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Timeline XIX century

Calculer sur les concepts de la géométrie selon les
règles d’une algèbre a été depuis longtemps le but
des recherches de nombreux mathématiciens, comme
Leibnitz qui en rêva ou comme Carnot qui s’y essaya.

Casanova-1976

B. Olinde Rodrigues (1795–1851). Rotation group (1840).

W. R. Hamilton (1805-1865). Quaternions (1843).

H. Grassmann (1809-1877). Ausdehnungslehre (1844, 1862).

B. Riemann (1826-1866). Riemann sphere (related to spinors).

W. K. Clifford (1845-1879). Geometric product (1878).

R. Lipschitz (1832-1903). Lipschitz groups (1880).

G. Peano (1858-1932). Saggio di calcolo geometrico (1896).

K. Vahlen (1869-1945). Geometric product formula (1897).

J. W. Gibbs (1839-1903). Vector analysys (1901).
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Timeline XX century

Study (1862-1930) & E. Cartan (1869-1951).
Nombres complexes (1904).

H. Weyl (1885-1955). Group representations (1926).

W. Pauli (1900-1958). Pauli matrices (1927).

P. Dirac (1902-1984). Dirac equation (1928).

R. Brauer (1901-1977) & H. Weyl.
Spinors in n dimensions (1935).

E. Cartan. Leçons sur la théorie des spineurs (1937).

M. Riesz (1886-1969). Dirac’s equation in GR (1953).

M. Riesz. Clifford numbers and spinors (1958).

C. Chevalley (1909-1984).
The algebraic theory of spinors (1954).

E. Artin (1898-1962). Geometric algebra (1957).
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Timeline Gallery

              

Olinde Rodrigues  Hamilton    Grassmann   Riemann        Clifford   Lipschitz 

                             

 Peano      Gibbs   Study   E. Cartan            Weyl      Pauli 

                                 

  Dirac        Brauer   Riesz      Chevalley        E. Artin 

S. Xambó (UPC) GAT 01 First steps SLP · 9-13 March · 2015 4 / 45



Preliminary comments Main points

Preliminary comments. Notations and conventions.

GA ingredients. Exterior product. Geometric product.
Involutions. Inner product.

Examples. The algebras G2 and Ḡ2. Matrix representations of G2

and Ḡ2. Quaternions.

Linking Gn to geometry. A quote of Feynman. Euclidean
geometry revisited. Rotors. The Lipschitz groups Γn and Γ̃n. The
groups Pinn and Spinn. Oriented area in E2. Euler’s spinor
formula. Composition of rotors (after Hestenes). Hodge duality.
G3 and the Pauli algebra. Rotations of the rotors I , J ,K . The
cross product. Rotations about any axis. Vector algebra form of
Euler’s rotor. Olinde Rodrigues’ formulas.

Appendix. Why not trinions? Beyond quaternions.

References
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Preliminary comments Notations and conventions

K denotes a field of characteristic 6= 2. Its elements are called
scalars. The basic choices are K = R or K = C.

Let n > 1 be an integer, e = e1, . . . , en a sequence of n distinct
symbols. For each sequence K = k1, . . . , kr ∈ {1, . . . , n}
(0 6 r 6 n), let eK denote the word ek1 · · · ekr .
Now consider the vector space Λ(e) freely spanned by the eI with I
strictly increasing (in which case we say that I is a multiindex).

dimΛ(e) = 2n;

Λ(e) = ⊕r=n
r=0Λ

r (e),

where Λr (e), called the space of r -vectors, is the subspace of Λ(e)
spanned by the eI with I of length r (|I | = r).

Finally let êK ∈ Λ(e) be the vector 0 if K has repeated indexes and
(−1)Keω(K) otherwise, where ω(K ) is the result of reordering K in
increasing order and (−1)K is the sign of the permutation K of ω(I ).
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GA ingredients Exterior product

The exterior product ∧ : Λ(e)× Λ(e) → Λ(e) is defined as the
unique bilinear map such that eI ∧ eJ = êI ,J , where I , J denotes the
concatenation of I and J .

Note that eI ∧ eJ = 0 if and only if I ∩ J 6= ∅.
It turns out that the exterior product is associative, with unit e (eI
for I the empty sequence!) and skew-commutative, that is
ej ∧ ei = −ei ∧ ej . Or, more generally, if x ∈ Λr(e) and y ∈ Λs(e),
then y ∧ x = (−1)rsx ∧ y .

