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Calculer sur les concepts de la géométrie selon les
regles d'une algebre a été depuis longtemps le but
des recherches de nombreux mathématiciens, comme
Leibnitz qui en réva ou comme Carnot qui s'y essaya.
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Preliminary comments Notations and conventions

K denotes a field of characteristic = 2. Its elements are called
scalars. The basic choices are K=R or K= C.

Let n > 1 be an integer, e = ey, ..., &, a sequence of n distinct
symbols. For each sequence K = ky,..., k., € {1,...,n}
(0 < r < n), let ex denote the word e, - - - e, .

r

Now consider the vector space A(e) freely spanned by the e, with /
strictly increasing (in which case we say that [ is a multiindex).

o dimA(e) = 2",
o A(e) = d'=5N (e),

where A"(e), called the space of r-vectors, is the subspace of A(e)
spanned by the ¢, with | of length r (|/| = r).

Finally let ex € A(e) be the vector 0 if K has repeated indexes and
(—1)Ke k) otherwise, where w(K) is the result of reordering K in
increasing order and (—1)¥ is the sign of the permutation K of w(/).
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GA ingredients Exterior product

The exterior product A : A(e) x AN(e) — A(e) is defined as the
unique bilinear map such that e; A e, = &, where /, J denotes the
concatenation of | and J.

Note that ¢, A e; = 0 if and only if I N J £ (.

It turns out that the exterior product is associative, with unit e (¢
for | the empty sequence!) and skew-commutative, that is

e; \ e = —e; A ej. Or, more generally, if x € A"(e) and y € A*(e),
then y Ax = (—1)"x A y.

Examples
o é\3,1,2 = e1»3 and é\3,2,1 = —€123.
@ e;3/ANex35 =0 (3is a repeated index).
] 6235/\614 €1,2,3,4,5, for ( 1)23’5’1’4 +1.
o €5 N €14 = —€1245, for (—1)2’5’1’4 = —1.
e =¢, N---Neg.
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Let g = q1,..., g, € K and set, for each multiindex
=i <- <, q =g -q, (the product of g, ..., q, in K).
Note that in particular g = gy = 1.

The (relative to q) geometric product A(e) x A(e) — A(e), which
will be denoted by juxtaposition of its factors, is the only bilinear map
such that

ere; = (=1 qinser.y,
where | + J denotes the odd-sum of | and J, namely (/U J) — (I NJ)
rearranged in increasing order and s(/, J) is the number of inversions
in the sequence /, J.!
Examples

e Ific{l,....,n}, &€ =ee = (-1)Uige=q.

o Ifi,je{l,...,n}and i <}, ;g = (—1)(V)qe;; = e, but
eje,- = (—1)SU’i)qe;J = —e;J.

® €13635 = (—1)5(1’3’2’3’5)%61,2,5 = —Q3€125.

'For two summands, / + J coincides with symmetric difference 1A J.
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GA ingredients Geometric product

The map K — A°(e), A — Me, is an isomorphism. Henceforth we will
identify A°(e) and K. In particular, we will write 1 = 1k instead of e.

Theorem
The geometric product is associative with multiplicative unit e = 1.

Proof. For a direct proof, we refer to Artin-1957. We will follow a
more conceptual approach in the coming lectures. O

We will denote A4(e) the exterior algebra A(e) endowed with the
geometric product relative to q.

Clifford considered the case G, = G5 = A_1,(e) in Clifford-1878 (so
that e = —1) and the case G, = Ay, (e) in Clifford-1882 (so that
e?=1).

Examples. (1) G ~R® R =2R, a+ be; — (a+ b,a— b).
(2) G1 ~ C, a+ be; — a+ bi.
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GA ingredients Involutions

Parity involution

The linear automorphism « of A(e) defined by

ale) = (=1)"e (r=I)
is an involutive automorphism for the exterior and the geometric
product.? Instead of a(x), we usually write x°.
As a consequence, Ag(e) = /\;(e) © A, (e), where
/\;(e) = {x € Ng(e) | x* = x} and A, (e) = {x € A\g(e) | x* = —x}.
Moreover, A_(e) = @fiéz/\2f(e) is a subalgebra (the even subalgebra)
of both the exterior product and the geometric product.?

Note that dimA,(e) = dimA_(e) = 2",

2t suffices to prove it for products of the form e; A e; and ejey, in which
cases it follows straightforwardly from the defining formulas.
3n//2 = |n/2] is the integer quotient of n by 2.
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GA ingredients Involutions

Reversion involution

Given a multiindex | =iy, ..., i, we let I denote / in reversed order,
thatis, | = i,,..., ;. Since restoring the original order amounts to

(5) transpositions, and since (}) =r//2 mod 2, we see that

&= (-1,

The linear automorphism 7 of A(e) defined by
7(er) = (=1)7e

is an involutive antiautomorphism (the reversion involution) for the
exterior and the geometric product. The scheme of the proof is
similar to the one used for the parity involution. Instead of 7(x), we
usually write x™ or x.*4

TT

4 T
In symbols, (xy)” = y"x".
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GA ingredients Involutions

Clifford involution

The Clifford involution is the antiautomorphism x (of the exterior and
geometric products) defined as k(x) = 7(a(x)) = a(7x). It is also
denoted x" or X.

Since r//2+r=(}) +r= (1)) =(r+1)//2 mod 2, for

x € N, (e) we have
X = (_1)(r+1)//2X'

Note that the signs of o, 7, k for
r=4j,4j+1,4+24+3=0,1,2,3 mod 4 are

‘ 0 1 2 3
al+ - + =
T+ + = =
K|+ — — +
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[VRNTACC NI  The inner product

Let E, = A'(e) = (e, ..., e, (its elements will be called vectors). If
v=vie +- -+ v'e,

Qv) = qui(v')? + -+ gn(v")?

is a quadratic form of E,,. Its associated scalar product v - v/ is given
by®
vev =gviv g™V

The inner product (or contraction), x - x', is a bilinear map
Nq(e) x Ag(e) = Aqg(e)

that generalizes the scalar product. For its definition we only need to
consider the case when x and x" are simple multivectors, say

X=viA AV, Yy=VviA---AV.

S2v-v = Q(v+ V) — Q(v) — Q(V).
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[VRNTACC NI  The inner product

The rules for computing (v A=+~ Av,)-(vi A--- AV.) are as follows.

@ If r=0 (so x is a scalar, say A), A-y = Ay. There is a similar
rule for the case s = 0.

° Ifr—1<s(soxisavector say v = vp),
Xy = Z HEDH VI A AV AV A Ay
This means that v- acts as a (left) skew-derivation of the
exterior product. When s = 1, the inner product is just the
scalar product of vectors.

@ If s=1<r(soyisa vector, say v/ = v;),
x-v = l,:{(—l)’_k(vk VWA AL AVl Ao A
This means that -v’ acts as a right skew-derivation of the

exterior product. This agrees with (—1)""!v/ - x.

o If2<s<r,x-y=(x-v{)-(vyA---AV]).
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[VRNTACC NI  The inner product

In the following lectures we will give precise formulas to evaluate the
inner product. In particular we will see that for r = s, it does not
matter whether we evaluate from the left or from the right, and that
the result is the scalar det G(x, y), where G(x,y) is the matrix whose
entries are v; - v/. This means that x - y = y - x when x and y are
homogeneous of the same degree. For r # s, however, the
commutativity does not hold in general, for if s < r, then

Xy = (_1)rs+sy . X,

Remark. We have denoted the inner product (following
Hestenes-1966 and Casanova-1976) using only the dot (-). But there
are authors that use the symbols x4y (when r < s) and xwy (when
r=s).
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[VRNTACC NI  The inner product

Some relations among the exterior, geometric and inner products

If v € E, and x is any homogeneous multivector of degre r,

@ wx=vVv-x+vAxand xv=x-v+XxAv.
@ 2v A X =vx+ (—1)xv.
@ 2v-x=wx—(—1)xv.

In particular we see that two vectors commute (anticommute) if and
only if they are parallel (perpendicular).

The aim of GA is the study of the structure A4(e) (and others that
are more general and to which we will devote the coming lectures)
with the three products (exterior, geometric and interior) and to
develop methods for its application to a variety of fields and problems.

In what follows of this lecture, we will consider in detail several
examples for low n, including G, and G, for n =2, 3.
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The linear basis of G, (and of G,) is 1, e1, &, €12 = i. The tables for
the geometric product, however, are quite different:

Gl e & i Gla e i
€1 1 i € €1 -1 i —6€n
& | —i 1 —e e | —i -1 ¢
i | —e e -1 i | & —e -1

In both cases the even subalgebra (1, i) is isomorphic to C,

a+ bi — a+ bi, and i anticommutes with the vectors, that is, the
elements of £, = Al(e) = (ey, &), but the action of i on E; is
different: in G, i{e1, &} = {—es, 1}, while in G, we have

i{e1, e} = {e, —e }. Multiplying by i on the left yields a rotation of
amplitude /2 with different orientations: clockwise in the case of G,
and counterclockwise in the case of G. On the other hand, if

X = Xg + X161 + X06 + X3i, then x® = Xp — X161 — Xo€ + X3i,

xT = Xo + X161 + Xo0€ — X3i and x" = Xp — X161 — Xp€ — X3i.
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G, can be represented by the matrices

1 1
61,€2|—>E1:( _1),E2:<1 )

In detail:

Xo+ X1 X +X3)

X=X+ X161 + X086 + x31 — X =
0T X1€1 262 T X3 Xo— X3 Xo— X1

c d

Thus G, ~ R(2), the algebra of 2 x 2 real matrices. In terms of X,
the involutions act as follows

X = (a b) —x=12[(a+d)+(a—d)er+ (b+ c)er + (b — ¢)i]

X% = (_CZ _ac) — det(X)(XT)"", XT=XT, X*=det(X)X.
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From the multiplication table it is clear that G, ~ H, the field of
quaternions, via (for example) e; = j, e = k.

Now H is algebra-isomorphic with the (real) subalgebra H of C(2) of
matrices

_ a+d cH+bi\ zZ w
X_(—c—l—bi a—di)_<_W 2)’ a,b,c,d eR.

The Pauli-like matrices Eq = I,

' : 1 : ' .
E1 = <I I) =101, E2 = (_1 ) = 109, E3 = <I —I) = 103

form a linear basis of H and the linear map determined by
1,i,j,k — Ey, E;, E;, E5 gives in fact an insomorphism of algebras
H ~ H because the Ej satisfy the relations E,f = —/,

EiE, = —EyE; = E5 (and cyclic permutations) in exact
correspondence with Hamilton's relations i> = —1, ij = —ji = k

(and cyclic permutations).
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It is easy to check that if X € H corresponds to

x =a+di+ bj + ck € H, then its Clifford conjugate

X =a—di — bj — ck corresponds to X' (the transpose of the
complex conjugate or Hermitian adjoint of X).

The square norm of x, Q(x) = xX = a° + b® + ¢ + d?, corresponds
to XXT = det(X)oy, so that Q(x) = det(X).

Note that for x # 0, X/Q(x) is the inverse of x.

Remark. The real matrices in H are precisely those of the space

(Eo, Ep). This space is a subalgebra of R(2) which is isomorphic to
C, 1,i — Ey, E>. But notice that <E0, E) is different from the image
of the even subalgebra g2 ~ C of G, under the isomorphism G, ~ H.
Later in this lecture we are going to study a more satisfying
realization of H using Gs.
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(RN EEPRIR-CCICAl A quote from Feynman

“The most remarkable formula in mathematics is:
e’ = cosf + isinf

This is our jewel. We may relate the geometry to the algebra by
representing complex numbers in a plane
x + iy = re
This is the unification of algebra and geometry."
R. Feynman, Lecture Notes in Physics, Volume |, Part 1.

Comment. Emphasis not in the original. Note that Euler's formula
works with no change by taking the ‘imaginary unit’ to be the
geometric i.
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Linking G, to geometry Euclidean geometry revisted

In the case of G,, the quadratic form @ on E, is positive definite
(Euclidean space). Setting, as usual, |v| = ++/Q(v), then for
non-zero vectors v, Vv’ € E, there is a unique 6 = 6(v, V') € [0, 7]
such that

v-v' =|v||V| cosb.

Projection. Let u be a non-zero vector. Then for any vector u, the
orthogonal projection of v on (u), m,(v), is given by the formula

mu(v) = (v-u)ut

Proof. The right hand side is linear in v and its value is clearly O for
v € ut. On the other hand, its value for v = u is
(u-v)ut =Pt =u O
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Linking G, to geometry Euclidean geometry revisted

Rejection. The difference 7 (v) = v — m,(v) is orthogonal to u (for
u™t-u=(u/u*)-u=1and hence (v— (v-u)ut) - u=0) and
sometimes it is called the rejection of v from (u).

Now we have:

mH(v) = (v A u) .

u

Proof. We know that v-u = vu— v A u. Hence

(V) =v—(v-)u ) =v—(ww—-vAuut=(vAuu. O
) o
= (v Au)u™?
> ,Wu(v)
U = (v u)u?
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Linking G, to geometry Euclidean geometry revisted

Axial symmetries and reflections

Proposition. If u is a non-zero vector, then the map s, : E, — E,,
v — uvu~! is the axial symmetry with respect to the line (axis) (u).

Proof. Since uu™! =1, s,(u) = u. If v € ut, then v and v
anticommute and hence s,(v) = uvu™! = —vuu™! = —v. Thus s, is

the linear map that leaves v fix and is —Id on u*. O

Corollary. If u is a non-zero vector, then the map m, : E, — E,,
v~ —uvu~! (m, = —s,) is the reflection across the hyperplane u*.

Proof. Indeed, m,, is the identity on u* and maps u to —u. O

Proposition. Let u and u’ be non-zero vectors, u }f /, and set
0 = 60(u, u'). Then the map p, v = sys, = mym, is the rotation of
amplitude 26 on the (oriented) plane U = (u, ).
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Linking G, to geometry Euclidean geometry revisted

u =y

Su (1)

u=1uycosl —ussinh  Sw(u) =uycosb + uysiné
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Linking G, to geometry Euclidean geometry revisted

Proof. Without loss of generality, we may assume that v and v’ are unit
vectors, so they are their own inverses. Since m, = —s, and m, = —s,/,
the relation s, s, = m,m, is clear.

Let L = ULt = ut N o't It is clear that pu,u is the identity on L and that
it leaves U invariant. Therefore it suffices to show that the restriction of
p = puw to the plane U is a rotation of amplitude 26. But the restriction
of s, and s, to U are the reflections across (u) and (u’), respectively, and
the composition of two reflections is a rotation, so that it is enough to
calculate 0" = 0(u, p(u)) = 0(u, s (u)). To that end, let u; = u" and

up € vt N U be unitary with vy, up defining the same orientation of U as
u,u’. Then u = cos(0)uy — sin(f)ua, s, (u) = cos(f)uy + sin(0)uz, so
cos(0') = u - sy (u) = cos?() — sin?() = cos(26) and

sin(0’) = 2sin(#) cos(#) = sin(20). O
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Linking G, to geometry Rotors

Let u, u’ be non-zero vectors and set R = v'u € G,. We say that R
is the rotor defined by u and ¢’ on account of the following fact:

Puw (V) = (sws,)(v) = v (uvu™)u' ™" = RVR™.

Since p,, » only depends on R, we will write pg to denote it. But it is
important to remember that the amplitude 6z of the rotation pg is
20(u, u').® If we only know R, 0z can be obtained as the angle

O(v, pr(v)), where v is any vector in the plane of the rotation.

Composition. If R and S are rotors, (pgr o ps)(v) = (RS)v(RS) ™.

6 For an interesting analysis about the historical difficulty of uncovering the

significance of this factor of 2, see Altman-1989.
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(R vt =T e The Lipschitz groups ', and I':

The non-zero vectors generate a subgroup I, of the multiplicative

group G, of invertible elements of G, (with respect to the geometric
+ .

product). The subgroup I, of even elements of I, is the subgroup

generated by the rotors and we have a homomorphism

p:T, =980, ¢~ py,

where py(v) = vyt
The homomorphism p extends to a homomorphism p: I, — O,
¢ > Py, where py(v) = (=1)¢lpve1.

For a non-zero vector u, p, = m,. Since the reflections across
hyperplanes generate O, p is surjective. The homomorphism p is
also surjective, because rotations are products of an even number of
reflections.
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(RN PRt W-T A The grups Pin, and Spin,

The group Pin, is defined as the subgroup of I',, generated by the
. . . + .

unit vectors and Spin, = Pin, N T,. Since my, = m, for any

non-zero vector u and scalar A, any reflection can be written as m,

with u a unit vector. It follows that the homomorphisms

p: Pin, — O, and p : Spin, — SO,

are surjective.

These homomorphisms will be defined and studied under more
general assumptions in the coming lectures. In particular we will see
that their kernel is {£/,}.
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Linking G, to geometry [ENOIGI s ETCERTI =%

The area A(v, v') of the parallelogram [v, v'] defined by v, v’ € E; is
given by the formula |v||v/|sin6, 6 = (v, V').

