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The 6th Conference on Applied Geometric Algebras in 
Computer Science and Engineering1 (AGACSE) was 
dedicated to David Hestenes (Arizona State University) 
in recognition of his masterly and sustained leadership 
for half a century, particularly at the interface of math-
ematics and physics. The dedication was celebrated with 
the launch2 of a second edition of his Space-Time Algebra 
(Gordon and Breach, 1966). David was present during the 
whole week and the standing ovation after his keynote lec-
ture,3 culminating in his recitation of the stirring call to ac-
tion from Tennyson’s Ulysses,4 was a very moving moment 
for all participants. The David Hestenes Prize was estab-
lished for the best work submitted by a young researcher 
and was awarded to Lei Huang (Academy of Science, 
Beijing, China) for “Elements of line geometry with geo-
metric algebra”.5 His work shows how to bring the power 
of geometric algebra to bear on 3D projective geometry, 
thus linking new mathematical theory with very practical 
applications in computer science. Pierre-Philippe Dechant 
(University of York, UK) and Silvia Franchini (University 
of Palermo, Italy) were finalists with the works “The E8 
geometry from a Clifford perspective” and “A family of 

embedded coprocessors with native geometric algebra 
support”,6 respectively. The conference was preceded, for 
the first time, by a 2-day Summer School to better prepare 
the less experienced and it was attended by two thirds of 
the conference participants. The next AGACSE will be in 
Campinas, Brazil, in 2018. 

Space-Time Algebra (STA) is actually a reprint of the 
first edition, but with two precious new items: a foreword 
by Anthony Lasenby7 and a preface by the author “after 
fifty years”. It was a landmark in 1966 and it is as fresh 
today as it was then in its “attempt to simplify and clar-
ify the [mathematical] language we use to express ideas 
about space and time”, a language that “introduces nov-
elty of expression and interpretation into every topic” 
(the quotations are from the preface to the first edition). 
This language is usually called geometric algebra (GA), 
a term introduced by W. K. Clifford in his successful syn-
thesis of ideas from H. Grassmann and W. R. Hamilton. 
In Part I of STA, GA is advanced and honed into a re-
sourceful mathematical system capable of expressing 
geometric and physical concepts in an intrinsic, efficient 
and unified way. Two special cases are worked through 
in detail: the geometric algebras of 3D Euclidean space 
(Pauli algebra) and 4D Minkowski space8 (Dirac alge-
bra). These geometric algebras are then used, in a real 
tour-de-force, to elicit the deep geometric structure of 
relativistic physics. This takes the remaining four parts 
of the book: Electrodynamics, Dirac fields (including 
spinors and the Dirac equation), Lorentz transforma-
tions and Geometric calculus (including novel principles 
of global and local relativity, gauge transformations and 
spinor derivatives). There are also four short appendixes, 
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1 	AGACSE 2015, 27–31 July, Barcelona, Spain: http://www-
ma2.upc.edu/agacse2015/

2	 Suggested as an 80th birthday gift by Leo Dorst, coopera-
tively backed by Eduardo Bayro-Corochano, Joan Lasenby, 
Eckhard Hitzer and the author of this review, and enthusi-
astically embraced by Springer, each participant received a 
copy by courtesy of the Catalan Mathematical Society and 
the Royal Spanish Mathematical Society.

3 	Fifty Years with Geometric Algebra: a retrospective.
4 	 “Made weak by time and fate, but strong in will / To strive, to 

seek, to find, and not to yield” (last two verses).
5 	 Joint work with Hongbo Li, Lei Dong, and Changpeng Shao.

6 	Co-authored by Antonio Gentile, Filippo Sorbello, Giorgio 
Vassallo and Salvatore Vitabile.

7 	Professor of Astrophysics and Cosmology at the Cavendish 
Laboratory, Cambridge University. Co-author of the superb 
treatise [1].

8	 A real vector space with a metric of signature (+, –, –, –).

From left to right: David Hestenes, Lei Huang, Silvia Franchini, 
Pierre-Philippe Dechant, Sebastià Xambó-Descamps, Eduardo 
Bayro-Corrochano.

David Hestenes (July 2015,  
during his keynote lecture).
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A to D, which amount to a supplement of the GA part. 
We will come back to them below.

Although the presentation of GA in STA, and in later 
works of Hestenes and many others, is framed in a set 
of quite natural algebraic axioms, it turns out that the 
approach may come across as unusual for some tastes, 
which perhaps explains why the book is not as well known 
among theoretical physicists as it surely deserves. For ex-
ample, in an otherwise meritorious paper,9 E. T  Jaynes 
declares (an admittedly extreme view that may be saying 
more about himself than about STA): 

It is now about 25 years since I started trying to read 
David Hestenes’ work on space-time algebra. All this 
time, I have been convinced that there is something true, 
fundamental, and extremely important for physics in it. 
But I am still bewildered as to what it is, because he 
writes in a language that I find indecipherable; his mes-
sage just does not come through to me. Let me explain 
my difficulty, not just to display my own ignorance, but 
to warn those who work on space-time algebra: nearly 
all physicists have the same hang-up, and you are nev-
er going to get an appreciative hearing from physicists 
until you learn how to explain what you are doing in 
plain language that makes physical sense to us.

