no nulo, entonces z/|z| es unitario, con el mismo signo que z. Por ejemplo,
si v € £ es unitario, entonces v y vi son vectores de Lorentz unitarios, positivo el
primero y negativo el segundo.

LEMA 4.6. Si z es un bivector de Lorentz unitario y « € R, R, o = e¥%/2 e un

rotor (el denominador 2 en el exponente se pone para que el pardmetro significativo
sea a, y no 2«). Ademds, R, o = cosc(c/2)+zsen.(«/2), donde cose y sen, denotan
cosh y senh sie, =1 y cos ysen sie, = —1.

DEMOSTRACION. Sea R = R, ,. Dado que Z = —z, R = e=2%/2 y es claro que
RR = 1. Ahora, en el desarrollo de la exponencial e**/2 todos los términos tienen
signo positivo si 22 = 1 los de exponente par tienen la forma (% (a/2)% . y los de
exponente impar z (2k+1 1(a/2)?k*1 ] obteniéndose R = cosh(a/2) + z senh(a/2). El
caso z2 = —1 se razona de un modo similar. O

TEOREMA 4.7 (Isometria asociada a R, ). Con la mismas notaciones que el lema
anterior, sea R = R, , y definamos R : D — D por R(z) = RxR™' = RzR.
Entonces:

(1) R es un automorfismo de D y RD' = D!.

(2) La aplicacién R : D' — D! es una isometria propia y ortocrona (R € SO?S).

DEMOSTRACION. (1) La primera parte es inmediata, pues R es lineal y R(zy) =
RryR™' = RzR 'RyR~! = R(z)R(y). Para ver que R(a) € D! si a € D, notemos

que Ez = RaR = —RaR = —Ra, por lo que Ra sélo puede tener componentes de

grado impar (1 o 3), mientras que Ra = RaR = RaR = Ra, lo cual muestra que la
componente de grado 3 es nula. Esto prueba que Ra € D!'.
(2) El calculo (Ra)? = RaR"'RaR™! = Ra®?R™! = a? prueba que R es una
isometria y det(R)i = Ri = RiR™! = i, que es propia. Por tltimo, s = R, .7,
€ [0,1], es un camino continuo sobre el hiperboloide de dos hojas n(z) = 1 que
conecta g € HT con Ryg. Se desprende que Ryo € H' y asi R es ortocrona. O

EJEMPLO 4.8 (Boosts de Lorentz). Sea v € & unitario y pongamos v = vy €
{(71,72,73)- Notese que v es el vector relativo de v, pues v A 79 = vyy = v. Ve-

remos que R, , es el boost de Lorentz en la direcciéon v de velocidad u = tanh «



LA GACETA % ARTICULOS 555

(cf. Proposicién 1.1). En efecto, usando que 7y anticonmuta con v, se tiene
Ryo = R}, 70 = €*o = cosh(a)yo + senh(a)v,
Ru = e/ 2pe™/2 = ¢2¥/29e2V/2~ = 2Py = senh(a)vg + cosh(a)v.
Finalmente, los vectores a € (79, v)" son fijos por R, pues conmutan con v.

La llamada férmula de composicion de welocidades relativistas es una conse-
cuencia immediata de esta representacién. En efecto, si a; € R, R; = e*¥/2 y
u; = tanh(e;) (i = 1,2), entonces RoRy = e(®1+22)v/2 y por tanto RyR, es el boost
de velocidad tanh(a; + as) = (u1 + u2)/(1 + ujus) en la misma direccién v.
EJjEMPLO 4.9 (Rotaciones). Sea v € & unitario y pongamos z = vi. Como 2% =
—v? = —1, z es un bivector de Lorentz con € = —1. Sea R = R, o. En este caso 7y
conmuta con z y, por tanto,

E’YO — €az/2’}/0€7az/2 _ €az/2€7az/2’}/o = .