On the other hand, v A v/ = D(v, v')i, where i = e;e; and
D(v,v') = viv5 — vav is bilinear and skew-symmetric.

Now we have

and hence
D(v,v')> = v — (v - vV')? = |v]*|V']2(1 — cos® §) = |v|?|V/|*sin? .

We conclude that D(v,v') = +A(v, v'), with the sign depending on
the orientation of v, v/ (relative to e, &).
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Linking G, to geometry Euler's spinor formula

Let u, v’ € E, be linearly independent and U = (u, v’). Let R be the
rotor u'u, so that pr(v) = RvR™* for v € E,.. If

0 =0(u,u') € (0,m), then pg is the rotation in U (extended by the
identity on U') of amplitude o = 26 in the sense determined by the
orientation of U given by u, v’. Pick an orthonormal basis uy, uy of U
with the same orientation as u, v’ and let iy = ujur, = uy A up (the
unit area in U), which satisfies i3 = —1. Then

uNu = |ul|d|sin(0)iy and u' A u= —|u||d]|sin(f)iy. Consequently,

R = v'u=|u||t|(cos® —sin@iy) = |u||u'|e % = |u||u’\e—%a"u and

R1 —-1,,-1

= u 7 = u| 2| 2l = (o] ez Finally,

pr(v) = e 2% g2,
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Linking G, to geometry Composition of rotors (after Hestenes)

If R=u'uand R' = u"u are rotors, where u, u’, u” are unit vectors
(there is no loss of generality with this assumption), then
R'R=u"vvu=u"u=R" Thisis illustrated in the figure. In
particular we have that pgr: o pr = pgr. It has to be remembered,
however, that the rotation amplitudes of R, R’ and R” are 20(u, '),
20(u',u") and 260(u, u").
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Linking G, to geometry Hodge duality

The algebra G = G3 has dimension 8. The spaces of scalars (G° = R)
and pseudoscalars (G*) have dimension 1 and are generated by 1 and
i = ejere3. The space of vectors (E; = G') and of bivectors (G?)
have dimension 3 and are generated by e;, e, €3 and ee3, e3e1, €165,
respectively.

These generators can be written in a more compact form using the
relations

e =le, = e, 361 = iey = l, €16, = ie3 = &30

which show that i lies in the center of G and that the map G! — G2,
v — iv = v*, is an isomorphism, with inverse the map w — —iw.
These isomorphisms, which are isometries, are a special case of
Hodge duality.
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Linking G, to geometry G3 and the Pauli algebra

The algebra G3 admits the (complex) matrix representation
1, e, 6,6 b, 01,05, 03, where the o, are the Pauli matrices:

1 —i 1
01 = 0x = 1 , 02 =0y = i , 03 = 07 = _1)-

Therefore G3 ~ C(2). Note that i = e;ere3 — 010203 = iks.
Proof. It is immediate to check that ojox + ox0; = 20j. O

The Pauli represention of G3, or any other matrix representation for
that matter, is not needed to understand Gz and its applications. The
advantages of working directly with Gz, which can be regarded as the
‘true’ Pauli algebra, have been noticed already and will be further
highlighted in the considerations that follow. The story will repeat
later on when we study the Dirac algebra.
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Multiplication table of G = G5

Gs €1 €2 €3 ie; ie ies i

e 1 ies —ie i —e3 & ie;
& | —ies 1 ie €3 i —e e
€3 i62 —ie1 1 —6€p €1 i ie3
ie i —e3 & -1 —ies e, —g
ie; | e3 i —e; es -1 —ie —e
ie3 —6€n €1 i —ie2 i61 -1 —€3
i ie; ie ie3 -6 -6 —ea -1

We see that (1, i) ~ C is the center of G.

We also see that the even subalgebra G = (1, iey, i€, ies) is
isomorphic to the quaternion field H = (1,1, J, K), with
ie, = exe3,ier = 361, ie3 = e16, — 1, J, K.

See the slide 43 for further features about H deduced from this

representation.
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Linking G, to geometry Rotations of the rotors I, J, K

Since (e, €3)" = (e1) and 6(ey, e3) = /2, the rotation produced by

the rotor I has axis (e;) and amplitude 26 = 7. In other words, it is

the axial symmetry with respect to the axis (e;). In a similar way we
find that J and K yield the axial symmetries with respect to the axes
(ep) and (es3), respectively.
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Linking G, to geometry [ENTWECEERI7eYs Ma1

If v and v/ are vectors, let v x v/ be the vector such that
i(vxVv)=vAviovAv =—i(vAV).

In particular we have, if j, k, | is a cyclic permutation of 1,2, 3,

€ X € = —i(ej VAN ek) = —i(ie,) = €.
Lemma
vXVv =—iv-Vv.

Proof. Since both sides are linear in v, it is enough to check the
formula for v = ¢;. In this case, the left hand side is

e X V' = v e — v/ex, while the right hand side is

—ie- vV = —eee -V = (V- e)e — (V- e)ex = vie — Ve O
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Linking G, to geometry [ENTWECEERI7eYs Ma1

Remark. Since i reverses sign when we reverse the orientation of the
basis, we see that v x v’/ also reverses sign when we reverse the
orientation. This is usually described by saying that the cross product
is an axial vector to distinguish it from the polar vectors (the vectors
in E3) whose nature is independent of the space orientation.

Mixed product
(vxV)-v"=—i(v AV AV") =det(v,V, v").
Proof. Since v x v’ is a vector,

2(v x V') - v = (v x V')V + V" (v x V).

Using v x v/ = —i(v A V'), and that i is a central element, we get
(v x V) - V' = —i(v AV )W — iV (v AV) = =2iv AV AV
To finish, use v A v/ A V" = idet(v, v/, v"). O
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Linking G, to geometry [ENTWECEERI7eYs Ma1

Double cross product
(vx V) xv'=(v-v')W - (V- -v')v.

Proof. Indeed, (v x V') x v/ = —i(v x V') - v/ = —(v A V') - V" and
(vAV) - v = -V )v—(v- V')V O
Geometrically, the cross-product of two linearly independent vectors is

determined by the following properties:

1) v x V' is orthogonal to v and to v'.
2) lts length is equal to A(v, v').
3) v,v/,v x V' is positively oriented.

Proof. The mixed product formula gives 1). As for 2), we have
lvx V2=[vAV]?P=(vAV)-(vAV)=A(v,Vv)? Finally,

det(v, v, v x v') = (v x V) - (v x v') > 0. O
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Linking G, to geometry Rotations about any axis

Let u be a unit vector and « a real number. Let p,, be the rotation
about u of amplitude . Then the following variation of Euler's
spinor formula holds:

Liva

PU,a(V) =e 2

Ve%iuoz

Proof. Let uy, u» be perpendicular unit vectors in U = u™ such that
up X up = u. If welet iy = u; A up, then we know that

Pua(v) = e 20 yerive

Now note that ip = u; A up = i(uy X wp) = iu. O

1

Example. The rotor for pe, » is e z2ia™ = =13 = [. Similarly, J and
K are the rotors for pe, » and pe, », respectively, in accord with the
slide 36.

I
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(BT NTi - PR T -1 IIaAl  \/ector algebra form of Euler's rotor

Lemma (Vector algebra form of Euler’s rotor)
Pua(v) =(1—cosa)(v- u)u+ vcosa+ (u X v)sina.

Proof. Since this expression is linear in v, and its value for v = u is
u, it is enough to consider the case in which v is orthogonal to u. In
that case, v anticommutes with v and

1-
e——luaV62 ux

= ve'" = vcosa + viusinaw = vecosa + (u X v)sina
asviu=ivu=—i(uAv)=uxv.

In matrix form, say x’ = xM,

2+ (1-a%)cosa abd + csina acd — bsina
M = bad — csina b? + (1 — b?)cosa bcé + asina
cad + bsina cbd — asin« c?+(1—c?)cosa
where u = (a, b, c) and § = 1 — cos a. O
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[T - T R-T (e Olinde Rodrigues’ formulas

To determine the composition p, o © p,.q, it is enough to compute

. 1. n .
its rotor, say €2’ ® | as the product of the corresponding rotors:
e%iu”a" _ e%iu/a’e%iua

This relation can be written in the form
Ot” 7] . o// o &/ LA Oé_/ g - . g .
 cos +iusin G = (cos.2 +iu'sin 5 )(cos § + iusin §) which
itself is equivalent to the equations
o ol a _ (.1 )sin & sin &
cos % = cos 5 cos § — (u - u')sin 5 sin 5

Ol// o

2

. / . / . . /
usin § cos 5 + u' cos 5 sin 5 + (u x u') sin § sin 5

"
usin 5 5 5 5

There are two solutions to the first equation (+«”), and hence two
solutions £u” to the second equation, but since p_, _o = pu.q. they
determine the same rotation.

S. Xambé (UPC) GAT 01 First steps SLP - 9-13 March - 2015 42 / 45



[T T -T2  Quaternions revisited

Let us return to the realization of the quaternion field H as the even
algebra G, (slide 35). A quaternion x can be written in the form

X = s+ iut, where u is a unit vector and s, t € R. Then

X = s — iut, because iu is a bivector. Thus Q(x) = xx = s* + t2
and the inverse x~! of a non-zero quaternion x is x ! = x/Q(x).
Note that |x| = v/s? + t2 is the norm on H associated to the
(Euclidean) symmetric bilinear form (x|y) = 1(xy + yX).

Given two quaternions x = s + iut and x' = s’ + iuv't/, we have
Q(xx") = xx'x'x = Q(x)Q(x’) and as consequence |xx’| = |x||x'|.
The explicit form of xx’ is given by the expression

xx' = ss' +iu't's+ iuts — ud'tt'.

It follows that xx’ — x'x = (v'u — wu)tt' = 2(u A U')tt’. Thus x and
x" commute if and only if one of them is scalar or else v/ = +u.
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Why not trinions

If there were 3D 'numbers’ a + bi + ¢j analogous to complex
numbers a + bi in 2D, then in particular we would have
ij =a+ bi+ cj for some a, b,c € R. Multiplying by i, we obtain

—j =ai —b+c(a+bi+cj),
which is equivalent to
—b+ca+(a+ch)i+ (1+c%)j =0,

and this contradicts the assumed (linear) independence of 1,14, ;.
Beyond quaternions?

A key result is Hurwitz's theorem (1898): there are exactly four
normed real division algebras: R,C, H and O (Cayley's octonion
algebra, wich is non-associative). See Baez-2002.
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Appendix References

Before each lecture, | will try to upload the pdf slides to SLP-GAT.
In particular, you will find there details for references, an in particular
for those mentioned in the course slides: References for SLP-GAT.

Artin 1957
Casanova 1976
Hestenes 1986
Hitzer 2011
Lounesto 1993, 1997
Riesz 1958

Xambo 2000, 2009
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Introduction Objectives

Until recently | was unacquainted with the Aus-
dehnungslehre [...]. | may, perhaps, therefore be
permitted to express my profound admiration of that
extraordinary work and my conviction that its principles
will exercise a vast influence upon the future of science.

CLIFFORD-1878

The ground ingredient in our presentation is the exterior algebra AE
of a vector space E of finite dimension n over a commutative field K.
When E is endowed with a quadratic form, AE can be enriched with
an associative product (the geometric product or Clifford product) for
which all non-isotropic vectors are invertible. As illustrated in the
introductory lecture, we can regard AE as a stage for defining
geometric objects and relations among them, and the geometric
product, together with the inner product that will be introduced in
general in next lecture, as an efficient toolbox for defining
transformations of the geometric objects with no need of coordinates

or matrices.
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Introduction Notations and conventions

E and F denote vector spaces.
= [(E, F): the vector space of linear maps from E to F.
= £* = [(E,K): dual space of E.

= Endk(E) = L(E, E): the vector space of endomorphisms of E. It
is an associative algebra with the product given by the composition
of endomorphisms: (f,g) — f o g. The algebra with the opposite
product ((f,g) + g o f) will be denoted End)?(E).

-E’:Ex-r-)-xE.

L,(E; F): the vector space of multilinear maps E” — F. Note that
Ll(E F) = L(E, F). By convention, Lo(E; F) = F.
F)

A,(E; F): the vector space of skew-symmetric (also called
alternating) multilinear maps E” — F. Note that
Ai(E; F) = L(E, F). By convention, Ao(E; F) = F).
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Introduction Notations and conventions

In order to check that a multilinear map f € L,(E; F) is
skew-symmetric, it is enough to show that f(ey, ..., e,) changes sign
when any two of the (arbitrary) vectors ey, ..., e, are interchanged.

= We will also use the tensor powers T"E (r > 0) of E (we will refer
to the elements of T'E as tensors of order r). By convention,

T°E = K and for r > 0 there is, for any vectors e;,...,e, € E, a
well defined element e; ® --- ® e, € T'E, called the tensor product
of e, ..., e, such that:
1) themap E" = T'E, (e1,...,€6)— & ® - ® e, is multilinear;

2) for any multilinear map f : E" — F, F a vector space, there
exists a unique linear map ft: T"E — F such that

fllea®---®e)=f(e,...,e).
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Introduction Notations and conventions

Furthermore, there exists a unique bilinear map (tensor product)
TExTE—TTE (xy)—x®y,
such that
(a® - Re)R(e1® - Re)=e® - Re e Qe
The tensor algebra is the vector space

TE=@, ., TE=KOE®TE®---

endowed with the tensor product. It is an associative graded algebra.
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Exterior algebra Exterior powers

For any integer r > 0, the r-th exterior power of E, denoted A"E, is
characterized as follows:

s A°%F = K and A'E = E.
m|f r > 1, for any elements e, ..., e € E there is a well defined

element
eeN---Ne. € NE,

called the exterior product of ey, ..., e,, and the map
(e1,...,&)— e A ANe,
is multilinear and skew-symmetric. O
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Exterior algebra Exterior powers

Universal property of N"E
If f: E" — F is a skew-symmetric multilinear map with values in a
vector space F, then there is a unique linear map f : A"E — F such

~

that f(egs A---ANe) = f(e,...,e). In other words, f — f provides
a natural isomorphism A,(E; F) ~ L(A"E, F). Note that this
isomorphism also holds for kK = 0, 1.

s A"E =0 for any r > n.
Exterior product
Given integers r,s > 0, there is a unique bilinear map

NExNE - NTE, (x,y)—=xAy,

such that (e A---Ae)A(efA---Ne) e A---Ne NefA---NeL.
This map is called exterior (or outer) product.
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Exterior algebra Definition

NE=@ NE=KOE®NE®---®NE.

with the exterior product is a graded associative algebra (the exterior
algebra of E). This implies that e; A---ANe, =e; A---Ae and
hence there is no need to distinguish the operator symbols A and A.

If x € AE, there is a unique decomposition x = xg+ x; + - - - + X, with
x, € NE. The term x, is called the grade r component of x (there
are authors that denote it by (x),). The grade 0 and 1 components
are also referred to as scalar and vector components. Since

dimk A"E =1, x, is also called the pseudoscalar component of x.

The exterior product is grade-commutative (or skew-commutative, or
supercommutative), which means that if x € A"E and y € A°E, then

yAx=(-1)"xAy. (1)

In particular, € Ne=—eAN€, foralle e €E.
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Exterior algebra Universal property of AE

If i: E — Ais a linear map with values in an algebra A and / satisfies
i(e)> =0 for any e € E, then there exists a unique homomorphism of
algebras j : AE — A such that j(e) = i(e) for all e € E.

e
B =
--"Tene
e e
€
e

An r-blade is an r-vector of the form e; A ey A -+ A e,
e,...,e € E. Any r-vector is the sum of a finite number of
r-blades, but in general there are r-vectors that are not r-blades.
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Exterior algebra On the Ausdehnungslehre

The exterior algebra is also known as Grassmann algebra, inasmuch
as it is the algebraic structure that Hermann G. Grassmann
(1809-1877) discovered in pursuing his Ausdehnungslehre, or
extension theory (cf. Grassmann-2000).

Just as the vectors e € E = A'E represent oriented extensions of
dimension 1, the elements of A"E, which are called r-vectors,
represent oriented extensions of dimension r.

For example, if e, ¢’ € E, then the 2-vector (or bivector) e A €'
represents the 2-dimensional extension associated to the oriented
parallelogram defined by e and €’. The oriented condition of the

notion of extension is echoed in this case by the rule € Ne = —e A €
(e, € € E).
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Exterior algebra The skew-derivation §A

Let { € E* = L(E, K) (dual space of E). Then there exists a unique
skew-derivation & of AE such that £(e) = £(e) for all e € E. This
skew-derivation satisfies

r

E(el/\- Ae) = Z(—l)k_lg(ek) et Aex_1ANekri Ao Ae (%)
k=1

forany e, ...,e € E. The map gis graded of degree —1 and
£2=0.