Examples
ê3,1,2 = e1,2,3 and ê3,2,1 = −e1,2,3.

e1,3 ∧ e2,3,5 = 0 (3 is a repeated index).

e2,3,5 ∧ e1,4 = e1,2,3,4,5, for (−1)2,3,5,1,4 = +1.

e2,5 ∧ e1,4 = −e1,2,4,5, for (−1)2,5,1,4 = −1.

eI = ei1 ∧ · · · ∧ eir .
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GA ingredients Geometric product

Let q = q1, . . . , qn ∈ K and set, for each multiindex
I = i1 < · · · < ir , qI = qi1 · · · qir (the product of qi1 , . . . , qir in K).
Note that in particular q = q∅ = 1.

The (relative to q) geometric product Λ(e)× Λ(e) → Λ(e), which
will be denoted by juxtaposition of its factors, is the only bilinear map
such that

eI eJ = (−1)s(I ,J)qI∩JeI+J ,

where I + J denotes the odd-sum of I and J , namely (I ∪ J)− (I ∩ J)
rearranged in increasing order and s(I , J) is the number of inversions
in the sequence I , J .1

Examples

If i ∈ {1, . . . , n}, e2i = eiei = (−1)s(i ,i)qie = qi .

If i , j ∈ {1, . . . , n} and i < j , eiej = (−1)s(i ,j)qei ,j = ei ,j , but
ejei = (−1)s(j ,i)qei ,j = −ei ,j .

e1,3e2,3,5 = (−1)s(1,3,2,3,5)q3e1,2,5 = −q3e1,2,5.
1For two summands, I + J coincides with symmetric difference I∆J.
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GA ingredients Geometric product

The map K → Λ0(e), λ 7→ λe, is an isomorphism. Henceforth we will
identify Λ0(e) and K. In particular, we will write 1 = 1K instead of e.

Theorem

The geometric product is associative with multiplicative unit e = 1.

Proof. For a direct proof, we refer to Artin-1957. We will follow a
more conceptual approach in the coming lectures.

We will denote Λ
q

(e) the exterior algebra Λ(e) endowed with the
geometric product relative to q.

Clifford considered the case Ḡn = Gn̄ = Λ−1n(e) in Clifford-1878 (so
that e2i = −1) and the case Gn = Λ1n(e) in Clifford-1882 (so that
e2i = 1).

Examples. (1) G1 ≃ R⊕ R = 2R, a + be1 7→ (a + b, a − b).

(2) Ḡ1 ≃ C, a + be1 7→ a + bi .
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GA ingredients Involutions

Parity involution

The linear automorphism α of Λ(e) defined by

α(eI ) = (−1)reI (r = |I |)

is an involutive automorphism for the exterior and the geometric
product.2 Instead of α(x), we usually write xα.

As a consequence, Λ
q

(e) = Λ
+

q

(e)⊕ Λ
−

q

(e), where

Λ
+

q

(e) = {x ∈ Λ
q

(e) | xα = x} and Λ
−

q

(e) = {x ∈ Λ
q

(e) | xα = −x}.

Moreover, Λ
+

q

(e) = ⊕n//2
j=0 Λ

2j(e) is a subalgebra (the even subalgebra)
of both the exterior product and the geometric product.3

Note that dimΛ
+

q

(e) = dimΛ
−

q

(e) = 2n−1.

2It suffices to prove it for products of the form eI ∧ eJ and eI eJ , in which
cases it follows straightforwardly from the defining formulas.

3n//2 = ⌊n/2⌋ is the integer quotient of n by 2.
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GA ingredients Involutions

Reversion involution

Given a multiindex I = i1, . . . , ir , we let Ĩ denote I in reversed order,
that is, Ĩ = ir , . . . , i1. Since restoring the original order amounts to(
r

2

)
transpositions, and since

(
r

2

)
≡ r//2 mod 2, we see that

ê
Ĩ
= (−1)r//2êI .