Como consecuencia, R induce una rotacién de y5 = (vy1,72,73). El eje de esta
rotacion es v = vy, pues v también conmuta con z. Finalmente, la amplitud de la
rotacién es a, ya que si € (y1,72,73) es ortogonal a v, entonces x anticonmuta
con z y Rr = e**z = cos(a)x + zx sen(«). Nbtese que zx = vix € (1, 7¥2,73), pues
es combinacién lineal z y Rz, y que es ortogonal a v y a x, pues anticonmuta con
ambos.

5. ELECTRODINAMICA

La referencia dual (o reciproca) de 7o, 71,72, 73 es la referencia 7°, 41,2, 3 tal

que 7° =9 y 7/ = —;. En general queda caracterizada por las relaciones y* -, =
0#. Las componentes de un vector a respecto de la referencia dual se denotan a,,, es
decir, a = a,v". Esta claro, pues, que ag = a®y ap = —d".

OPERADOR DE DIRAC. Si f es un funcién diferenciable definida en un abierto U de
M, df = (0, f) dz*, siendo 0, = 0/0z*. Es una 1-forma definida en U, de modo que,
para cada punto z € U, df nos da una forma lineal d, f : £ — R. El valor de esta
forma para un vector a es (dgf)(a) = df (z + at)/dt|;=o, dado que por definicién de
diferencial se tiene que f(z+at)— f(z) = t(d, f)(a)+o(t). Podemos pues representar
el operador d (diferencial) en la forma da*0,. En esta expresion, daz* es la forma
lineal de E tal que (dz*)(v,) = 0¥, lo cual coincide con v*-. Esto sugiere formar la
expresiéon 0 = Op = y*0,, (operador de Dirac), la cual, por definicién, cumple que
(0f) -a =a-(0f) es la derivada direccional de f en la direcciéon a. De hecho, esto
muestra que el operador a - 0 = (a - y*)d, = a*0,, da, aplicado a una funcién f, su
derivada en la direcciéon a.

El empleo de O en lugar de d tiene otras ventajas en el contexto de D. La maés
relevante es que podemos formar, para cualquier campo multivectorial F' = F(x),
los productos dF, 3 - F y & A F. Por ejemplo, si F' = F7~;, entonces

d-F =~ 9,F’ -~ny=0,F " v;.
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De hecho, dado que v*v; =~* - v5 + " Ay, se tiene la relacion
OF =0-F4+0AF

para cualquier F'.

Si F' = F¥, es un campo vectorial, 0 - F' = 0, F'y" -, = 0,F" 0! = 0,F", que
es la divergencia (lorentziana) de F. Andlogamente se ve, en este mismo caso, que
ONF =0,F"y,, = ZH<V(8HF” — 0, F*")7y,.,. Nétese que en el espacio euclideo de
dimension 3 esta expresion es el (bivector) rotacional de F. De ahora en adelante,
diremos que 0 - F'y O A F son la divergencia y el rotacional de F'. En particular 0
resuelve el sueno de Dirac (encontrar una raiz cuadrada del dalembertiano O):

P =0-0=0 —(07+05+05) =0

La representacién relativa del operador vectorial 0 es 0vg = 9-y9+0Ayy = Oy +0.
En este caso, & = OAYy = V¥ Ay Op = —010r = —V, donde V = 7.0y (el operador
vectorial del espacio relativo). También se tiene que 70 =9y — 8 = 9y + V.

TEOREMA 5.1 (Ecuacién de Maxwell-Riesz). Sean E,B,j € & vectores relativos
dependientes del tiempo y p = p(x,t) una funcién diferenciable de x € £ y t € R.
Pongamos F' = E + Bi (bivector de Faraday) y J = (p+7)vo. Entonces la ecuacion
OF = J es equivalente a las cuatro ecuaciones de Mazwell para los campos eléctrico
E y magnético B creados por la densidad de carga p el vector de corriente j.