Given a vector sequence e = ey, ..., e, € E, and a sequence of
indexes | = iy,...,i, € {1,..., m}, we write

é\/:e,'l/\"'/\e,', e NE.
We say that [/ is multiindex if i < --- < i,.
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Exterior algebra Dimension of the exterior algebra

If e=ey,...,e, € E is a basis of E, then the blades €, when [ runs
over the set of multiindices (of length r), form a basis of AE (A"E).
In particular, dimx A"E = (’r’) and dimyx AE = 2",

In terms of the L1, the map A(e) — A(E) is an isomorphism. On the

left, the e; are regarded as symbols but on the right they are vectors
in E.
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Creation operaters
If e € E, we define the linear map . : AE — AE by the formula
fe(x) = e A x.
The linear map i is graded of degree 1 and 2 = 0.

Since the exterior product is multilinear, the map
E — Endk(AE), e pe,

is linear and extends in a unique way to an algebra homomorphism
ANE — Endk(E), say x — pux, and it can be easily checked that
ux(y) =x Ay forall x,y € NE.
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Exterior algebra Functoriality

If f: E — F is a linear map, for any r > 0 there is unique linear map
N'f:NE — N F such that

(NMf)ee N---Ne)=TF(e))N---Af(e).

Gluing the A"f for the different r we get a linear map Af : AE — AF,
and this map is a homomorphism of algebras.

Main/grade/parity involution
The linear automorphism E — E, e — —e, yields a linear
automorphism « : A"E — A"E such that

(et A--Ne)= (—e) A A(—e)=(-1)et A+ Ne,.

The corresponding automorphism of AE, which will also be denoted
by «, acts on even grades as the identity and on odd grades as minus
the identity: if x =) _,x, € AE is the grade decomposition of x,
then a(x) = >, o(—1)"x.
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Exterior algebra Functoriality

Even subalgebra and superalgebra structure

NE =3._oNYE is a (graded) subalgebra of AE. In fact,
NE = {x € NE|x* = x}.

The graded subspace
NE={xeNE|a(x)=—x} =3 (ANIT'E

is called the odd subspace of AE (it is not a subalgebra), and
NE=NE&NE.

This decomposition is a Z,-grading, in the sense that
ANNCN, NN, ANCAN,andANAN CAN.

With respect to this grading, the exterior product is

supercommutative: x Ay = (—1)¥ly A x, where |x| =0 if x € A E
and [x| =1if xe N E.
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Exterior algebra Functoriality

Reversion involution

Since the map E” — A" such that (ey,...,e,) =~ e A---Nejis
multilinear and skew-symmetric, there is a unique linear map

7:NE —NE, suchthat e A---Ne e A---Aey.

Gluing these maps for r > 0 we get a linear automorphism

7 : NE — AE which is an involutive anti-automorphism of the
exterior product: 7(x A y) = 7(y) A 7(x) (it is called the main
anti-automorphism or the reversion involution of AE). Since

e,/\---/\el:(—1)(5)61/\---/\6,,

r

the restriction of 7 to A"E amounts to multiplication by (—1)(2).
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Exterior algebra Functoriality

Clifford involution

The anti-automorphism x — r(x) = X, where X = x* is called the
Clifford involution or Clifford conjugation. It coincides with x® and on

grade r elements it reduces to multiplication by (—1)(r§1).

Remark. The integers (}) = r(r — 1)/2 and r//2 have the same
parity, where r//2 is the integer quotient of r by 2, or the integer
part of r/2. Thus we have that X = (—1)"//?x and x = (—1)("+1)//2x

for all x € A"E.

The patterns of these signs for the consecutive integers
4k, 4k + 1,4k + 2,4k + 3 are + + —— and + — —+, respectively.
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Consider the linear map E* — EndSP(AE) such that ¢ — ¢.

Since 52 = 0, the universal property of the exterior algebra tells us
that there exists a unique homomorphism of algebras_
AE* — EndP(AE), ¢ — ¢, which agrees with & — & for & € E*.

If x € AE and ¢ € AE*, instead of qS(x) we will simply write ¢(x).
Thus we have a bilinear duality pairing NE* x AE — AE or, more
specifically

NE*x NE — N"E.

Since this map vanishes for r > s, in the remaining of this section we
will assume that r <s.

Next step will be to find a practical formula for evaluating ¢(x).

Remark. Instead of ¢(x), some authors write ¢4x (left contraction).
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Duality Notations

= If r and s are positive integers, r <'s, .Z, ¢ will denote the set of
multiindices / C {1,...,s} of length r.

= Given | € Z,,, weset I’={1,...,s} — . In the special case in
which / has a single element k, instead of {k}’ we will write k’, so
that K ={1,...,s} — {k}.

= The number of inversions in the sequence (/, /") will be denoted
t(1), so that (—1)t() is the sign of the permutation (/, /") of
{1,...,s}.

m|f M is an r X s matrix and | € .Z, 5, M, will denote the r x r

submatrix of M formed with the columns whose indexes are the
elements of /.
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Let &,....6 € Efand ey, ...,e; € E, r <s. Then we have:

G- A& e A Ae) =Y (1) det(M)) &,
leg, s

where M is the r X s matrix whose entries are the scalars &;(e;), for
i=1,...,rj=1,...,s

For r = 1, this formula agrees with the antiderivation El

When s = r, the result is the scalar det(M).

Example. (£1 N &)(e1 AN ex A e3) =

§1(e2) &i(es) 1(e1) &i(es)
£(e2) &a(e3) Ea(e1) &a(e3)

Si(er) &ile)
§2(e1) &o(e2)

e — € + €3
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NE = (NE)
The map A"E* — (ANE)*, ¢ — ¢(), is a linear isomorphism.

Fix a basis e;,...,e, of E and let e!,..., e" € E* be the dual basis
(that is e(ej) = d7). The r-blades &, when | = (iy < --- < i) runs
over the multiindices of order r, form a basis of A"E. Similarly, the
dual r-blades €’, when J = (j; < - -+ < j,) runs over the multiindices
of order r, form a basis of A"E*.

Moreover, by the duality formula
&(@) =

the image of the basis {€’} of A"E* in (A"E)* is the dual basis of the
basis {e;} of A"E.
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Clifford algebra The bilinear form g

From now on we will assume that we have a fixed linear map
q : E — E* or, equivalently, a bilinear map on E, the two views being
related by the equation

q(e,e’) =q(e)(e'), e, e €E.
Remark. This relation establishes a canonical linear map

L(E,E*) = Ly(E; K),

which is an isomorphism (the inverse map is determined by

q(e) = q(e, ).

Eventually we will require that g is symmetric, and sometimes also
non-degenerate, but we can go a long way without these assumptions.
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Clifford algebra Annihilating operators

The map d. : AE — AE is defined as the skew-derivation associated
to e =q(e) € E™:

de(x) = e(x).

Such maps ., which are graded of degree —1, are called annihilating
operators.

The map
E — Endk(AE), e e,
is linear and satisfies 62 = 0 for all e € E.

In next statement we will use d. and the creation operators (i, which
also satisfy ;2 = 0.
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Key lemma
For any e € E,
(e + 0e)? = q(e, e)Idpe.
Proof. Expanding the square, we get:
(e +0e)? = P2 + 02 + pebe + Ocfle = febe + Oefle.
Now
(Oepie)(x) = e(e Ax) = e(e)x —e Aé(x) = q(e, e)x — pie(de(x)),
so that
(1tebe + Oefie)(x) = q(e, €)x = q(e, e)Idag(x) for all x.

This, together with the previous relation, completes the proof. O
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Consider now the linear map
A E — Endg(NE), e Ae = e + Oe.

This map can be extended in a unique way, by the universal property
of the tensor algebra, to a homomorphism of algebras

A : TE — Endg(AE), a map that satisfies (and is determined by) the
relation

)\(e]_®"'®er):Aelo"'oAt’:‘m el?“‘7er€E'

Since the elements of the form t. = e ® e — g(e, €)1k belong to the
kernel of A\, A induces a unique algebra homomorphism

A1 G E — Endk(AE), A(E) = ()

where C4E denotes the quotient of TE by the bilateral ideal /
generated by the tensors t,, e € E, and t € C,E denotes the image
of t € TE under the quotient map TE — C,E.
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(GIICIEIECICN  The algebra Cy(E)

The algebra C,E, which in the literature is often denoted C/(E, q) or
by other similar symbols, is called the Clifford algebra of q (or of
(E,q)) and its product (the Clifford product) will be denoted by
juxtaposition of its factors.

Note that if e, € € E, then we have the Clifford relations
€2 =q(e, e), ee' +ee=q(e €)+q(e,e).

The first equality is a direct consequence of the fact that t. = 0. For
the second, expand (& + &)? and g(e + €', e + €') and use the first
relation for e, ¢’ and e + €.
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Now X induces a linear map
A CE — NE, T MNE)1kx = A\(t)1k.

Lemma. Let E C C,(E) be the image of E = T'E under the
quotient map m : TE — C4E. Then the quotient map induces an
isomorphism E ~ E and A induces an isomorphism E ~ A'E = E.

Proof. Indeed, for any e € E we have
A(8) = M@)1k = Nelk = ptelk + deli = e.
This shows that the composition
T'E=EFE- " E- " E=NE
is the identity and from this the two claims follow immediately. O
Identifying E, T'E, E and A*E, the Clifford relations take the form
e’ = q(e, e), e’ +e'e = q(e, €)+q(€, e).
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(GIICIEIECIEM  The canonical linear map Cq(E) — AE

If e,...,e,is a basis of E, we set ¢ = ¢;, --- 6, € C4E. Remember
that we have also set & = e, A---Ne, € NE.

Theorem. The linear map A : CE — AE is an isomorphism.

Proof. The main lemmas in the proof are (1) that the set B = {¢},
where | runs over the set of multiindices taken from {1,..., n},
generates C,E as a vector space, so that dimy C,(E) < 2", and (2)
that A is surjective, so that dimyx C,(E) > 2".

Proof of (2). The surjectivity can be established by induction by
showing that the image of A contains A"E if it contains AE for

Jj < r. Since this is clearly true for r = 0 and r = 1, we can assume
that r > 1.

Let e,..., e € E and consider A(ey---€) = A, 0+ -0\, 1k, Where,
by definition, A\e; = pe; + 0. It follows that the term of highest grade
in the expansion of A(e;---€,) IS fle © -0 i, lx =€ A~ Nep.
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(GIICIEIECIEM  The canonical linear map Cq(E) — AE

By the induction hypothesis, there exists x € C,E such that
Ner---e)=e A---Ne + A(x), where all the grades involved in
A(x) are lower than r. This shows that e; A - -- A e, belongs to the
image of A and A"E is therefore contained in the image of A.

Proof of (1). Since the Clifford product is multilinear, it is clear that
the products of the form e;, ---¢;, (r >0, j1,...,jr € {1,...,n})
generate C,E as a vector space. So it will be enough to show that
such products are linear combinations of elements ¢, in B with

|I| < r. Given that this claim is tautological for r =0 and r =1, we
move on to the case r > 1 and proceed by induction on r. The
induction hypothesis allows us to assume that e, - - - ¢;, is a linear
combination of elements ¢, from B with |/| < r — 1 and therefore it
will be enough to show that a product of the form eje;, I a multiindex
of order s < r — 1, is a linear combination of elements in B.
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(GIICIEIECIEM  The canonical linear map Cq(E) — AE

In fact we can show a more precise claim: if | = {i1,...,is}, e is a
linear combination of ey, ..., e, and, if j &€ I, of e, where

I, = — {it} and I = I Uj (arranged in increasing order). Let us
argue by cases. If j < i1, eje; = e7. If j = iy, then

eje;, = € = q(ej, ) and eje is a scalar multiple of e;,. If j > i, then
ee, = —e e +p, p=q(e, e,) + q(e;, e) € K (Equation (7)) and
eje; = —ej g€, - - - €, + pey. By induction, eje;, - - - e, = ejep

(I" = 1) is a linear combination of the e, k=2, ...,s,and,if j &I,
of eyygjy. Finally note that e ey = € and e ey = ey = e, U

Remark. The linear isomorphism A : C,E — AE is an algebra
isomorphism if and only if g = 0.
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Grade involution and even subalgebra of Cq4(E)
The grade involution of AE is also an involution of C,(E), for in the
tensor algebra a(e ® e — g(e, €)) = e ® e — q(e, €). Therefore,
Co(E) = {x € G(E) [x* = x}

is a subalgebra of C,(E) (the even subalgebra). Under the linear
isomorphism C,E ~ AE,

C,E~NE.

The odd subspace C, E is defined as {x € C4(E) | x* = —x} and
C,E~NE.
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Clifford algebra The algebras C, and C,

Let g be the standard bilinear form of R”,
C](X,)/) = XTy =X1y1+ -+ XaYn
and set C, = C,(R") and C, = C_,(R").

If e=eq,..., e, is the standard basis of R", then both in C, and in
C, we have eje = —eje; forall i,j € {1,...,n}, i #j, but & =1in

C,and e = —1in C,. So C, and C, are isomorphic to the algebras
Gi,(e) and C_4,(e) introduced and in L1.

In essence, these are the algebras introduced by Clifford (1882 and
1878). Note that ¢ = g for any multiindex /. This is established in
a more general setting in a later slide, but the main idea of the proof
can be seen in the following computation, where j # k:

ejex = (te; + e )t +0e )1k = (1te; + 0e;)ex = € N e + €j(ex) = € A ek

as €i(ex) = q(ej, ex) = 0.
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Clifford algebra The algebra Cy 1

In addition to the algebras (i, Gy, G and G, studied in L1, it will
also play an inportant role the Clifford algebra C;; of (R?, q), where

q(x,y) = xuy1 — xay2.

In this case the generators 1, e;, e, e, 6, satisfy
e2=1 e =-1, e = —e16, (a10) =1.

It follows that C;; ~ R(2),

at+b c+d
—c+d a—>b

a+be1+ce2+de1e2»—><

The even subalgegra le1 is isomorphic to .
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Lipschitz groups Notations

The mainspring of scientific thought is not an external
goal toward which one must strive, but the pleasure of
thinking.

A. EINSTEIN, ~ 1918

We will write qu (E) to denote the group of invertible elements of
G, (E).

A vector e € E is isotropic if q(e,e) = 0. Otherwise it is said to be
non-isotropic (or also anisotropic).

Inverse of a non-isotropic vector. If a vector e € E is non-isotropic,
then e € C;(E) and e™ = g(e, e)te.

We will write E* to denote the set of non-isotropic vectors, so
E" =EnC,(E).
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For any u € C, (E), the map
pu: C(E) = Cy(E), x> uxu™?
is an algebra automorphism. Moreover, the map
CqX(E) — Aut(G,(E)), uw— py
is a group homomorphism.
Proof. The computation
pulxy) = wyut = wxutuyu = p,(x)puly)

proves the first part. For the second part, if u,v € CqX(E) and
x € G4(E),

puv(x) = uvx(uv)™! = uvxvty!

u™t = u(vxv et = pu(pu(x)),
which shows that p,, = p, o p,. O
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The Lipschitz group of q, denoted 'y = I'4(E), is the subgroup of
C, (E) generated by E”. Thus the elements u of Iy have the form
u=e ---e, with e,....e, € E*. Itis also clear that

-1 _ o1 -1
u = ey

Lemma. If u € T4(E), then p,(E) = E.

Proof. By definition of I',, and the fact that p is a homomorphism, it
is enough to show the relation for u € E™. But in this case we have,
for any e € E,

veu™ = pu™t — e = q(u,u)pu — e € E,

where p = g(e, u) + q(u, e). O
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Adjoint representation of [q
If u €'y, we have a linear automorphism
pu: E— E!
So we have a group homomorphism
p:Tg— GL(E), u— py.

In other words, p is a representation of I'; by linear automorphisms
of E.

We will say that p is the adjoint (or principal, or vector)
representation of I,.

! There is no harm in using the same symbol as for the corresponding
automorphism of C,4(E).
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For any u € C, (E), the map
pu: C(E) = Cy(E), xr— u*xu™
is a linear automorphism of C,(E).
We will say that it is the twisted Clifford operator associated to u.
Note that if u € T, then p, = (—=1)l“Ip,.
Finally, the map
C; () = GL(G(E)). urs 7,
is a group homomorphism.

Proof. The first part is obvious and the proof of the last part is a
short computation similar to the proof of the last assertion on the
slide 36. O
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Lipschitz groups IR Fq

We define the twisted Lipschitz group of q, denoted Fq = Fq(E), as
the group formed with the even and odd elements u € C, (E) such
that

pu(€) = u¥eu € E for all e € E.

Note that with this definition the condition u®eu=! € E is equivalent
to ueu™! € E, for u® = +u.

Again, a vector u € E” belongs to Fq, for p, = —py. Since E”
generates [,(E), in particular we have the inclusion I',(E) C I,(E).
In fact ['4(E) is a normal subgroup of [',(E).
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Lipschitz groups Twisted adjoint representation of Fq

If u e Ty, we have a linear automorphism?
pu:E—E
So we have a group homomorphism
p:Tq— GL(E), u— py.
In other words, p is a representation of Fq by linear automorphisms
of E.

We will say that it is the twisted adjoint representation of Fq.