The linear automorphism τ of Λ(e) defined by

τ(eI ) = (−1)r//2eI

is an involutive antiautomorphism (the reversion involution) for the
exterior and the geometric product. The scheme of the proof is
similar to the one used for the parity involution. Instead of τ(x), we
usually write x τ or x̃ .4

4In symbols, (xy)τ = yτxτ .
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GA ingredients Involutions

Clifford involution

The Clifford involution is the antiautomorphism κ (of the exterior and
geometric products) defined as κ(x) = τ(α(x)) = α(τx). It is also
denoted xκ or x̄ .

Since r//2 + r ≡
(
r

2

)
+ r =

(
r+1
2

)
≡ (r + 1)//2 mod 2, for

x ∈ Λr
q

(e) we have

xκ = (−1)(r+1)//2x .

Note that the signs of α, τ, κ for
r = 4j , 4j + 1, 4j + 2, 4j + 3 ≡ 0, 1, 2, 3 mod 4 are

0 1 2 3
α + − + −
τ + + − −
κ + − − +
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GA ingredients The inner product

Let En = Λ1(e) = 〈e1, . . . , en〉 (its elements will be called vectors). If
v = v 1e1 + · · ·+ v nen,

Q(v ) = q1(v
1)2 + · · ·+ qn(v

n)2

is a quadratic form of En. Its associated scalar product v · v ′ is given
by5

v · v ′ = q1v
1v ′1 + · · ·+ qnv

nv ′n.

The inner product (or contraction), x · x ′, is a bilinear map

Λq(e)× Λq(e) → Λq(e)

that generalizes the scalar product. For its definition we only need to
consider the case when x and x ′ are simple multivectors, say

x = v1 ∧ · · · ∧ vr , y = v ′
1 ∧ · · · ∧ v ′

s .

5 2v · v ′ = Q(v + v ′)− Q(v) − Q(v ′).
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GA ingredients The inner product

The rules for computing (v1 ∧ · · · ∧ vr) · (v ′
1 ∧ · · · ∧ v ′

s) are as follows.

If r = 0 (so x is a scalar, say λ), λ · y = λy . There is a similar
rule for the case s = 0.

If r = 1 ≤ s (so x is a vector, say v = v1),
x · y =

∑k=s

k=1(−1)k−1(v · v ′
k)v

′
1 ∧ · · · ∧ v ′

k−1 ∧ v ′
k+1 ∧ · · · ∧ v ′

s .
This means that v · acts as a (left) skew-derivation of the
exterior product. When s = 1, the inner product is just the
scalar product of vectors.

If s = 1 ≤ r (so y is a vector, say v ′ = v ′
1),

x · v ′ =
∑k=r

k=1(−1)r−k(vk · v ′)v1 ∧ · · · ∧ vk−1 ∧ vk+1 ∧ · · · ∧ vr .
This means that ·v ′ acts as a right skew-derivation of the
exterior product. This agrees with (−1)r−1v ′ · x .
If 2 6 s 6 r , x · y = (x · v ′

1) · (v ′
2 ∧ · · · ∧ v ′

s).
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GA ingredients The inner product

In the following lectures we will give precise formulas to evaluate the
inner product. In particular we will see that for r = s, it does not
matter whether we evaluate from the left or from the right, and that
the result is the scalar detG (x , y ), where G (x , y ) is the matrix whose
entries are vi · v ′

j . This means that x · y = y · x when x and y are
homogeneous of the same degree. For r 6= s, however, the
commutativity does not hold in general, for if s 6 r , then
x · y = (−1)rs+sy · x .
Remark. We have denoted the inner product (following
Hestenes-1966 and Casanova-1976) using only the dot (·). But there
are authors that use the symbols x y (when r 6 s) and x y (when
r > s).
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GA ingredients The inner product

Some relations among the exterior, geometric and inner products

If v ∈ En and x is any homogeneous multivector of degre r ,

vx = v · x + v ∧ x and xv = x · v + x ∧ v .

2v ∧ x = vx + (−1)rxv .

2v · x = vx − (−1)rxv .

In particular we see that two vectors commute (anticommute) if and
only if they are parallel (perpendicular).

The aim of GA is the study of the structure Λ
q

(e) (and others that
are more general and to which we will devote the coming lectures)
with the three products (exterior, geometric and interior) and to
develop methods for its application to a variety of fields and problems.