DEMOSTRACION. Puesto que Jyo = p+7J, se tiene p = J-y9y j = JA~. Ademds, de
(p+7)7 = Y0(p—J) obtenemos que v9J = p— 7. Multiplicando la ecuaciéon OF = .J
por 7 a la izquierda, nos queda la relacién equivalente (9g + V)(E +iB) = p — j.
Desarrollando los productos, obtenemos

WE+V -E+VANE+i(0B+V-B+VAB)=p—j.

Igualando los distintos grados de ambos miembros, esta ecuacién resulta equivalente
a las ecuaciones

V.E=p, WE+iVAB=—j, i) B+VAE=0, iV.-B=0.

Ahora basta observar que V- es el operador divergencia en el espacio relativo y que
iVAB = -V x B = —rot(B) (rotacional de B) para concluir que estas ecuaciones
son equivalentes a

div(E) =p (Ley de Gauss para E)
rot(B) —:E =3 (Ley de Ampére-Maxwell)
OB +rot(E) =0 (Ley de induccién de Faraday)
div(B) =0 (Ley de Gauss para B)

que son las ecuaciones de Maxwell (en unidades en las que ¢ = ¢y = g = 1) para el
campo electromagnético creado por py j. O
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OBSERVACION 5.2 (Invariantes). La expresién F? es claramente invariante Lorentz.
En términos de la expresién relativa F = E+ Bi, F? = E*> — B>+ 2(E- B)i (cf. P.6,
pagina 553), de lo cual se infiere que E? — B? y E - B son invariantes Lorentz.

Tlustremos las ventajas que ofrece la ecuaciéon de Maxwell-Riesz respecto de las
ecuaciones de Maxwell con otros ejemplos.

ECUACION DE CONTINUIDAD. En primer lugar, multiplicando OF = .J por 9 a la
izquierda, se obtiene OF = 0 -J 4+ d A J. Como el término de la izquierda es un
bivector (O es un operador escalar), la parte escalar de la derecha se ha de anular:
0-J = 0. Esta ecuacion es la ecuacion de continuidad de la carga, pues equivale, en
términos relativos, a la ecuacion dyp+ V -3 = 0.

LEYy DE EINSTEIN-LORENTZ. Consideremos una particula con carga eléctrica ¢
sometida en un campo electromagnético F. La ley de Finstein-Lorentz es la relacion
p = qF - %, siendo & y p la velocidad propia y la derivada propia del momento,
respectivamente. La significacién de esta relacion para el laboratorio la proporciona
el enunciado que sigue.

TEOREMA 5.3. Si F' = E+iB es la expresion de F' en términos de la descomposicion
relativa D? = £ + 1€, la ley de Einstein-Lorentz equivale a las relaciones

dm/dt =q(E-v) y dp/dt=q(E+ B Xxv). (11)

DEMOSTRACION. La expresién relativa del vector ¢F-i es q(F-2)-vo+q(F %) Avyo. La
parte escalar es igual a ¢(F-2)-yo = ¢F-(&Av) = fqF-v = qE-v, yaque iB y v son
ortogonales. Esto, y la férmula (10), prueban que la primera férmula del enunciado
equivale a la igualdad de las 7p-componentes de la relaciéon de Einstein-Lorentz.
Examinenos ahora q(F - &) Ay = q(E - &) Ao + q(iB - &) A yo. El primer sumando
es igual a BqFE, ya que (o -2) Ao = (770 - ) A Yo = TovkYo = Bok. Y el segundo
es igual a B¢gB X v, ya que un calculo similar nos da, siendo jkl una permutaciéon
ciclica de 123, que (i0; - &) Ay = &,01 — &0 = B(ov, — OV;) = foj X v. Estas
dos relaciones, junto con la férmula (10), concluyen la demostracién. O