2 There is no harm in using the same symbol as for the corresponding
operator of C4(E).
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(ARSI The groups Ping(E) and Sping(E)

The group Pingy(E) is defined as the subgroup of qu (E) generated by
the vectors u € E such that g(u, u) = £1. Clearly, Pin,(E) C [',(E).

We also write Spin,(E) = Pin,(E) N C;(E).

The restriction of the adjoint representation p : [',(E) — GL(E) to
Ping(E) and Spin,(E) gives linear representations

p : Ping(E) — GL(E) and p : Spin,(E) — GL(E)

(there is no harm in using the same symbol p in all cases).
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Introduction. Nature and aims of GA.

Functoriality of A;(E). The map Af, f € End(E). Orthogonal maps.
Functoriality of the geometric product. Involutions.

Inner product. Inner product of blades. Multivector metric.

Further relations and examples. Riesz formulas. d. is a skee-derivation
of the geometric product. Grade decomposition of a product.

Orthogonal systems. Definitions and conventions. Key propositions.
Orthogonal bases of Ag(E). Reduction formula. Artin/Vahlen product
formula. Alternative definition of the multivector and norm.
Antisymmetrization of the geometric product. Non-degenerate metrics.

Pseudoscalars and Hodge duality. i.. Playing with a pseudo-scalar.

Adjoint representations. p:[; — Og and p: Fq — Og. Axial and
reflection symmetries. Generating rotations. Fundamental exact
sequences. Pin and Spin exact sequences.
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Introduction Nature and aims of GA

By the geometric algebra of q we will understand the structure AjE
obtained by endowing the exterior algebra AE with the Clifford
product (or geometric product, or simply product) through the
canonical linear isomorphism

N GE — NE
and with the interior product x - y defined later in this lecture.

Note that from the definition of the linear map A : GGE — AE, we
get the following key formula for the computation of a geometric
product of the form ex, for e € E and x € AE:

ex = AeX = e A X + €(x).

In general terms, the study of geometric algebra (GA for short)
consists in spelling out the interrelations between these three
products (exterior, geometric and interior) and also the procedures
for its application to specific situations.
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GILISSUEIASWVICINN The map Af, f € End(E)

Suppose that E is a vector space equipped with bilinear symmetric
form g and that f : E — E is a linear map.

Let Af : AE — AE be the algebra homomorphism induced by f.
Lemma

Nf o jie = pigey o Af, for all e € E.
Proof. For any x € AE,

(Af o pe)(x) = Nf(e A x) = f(e) ANNF(x) = (ure) o Af)(x). O
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EIGISSIEIASWVICNN  Orthogonal maps

We say that f is g-orthogonal if q(f(e), f(e’)) = q(e, €) for all
e, e’ € E. If in addition f € GL(E) (in other words, f is a linear
automorphism of E), we say that f is a g-isometry, or simply an
isometry if g can be understood from the context.

Lemma. If f is g-orthogonal, then

Af 0 0e = df(ey o Nf, for all e € E.

Proof. Both expressions Af o 6. and d¢(.y o Af are skew-derivations of
AE. To show that they are equal, it is enough to see that they agree
on E. But this is a direct consequence of the definitions: on one hand

(Afode)(e’) = qle, &),

and on the other
(dr(e) o AF)(€") = dr(e)(F(€)) = alf(e), f(€')) = qle, €).
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TGISSIEIATWVICIN  Functoriality of the geometric product

Theorem 1. If f is g-orthogonal, then Af is also a homomorphism of
the geometric product:

Nf(xy) = Nf(x) Nf(y) for all x,y € AE.
Proof. It is enough to show that if e1,..., e, € E, then
(Af)(er---e)="f(er)- - f(e).

Since this is obviously true for r = 1, we can assume that r > 1 and
proceed by induction. Let e = e; and x =&, ---¢,. Then

er- -6 = ex = Ae(X), A\e = fte + de, and so
Nf(ep---e) = (Af o Xe)(X) = Ar(e)(Af(x)) = f(er)Af(x),

The end of the proof is now immediate because
N(x)=f(e)---f(e)

by the induction hypothesis. O
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Functoriality of Aq(E) [MGWENEENS

The grade involution « of AE is also an involution of the geometric
product.

Proof. This has already been proved in L2. For a variation, note that
e — —e is a g-isometry and so the statement is a direct corollary of
the Theorem above. Ol

The reversion anti-automorphism 7 of AE is also an
anti-automorphism of the geometric product:

T(xy) =7(y)7(x), orxy=yXx.
Proof. The reversion anti-automorphism of the tensor algebra leaves

invariant the generators t. = e ® e — q(e, e) of the ideal /, such that
C4(E) = T(E)/I,, so that the reversion anti-automorphism of T(E)

descends to C,(E). O
Corollary. The Clifford anti-automorphism of AE is also an
anti-automorphism of the geometric product. O
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Functoriality of Aq(E) MRSREWE

The fact that the parity involution is also an automorphism of the
geometric product implies that the even subalgebra A" (E) of the
exterior algebra is also a subalgebra of Ay(E). Thus we will denote it
also by /\;(E) and say that it is the even geometric algebra of q.

In the context of geometric algebra, the involution 7 is also called, for
reasons that have to do with matrix representations (cf. L1),
hermitian conjugation, and sometimes it is denoted x'.
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Inner product Introduction

To specify the inner product x - y (also called interior product of two
multivectors x, y € AE, it is enough to take care of the case x € A"E
and y € A°E, for then the general case is determined by bilinearity.

The inner product is called contraction by some authors, and in fact,
as indicated in L1, they distinguish two flavors: left contraction and
right contraction, often denoted xay and xvy (cf. Riesz-1993,
Lounesto-1993, Lounesto-1997). Following Hestenes-1966, however,
we will not need to distinguish between the two, and hence we will
use a single symbol x - y. The point is that this expression will be
evaluated differently according to whether r < s or r > s.

When r = s, we will show that both ways give the same answer, and
that they yield the same value as the natural extension of the scalar
product g to A¢(E). Thus in this case the inner product is
symmetric, a property that in general is not satisfied when r # s.
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Caser < s

First assume r < s. The inner product
NE XNE - N"E

is defined as the composition
NE XNE —- NE*x NE — NTE,

where the map on the left is A"q x Id and the map on the right is the

duality pairing studied in L2.

Example. If e € E and x € AE (x not necessarily homogeneous),
e-x = q(e)(x) = e(x).

This, together with the key formula (L2) yield the equation
ex=eAXx+e-x.

Consistency of notation: the inner product of two vectors is the same
as their dot product, so we are not using a single symbol for two

different meanings.
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Inner product Inner product of blades

Theorem 2. Let ey, ..., e, €;,...,e. € E. Then

(1) (esA---Nep)-(egA---Nel) = (et A+ -Ne—1)-(e-(ef A+ - N€L))
(2) If G is the r x s matrix whose entries are the scalars e, - ¢, for
i=1,....r,j=1,...,s, then

(A Ae) (g A Ne)= > (—1)1) det(G)) e,
Ie]r,s

where t(/) is the number of inversions in the sequence (/,/’).

(3) In the special case s = r, the result is the scalar det(G).

Proof. Part (1) is a direct consequence of the definitions; (2) and (3)
are a reformulation of the duality formula (L2). O
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Inner product Caser > s

We would like to have a rule analogous to rule (1) in the Theorem 2,
say

(et A~ Ne)-(efA-Ne)=((es A Ne)-e]) (5N NeL).

Moreover, this rule should be consistent with Theorem 2 (3), in the
sense that it should produce, when applied recursively, the same
value. The operation -e; should act as a skew-derivation, as e,- does
in a, but it has to be a right skew-derivation (otherwise, as we will
see, the required consistency when r = s would not hold):

(61 A A er) . e{ = :ii(—l)r—k(ek . e{)/e\k/

= ()T D (e e
=(-1) e (A Ae).
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Inner product Caser > s

This rule yields, when we move all the €’’s to the left, the value
(1) C e A Ae) (e A Ae),

as the accumulated number of sign changes is
(r=1)+---+(r—s)=rs—(°3).

Reordering the €'s leads to the expression

(et A---Ae) (A ANel)= (=15 (] A---Ael)(es A Nep),

for that reordering produces (—1)(3) additional sign changes, which

means that the sign in front becomes (—1)”*7° = (—1)"*°. Now we
can apply Theorem 2 (2) to conclude:

(A Ne) (A nel) = (“1)* 5, (1)) det(G]) &y,

where G is the matrix formed with the scalars ejf - ¢, which is the

transpose of the matrix G = (e; - €/) introduced before.

J
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Inner product Caser > s

Remark. In the case r = s, the sign in front is (—1)’(’“) = +1,
while the sum reduces to the scalar det(G ") = det(G), so that the
formula yields the same value as Theorem 2 (3). O

As a consequence of the preceding discussions, we have a precise
statement about the behavior of the inner product when we exchange
its factors.

Swaping the inner product factors

If x € A"E and y € A"E, then

y=o0(rs)y-x
where a( s)=(=1)"t"if r<sand o(r,s) =(—-1)""if r > s.
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Inner product Functorialities

Notations: f € Endx(E) is g-orthogonal and x, y are elements of
AE.

Theorem 3. Nf(x-y) = (Af(x))- (Af(y)). So a(x-y) = a(x) - a(y).

Proof. By bilinearity we may assume that x € A"E and y € A°E are
blades, say

XxX=eN---Ne, y=€N---Ne.

Moreover, by the swapping rule we only need to consider the case in
which r <'s, and rule (1) in Theorem 2 tells us that

y = (0 0 00e)(y):
Now apply Af to this expression, and use the functoriality of ¢, to get
Nf(x-y) = (Of(er) © - 0 Of(e)) (Fer) A== A f(eL))
= (f(e )A A f(er)) - (Fe)) A--- A F(eL))
= (Af(x)) - (AMf(y)). [
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Inner product Functorialities

T(x-y) =7(y) - 7(x).

Proof. By bilinearity, we can assume that x and y are as in the proof
of the previous statement. Again we can assume that r <s. We will
proceed by induction on r. So the first step is to show that

T(er-(efAN---Nel))=T1(ef A+ NeL) - e.
The left hand side is equal to

OONCVECREAEM
= Y (-1 e - e)r(en)
=2 (D) T e e A Ay Ay A A e
Similarly, the right hand side is equal to
(e Aef)er =370 1 (—1) e e)ec A Aefy ANe AN

and we see that it coincides with the left hand side.

S. Xambé (UPC) GAT 03 Geometric algebra SLP - 9-13 March - 2015 16 / 54



Inner product Functorialities

The case r > 1 is now readily settled using rule (1) in Theorem 2 and
induction on r. Indeed, if we put X’ =e; A---Ae_1, e = ¢, then

T(xy) =

I
\1

e-y)-7(x) (induction hypothesis)
) x") (case r =1)

Il

‘\’\T
—~~
<

Next relation is an immediate consequence of the preceding two
statements:

K(x-y) = K(y) - w(x). O
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Inner product Functorialities

If e € E, we know (%) ex = e - x4+ e A x. Now we will see that
xe=x-e+x/Ne.

Proof. A simple coomputation using the properties of the reversion
involution 7 and the formula (x):
xe =71 (er(x)) = 1(e-7(x) + e A 7(x))
=7(1(x-e)+7(xANe))=x-e+xAe.

The functoriality statements show that for any g-orthogonal map
f: E— E, Nf is is an algebra endomorphism of A,(E). This
endomorphism is an automorphism if f is a g-isometry. This proves
that we have a group homomorphism (clearly injective)

Oq(E) — Aut(Aq(E)),
where O4(E) denotes the group of g-isometries of E.
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Inner product Multivector metric

Definition. The vector metric g (the symmetric map g : E — E* that
we fixed at the beginning of this lecture) extends to a metric on AE
in a natural way:

Ag : NE — NE* ~ (AE)*.

Instead of Ag(x,y) = (Aq)(x)(y), we will write (x|y). This pairing is
bilinear and symmetric and (e|e’) = e - ¢’ when e, ¢’ € E.

The fact that the isomorphism AE* ~ (AE)* is the direct sum of
isomorphisms A"E* ~ (A"E)* implies that A"E and A°E are
Ag-orthogonal when r # s. Consequently, for the determination of
the metric (x|y) we can assume that x and y belong to the same
exterior power, say x,y € A"E. Owing to the bilinearity, we can
further assume that x and y are blades.
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Inner product Multivector metric

The metric formula. If x=e; A---Ne and X' = e N---Nel
(e1,...,€r,€,...,e. € E), then

(x|x") = det(G) = x - X/,
where G is the r x r matrix such that G; = ¢; - €/.
Proof. Indeed, since

(xIx) = (Nq(x))(x) and A"q(x) = e A --- N &,

by the duality formula we get that (x|x’) = det(G), where
Gj = €(ej) = e - €. But this determinant agrees with the inner
product x - x’ by the formula giving the inner product of blades. [

The metric norm. The metric norm Q(x) of a multivector x is
defined by Q(x) = (x|x). If x =3""_,x, is the grade decomposition
of x, then Q(x) = >_7_,Q(x;). In the case when x is an r-blade, say
x=eA---Ae., then Q(x) =det(G), where G; = ¢ - ¢;.
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Further relations and examples Riesz formulas

Lemma

ex+ (—1)"'xe =2e A x and ex — (—1)"xe = 2e - x.
Proof. We know that

ex=e-x+eAxand xe=x-e+xANe.

Now x - e = (—1)e-x and x A e = (—1)"e A x and hence
xe=(—1)"(—e-x+eAx), or
(—1)'xe=—e-x+eAx.

To obtain the two equalities in the statement it suffices to add and
subtract the expressions for ex and (—1)"xe. O

These formulas are the basis to express the exterior and interior
products in terms of the geometric product. For the case of two
vectors e, ¢’ € E they give the relations

2e Ne' = e’ —€e'e, 2e-e =ee' + €e.
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Further relations and examples de is a skew-derivation of the geometric product

Lemma

e (x) = (e- Xy +x°(e ).
Proof. e- = 6. : E — K extends to a unique skew derivation of the
tensor algebra T(E), which means that

e-(x®y)=(e-x)@y+x*®(e-y).

So it suffices to observe that this extension vanishes on the
expressions t, = x ® x — q(x, x), x € E. But this is clear because e-
kills scalars and e - (x ® x) = (e - x)x — x(e - x) = 0.

Note that the extension of e- to a skew-derivation of T(E) follows
from the (necessary) relation

e (e® - -®e) = Z;Zl(_l)k—l(e.ek)el(g). CRe_1Qe1® Qe

which in turn is well defined because the right-hand side is multilinear
ineq,...,en. O
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Further relations and examples Grade decomposition of a product

Theorem 3. Let x € N"E and y € A°E and set z = xy. Then the
indices k € {0,1,...,n} such that z, # 0 have the form
k=|r—s|+2i,i>0and k <r+s.

Furthermore, z,_g = x-y and z s = x A y.

Proof. It is enough to prove the statement when x and y are blades
and r <s. Soletey,...,e,€},...,e.€ E,andset x=e; A--- A e
and y = e/ A---Ae.. Then we can express the product z = xy in
the following form:

z=My) = (Ao 0 A )(Y) = (He, + 0e) -+ - (e, + I, )(¥)-

If in the expansion of this expression we choose i p's (0 < i < r) and
r—id's, we get atermof grades+i—(r—i)=s—r+2i. The
highest possible grade is when i = r, and in this case it is plain that
the term z, .5 is x A y. On the other hand the minimum grade is
attained when /i = 0, so k = s — r, and in this case it is also clear
that z,_, = x - y. Ol
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Further relations and examples Grade decomposition of a product

Remark. In the case that e € E and x € A"(E), the relations
(ex);—1 = e-x and (ex),4+1 = e A x are a direct consequence of
ex = e-x+ e A x. Similarly, xe = x - e + x A\ e imply that
(xe),—1 = x-eand (xe),41 = x A e.

Note also that the case r > s in the previous theorem can be
deduced by induction on s. For s = 0, it is tautological and the case
s = 1 has been established in the previous paragraph. So assume that
s > 1. Then, with the same notations as in the proof above, and
with y' = e, A--- A el (so that y = e] A y’) we have

x-y=(x-€)-y =(xe)_1-y
(Xely )(r 1)—(s—1) = (Xely )r—s

= (xy)r—s + (x(e1* ¥')r—s = (x¥)r—s
because the minimum grade of x(e] - y')isr—(s—2)=r—s+2.
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Orthogonal systems Definitions and conventions

Two vectors e, ¢’ € E are g-orthogonal if and only if g(e, e’) = 0.
Note that this implies that two orthogonal vectors anti-commute:

ee’ + €'e = g(e, ') = 0. Note also that two parallel vectors commute
(if ¢ = «e, then both ee’ and €’e are equal to ae?).

If er,...,e, € E and q(e;, ;) = 0 for i # j, we say that the sequence
{e1,..., e} is an orthogonal system.

It is an easy exercise to prove that any metric g admits an orthogonal
basis if 2 # 0 in K, and that if 2 =0 in K then there are metrics for
which there are no orthogonal basis.! Henceforth we will avoid such
metrics, which means that in characteristic 2 no metrics will be
considered that do not admit an orthogonal basis.