Fortunately, STA was ‘discovered’ in the late 1980s by 
people like Stephen Gull, Anthony Lasenby and oth-
ers, in Cambridge and elsewhere (see [2], the references 
therein, and [3]), an eventuality which led to a flourishing 
of new ideas, results and applications in many fields (see, 
for example, [1, 4, 5, 6]).

GA, as espoused in STA, seems not to be very well 
known in mathematical circles either, this time because it 
may perhaps be perceived as a closed, short-range struc-
ture, or even because its presentation may be found not 
to follow the formal strictures of the trade. As avowed by 
the vast existing literature, the first perception is unten-
able, even if one takes into account only its service to 
mathematics, or even only to geometry. Concerning for-
malities, there is no doubt that a mathematically minded 
approach may extract a meaningful and satisfying picture 
of GA, as this does not (logically) depend on the physics. 
Assuming basic knowledge of the Grassmann (or exte-
rior) algebra, here is a possible sketch of such a picture. 
The geometric algebra LgE of a (real) vector space E of 
finite dimension n, equipped with a symmetric bilinear 
form g (the metric), is the exterior algebra

 E = Λ0E ⊕ Λ1E ⊕ Λ2E ⊕ … ⊕ ΛnE (Λ0E = R, Λ1E = E)10

enriched with the inner product x  y and the geometric 
product xy, which in turn can be explained as follows. To 
define the inner product x  y, we may assume that

x = e1∧ … ∧er ∈ LrE, y = e1́∧ … ∧eś ∈ LsE  
(e1, … , er  , e1́, … , eś ∈ E, r,s ≥ 1).

If r = 1 (say x = e ∈ E) then e  y is defined as the left con-
traction of e and y, namely

e  y = Sk=0 (–1)kg(e, eḱ) e1́ ∧ … ∧ eḱ–1 ∧ eḱ+1 ∧ … ∧ eś.

For example, 

e  e ́= g(e, e ́) and e  (e1́ ∧ e2́) = g (e, e1́) e2́ – g (e, e2́) e1́. 

If 1 < r ≤ s then x  y can be defined recursively by the rela-
tion

x  y = (e2 ∧ … ∧ er)  (e1  y).

In the case r ≥ s, analogous formulas using the right con-
traction x  e lead to the rule

x  y = (–1)rs+s y  x).

We see that x  y ∈ L|r–s| E for x ∈ Lr E, y ∈ Ls E. If r = s, 
then x  y = g(x,y), where we use the same symbol g for the 
natural extension of the metric to L E, so that, in particu-
lar, x  y = y  x, as required by the formula above. But note 
that if r ≠ s then g(x,y) = 0, whereas x  y may be non-zero 
and may be the opposite of y  x (precisely when s is odd 
and r even).

The geometric product xy may be characterised as the 
only bilinear associative product such that

ex = e  x + e ∧ x,

for any e ∈ E and any x ∈ L E.11 Note that e2 = e  e = g (e, e), 
so that e is invertible if it is non-isotropic (g (e, e) ≠ 0), 
e–1 = g(e, e)–1e, which means that, in GA, division by 
non-isotropic vectors is a legal operation. This fact, to-
gether with the associativity of the geometric product, 
explains why operating with (multi)vectors is so natural 
and agile. Note also that e eʹ = e ∧ eʹ = –eʹe if (and only if) 
e and e ́ are orthogonal (g (e, eʹ) = 0). With this approach, 
all the GA formulas in STA, and others obtained after-
wards, can be established. Here are some examples. For 
e ∈ E and x ∈ L E, the relation xe = x  e + x ∧ e also holds. 
If x ∈ Lr E, y ∈ Ls E and z = xy then zk ≠ 0 implies that 
k = |r–s| + 2j, j = 0, … , min(r, s). In particular, the mini-
mum and maximum possible degrees are |r–s| and r + s. 
In fact, it happens that (xy)|r–s| = x~ y if r ≤ s, x  y~ if r ≥ s, and  
(xy)r+s = x ∧ y, where x~ is the result of reversing the order 
of the factors of x. Thus, we see that the geometric prod-
uct determines the inner and outer products.12 Another 
very useful fact is that if the vectors e1, … , er are pairwise 
orthogonal then 

9 	E. T. Jaynes: Scattering of light by free electrons as a test of 
quantum theory. In The electron: New theory and experiment 
(D. Hestenes and A. Weingarthofer, eds.), 1–20. Kluwer, 1991.

10	Its product x ∧ y is the exterior or outer product. Its elements, 
which are called multivectors, have the form x=x0+x1+…+xn, 
with xr ∈ L

r E (the r-vector part of x).

11	This fundamental formula is what most upset Jaynes, who ve-
hemently objected to its non-homogeneous character: e  x ∈ 
Lr–1 E and e ∧ x ∈ Lr+1 E when x ∈ Lr E. 