OBSERVACION 5.4. En la segunda férmula (11), el término f = dp/dt es la fuerza
ejercida por el campo electromagnético sobre la particula y el segundo miembro es la
ley de Lorentz para esta fuerza. La potencia de la fuerza de Lorentz viene dada por
f-v =qE-v, yaque Bxwv es perpendicular a v. Ahora, la primera de las férmulas (11)
nos dice que esa potencia es igual a dm/dt, lo cual nos dice que las variaciones de
la masa equivalen a energia. De hecho, el trabajo ejercido por la fuerza de Lorentz
entre dos instantes, es decir, la integral de la potencia, es igual a la variaciéon de la
masa entre dichos instantes. Podemos concluir que pg = p - 79 = m tiene la forma
m = € + €g, siendo ¢ la energia dindmica de la particula y €y una constante que sélo
depende de la masa en reposo mg. Siendo mg a su vez una masa, se puede igualar a
energia (podemos pensar que es la energia necesaria para su creacion, o la liberada
en su desintegracién), de manera que finalmente tiene sentido escribir m = E, siendo
E la suma de la energia dindmica € y la energia que corresponde a mg. En unidades

del SI, la féormula resulta familiar: E = mc?.
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PoTENCIALES. Igualando componentes de los dos miembros de OF = J, vemos que
esta igualdad equivale a las ecuaciones 9- F' = J y d A F = 0 (que corresponden al
primer y segundo par de las ecuaciones de Maxwell, no homogéneas y homogéneas,
respectivamente). La segunda ecuacién (y el lema de Poincaré) nos da que existe un
campo vectorial A (del cual diremos que es un potencial de F') tal que F = 9 A A.
En esta forma, la ecuacién 0 A F' = 0 es tautolégica, pues d A 0 = 0, y la ecuacién
0-F = J se traduce en 0 - (O AN A) = J, esto es, (0-0)A —09(0-A) = J, o bien
OA—-9(0-A) = J. Veamos que se puede escoger A de modo que se cumpla 9- A =0
(condicion de Lorentz). En efecto, si f es una funcién escalar, entonces 9 A df =0
y por tanto A (A+0f) =90 ANA=F,y el caso es que se puede hallar f de modo
que 0 - (A4 9f) =0, pues esta condicién equivale a la ecuacion Of = —9 - A (para
la existencia de solucién de esta ecuacién, véase [12], por ejemplo). Con la condicién
de Lorentz, F' = 0A, y la primera de las dos ecuaciones aludidas (la no homogénea),
deviene A = J. Esta es la ecuacién de ondas (no homogénea) de A. Obtenida
su solucién, dado J y condiciones de contorno adecuadas, basta calcular A para
obtener F.

En términos relativos, Ayg = ¢+ A, con ¢ = A-vy A = ANy € E.
Entonces A = oA = (0 — V)(¢ — A) = =(Vo + 0:A) + V A A, ya que
Op+V-A=0-A=0 (condicién de Lorentz). Igualando con E + B4, vemos que
la relacién A = F equivale a las ecuaciones

E=—(Vé+08,A), B=—i(VAA) =V x A=rot(A), (12)

que son las relaciones que dan el campo eléctrico y el campo magnético en el labo-
ratorio a partir de los potenciales ¢ (potencial escalar) y A (potencial vector).

TRANSFORMACION DEL CAMPO ELECTROMAGNETICO. Uno de los resultados més
emblemé&ticos de la teorfa de la relatividad restringida de Einstein [4] es la relacién
entre los campos eléctrico y magnético observados en dos referencias inerciales. La
obtencion de dichas relaciones se puede plantear de la siguiente manera. Sabemos que
la transformacién que aplica 4 en otra referencia inercial 4’ es propia y ortocrona.
Por tanto viene dada por un rotor R:

V. = By = Ry, R.

Ahora, la observacién fundamental es la siguiente (usamos que R conserva el pro-
ducto interior):

E,=0)-F=Ro, -F=0y RF =0y RFR,
B, =0} -F=R(c})-F =0} RFR.