! For the metric q(x,y) = x1y2 + xoy1 in E = Z3, no pair of distinct non-zero
vectors is orthogonal. On the other hand, (1,0),(0,1) € E is an orthogonal

system for the metric x;1y1 + xoy2. Note that both metrics are non-degnerate.
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Proposition . If er,...,e, € E is an orthogonal system, then
e&--re=eNeN---Ne..

Proof. By induction with respect to r. Since for a single vector e € E
the claim is obvious, we can assume that r > 1 and that the relation
holds for orthogonal systems of r — 1 vectors. Then we have

erer---e,=e(exN---Ne) (byinduction)
=g NN - Ne+0q(eaN---Ne)
:el/\e2/\---/\e,,

for
de( N ANe) =D (1) e(en)er A Aexci Aeksi A A e
and e;(ex) =e;-ex=0for k=2,...,r. O
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(OIUIEIEIISE LI Orthogonal bases of Ag(E)

Lemma. If ey, ..., e, is an orthogonal basis of E, then the blades
e; = €, where | runs over the set of multiindices / C {1,...,n},

form an orthogonal basis of A;(E). Moreover, Q(e/) = q;, where

9 =q(ey,e;) --q(ei,e;,).

Proof. The equality e, = ¢ is justified by the previous Proposition.
Then the metric formula implies that (g |e;) is 0 if / # J and that
(er]er) = q. O
Now we will use this lemma to see that the computations of the

Clifford product take the simplest form when we know a g-orthogonal
basis e, ..., e, € E.
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e
= N: The set of indices {1,...,n}.
® K: a sequence of indices ki,...,k, € N.
mex =€k
= ; = [;(K), for j € N: the number of times that j appears in K.
= K: the multiindex such that j € K if and only if J; is odd.
= t(K): the number of pairs i,j € N such that i < j and k; > k;.

= Gk: [17-; alej, )"//?, where [;//2 denotes the integer quotient of
l; by 2 (it is [;/2 if I; is even and (/; — 1)/2 if ; is odd).
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Orthogonal systems Reduction formula

Lemma (Reduction formula)
ex = (—1)1M gk ex.

Proof. Since two distinct contiguous factors in ex anticommute, it
follows that

ex = (1) e/
If ;=2 +r, e {0,1}, it is clear that
j i S
Consequently,
w
ex = (—1)1") Hj:l q/ Hj:l e,

and this coincides with the expression in the statement as a direct
consequence of the definitions. O
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(OIGHIICT-L NIV Clll  Artin's product formula

Corollary 1. If I and J are multiindices, then
€ey = (—1)t(/’J)CI/mJ €ind;
where A denotes the symmetric difference operation.

Note that this formula was taken in L1 as the basis for the ad hoc
definition of the Clifford product in A(e).

Corollary 2
eje = (—1)C(—1)rse/e_,,
where r = |l|,s = [J],c=|INJ|.

Proof. There are rs pairs (ix,ji)) (k=1,...,r,j=1,...,s). The

number of pairs with iy > i is t(/,J), the number of pairs with i, < j
is t(J, 1), and there are ¢ pairs such that i, = j; (coincidences). Thus
rs=t(l,J)+t(J,])+cand t(J,])=rs+c+ t(l,J) mod 2. Now
the claim is immediate, for JN/=/NJand JA I =1AJ. U
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(O LT EIRSVEIE  On Vahlens' formula

Remark. What we have called Artin's formula was already discovered
by Vahlen-1897 (for the case where €2 = —1, i =1,...,n, and in
another guise; cf. Lounesto-1993 for interesting historical remarks).
Instead of e, Vahlen wrote (using here a slightly different notation)
eles---er, where iy, i, ..., 0, € {0,1}. Then the product formula in
question for two such ‘monomials’ can be expressed as follows:

e]’:l eé'z eln e_ll e_l2 'n _ (_1)20, ikji e{1+_l'1 e£2+_i2 . e;;n"’_]’n'
where the exponent sums are modulo 2. If we allow the more general
relation €2 = g; € K (i = 1,..., n), then the formula takes the form

il ain L 2 — (—1) 2k ikt gttt gi2tia || pinti
erey - epeles el = (—1) el Ve e

now with the exponents added as integers.
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Proof
The key to show this is that

efef enelef .. e = (— 1)Z/<nw/eueéz ) 'n : 1612 ef”lle’”ﬂ"

which itself is easily checked. Note that if i, = 0 the relation is
obvious and that if i, = 1, then moving the e, of the left factor just
after the e,_; of the right factor introduces ) ,_, ji sigh changes. [J

S. Xambé (UPC) GAT 03 Geometric algebra SLP - 9-13 March - 2015 32 /54



[OIg (LT EI RSV EIll  Alternative definition of the multivector metric and norm

Proposition . (x|y) = (x"y)o. In particular, Q(x) = (x"x)o.

Proof. Theorem 3 implies that (x"y)o = 0 if x € AL(E), y € A;(E)
and r # s. Since the expression (x"y)o is bilinear, to show the
claimed equality it is enough to check it when x and y are any pair of
elements taken from a basis of A(E).

If we choose an orthogonal basis ey, ..., e, of E, then we can use the
basis {e, = &/}, where I runs over .#, ,. By the Lemma on slide 27,
we know that this basis is orthogonal and that Q(e;) = g;. On the
other hand, it is clear that (e]e/)o = €&, = q; = Q(e;), while for

J # 1 we get (e]e;)o = £(erey)o = 0 by Artin’s formula. O

Remark. We have (x"y)o = (xy")o, because
(xy)o = {xly) = (vIx) = (¥"x)o = (x"y))o = (x"¥)o-

In the last step we use that 7 preserves the grading.
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Antisymmetrization of the geometric product
Proposition . If ey, ..., e, € E, then
I _
Y1) e e =rleg N Aey,
where | = iy, --- , i, runs over all permutations of 1,...,r.

Proof. The left hand side is a multilinear skew-symmetric function of
(e1,...,e). By the universal property of the exterior product, there
exists a unique linear map a: A"E — A4E such that

aler A ANe)=> (1) e, e

If now e, ..., e is an orthogonal system, then all terms in the sum
are equal to e; A - -+ A e, so that in this case

ales N---Ne)=rleg AN Ne,.

In particular we have that if e, ..., e, is an orthogonal basis of E,
then a(e;) = r!e for any multiindex / of rank r. Since these & form
a basis of A"E, we actually have that a(x) = rlx forall x e 'E. [
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Orthogonal systems Non-degenerate metrics

Definition

The metric g : E — E* is said to be non-degenerate if it is an
isomorphism, which is equivalent to say that ker(q) = {0}.

In terms of the dot product, g is non-degenerate if and only if, given
anye € E, e- € =0 for all ¢ implies e = 0.

In terms of the matrix G of g with respect to a basis ey, ..., e, (so
Gj = € - €), q is non-degenerate if and only if det(G) # 0. Actually
G is the matrix of g with reference to the basis ey, ..., e, of E and
the dual basis el, ..., e" of E*.

If g is non-degenerate, then the induced multivector metric is also
non-degenerate. In fact, A"q : A"E — A"E* is an isomorphism for
all r.
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Definition
Given a basis e = ey,...,¢e, of E, let
ie=¢eN---Ne, € N"E.

We will say that it is the pseudoscalar associated to e. Note that by
the metric formula we have:

Q(ie) = det(G), G,_, = € €.
If e =ef,...,e, is another basis of E, then
ie/ = dete(e’)ie,

where dete(€’) is the determinant of the matrix of the vectors e’ with
respect to the basis e.
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Pseudoscalars and Hodge duality ie

Remark

Without further structure on E, on the field K, or on both, we do
not have any clue for distinguishing one pseudoescalar from another.

For example, is it possible to select a pseudoscalar of norm +17

In general it is not possible, for if we pick any pseudoscalar i, then
any other pseudoscalar has the form i’ = X\i, A € K, A # 0, and for i’
to have norm +1 we would have to solve for A the equation

A2 Q(i) = £1. But this equation does not have a solution unless
+Q(i)~* is a square in K, a condition that is not always satisfied.

But there are some general properties concerning the behavior of
pseudoscalars that can be formulated for any of them and which will
be very handy in the following.
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Pseudoscalars and Hodge duality Playing with a pseudoscalar

Assume that the metric g is non-degenerate and let i € Aj(E) be any
non-zero pseudoscalar. Then we have:

Theorem 4
1) i€ C (E), i7t= Qi)™ = (—1)"2Q(i) i and
i? = (=1)"2Q(i).
2) For any x € A[(E), we have ix, xi € A\]™"(E) and the maps

x + ix and x + xi are linear isomorphisms A[(E) — A7~"(E).
The inverse maps are x — i~!x and x — xi~ !, respectively.

3) i € [',. Therefore the map E — E such that e — iei ™' is a
g-isometry.

4) If nis odd, i commutes with all elements of A,(E). This is also
expressed by saying that i belongs to the center of Ay(E).

5) If nis even, i commutes with even multivectors and
anticommutes with odd multivectors.
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6) If Q(i) = 1, then the maps defined in (2) are isometries (Hodge
duality).
Proof. (1) Since Q(i) = i"i and Q(i) # 0, we see that i € C_ (E)
and that i~! is given by the formula (1).
(2) Choose an orthogonal basis e = ey, ..., e, of E. Then
I = Mg = Xep---e, = \ep,
for some A € K (N = {1,...,n}). Now for any multiindex / of order
r, Artin's formula shows that i, ie, € A" "(E).
(3) Obvious.
(4) and (5) are a direct consequence of the Corollary 2 on slide 30:
n+1;

eji = €eNy = (—1)”+1eNej = (—1) 1€,

so i commutes (anticommutes) with all vectors for odd n (for n
even).
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Pseudoscalars and Hodge duality Playing with a pseudoscalar

(6) Let us compute (xi|yi), for x,y € N"E, using the alternative
definition of the norm:

(xilyi) = ((xi)"yi)y = (i"x"yi)o
=i (x"y)oi = i"(x|y)i = (x|y)i"i
= (x]y)Q(i) = {(x|y).

In the third step we have used that z — i zi preserves grades, a fact
that follows from (2). That (ix|iy) = (x|y) is even simpler, because

(ix)Tiy = x"i"iy = Q(i)x"y.
This completes the proof. O

Remark. If Q(i) = —1, then the maps A"E — A"~"E such that
x — xi and x — ix are antiisometries. Indeed, the proof above
shows that (xi|yi) = —(x|y).
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Adjoint representations [N IFIEENO N Fq — Oq

Toward the end of L2, we described the adjoint and twisted adjoint
representations p : [, — GL(E) and p : ['; — GL(E). The aim of
this section is to establish further properties of these representations.

We will assume that g is non-degenerate and that 2 # 0 in K.

Writing Oy = O4(E) to denote the group of g-isometries of E, which
is called the orthogonal group of g, then we can start with a simple
observation:

Lemma. The linear automorphisms p, € GL(E), for u € Fq, are
g-isometries, which means that the representation p is actually a
group homomorphism

g Fq — Oq.
Since p, = (—1)p,, for u € [4, we also have a homomorphism

p:lg— O
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2T G e O
Proof
Let us compute Q(p,(e)) for u € Fq and e € E:
Q(pu(e)) = (Pu(e))® = (u“eu™)?
= (veu™')? = ve*u™*
e

2= Q(e),

where in the third step we have used that u® = (—1)“lu. The proof
follows because @ determines, when 2 # 0 in K, the bilinear form ¢
by the polarization formula 2g(e, €') = Q(e+¢€') — Q(e) — Q(¢'). O
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A TNV Axial and reflection symmetries

Given u € E', we have a decomposition E = (u) L u’, where u* is
the hyperplane {e € E | u- e = 0}. The axial symmetry with respect
to u is the linear map s, such that

sy(u) = uand s,(e) = —eif e € ut.
The linear map m, = —s, satisfies
m,(u) = —u and m,(e) = e for e € ut,

and it is called the reflection in the direction u or across the the
hyperplane u™t.

Warning. The more familiar term reflection across the hyperplane u*
is acceptable because we assume that the metric is non-degenerate,
for in that case u* determines the line (u) as u'*. For degenerate
metrics this need not be true. Indeed, simple examples show that we

may have dim u** > 1 and hence u* does not determine uniquely
the line (u).
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A TNV Axial and reflection symmetries

Lemma
If ue E', then s, = p, and m, = p,,.

1

Proof. We have p,(u) = vuu™ = u and for e € u*,

pu(€e) = veu™ = —euu™! = —e,

where we have used that two orthogonal vectors anticommute. This
proves the first part.

On the other hand p, = —p, (since u is odd) and hence

my(e) = —su(e) = —pu(e) = pu(e).
This completes the proof. O
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Adjoint representations Generating rotations

If we set SO, = O; to denote the subgroup of O, formed with the
isometries that have determinant +1 (we will say that it is the
rotation group, or the special orthogonal group of q), then we have:

Lemma
If u,v e E", then
5,058, = myom, € SO,.

Proof. The relation s, 0s, = m, o m, is a direct consequence of the
definitions. On the other hand, it is clear that det(m,) = —1 and
therefore det(m, om,) = 1. O
The action of m, o m, = s, o's, on a vector e is given by

e uvev lu™! = ReR7!,

where R = uv. Since this map is a rotation, expressions of the form
R = uv, where u,v € E”™, are called rotors.

S. Xambé (UPC) GAT 03 Geometric algebra SLP - 9-13 March - 2015 45 / 54



Adjoint representations Generating rotations

Remark
If nis odd, then we have
det(p,) = det(s,) = (-1)"t = 1.

Thus in this case the image of p is contained in SO, and there is no
hope to obtain in this way the elements of O, that are not in SOj.

Overcoming this defect is the job of the twisted Lipschitz group, as

established in next result.
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Adjoint representations Fundamental exact sequence

Theorem 5. The image of p: Fq — GL(E) is O4(E) and its kernel is
K”. So we have an exact sequence

15K T, 0,1

Proof. We know that the image of p is contained in O,. Now
pu=m, for any u € E”, where m,, is the reflection in the direction
u. Therefore, if uy,...,u, € E* andweset u=up- - ug € [, then

Pu=Pu © "0 Py, =My O---0My.

This shows that the image of p contains all the isometries that can
be expressed as the product of reflections in the direction of
non-isotropic vectors. But by the Cartan-Dieudonné theorem, any
g-isometry can be expressed in this way (even with k < n) and
consequently the image of p contains Og. Thus the image of p is O,.
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Adjoint representations Fundamental exact sequence

It remains to prove that ker(p) = K. If A € K, then py = Id, as
ma(e) =Xext=eforallec E. So K' C ker(p).

To show the converse inclusion, suppose that u € Fq is an element of
ker(p). Then p, = Id, which means that (—1)“lueu™! = e, or
(—1)'“‘ue = eu, for all e € E. In particular we will have, if we pick an
orthogonal basis e = ey, ..., e, of E, (—1)“lue; = eju for
Jj=1,...,n. Using the baS|s {er} of Ay(E) asociated to e, it is clear
that we can write, for any given j, u = u' + eju”, with v’ and u” not
involving e;, and hence we have that the condition (—1)/“lue; = eju
takes the form (—1)/“lu'e; + (—1)“lgju"e; = gju’ + e?u”. But
(—1)lulu'e; = e, for || = |u|, and so we get (— 1)'“‘eju e =eu’.
Since the parity of u” is opposite to the parity of u, this boils down
to the relation ezu” = ezu” Thus we conclude that v” = 0 and so
u does not involve €. Slncej was arbitrary, it follows that u must be

a scalar. ]
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Adjoint representations Fundamental exact sequence

Corollary. The group Fq is the subgroup of /\; (E) generated by K~
and E”. This can also be expressed by the formula I, = K" T,.

Proof. In the proof of the previous theorem we have seen that
p:Tq — Og is surjective. This implies that any element of I, has
the form Au, with u € T, and \ € ker(p) = K. O

If we set I'; to denote the even part of I, then its image under p is,

again by the Cartan-Dieudonné theorem, the subgroup O; = 50O, of
Og4 consisting of the g-isometries that have determinant +1. It
follows that p~*(SO,) = K” I‘;, which is, by the Corollary above, the

-+ = .
even subgroup [, of I';. To summarize:

Corollary. The sequence
1— K" <—>Fg—ﬁ>SOq—>1
is exact and F; = KXI';. 0J
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Adjoint representations Fundamental exact sequence

Corollary (The quotient T,/Iy). If we set

Ky =K NTq=K" NI, then there is a canonical isomorphism
K* /K, ~T,/T,. Furthermore, if K*? = {N2| )€ K™} is the
subgroup of squares of K™, then K*? C KOX and consequently
K™ /K, is a quotient of KX/KX2.

Proof. The map K™ — Fq/FqN(the inclusion K* — Fq =K'T,

followed by the quotient map 'y — I',/I;) is surjective and its kernel
is T, N K" = K, . We therefore have a canonical isomorphism

KKy ~Tg/Tq.
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Adjoint representations Fundamental exact sequence

For the second statement, first note that if u € E", then
qu,u) = €T, NK =K.