12	Notice, however, that for these relations to make sense, we 
need to know the grading, which is not naturally defined by 
means of the geometric product. Here the grading is taken 
to be a lower level structure, as the definition of the graded 
algebra L E only depends on the vector space structure of 
E. Actually this fact is one of the great ideas bequeathed by 
Hermann Grassmann.

k=s
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e1 … er = e1 ∧ … ∧ er.

Let us turn back to the foreword and the new preface of 
STA. In the foreword, A. Lasenby states that:

This small book started a profound revolution in the 
development of mathematical physics, one which has 
reached many working physicists already, and which 
stands poised to bring about far-reaching change in 
the future. 

The roots of this potential are clearly delineated in 
Hestenes’ preface, “with the confidence that comes from 
decades of hindsight”, by asserting four “Claims for STA 
as formulated in this book” (boldface emphases in the 
original): 

(1) �STA enables a unified, coordinate-free formula-
tion for all of relativistic physics, including the 
Dirac equation, Maxwell’s equation and general 
relativity. 

(2) �Pauli and Dirac matrices are represented in STA as 
basis vectors in space and spacetime respectively, 
with no necessary connection to spin.

(3) �STA reveals that the unit imaginary in quantum 
mechanics has its origin in spacetime geometry.

(4) �STA reduces the mathematical divide between clas-
sical, quantum and relativistic physics, especially in 
the use of rotors for rotational dynamics and gauge 
transformations. 

Before briefly commenting on these claims, here is a sim-
ple geometric example that neatly illustrates the core as-
pects of (3) and (4). It is about the representation in GA 
of rotations in the ordinary Euclidean space as explained 
in STA, Appendix C. Let E3 be the Euclidean 3-space and 
e1, e2, e3 ∈ E3 an orthonormal basis. Denote ej ek = ej ∧ ek 
by ejk, with a similar meaning for ejkl. Then i = e123 com-
mutes with vectors and hence with any element of L E3, 
and i2 = –1.13 Since ie1 = e23, ie2 = e31 and ie3 = e12, we have 
a linear isomorphism E3 = L1 E3 → L2 E3, u  b = iu. The 
inverse isomorphism L2 E3  → E3 is given by b  u = –ib.14 
Now, let u ∈ E3 be a unit vector and a ∈ R (an angle). 
Then the linear map ru,a:E3 → E3 defined by

ru,a(x) = e–1/2aiu x e1/2aiu

is the rotation about the vector u of angle a. Indeed, by 
the usual expansion of the exponential we get 

e ±aiu/2 = cos(a/2) ± iu sin(a/2), 

and the formula follows on noting that u is fixed, as it 
commutes with either exponential, and that if x is or-
thogonal to u then e–aiu/2 x eaiu/2 = xeaiu (as ux = – ux), 

which is the result of rotating x in the plane u^ by an 
angle a in the sense of the orientation given by u. To 
see this, let u1, u2 be an orthonormal basis of u^ such 
that –i(u1 ∧ u2) = u, i.e. iu = u1u2 (Hodge duality). Then 
(u1u2)

2 = –1, eaiu = cos(a) + u1u2 sin(a), and the claim fol-
lows by a simple calculation of u1e

aiu and u2e
aiu. Note that 

the GA formula for ru,a(x) greatly facilitates the compu-
tation of the composition ruʹ,aʹ ru,a of two rotations, for it 
is reduced to the (brief) GA computation of eaiu/2eaʹiuʹ/2. 
This yields, as shown in Appendix C, the remarkable for-
mulas for the angle and axis of the composite rotation.15

As the example above shows, complex numbers ap-
pear in GA not as formal entities but with a surprising 
geometric meaning. The significance of point (3) is that 
this also happens in physics, where the i appearing in, say, 
the Schrödinger and Dirac equations is revealed to be 
subtly and significantly related to GA entities. The GA 
form of the E3 rotations also illustrates interesting as-
pects of (4). Expressions such as 

R = e–aiu/2 = cos(a/2)–iu sin(a/2) ∈ L0E + L2E 

(this is the even subalgebra of LE) are called rotors and 
the rotation ru,a is given by x  RxR–1. 

As proved in STA, Part IV, Lorentz transformations 
(rotations of Minkowski’s space) may also be described 
by rotors R = e–b/2, where b is a bivector. With respect to 
an inertial frame, the rotor can be resolved as a product 
of one spatial rotor, which gives a rotation in the Euclid-
ean 3-space associated to that frame, and a time-like ro-
tor, which gives a Lorentz boost in that frame. The main 
resource here is the marvellous way in which the Pauli 
algebra of that Euclidean space is embedded in the Dirac 
algebra.

As for claim (2), note that in all these interpretations 
and calculations, the customary matrix representation 
of the Pauli and Dirac algebras plays no role, and work 
with coordinate systems and coordinates is unnecessary. 
The notion of spin, and its role in particle physics, is also 
greatly clarified and improved.

Paraphrasing a quote from [2] devoted to physicists, 
let me finish by expressing the hope that also mathema-
ticians not yet knowing STA will find a number of sur-
prises, and even that they will be surprised that there are 
so many surprises!

The reviewer thanks Leo Dorst for the improvements 
made possible by his comments, suggestions and correc-
tions after reading a first draft. 
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