In what follows of this lecture, we will consider in detail several
examples for low n, including Gn and Ḡn for n = 2, 3.
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Examples The algebras G2 and Ḡ2

The linear basis of G2 (and of Ḡ2) is 1, e1, e2, e12
.
= i . The tables for

the geometric product, however, are quite different:

G2 e1 e2 i

e1 1 i e2
e2 −i 1 −e1
i −e2 e1 −1

Ḡ e1 e2 i

e1 −1 i −e2
e2 −i −1 e1
i e2 −e1 −1

In both cases the even subalgebra 〈1, i〉 is isomorphic to C,
a + bi 7→ a + bi , and i anticommutes with the vectors, that is, the
elements of E2 = Λ1(e) = 〈e1, e2〉, but the action of i on E2 is
different: in G2, i{e1, e2} = {−e2, e1}, while in Ḡ2 we have
i{e1, e2} = {e2,−e1}. Multiplying by i on the left yields a rotation of
amplitude π/2 with different orientations: clockwise in the case of G2

and counterclockwise in the case of Ḡ. On the other hand, if
x = x0 + x1e1 + x2e2 + x3i , then xα = x0 − x1e1 − x2e2 + x3i ,
x τ = x0 + x1e1 + x2e2 − x3i and xκ = x0 − x1e1 − x2e2 − x3i .
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Examples Matrix representation of G2

G2 can be represented by the matrices

e1, e2 7→ E1 =

(
1

−1

)
,E2 =

(
1

1

)
.

In detail:

x = x0 + x1e1 + x2e2 + x3i 7→ X =

(
x0 + x1 x2 + x3
x2 − x3 x0 − x1

)
,

X =

(
a b
c d

)
7→ x = 1

2
[(a + d) + (a − d)e1 + (b + c)e2 + (b − c)i ]

Thus G2 ≃ R(2), the algebra of 2× 2 real matrices. In terms of X ,
the involutions act as follows

Xα =

(
d −c

−b a

)
= det(X )(XT )

−1
, X τ = XT , X κ = det(X )X−1.
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Examples Matrix representation of Ḡ2

From the multiplication table it is clear that Ḡ2 ≃ H, the field of
quaternions, via (for example) e1

.
= j , e2

.
= k .

Now H is algebra-isomorphic with the (real) subalgebra H of C(2) of
matrices

X =

(
a + di c + bi

−c + bi a − di

)
=

(
z w

−w̄ z̄

)
, a, b, c, d ∈ R.

The Pauli-like matrices E0 = I2,

E1 =

(
i

i

)
= iσ1, E2 =

(
1

−1

)
= iσ2, E3 =

(
i

−i

)
= iσ3

form a linear basis of H and the linear map determined by
1, i , j , k 7→ E0,E1,E2,E3 gives in fact an insomorphism of algebras
H ≃ H because the Ek satisfy the relations E 2

k = −I2,
E1E2 = −E2E1 = E3 (and cyclic permutations) in exact
correspondence with Hamilton’s relations i 2 = −1, i j = −j i = k

(and cyclic permutations).
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Examples Matrix representation of Ḡ2

It is easy to check that if X ∈ H corresponds to
x = a + d i + bj + ck ∈ H, then its Clifford conjugate
x̄ = a − d i − bj − ck corresponds to X † (the transpose of the
complex conjugate or Hermitian adjoint of X ).

The square norm of x , Q(x) = xx̄ = a2 + b2 + c2 + d2, corresponds
to XX † = det(X )σ0, so that Q(x) = det(X ).

Note that for x 6= 0, x̄/Q(x) is the inverse of x .

Remark. The real matrices in H are precisely those of the space
〈E0,E2〉. This space is a subalgebra of R(2) which is isomorphic to
C, 1, i 7→ E0,E2. But notice that 〈E0,E2〉 is different from the image
of the even subalgebra Ḡ+

2 ≃ C of Ḡ2 under the isomorphism Ḡ2 ≃ H.
Later in this lecture we are going to study a more satisfying
realization of H using G3.
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Linking Gn to geometry A quote from Feynman

“The most remarkable formula in mathematics is:

e iθ = cos θ + i sin θ

This is our jewel. We may relate the geometry to the algebra by
representing complex numbers in a plane

x + iy = re iθ

This is the unification of algebra and geometry.”