In particular, for any A € K~
X2 = g(Au, Au)/q(u, u) € Ky,

and this completes the proof.
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Adjoint representations Pin and Spin exact sequences

A field K is said to be a spin field (Lawson-Michelsohn-1989) if 2 # 0
in K and for any a € K at least one of the equations A2 = 4a has a
solution A € K. Any algebraically closed field, and in particular C, is
spin. The real field R is spin, as for any a € R either a > 0 or

—a > 0. Another example are the fields Z,, where p is a prime
number of the form 4k +3 (p =3,7,11,19,...).

Theorem 6. Assume that K is a spin field. Let U = {£1} if
vV—1¢ K and U = {£1,£v/—1} if /—1 € K. Then the sequences

1 U — Ping(E) -2 04(E) — 1
1 — U — Spin,(E) -2 SO4(E) — 1

are exact.
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Adjoint representations Pin and Spin exact sequences
Proof

If A= uy---ux € Ping (so uf = +1) is in the kernel of p, then we
must have A € K. But A\? = v ---u? = 1. This shows that in
both sequences the kernel is U.

To finish the proof it is enough to see that any reflection in the
direction of a vector u € E” can be realized as the reflection mj for a
vector 0 such that 0% = +1.

To see this, note that m, = m,, for any non-zero scalar A, and for
(Au)? = \2u? to be +1 it is necessary and sufficient that

A2 = +(u?)7. But this relation has at least one solution A € K if K
is spin. O
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Introduction Definitions, notations and conventions

Historically, the spacetime algebra was the first modern
implementation of geometric algebra. This is because
it provides a sythetic framework for studying spacetime
physics.

DORAN-LASENBY-2003, CH. 5.
A Lorentzian spacetime is a real quadratic space (E,n) of signature
(1,3). We express this by writing E; 3 instead of E. We also write
x -y to mean 7(x,y). The elements x € E are called events. We will

use the customary terms time-like, space-like and light-light to refer
to vectors such that n(x, x) is positive, negative or null, respectively.

An (inertial) frame of E; 3 is an orthonormal basis v = 7o, 71,72, 73:
Yo vo=1 7%"-7%=0 v =70« ke{1,23}

Or, in the familiar relativistic notations,
fyﬂ ' 71’ = n/J«V (M? VC {07 17 27 3})
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Introduction Definitions, notations and conventions

The components of an event x in the frame ~ are denoted x*, and so
x = x"7,. Instead of x° we often write ct, so that x = ctyo + x/v;.

The reciprocal frame of v is the frame 7%, 71, 72,73, where 4% = 7,

and 7/ = —v;. The components of an event x in the reciprocal frame
are denoted x,, so that x = x,7*. Clearly, xo = x° and x, = —x*.
Remark

In Dirac’s theory, the symbols v, are certain 4 x 4 matrices (the
Dirac matrices), but here they are just vectors. The Dirac matrices
produce a concrete representation of the spacetime algebra (the
geometric algebra of E; 3), so that we can say that the spacetime
algebra encodes Dirac's algebra without matrices (see Appendix, slide
31). The beauty and usefulness of this approach will be apparent
along the way, much in the same way as it happened with the
treatment of quaternions by geometric algebra in previous lectures.
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9= 013 =MnE

We will write G = G, 3 to denote the geometric algebra A, E. In
terms of the frame ~, the basic computational rule is

VYo + VoV = 277ul/-

Let i = i, be the pseudo-scalar unit associated to the frame :

i = 70717273

By L3.30, Corollary 2, i anticommutes with vectors and trivectors and
commutes with scalars, bivectors and pseudo-scalars. In a compact
form, xi = (—1)"ix for x € G". Moreover, by the general results
presented in L3 (Theorem 4 and Remark after its proof), we have:

Proposition
1) i? = Q(i) = det(diag(+, —, —, —)) = —1.
2) The Hodge duality map G" — G*", x — x* = xi = (=1)"ix is
an antiisometry for r = 0,1,2,3. This implies that the
signatures of G2, G% and G* are (3,3), (3,1) and (0,1) =1. [J
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9= 013 =MnE

Let o1 =717 = 710, 02 =727 = Y20, 03 = Y37 = Y30- Ihen a
short computation shows that oF = oji = — v = —yw (J, k,  a
cyclic permutation of (1,2,3)).! Explicitely,

0] = =723, 03 = —731, 03 = —12.
The o; and o have signatures —1 and +1, respectively, and together
form a basis of G2.

The ~;, = 7,i form a basis of G? and they have signatures —1 for
1 =0 and +1 otherwise. Note that

73 = Y123, V1 = 7023, V> = 7031, 7§ = Yo12-

With these notations, we finally have

I = 70123

1 This is often condensed as af = —€jiYkY1, Where €y denotes the sign of the

permutation jk/ of 123 (Levi-Civita symbol).
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9= 013 =MnE

These facts are summarized in the following table:
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9= 013 =MnE

Gl m 72 m|o1 o2 o3 of oF o3 |w v v v
Y |1 &6 o2 F3 | M Y B YW % | i o7 5 8|1
m|o1 -1 &3 o3| v % Yo VB 2 |of i o3 52 |
Y202 o3 -1 &5 | A M 3 Y M| oy o3 - o1 |7
v | o3 05 of -l A Y% Y m 5 | o3 o2 &1 i |3
oo lm o Y w1 oes o i a3 o2 % W 2| o]
o2 | 2 v v A7 |63 1 of o3 i o1 | B oW Mmoo
o3 | 3 Y Y 0 | o5 5] 1 &2 o1 i o2 M % | o3
ol | T %W i 03 o2 -1 35 o3| m Y A | o1
s | % v W M |oz i & of -1 | m % w | 6
o3| %M 2 m W |G oo i 5 of -l |w Y |53
Yo | i of oy o3 | % B o m e 3| 1 a1 G2 F3 | Yo
wlar i a3 o2 | B o w W v |or -l &y o3| W
Y | 05 o3 i a1l % M Y% w Y| o2 of -1 & | %
|03 G2 o1 i | o m W W A w | o3 &5 of 1| %
i %W WM wm Y |oi o5 o3 G G2 3w o v w |-l

This is the multiplication table of G in terms of the described basis. The bar over

symbols indicates minus sign, not Clifford conjugation.
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9= 013 =MnE

A product 7,7, is determined by the rule L3.30, Corollary 1. In this
case it yields £yx, K =1 A J (symmetric difference) and

+1 = (—1)¥, where v is the sum of the number of elements in
{1,2,3} N/ N J and the number of inversions in the sequence /, J.

By L3.30, Corollary 2, the table is symmetric up to sign, because
vy = (—=1)(=1)*v,v,, where r = |l|, s=|J] and ¢ = | N J|. The
result can be summarized as follows: v,v, = —~,7, if one of the
following two cases occurs:

mc=1,3and r or sis even
mc = 0,2 and both r and s are odd.
Otherwise YaV1r = Yi17YJ-

Example. 7103 = 71713 = —7s.
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9= 013 =MnE

Example. Consider 0273 = 7207012 = Y2712 = 1. We can also argue
that the result must be 4. Since there are three inversions (20
twice and 21), and 2 is the only —1 index in common, we get

0274 = 1. Since the product shares two indices (0 and 2), and only
one factor is odd, we conclude that v50, = 7 as well.

Example. We have defined 7 = i, and have observed that

iv) = £, the sign being +1 when |/] is even and —1 when it is odd.
This simplifies the computation of products in which one of the
factors is a Hodge dual. Here are a couple of illustrations:

0373 = 03173 = —03731 = 7073731 = —0i = —7p-
V103 = Mool = —M02 = N7 = —NNN2 = 3,

and similarly o3v; = 73.
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. . a
Lorentzian GA Involutions and G

If x =x9+ x1 + X + x3+ x4 € G, the three involutions o, 7,k of G
act as follows:

= Xp — X1 + X2 — X3 + Xa,
= Xp + X1 — X2 — X3 + Xqg,
X" =Xxg— X1 — Xo + X3 + X4.

The elements of the even subalgebra G have the form

X = Xg + Xo + X3 and in this case x™ = x" = x5 — xo + x4. The
elements of the odd subspace G have the form x = x; + x3 and in
this case x* = —x and x” = x; — Xx3.

Lemma. 1) The multivector x has the form xo + x4 if and only if
x =x“and x = x".

2) The multivector x € G* (or x = x;) if and only if x* = —x and
x" = Xx. O
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Lorentzian GA Complex structure

The subspace (1,i) = G° + G* is a subalgebra isomorphic to C. We
will say that this is the algebra of complex scalars. Henceforth, C will
denote this algebra. By the Lemma, C={x € G|x=x*=x"}. A
typical complex scalar will be denoted o + fi, o, 8 € R.

The space G = G +G3 = G' 4 Gli is closed under multiplication by
i, and hence by complex scalars, and will be called the space of
complex vectors. A basis of this C-space is 7g, V1, V2,73 A typical
complex vector will be denoted a + bi, a, b € G'. Note that

% =G =G .

The space G2 of bivectors is closed under multiplication by i and
hence it is a C-space. As a basis of this C-space we may take

01,07, 03. A typical bivector will be denoted x + yi,

x,y € (01,02,03).

We thus see that a typical multivector has the form

(a4 Bi) + (a + bi) + (x + yi).
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Lorentzian GA Interpretation of the even subalgebra

Let £ be the space (01,02, 03), so that G2 = £ + £i. With the
multivector metric, £ is Euclidean and o1, 05, 03 is an orthonormal
basis. We will say that it is the relative (Euclidean) space. If
necessary, we will denote it by £(7p) to underline that it is a
frame-dependent space. The geometric algebra of £ will be denoted
P (the Pauli algebra).

Proposition

(1) The even algebra G is isomorphic to P and the pseudoscalar of
‘P coincides with i.
(2) The linear grading of P is given by
P’ =R, Pt =&, P?>=¢&i, PP =Ri.

Proof. The 01,05, 03 generate G as an R-algebra, for gjo = —07}
(J, k, I a cyclic permutation of 1,2,3) and i, = 010203 = i. Now (1)
follows from this and the relations af =1 and gjo, + oo = 0 (if
k # j) and (2) is straightforward. O
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Lorentzian GA Polar form of a bivector

Given a bivector z = x + yi, we have
= |x]> = |yl +2(x-y)ieC.

In particular we see that z2 € R if and only if x - y = 0, in which
case we say that z is plain (or simple). We also say that z is positive,
null or negative according to whether \x\z > |yl [x]? = |y|? o

|x|? < |y|*>. If x-y # 0 (hence also z? # 0), we say that z is s/anted
(or composite).

Examples. (1) A non-zero x € £ is plain and positive (xx = |x|> > 0)
and xi is plain and negative ((xi)? = —x? = —|x|? < 0).

(2) If u,v € £ are two unit orthogonal vectors, like o1 and oy, then
u+ viis null.

Remark. The Lorentzian norm of z = x + yi is |y|*> — |x|?, because

Q(z) = (z]z) = (227)o = —(2%)o = lyI* — [x|*.
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Lorentzian GA Polar form of a bivector

Lemma. If z? # 0, then there exists a unique plain positive bivector
7' and a unique o € (—7/2,7/2] such that z = z'e* (polar
decomposition of z).

Proof. First let us show existence. If z is plain, then z2 is real and
non-zero. If z2 > 0, it suffices to take z = z and o = 0, and if
z®> < 0, then we can take 2’/ = —zi and a = %, for Z7°=-22>0
and z = Z'i = Z/€'z.

So we may assume that z is slanted. Then we can write, z% = pzez'a

with p € R, p>0, and o € (0, 7). So z% = (pe'®)?. Now define 2’
as follows: if a < 7/2, set 2/ = ze ™, in which case

7? = (ze7)? = 2%e7% = 2 > 0 and z = Z'€/; and if

7/2 < a < 7, define z/ = zel(™*), in which case

7% = 22e¥me % — 2% — ;2 5 () and z = 2/ (note that

—m/2 <a—m<0).
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Lorentzian GA Polar form of a bivector

As for uniqueness, suppose that we have z'e'® = z”¢€'?, with z’ and
Z" plain and positive and o, 8 € (—m/2,7/2]. Without loss of
generality we may assume that o < (3, which implies that

z = 7"€(P=%) with —1 <  — o < 7. Taking squares and using that
z'% and z’? are real and positive, we conclude that e/(26—2%) is real
and positive. In the range of 25 — 2ar, namely (—27,27), the only
possibilities for e'(?#=2%) to be real are 23 — 2ac = 0 or

23 — 2a = +£m, and of these, only the first (equivalent to 5 = «)

yields a positive value. O
Corollary

With the same notations and assumptions as in the Lemma, if z is
slanted, then z = z; 4+ iz, with z; and z, plain and positive.

Proof. Indeed, we have z = z'é'® = z/ cos a + iz’ sin o, and both
z; = 7Z' cosa and z, = Z'sin «v are plain and positive.
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Lorentzian GA Polar form of a bivector

Remark. This Corollary explains why instead of slanted some authors
use the term composite, and consequently the term simple for plain
(the non-slanted).

Definition. Given the polar decomposition z = z'€'® of a non-null
bivector z, we have z’*> > 0 and z2 = z’?¢2®. We define the
magnitude of z, |z|, as V22, so that |z| >0, 22 = |z|?e*, and

|z| = |Z’|. The angle « = a(z) will be called the slant angle of z.

Remark. In terms of the angle 8 = 6(x, y), the magnitude of z is
given by the formula

|2 = (x| = y[?)* + 4lx[*|y|* cos® 6.
Proof. From the definitions we have that |z|? is equal to
22| = |x* — y? +2(x - )i,
which is equal to (x? — y2)> +4(x - y)? and x -y = |x||y| cosd. [I
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Lorentzian GA Polar form of a bivector

Remark

Let z € G2 be a bivector. If z2 # 0, then z is invertible (so
z€G*NG") and

zt=2z/722=-Z/7%

Indeed, we have seen that z2 € C (so z2 commutes with with all
even elements, and in particular with all bivectors) and hence
z(z/z%) = 1. Since Z = —z, we can also write z 7! = —Z/7°.
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Lorentzian GA Generating Lorentz isometries

Lemma
Let z € G? and assume 22 # 0.

Let L, : G — G be the automorphism of G defined by

L,x = zxz 1.

Then L,G! = G*'.
Proof
Let x € G* and put y = L,(x) = zxz~!. To check that y € G, it

suffices to see that y® = —y and y = y (by the Lemma on slide 11):

-1 1 _

=Y,

Yy =(2") X" =z xz=zxz/Z? = y. O

ye =z%%*(z*)"t = —zxz~
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Lorentzian GA Generating Lorentz isometries

Lemma. With the same assumptions as in the previous Lemma, the
induced R-linear map L, : G* — G' is a proper Lorentz isometry
+
(L. €0,).
Proof. The computation

2

y? = zxz7lzxz7!

=zx?z71 = x?

shows that L, preserves que Lorentz quadratic form and therefore it
is a Lorentz isometry.

On the other hand, using that i commutes with bivectors,
L,(i)=ziz7! =i

But we also have
L,(i) = det(L,)

and hence det(L,) = 1. O
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Space-time kinematics Space-time paths

Let x = x(s) be a parametrized curve, or path, in E = E; 3.

Lemma. The sign of dx/ds2 is invariant under strictly monotonous
reparametrizations s = s(7).

Proof. Since dx/dT = (dx/ds)(ds/d7), and ds/dT is a non-zero
scalar, (dx/d7)? = (ds/d7)?(dx/ds)? shows that the signs of
(dx/d7)? and (dx/ds)? are the same. O

If we regard (as we will) two paths differing in a strictly monontonous
reparameterization as the same (geometric) curve (or trajectory), the
Lemma says that there is a well defined sign associated to any curve.

A path x = x(s) is said to be timelike (lightlike or null, spacelike) if
(dx/ds)? > 0 ((dx/ds)?> =0, (dx/ds)? < 0).
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Timelike paths

If x = x(s) is a timelike curve, the quantity

9= [ (G0 %0) e

does not depend on the parametrization of the curve and will be
called proper time on the curve.