Asi pues el problema queda reducido al calculo de RFR. Veamos en detalle el caso
en que R sea un boost de Lorentz, digamos (con notaciones del Ejemplo 4.8),

R= Ry, o =e*1/2
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Recordemos que R es el boost de Lorentz en la direccién v, = o179 de velocidad
u =tanh«a y 8 = cosha.
Relativamente a v, podemos escribir

F=Fio1+ FEyos + E3z03 —i—Blo'“f +BQO'§ -I—BSO';.
Puesto que R conmuta con o; y anticonmuta con o3 y o3,
RFR = E101 + ¢ 7' (Byo5 + B303) + Biot + ¢ 71 (Byol + Bsol).
Para transformar esta expresion tenemos
e ¥t =cosha — oysenha = 5(1 — uoy)
y las relaciones
0102 =03, 0103=—05, 010,=—03, 0105 =03.
Con esto se obtiene que

RFR = E10'1 + /B(EQO'Q + E30'3) — /BU(EQO';; — EgO';)
+ Blo"{ + ﬂ(BgO’S + BgO';)) + ﬁu(Bga'g — 330'2).

Poniendo E| = Ei01 y B, = Eyoy + E303, con notaciones andlogas para B,y
teniendo en cuenta que Eyo3 — Esos = 01 X E, y andlogamente para B, finalmente
obtenemos, poniendo u = uo1, las formulas de Finstein:

E/:EH—G-BEL—F’U,XB,
B/:BH—FﬁBL—uXE.

OBSERVACION 5.5. Estas férmulas ponen de manifiesto que tanto en el cdlculo de
E’ como en el de B’ intervienen E y B. Un caso especialmente revelador es el de
una particula que en el sistema 4’ estd en reposo en el origen, con lo cual el campo
F se reduce, relativamente a 4/, a un campo eléctrico E’. La segunda férmula de
Einstein nos da (invirtiendo los papeles de v y v')

B=uxF,

lo cual muestra que en el sistema ~ se percibe, ademés del campo eléctrico E =
Eﬂ + BE’|, también un campo magnético. Este ejemplo certifica que los campos
magnéticos creados por cargas en movimiento no son mas que efectos relativistas del
campo de Coulomb creado por las cargas estacionarias.

OBSERVACION 5.6. Las férmulas de Einstein son véalidas para cualquier boost de
Lorentz sin més que cambiar o por el vector unitario @ de la direccién del boost
y definir las partes paralela y perpendicular de E y B respecto del mismo. En este
caso u = uw es la velocidad del boost. La demostracién es similar, pero usando el
rotor Ry o en lugar de Ry, q.
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6. ECUACION DE DIRAC

En la teoria de Schrodinger, los valores de la funcidn de onda ¢(x), x € M, son
nimeros complejos. Al introducir el espin, Pauli fue llevado a cambiar C por C?, y
de ah{ el nombre de espinores de Pauli para referirse a los elementos (normalizados)
de C2. El cambio de C? por C* (espacio de espinores de Dirac, o biespinores) fue
introducido por Dirac forzado por el hecho de que sus matrices I',, € C(4). Los hitos
del camino seguido por Dirac se pueden resumir como sigue.

Como punto de partida, tomé la ecuacién de Klein-Gordon, (O + m2)p = 0.
Esta ecuacién es la ecuacién de Schrodinger de un electrén, siendo m = me/h, m.
la masa en reposo del electrén, y i = h/(27) la constante de Planck (normalizada).
Es una ecuacién en derivadas parciales de segundo orden, pero Dirac argumento
que precisaba una ecuacién lineal en 9, y, requiriendo que fuese relativista, lineal
también en 0, 9, y 9,. Formé, pues, el operador D = d,8,,, y al imponer que D? = [J
descubri6 que la solucién mas simple era poner d, =I',, (las matrices (7) que se han
comentado en la Observacién 4.5). Con esto, la ecuaciéon de Klein-Gordon factoriza
en la forma (D — im)(D 4 im)y = 0, y Dirac simplemente postulé la ecuacién
(D + im)y = 0, equivalente a la forma en que la escribié: ihDy = m1). Pero,
para que esta relacién tenga algtin sentido, ¢ ha de tomar valores en C*, y con esta
suposicion es la ecuacion de Dirac. En presencia de un potencial electromagnético
A, la ecuacién de Dirac lo incorpora en la forma ih(D — eA)p = m., siendo e la
carga del electrén, pero esto también exige expresar A en la forma A,I',.