R. Feynman, Lecture Notes in Physics, Volume I, Part 1.

Comment. Emphasis not in the original. Note that Euler’s formula
works with no change by taking the ‘imaginary unit’ to be the
geometric i .
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Linking Gn to geometry Euclidean geometry revisted

In the case of Gn, the quadratic form Q on En is positive definite
(Euclidean space). Setting, as usual, |v | = +

√
Q(v ), then for

non-zero vectors v , v ′ ∈ En there is a unique θ = θ(v , v ′) ∈ [0, π]
such that

v · v ′ = |v ||v ′| cos θ.

Projection. Let u be a non-zero vector. Then for any vector u, the
orthogonal projection of v on 〈u〉, πu(v ), is given by the formula

πu(v ) = (v · u)u−1.

Proof. The right hand side is linear in v and its value is clearly 0 for
v ∈ u⊥. On the other hand, its value for v = u is
(u · u)u−1 = u2u−1 = u.
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Linking Gn to geometry Euclidean geometry revisted

Rejection. The difference π⊥
u (v ) = v − πu(v ) is orthogonal to u (for

u−1 · u = (u/u2) · u = 1 and hence (v − (v · u)u−1) · u = 0) and
sometimes it is called the rejection of v from 〈u〉.
Now we have:

π⊥
u (v ) = (v ∧ u)u−1.

Proof. We know that v · u = vu − v ∧ u. Hence
π⊥
u (v ) = v − (v · u)u−1) = v − (vu − v ∧ u)u−1 = (v ∧ u)u−1.

u
πu(v)

= (v · u)u−1

v
= (v ∧ u)u−1

π⊥
u
(v)
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Linking Gn to geometry Euclidean geometry revisted

Axial symmetries and reflections

Proposition. If u is a non-zero vector, then the map su : En → En,
v 7→ uvu−1 is the axial symmetry with respect to the line (axis) 〈u〉.
Proof. Since uu−1 = 1, su(u) = u. If v ∈ u⊥, then u and v
anticommute and hence su(v ) = uvu−1 = −vuu−1 = −v . Thus su is
the linear map that leaves u fix and is −Id on u⊥.

Corollary. If u is a non-zero vector, then the map mu : En → En,
v 7→ −uvu−1 (mu = −su) is the reflection across the hyperplane u⊥.

Proof. Indeed, mu is the identity on u⊥ and maps u to −u.

Proposition. Let u and u′ be non-zero vectors, u ∦ u′, and set
θ = θ(u, u′). Then the map ρu,u′ = su′su = mu′mu is the rotation of
amplitude 2θ on the (oriented) plane U = 〈u, u′〉.
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Linking Gn to geometry Euclidean geometry revisted

u

u′ = u1

u2

su′(u)

θ
θ

u = u1 cos θ − u2 sin θ su′(u) = u1 cos θ + u2 sin θ
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Linking Gn to geometry Euclidean geometry revisted

Proof. Without loss of generality, we may assume that u and u′ are unit
vectors, so they are their own inverses. Since mu = −su and mu′ = −su′ ,
the relation su′su = mu′mu is clear.

Let L = U⊥ = u⊥ ∩ u′
⊥. It is clear that ρu,u′ is the identity on L and that

it leaves U invariant. Therefore it suffices to show that the restriction of

ρ = ρu,u′ to the plane U is a rotation of amplitude 2θ. But the restriction

of su and su′ to U are the reflections across 〈u〉 and 〈u′〉, respectively, and
the composition of two reflections is a rotation, so that it is enough to

calculate θ′ = θ(u, ρ(u)) = θ(u, su′(u)). To that end, let u1 = u′ and

u2 ∈ u′
⊥ ∩ U be unitary with u1, u2 defining the same orientation of U as

u, u′. Then u = cos(θ)u1 − sin(θ)u2, su′(u) = cos(θ)u1 + sin(θ)u2, so

cos(θ′) = u · su′(u) = cos2(θ)− sin2(θ) = cos(2θ) and

sin(θ′) = 2 sin(θ) cos(θ) = sin(2θ).
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Linking Gn to geometry Rotors

Let u, u′ be non-zero vectors and set R = u′u ∈ G+

n . We say that R
is the rotor defined by u and u′ on account of the following fact:

ρu,u′(v ) = (su′su)(v ) = u′(uvu−1)u′−1
= RvR−1.