Since 7(s) is a strictly increasing function of s, it has an inverse,

s = s(7). Then we can consider the parametrization x(7) = x(s(7))
by proper time. We will denote dx/d7 by x and we will say that it is
the (unit) tangent vector of the path.
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Space-time kinematics Space-time paths

Lemma. The unit tangent vector satisfies x> = 1.
1/2

Proof. Let a(&) = (—(5) ( )> , so that d7/ds = a(s) and
ds/dt = 1/a(s(7)). Then

% = (j—x) - (j—) (%(sm)f ~ a(s(r)) 2a(s(r)P =1 O

Remark. The path x(7) = 77, represents the space-time trajectory of
a particle at rest at the 7y frame. Since x = 7y and 73 = 1, 7 is the
proper time of that particle. More generally, the Lemma indicates
that x is to be regarded as the instantaneous rest frame of the path,
and that the proper time is the time measured along the path by the
instanteneous rest frame.
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Lightlike paths
For a timelike path, there is no preferred parameter, proper time is 0.
Spacelike paths

There is a preferred parameter s such that (dx/ds)?> = —1. This
parameter measures proper distance.
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Space-time kinematics Space-time paths
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Space-time kinematics Relative vectors

The bivector x = x A yp € € will be called the relative vector (with
respect to the frame ) of the event x. This satisfies that

X0 = X 7y,
for x70 = (x A 0)70 = (70 — (x - 70))70 = x — x®70 = x* .
We have

XY =X Y + XA =1t+X,
where we write t = x°. So

x* = xy070x = (x - Y0 + X A0)(x - 70+ 70 A X)

= (t+x)(t — x) = 2 — x°.
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Space-time kinematics Relative velocity

Let v = v(7) be the proper velocity of a particle x = x(7), so that
v = dx/dT). Set u=". Then
i = vy = L(xv) = £(t +x),
and consequently
%:v-u, %:v/\u.
Let v be the relative velocity, so v = dx/dt. Then we have:
v =dx/dt = (dx/d7)(d7/dt) = “2L.
Since Q(v Au)=1—(v-u)? it follows that
Rv)=1—(v-u)?<1
This gives v - u = 1//1 — Q(v) (the Lorentz factor  of v).

Note also that v =vuu = (v-u+ v A u)u=~(1+ v)u.

S. Xambé (UPC) GAT 04 Space-time GA SLP - 9-13 March - 2015 27 / 34



Lorentz boosts
The Lorentz bost
t' =~(t — Bx), x' =~v(x — S5t)
is equivalent to the frame transformation
Y = 7(0 + B71), 1 =71+ B%n)
Note that
(10)?=2*1-p%) =1, (m)*=7*(F*-1)=-1, % 1 =0
which show that the transformation v, — ~,, is a Lorentz isometry.
Introduce the angle « so that tanh(a) = 5. Then
v = (1 — tanh?*(a))~/? = cosh(a), and
Yo = cosh(a)o + sinh(a)y
= (cosh(«) + sinh(a)y170)70 = €*"* .

Similarly, 74 = cosh(a)y; + sinh(a)yy = e*"%0y; = e,
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Lorentz transformations Lorentz boosts

Now we can see that the Lorentz boost can be expressed as follows:

1
7/: — eéo‘alfyue

Indeed, 07 commutes with v, and 73, and they are fixed by the right
hand side expression, in agreement with the Lorentz boost. On the
other hand, o; anticommutes with vy and 1, and so for © = 0,1
that expression is equal to €', also in agreement with the Lorentz
boost.

1
2Q01

Note that this is a special case of the Lemma proved on slide 15.
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EM field Lorentz group

We can represent a spacetime point x as the Hermitian matrix
X0+ x3 x—ix?
x4+ ix? x4 x3
Lorentz quadratic form is the determinant: det(h(x)) = Q(x).

H(x) = . In this representation, the

Given A € SL,(C), then AH(x)AT is again a hermitian matrix, say
H(La(x)), and

Q(La(x)) = det(AH(x)AT) = det(H(x)) = Q(x). It follows that
La is a Lorentz isometry. Moreover, the map SLy(C) — O, 3 is a
group homomorphism. The image of this homomorphism turns out
to be the connected component of the identity of O 3, and its kernel
is {£1}. From this it follows that SLy(C) ~ Spin, 3.

This construction is analogous to the identification of SU, as Sping
(cf. Appendix B).
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LV-IELGIX  The Dirac representation of G

Proposition. Define

ro—(ao O>andrk—(0 _"">,k—1,2,3.
—00 k

Then there exists an algebra isomorphism G — R(4) such that
Yo = Ty

Proof. The I',, satisfy the Clifford relations I',[', + T, = 21, .
This follows from the Clifford relations ojox + oxo; = 20 satisfied
by the Pauli matrices o1, 0>, 03 and straightfoward matrix
computations. So there is an algebra homomorphism G — R(4) such
that ~, = I',. Finally, this homomorphism is an isomorphism: the
images ', of the 4, (/ running over the multiindeces of 0,1,2,3) turn
out to be lineraly independent. O]
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Appendix B Action of HH> on V

Definition. Given x € H™, let px - H— H denote the the
automorphism of H defined by p,(y) = xyx~1.

Theorem1. The map py satisfies that p,(V) = V and the map
px - V — V belongs to SO(V) ~ SOj3. Furthermore, the sequence

X X p
1R - H —S03—1
is exact.

Proof. To show that v/ = p,(v) € V when v € V, it is enough to
show that v is real and non-positive:

2 - _
Ve = (xvx"Ixvx 1) = xv2x 7 = v2

which is real and non-positive. Now
Q(v') = Q(xw»x™) = Q) Q(V)Q(x) ™" = Q(v)

says py € O(V), so det(py) = £1. Since H” is connected and
x +— det(pyx) is continuous, p, € SO(V).
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Since the elements x € H” such that p, = Id satisfy xvx~! = v for
all v € V, we see that ker(p) is the center of H* and so

ker(p) = R™. Finally p is surjective because for a vector v € V we
have p, = m, (the reflection in the direction v with mirror v*) and
these reflections generate SO3 by the Cartan-Dieudonné theorem. [

If we restrict p to H; = {x € H" | Q(x) = 1}, then p: H; — SO3 is
still surjective (by the same argument), but its kernel is reduced to
R* NH; = {£1}. Since in addition H; = SU,, we have:

Corollary. We have an exact sequence

1 {+1} - SU, 5 SO; — 1.
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Introduction Settings

In this chapter the field K will be R or C and we will assume that E
is endowed with a non-degenerate metric g : E — E*. In the real
case, the metric g is said to be positive, or positive definite, if
g(e,e) >0 for all e € E and it is said to be negative, or negative
definite, if —g is positive. A metric which is neither positive nor
negative is said to be indefinite.

For K =C, (E, g) is uniquely determined, up to isometry, by
n=dimc(E). Indeed, if e =ey,..., e, € E is an orthogonal basis,
and we choose r, € C such that r? = g(ex, ex) (k=1,...,n), then
the &, = rk_lek satisfy g(ék, &) = 1 and hence (E, g) is isometric to
C" with the standard metric (g(z,2') = zz'T = 21z} + - + z,2.).
An orthogonal basis e such that g(ex, ex) = 1 for all k is said to be
orthonormal.
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Introduction Settings

For K =R, (E, g) is uniquely determined, up to isometry, by its
signature (r,s), where r counts, given any orthogonal basis
e=e,...,e, € E, the number of k such that g(ex, ex) > 0 and

s = n—r (so s counts the the number of k such that g(ex, ex) < 0).
It is an easy exercise to see that this definition does not depend on
the basis used to compute (r,s). If we choose r, € R such that

r2 = g(ex, ex) or rf = —g(ex, ex), depending on the sign of g(ex, k),
and define & = r, ‘e, then g(&, &) = £1, with 1 and —1
appearing r and s times, respectively. Reordering this normalized
basis, we can achieve that 1 occurs for k =1,...,r and that —1
occurs for k =r+1,...,r+ s = n. Orthogonal bases satisfying this
condition will be said to be orthonormal (some authors say
pseudo-orthonormal).
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Introduction Notations

We write E,  to denote a real vector space with a metric of signature
(r,s). Instead of E,o we will simply write E,, a symbol that will also
be used for the complex case. Instead of £y, we will write E,.

We adapt the general notations and conventions of the preceding
chapters to the present context as follows:

1) O,s: The orthogonal group of E, ;. In terms of matrices, it is
isomorphic to the subgroup of the group GL, of invertible real
matrices of orden n formed by the matrices A such that
ATl A=l where I, ; = diag(1,, —1;). Note that this
relation implies that det(A) = +1.

2) SO, s = O;S: The subgroup of O, s of rotations, that is, of the
isometries whose determinant is +1.

3) Grs = Ng(E;s): The geometric algebra of E, .

4) g,fs: The multiplicative group of invertible elements of G, .
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Introduction Notations

5) F,s' The twisted Lipschitz group of G, . It is the subgroup
formed by the even and odd u & Q such that uE, su™ = E, ;.

6) F : the subgroup of even eIements of F,s

7) I_,,s. The Lipschitz group of G, ;. It is the subgroup of g,fs
consisting of the elements v = uy - - - u, with uy € E:s
(k=1,...,m). It is a normal subgroup of F,,s.

8) I‘;s: the subgroup of even elements of I', ;.

9) Pin,,: The group Ping(E, ), which is the subgroup of Q:S
whose elements u have the form u = uy - - - u,,, with u, € E”

and g(uk, ux) =£1 (k=1,...,m).
10) Spin, ;: The subgroup of even elements of Pin, . Its elements u

have the form v = uy - - - U, with u, € E™, g(ux, ue) = £1
(k=1,...,m) and m even.
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Introduction Notations

Remark

In all cases, we set X, = X, X, = Xo.n (Xs(C) in the complex
case), where X stands any of the symbols define above:

0,850=0",G,6° T, T I, " Pin and Spin.

N_ote X, and X, point to difference structures, as for examplg G, and
G,. The _exceptions are O and SO, for it is plain that O, = O, and
SO, = SO,.

Now we can proceed to specialize the main results of Lecture 3 to the
present context.

Remark

Let i, s be the pseudoscalar of G, ;. Then i2 = (—1)™"//2, where
n=r+s. Indeed, we know that the value is (—1)"/2Q(i,,) and it is
clear that Q(i,s) = (—1)°.
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Fundamental exact sequences [NEEEN N

Case K = C. T,(C) = T,(C) and the following sequences are exact:

250 2(C)—1
7,80 2(C)—1
2,0,(C) > 1
2,80,(C) — 1

(c
C
C

1 — {£1,+i} — Pin,

SN N N N

1 — {£1,+i} — Spin,

Proof. The first assertion is a direct consequence of the Corollary on
slide 50 of Lecture 3. Indeed, every element of C”* is a square, hence

c=c’c C, C C*, and hence [,(C)/I,(C) ~ C*/Cy = {1}.

Now the first and second exact sequences are special cases of the
sequences established in Lecture 3: Theorem 5 and second Corollary
on slide 49, respectively. The third and fourth sequences are special
cases of the exact sequences of Theorem 6. O
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Fundamental exact sequences [NEEENIEEN

Case K = R. For any signature (r,s), R, = R* (R, = R" NT,,),
s =T, and the following sequences are exact:

1R —>F,75—’5>O,,5—>1
1R — FZS LN SO,s — 1
1 {+1} = Pin,, -2 0,, — 1

1 — {#1} — Spin, , =+ SO, — 1

. . . 2
Proof. For the first assertion, we know that Ry contains R*” = R.g.

If we show that —1 € T, ., then R, also contains R’ = R and
so Ry =R, as wanted. To see that —1 € T, ,, pick any u € E/,
and normalize it so that g(u, u) = £1. If the sign is —, then
—1=g(u,u) = u? €T, and if the sign is +, then
—1=—-v?*=u(-u)er,,.
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Fundamental exact sequences [NEEENIEEN

The other assertions are derived as in the complex case from the
results given in Lecture 3. O

Proposition. The 2 to 1 surjection Spin, ¢ — SO, s is non-trivial if
r=2ors>?2.

Proof. It will be enough to construct a path on Spin, ; connecting 1
and —1. To that end, let uy, u» be an orthonormal pair of positive
(€ = 1) or negative (e = —1) vectors. Now define s(t) € Spin, ,

t € [0,7/2], as follows:

s(t) = (uy cos(t) + uasin(t))(uy cos(t) — upsin(t))
€ cos?(t) — esin®(t) — uyup sin(t) cos(t) + wuouy sin(t) cos(t)
= ecos(2t) — uyup sin(2t).

Now it is clear that s(0) = ¢ and s(7/2) = —e. O
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Topological facts ERISEIECIEN ()]

The K-algebra of square matrices of orden n with entries in K will be
denoted K(n). The group K(n)" of invertible matrices will be
denoted GL,(K). We also set

SLa(K) = {A € GL,(K) | det(A) = 1}.

Note that these objects are defined when K is a commutative ring, as
for example the ring of integers Z. For K = R we simply write GL,
and SL,,.

As a complex (real) vector space, C(n) is isomorphic to C” (R?™).
The topology so induced in C(n) is equivalent to the one defined by
the hermitian metric (this means that it is linear in B and complex

conjugate linear in A) given by

(A|B) = Tr(A'B),

where At = AT is the hermitian adjoint of A (the transpose of the
complex conjugate of A). Note that (AJA) =37 [Ail*.
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Topological facts Matrix Lie groups

The group GL,(C) is an open set of C(n) and any subgroup

G C GL,(C) that is closed (in GL,(C), but not necessarily in C(n))
is said to be matrix Lie group. It is a basic fact that a matrix group is
automatically a Lie group (see, for example, Hall-2003 or
Goodman-Wallach-2009).

Since the topology of C(n) is Euclidean, a matrix group is compact if
and only if it is bounded.

Henceforth, all Lie groups that we consider will be matrix Lie groups
unless we indicate otherwise explicitly.

A closed subgroup of a compact Lie group is a compact Lie group.
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Topological facts Connectedness

Since a Lie group is locally arc-connected, it is connected if and only
if it is arc-connected. A group G C GL,(C) is arc-connected when
for any A, B € G there is a continuous path X(t) € G, 0 < t <1,
such that X(0) = A and X(1) = B (in this case we say that B is
reachable from A on G, or that X connects A and B on G). Notice
that it is sufficient to check that any A € G is reachable from /,

on G.

Connected component of the identity. Let G be a Lie group and let
G° be the connected component of /, € G. Then G is a (closed)
subgroup of G.

Proof. If A, B € G°, there are continuous paths X(t), Y(t) € G,

t € [0, 1], connecting I, to A and B, respectively. Then

Z(t) = A(t)B(t) is a continuous path on G connecting I, = Z(0) to
AB = Z(1). This proves that G is closed under multiplication.
Since X(t)™! is a continuous path on G that connects I, to A7, it
also follows that A=t € G°. O
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Topological facts Classical groups

As commonly understood, the following families of Lie groups fall
under the label of classical groups:

1) GL,(C), SL,(C), GL,, and SL, (n > 1). GL,(C) is connected
and GL, has two connected components that are distinguished
by the sign of the determinant. The connected component of /,
in GL, is GL, = {A € GL, | det(A) > 0}. The groups SL,(C)
and SL,, are both connected. Since SL, has matrices with

m 1 1) in SL, (any m), none of

unbounded elements, like <
these groups is compact.

2) 0,(C), O,, SO,(C), SO, ( 1). The group O, has two
connected components: O, = SO (the connected component
of I,) and O, = J,SO,, where J, = diag(—1,1,_1). Similar
statements are valid for the complex case. The group O,, and
hence also SO, are compact, whereas SO,(C), and hence also
On(C), are non-compact.
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Topological facts Classical groups

3) O,s, SO, . Since Os, = O, and SOs, = SO, 5, we can
assume 0 < r < s (the case r = 0 is included in the previous
list). If we set J = diag(—1,1,_1) (n=r+5s), then J, € O,
and det(J,) = —1. This implies that O, s = SO, s U J,S0O, s
(where U denotes disjoint union) and hence we are reduced to

study SO, s. This group has two connected components, SOfs,

where SO:S is the subgroup of the f € SO, ¢ such that
det(f') =1, where " E:s — E:s is the composition of f with
the orthogonal projection of E, s to E:s.

4) U, and SU,. The unitary group U, is formed by the unitary
matrices A € C(n) (AAT = 1,). The special unitary group SU,, is
the subgroup of U, of matrices A such that det(A) = 1.

5) Sp,, Sp,(C) and USp,. The symplectic group Sp,, is the
subgroup of symplectic matrices A € GL,,, i.e. ATQA = Q,

where Q = <_/ /"). USp, = Sp,(C) N Uz,
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(BRI WINENiTICIEIES I The basic ingredients

Notations. K will denote one of the fields R (real field), C (complex
field) and H (quaternion field). For any integer n > 2, K(n) will
denote the ring of n X n matrices with coefficients in K. Since

K(n) = K ® R(n), its real dimension is dkn?, where

dk = dimg K = 1,2, 4, respectively. Note: K(m) ® R(n) ~ K(mn).