El problema de expresar la ecuacién de Dirac puramente en términos del algebra
D fue enfocado correctamente por primera vez en [5] e investigado por muchos otros
posteriormente, siendo [1, 6, 7, 8, 10, 11, 9, 3] los que nos han resultado més instruc-
tivos. El esfuerzo vale la pena, ya que por un lado se puede prescindir de lastres que
son accidentales al problema (algunos se han comentado anteriormente), y por otro
se puede explotar la rica estructura de D para seguir ahondando en la comprension
de los fenémenos.

La formulacién de Hestenes de la ecuacién de Dirac es la siguiente (cf. [7], §2):

oY ih — eA) = methyy. (13)

La naturaleza de sus ingredientes es como sigue. El campo ¢ toma valores en el
algebra de Dt (¢ : M — DT). Nétese que la dimensiéon compleja de DT es 4, lo
mismo que C*. El producto 9% es el producto geométrico del operador de Dirac 0
con 1. El producto Ay es el producto geométrico del vector potencial A que hemos
estudiado anteriormente y . El simbolo i es una unidad imaginaria geométrica (no
lade C): i = 971 = iy3yo = ios = 0109. Por tanto, en la ecuacién (13), que Hestenes
llama ecuacion de Dirac real y que aqui denominaremos ecuacion de Hestenes-Dirac,
ya no aparecen matrices ni la unidad imaginaria formal .

Pero el valor ganado con (13) es la posibilidad de aprovechar la estructura de D*.
El primer resultado basico en esta direccion es el siguiente:

TEOREMA 6.1 (Forma canénica de 1, [7]). Si € DV y b # 0, existen p € R,
B € [—m, ] y un rotor R tales que ¢ = p/2eP2R. Ademds, esta expresion es unica.
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DEMOSTRACION. El producto 1/)1?/? es un escalar complejo (no puede contener térmi-
nos de grado 2 porque es invariante por reversién), y por tanto lo podemos poner
en forma polar: 1 = pefl, con p >0y fel0,2m). Pongamos R = pp1/2e=P/2,
Entonces R es un rotor, ya que R = p~ /2 _B‘/21/J y RR = Yp~le _5‘1/1 = 1. La
unicidad es también clara, ya que p y 8 quedan univocamente determinados por wz/J,
y R queda univocamente determinado por la relacién R = ¢p~1/2e=Fi/2, O

El papel de R en el estudio de la ecuacién de Dirac-Hestenes es que R es una
isometria propia y ortocrona. Para ver que es una isometria propia, el argumento
es el mismo que el de la demostraciéon del Teorema 4.7. Que es ortocrona resulta de
que todo rotor estd conectado (por un camino continuo) con 1 ([19], Teorema 4.3),
lo cual permite adaptar la parte final de la demostracién aludida.

El rotor R es de hecho un campo de rotores y nos permite construir el campo de
referencias e(x) = R+, todas con la misma orientacién y orientacién temporal que ~.
Ademas, se cumple que z/ry#{bv = pe,(x): dado que i anticonmuta con los vectores y
que i =1,

Uyt = pe? Ry, Re®? = pe2e= 2 Ry, R = pey,(x).

En particular tenemos, poniendo v = e, 1/170{/; pv, que es la llamada corriente de
Dirac. El vector s = ERfng = E€3( ) es el vector de espin. El rotor R transforma

la unidad geométrica ¢ = vy, en ¢ = RiR = ese1 y el vector S = §L es el bivector
de espin. La relacién entre el vector de espin y el bivector de espin es S = isv. En

efecto,
h ~ ~ h ~ h ~ h_ .~ h
isv = 5iR’)’3RR’YoR = §Ri’)/3’}/oR = §R72’71R = iRZR = §L =S.
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