Lemma

() CeC~CaqC
(2) C®H~C(2)
(3) H®H ~R(4)

Proof. (1) Since (i ®i)> =1®1, the elements ex = (1@ 1+i®1)
are idempotents with e, +e_ =1®land e;e. =e_e, =0®0.
Then the map C® C — C® C, (x,y) — xe, + ye_, satisfies

(xey + ye_)(x'er + y'e ) = xx'e; + yy’e_ and with this it is easy to
prove that it is an isomorphism.
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(BRI WINENiTICIEIES I The basic ingredients

(2) If z is a complex number and q a quaternion, let f, ,: H — H be
defined by f, ,(h) = zhg. Then f, , is C-linear, so that we have a
map C x H — End¢(H), (x,q) — f. 4. The map is clearly bilinear
and hence induces a linear map C ® H — Endc(H). This map is an
algebra homomorphism, for

221hG1G = (2122)h 1 G2
It can be checqued that this map sends the basis {1,/} ® {1,1,J, K}
into linearly independent endomorphisms, and hence the map is an

isomorphism, for both sides have dimension 8. Finally note that
EIldc(H) ~ Endc(C2) ~ C(2)

(3) If g1, 92 € H, define f,, o, : H— H by f;, o,(h) = q1hg>. In this
way we we get, as in 2), an algebra homomorphism

H ® H — End(H) which can be shown to be an isomorphism (both
sides have dimension 16). Finally End(H) ~ End(R*) ~ R(4).
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(GEESfTTil W HENiiIGIEIES I A corner of the Clifford chessboard

We are aiming at giving isomorphic descriptions of C, s and C:S in
terms of basic algebra forms. It will turn out that it is enough to
achieve this for 0 < r,s < 7. So we will first look at how to fill in the
slots in this 8 x 8 chessboard.

The main tools will be the explicit description of C, s for slots close
to the corner (0,0), which contains Cyo = R, and three inductive

formulas.

Let us begin with the slots near (0,0), For row 0, Co s = C., and we
know that ¢; ~ C and (; ¥ H. Then GG = (G ~R®R,
Gi1~R(2) and G o= G ~ R(2). In sum,

r\s 0 1 ]2
0 R H
1 |R&R | R(2)

2 | R(2)
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Inductive formulas
Proposition
(1) Co~C®GCG~C ®R(2).
(2 CG~CoG~C®H
(3) CGi1511 ~ G s @ R(2).

Proof. (1) Let 71, ..., %, be standard generators of C,, so 72 = —1,
and 71, 7, standard generators of G, so v2 =73 = 1. Let iy = Y172,
so that i? = —1.

Consider the elements ', € C, ® C, defined by N = Y% ® ir
(k: 1,...,I’), and F,M = 1®"yg (f: 1,2)

Thel; (j =1,...,r+2) are linearly independent and satisfy the
relations of a standard basis of C, 5.

So we have an injective homomorphism C,,, — C, ® Gy, which must
be an isomorphism because both algebras have dimension 27+2.
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Classification of Clifford algebras Inductive formulas

(2) Let 71,. .., be standard generators of C,, so 72 =1, and 91, %>
standard generators of C,, so 37 = 73 = —1. Let iy = %175, so that
12

Consider the elements [ € C ® G defined by T = v ® by
(k=1,...,r),and T, ., =1®75, ({=1,2).

Thel; (j=1,...,r+2)are linearly independent and satisfy the
relations of a standard basis of C, .

So we have an injective homomorphism, C,.» — C, @ G, which
must be an isomorphism because both algebras have dimension 22
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Classification of Clifford algebras Inductive formulas

(3) Let y1,...,7r, 71, ---,7s be standard generators of C, ;: 'yjz =1
(G=1,....,r)and 32 = -1 (k=1,...,s). Let 7,7 be standard
generators of Ci; (72 =1, ¥ = —1) and let i, = 77, so that iy = 1.
Consider the elements [; and Ty of C,c ® Gq, j=1,...,r+1,
k=1,...,s+1 definedasT; =y @b (=1,...,r), 11 =1®7,
Mk=w®b(k=1,...;r)and 4,1 =1®7.

The I'y,...,T,41 are linearly independent and satisfy the relations of
a standard basis of G411 ¢41.

Now argue as in the previous cases. O
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Classification of Clifford algebras [EENIERTT]IRe/ T JeEIG]

Remark. The C, and C,, r = 0,...,7, fill the chessboard 0-th column
and 0-th row, respectively, and the Proposition, (1) and (2), says
that if for either one we know the values up to r, then we can know
the values of the other up to r + 2. Since we know the values up to
r = 2 for both of them, the determination of the other values can be
carried out, for example, as follows:

G~ G ®R(2)~C®R(2) ~C(2); G~ G ®R(2) ~ H(2);
GCGoH~HaH; G~ GaH~H(_2);

Cs ~ G ®H ~ C(2) ® H ~ C(4) (use the Lemma);

Co ~ C, ®H ~ H(2) ® H ~ R(8) (use the lemma again);
G~ G®R(2) ~H(2) @ H(2); G~ G ®R(2) ~H(4);

G, ~G®R(2) ~C(8); GG~ G ®H~R(8) ®R(8).

Now use the Proposition (3) to fill in the rest:
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Classification of Clifford algebras [EENIERTT]IRe/ T JeEIG]

r\s 0 1 2 3

0 R C H HoH

1 ROR RQ) 0] H)

2 R(2) R(2) ® R(2) R(4) C(4)

3 C(2) R(4) R(4) & R(4) R(8)

4 H(2) C(4) R(8) R(8) & R(8)
5 | HQ2) @ H(2) H(3) c(8) R(16)

6 H(4) H(4) ¢ H(4) H(8) C(16)

7 C(8) H(8) H(8) @ H(8) H(16)
r\s 4 5 6 7

0 H(2) C(4) R(8) R(8) & R(8)
1 H(2) @ H(2) H(4) C(8) R(16)

2 H(4) H(2) ® H(3) H(3) C(16)

3 c(®) H(8) H(8) © H(8) H(16)

Z R(16) C(16) H(16) H(16) ® H(16)
5 | R(16) @ R(16) R(32) C(32) H(32)

6 R(32) R(32) & R(32) R(64) C(64)

7 C(32) R(64) R(64) & R(64) R(128)
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Corollary
(1) Cops~ G, ®R(106)
(2) Ciis ~ C, @ R(16)
(3) Criasia~ G ® R(16)
Proof. The Proposition, (1) and (2), allows us to write:
Cis > Cie G ~Ca®GRG
~ (2GR GG
~GeGRGoGR G

Now we have, using the chessboard and part (3) of the Lemma,

GGG G~HORR)®H®R(2)
~H®H®®R(4)
~ R(4) ® R(4) ~ R(16).
With this we conclude the proof of (1).
GAT 05 R and C geometric algebras SLP - 9-13 March - 2015
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Classification of Clifford algebras Periodicity mod 8

The proof of (2) follows the same pattern as the proof of (1):

Cois~Cris @G~ Cra® G G
~Ca®Go G G
~CGR6GR G G

andclearly G G R G ® G ~ R(16).

The proof of (3) is simpler: it suffices to apply rule (3) of the
Proposition four successive times to conlude that

Cr+4,s+4 ~ Cns ® R(2)®4 ~ rs ® R(16)
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Classification of Clifford algebras Periodicity mod 8

01 23 45 6 7 8 9 1011 12 13 14 15
L . .
2|
3 'v k3
41 | ‘»
5 K
6
7] .
8|e .
9| e
10
11 .
12 ‘.
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Classification of Clifford algebras Periodicity mod 8

Remark (Reduction to the chessboard). Given r,s, let m = min(r,s)
and k the greatest non-negative integer such that 4k < m. Let
r'=r—4k, s’ =s—4k and m" = m — 4k = min(r', s’). Then part
(3) of the Corollary tells us that C, s ~ C ¢ @ R(16%) and by part
(3) of the Proposition C o ~ Cprov @ R(2™), with r’ = r' — m,
s"=s—m or Cs~Cro® R(2™16%). Since either s” = 0
(when s <r) or r =0 (when r <'s), we see that C, ; >~ C,» (when
s<r)or Cg=~ Co (when r <s).

Algorithm. While r;s > 4, we jump to r — 4, s — 4 and update the
matrix factor by R(16). At some point we will cross either the red
line (case r > s) or the blue line (the case r < s). At this moment,
and while r,s > 1, we jump to r — 1, s — 1 and update the matrix
factor by R(2). After at most three steps, we are going to hit the
'red boundary’ (the C,) or the 'blue boundary’ (the C,). Now, while
n > 8, we jump along the boundary to n — 8 and update the matrix
factor by R(16). See illustration on next slide.
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(BRI WINENiTIGIEIES I  The classification theorem

Theorem . Let n = r + s = dim(E, s) and set dj = 273"
(k=0,...,4). Let v =r —s mod 8. Then the isomorphism classes
of G, s and C:s are determined according to the following tables:
v Crs v C:s
0,2 R(db) 1,7 R(d:)
1 | R(d1) ® R(d1) 0 | R(d2) ® R(dy)
3,7 C(dy) 2,6 C(dy)
4,6 H(d,) 3,5 H(ds)
5 | H(d;) ® H(ds) 4 | H(dy) ® H(ds)

Proof. The integer r —s mod 8 is clearly invariant in the reduction
process. It follows that C, s ~ C, @ R(d) if r > s and

Crs G, ® R(d') if r <'s, where d and d’ are positive integers.
Now in the 15 algebras C, (v =0,...,7)and Gg_, (v =1,...,7)

there appear exactly 5 forms (up to tensoring by R(2™), for some m):
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(BRI WINENiTIGIEIES I  The classification theorem

Form

R

R+R

C

H

H+H

v

0,2

1

3,7

4,6

5

So the classification in terms of v has indeed the form of the first
table in the statement. That the d's are as claimed follows by
counting dimensions. The dimension of C, s is 2", and the dimensions
of the five forms are

Form

R(m) | R(m) & R(m)

C(m)

H(m)

H(m) & H(m)

d(m)

m2

2m

2

2m?

4m?

8m?

Solving for m in the equation 2" = d(m) we get the claimed
expressions For example, if 2" = 8m?, then m? = 2"~3 and hence
_ 2(n 3)/2 _ d3

To prove the second part, we first establish the following

Lemma. For any signature (r,s), we have
Crs~

+
~
rs+1 —
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(BRI WINENiTIGIEIES I  The classification theorem

Proof. Take a standard basis of C, ;41 of the form ~; (j =1,...,r),
Y (k=1,...,5+ 1) and write 4 = 75.1. Now consider the elements
=3y (G=1,...,r)and Tx =59 (k=1,...,s). These elements
belong to C s+1, are linearly independent, antlcommute and sat|sfy
the standard relations for the signature (r,s): [ =1(j=1,...,r)
and 2 :+—1 (k=1,...,s). This implies the isomorphism

Cs~ rs+1:

For the other isomorphism, take a standard basis of C;q, of the
formy (k=1,...,5+1),% ( —1,...,r) and write v = y,41.
Now consider the eIements =73 (=1,...,r) and Tk = 7%
(k=1,...,s). These elements belong to C,’ i1, are linearly
independent, anticommute and satisfy the standard relations for the
signature (r,s): M2 =1(j=1,...,r)and I} = -1 (k=1,...,s).
This implies the isomorphism C, ; ~ :H,r. O
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+ + =
Corollary. If s >0, then C, , ~ C, 51, and C, ~ C, ;. O

Now v(r,s —1) = v(r,s)+1 = v+ 1, and so the class of C:s has
the same form as the class of C, s corresponding to v + 1. And this
covers all the cases, because the type of C,_; coincides with the type
of Go_,. The orders of the R(m) involved are determined with the
same procedure as before, that is, solving 2! = d(m) for m. For
example, for v = 0 we have to solve 2”71 = 2m?, or m*> = 2"2,
which gives m = d. 0
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(BRI WINE TG IEIEE I The complex case

n mod 2 Gy C,
0 C(do) C(d>) ® C(d»)
1 C(d1) @ C(dy) C(ds)
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Appendix Components of SO, s

Assume, as we may, that 0 < r < r +s.
Let e1,...,€,€41,...,61s be orthonormal basis.

Timelike and spacelike vectors e: €2 > 0, e? < 0.

E" = (e1,...,e), E ={et1,...,€1s).

If f € O,, its matrix has the form f ~ <é g) according to
decompostion E = E* L E .

Lemma. det(A) # 0.

Proof. Indeed, A is the matrix of the composition 7 of :E —E",
where 7" is the orthogonal projection E — E . The kernel of this
map is formed by the vectors e € E” such that f(e) € E, which
implies that f(e) - f(e) < 0. But f(e)-f(e) =e-e >0, which
implies that e = 0. O
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Let SOfS be defined according to the sign of det(A).

Lemma

SOfs are the connected components of SO, s

Proof

We will assume r > 2 (the case r = 1 requires a little extra work).

Any element of SO, s can be written as m,, - -- m,, , where each u; is
either timelike of spacelike.

Claim: mymy = mp,, (wsymy, or mymym, = My, . Indeed, both
sides of the second relation map m,(v’) to —m,(v'), and both sides
leave invariant any vector v orthogonal to m,(v’) (note that

v = m,(v’), with v’ orthogonal to v’).
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Appendix Components of SO, s

(*) As a result, we assume that in the product m,, ---m,,  the
ui, ..., U are timelike and wuyy1, ..., Uy, spacelike.

Llet x € Esuchthat x-x =1, and write x = x +x , x € E  and
x €E . Thenx -x >1,s0x =au withu -u =1 If

x #0,wecanwritex =fu ,u -u =-1. Andif x =0, set
u =e.1and 3=0. So we have x = au’ + fu” and

1 = x-x = a? — 2. This implies that there exists t € R such that
x = cosh(t)u' +sinh(t)u" . Letting t — 0, we see that x can be
continuously deformed to ;.

This shows that the timelike vectors form a connected domain. A
similar argument shows that a spacelike vectors can be connected to
er+1 and so the spacelike vectors also form a connected domain.
Since the map u +— m,, is continuous, (*) implies that any f € SO,
can be deformed to mg m; |, with e =0,1. If e =0, f € SO,

r,s?

otherwise f € SO, .. O

S. Xambé (UPC) GAT 05 R and C geometric algebras SLP - 9-13 March - 2015 35 /36



References
Postnikov 1982
Gallier 2001
Hall 2003
Varadarajan 2004
Figueroa O'Farrill 2010
Garling 2011

S. Xambé (UPC) GAT 05 R and C geometric algebras SLP - 9-13 March - 2015 36 / 36



Geometric Algebra Techniques

in Mathematics and Physics

S. Xambé

UPC

SLP - 9-13 March - 2015

S. Xambé (UPC) GAT 06 On spinors

SLP - 9-13 March - 2015

1/6



Introduction Behaviour of i, s

letn=r+sandv=r—s mod 8.

We define d) = 2("%)/2 (it will be used for k =0,1,...,4 and in
cases that will guarantee that (n — k)/2 is an integer).

Let i =i, s be the pseudoscalar (volume element) of C, ;.
Lemma
(1) 2 = (=1)/2 = (—1)U=s+1//2, Thus
i=1ifr=0,3 mod 4
i’=—-1ifr=1,2 mod4

(2) For any vector e, ei = (—1)"lie. Therefore, i is central if n is
odd and anticommutes with vectors if n is even (so it anticommutes
with odd multivectors and commutes with even multivectors). Since
n=v mod 2, we can use v instead of n.
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Let K be one of the fields R, C, H.

A K-representation of a real algebra A is an R-linear homomorphism
p: A — Endg(E) for some K-vector space E.

Equivalent K-representations are defined as usual: isomorphic under
a K-linear isomorphism. Note that p defines an A-module structure
on E.

A representation p is irreducible if the only there are no non-trivial
submodules.

Similar definitions can be phrased for groups instead of algebras.
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Introduction Irreducible representations of K(n)

Facts

(1) Every irreducible R-representation of the real algebra R(n) is
isomorphic to R”

(2) Every irreducible H-representation of the real algebra H(n) is
isomorphic to H” (as a right H-vector space).

(3) Every irreducible C-representation of the real algebra C(n) is
isomorphic either to C" or to C".
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Introduction Pinor representations

A pinor representation of Pin, s is the restriction to Pin, s of an
irreducible representation of C, ;.

Theorem. The type of the pinor representations depends only on v.
v even. Unique pinor respresentation Ps ;.

v =0,6: real of dimension dy (Majorana)

v = 2,4: quaternionic of dimension d, (symplectic Majorana).
v odd. Two pinor representations.

v = 3,7, 50 i> = 1. There are two pinor representations Pfs,
distinguished by the action (+1 or —1) of i.

v = T: real of dimension d; (Majorana).
v = 3: quaternionic of dimension d5 (symplectic Majorana).

v =1,5, 50 i%> = —1: complex P, s and ﬁns of complex dimension dj,
distinguished by the action (47 or —i) of i (Dirac).
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Introduction Spinor representations

A spinor representation of Spin, ; is the restriction to Spin, ; of an

r,s

irreducible representation of C: .

Theorem. The type of the spinor representations depends only on v.
v odd. There is a unique spinor representation S, ;.

v =1,7: real of dimension d; (Majorana).

v = 3,5: quaternionic of dimension d3 (symplectic Majorana).

v even. Two representations (Weyl spinors).

v=2,6(i?=—1): S and S of complex dimension d,, distinguished
by the action of i: / and —i/.

v =0,4 (i = 1): S*, distinguished by the action of i: +1 and —1.
v = 0: real, dimension d, (Majorana-Weyl).

v = 4: quaternionic, dimension dy (symplectic Majorana-Weyl).
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