Since ρu,u′ only depends on R , we will write ρR to denote it. But it is
important to remember that the amplitude θR of the rotation ρR is
2θ(u, u′).6 If we only know R , θR can be obtained as the angle
θ(v , ρR(v )), where v is any vector in the plane of the rotation.

Composition. If R and S are rotors, (ρR ◦ ρS)(v ) = (RS)v (RS)−1.

6 For an interesting analysis about the historical difficulty of uncovering the
significance of this factor of 2, see Altman-1989.

S. Xambó (UPC) GAT 01 First steps SLP · 9-13 March · 2015 27 / 45



Linking Gn to geometry The Lipschitz groups Γn and Γ
+

n

The non-zero vectors generate a subgroup Γn of the multiplicative
group G×

n of invertible elements of Gn (with respect to the geometric
product). The subgroup Γ

+

n of even elements of Γn is the subgroup
generated by the rotors and we have a homomorphism

ρ : Γ
+

n → SOn, ψ 7→ ρψ,

where ρψ(v ) = ψvψ−1.

The homomorphism ρ extends to a homomorphism ρ̃ : Γn → On,
φ 7→ ρ̃φ, where ρ̃φ(v ) = (−1)|φ|φvφ−1.

For a non-zero vector u, ρ̃u = mu. Since the reflections across
hyperplanes generate On, ρ̃ is surjective. The homomorphism ρ is
also surjective, because rotations are products of an even number of
reflections.
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Linking Gn to geometry The grups Pinn and Spinn

The group Pinn is defined as the subgroup of Γn generated by the
unit vectors and Spinn = Pinn ∩ Γ

+

n . Since mλu = mu for any
non-zero vector u and scalar λ, any reflection can be written as mu

with u a unit vector. It follows that the homomorphisms

ρ̃ : Pinn → On and ρ : Spinn → SOn

are surjective.

These homomorphisms will be defined and studied under more
general assumptions in the coming lectures. In particular we will see
that their kernel is {±In}.
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Linking Gn to geometry Oriented area in E2

The area A(v , v ′) of the parallelogram [v , v ′] defined by v , v ′ ∈ E2 is
given by the formula |v ||v ′| sin θ, θ = θ(v , v ′).

On the other hand, v ∧ v ′ = D(v , v ′)i , where i = e1e2 and
D(v , v ′) = v1v

′
2 − v2v

′
1 is bilinear and skew-symmetric.

Now we have

v 2v ′2 = vv ′v ′v = (v · v ′)2 − (v ∧ v ′)2 = (v · v ′)2 + D(v , v ′)2

and hence

D(v , v ′)2 = v 2v ′2 − (v · v ′)2 = |v |2|v ′|2(1− cos2 θ) = |v |2|v ′|2 sin2 θ.

We conclude that D(v , v ′) = ±A(v , v ′), with the sign depending on
the orientation of v , v ′ (relative to e1, e2).
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Linking Gn to geometry Euler’s spinor formula

Let u, u′ ∈ En be linearly independent and U = 〈u, u′〉. Let R be the
rotor u′u, so that ρR(v ) = RvR−1 for v ∈ En. If
θ = θ(u, u′) ∈ (0, π), then ρR is the rotation in U (extended by the
identity on U⊥) of amplitude α = 2θ in the sense determined by the
orientation of U given by u, u′. Pick an orthonormal basis u1, u2 of U
with the same orientation as u, u′ and let iU = u1u2 = u1 ∧ u2 (the
unit area in U), which satisfies i 2U = −1. Then
u ∧ u′ = |u||u′| sin(θ)iU and u′ ∧ u = −|u||u′| sin(θ)iU . Consequently,
R = u′u = |u||u′|(cos θ − sin θ iU) = |u||u′|e−θiU = |u||u′|e− 1

2
αiU and

R−1 = u−1u′−1 = |u|−2|u′|−2uu′ = |u|−1|u′|−1e
1
2
αiU . Finally,

ρR(v ) = e−
1
2
αiUve

1
2
αiU .

S. Xambó (UPC) GAT 01 First steps SLP · 9-13 March · 2015 31 / 45



Linking Gn to geometry Composition of rotors (after Hestenes)

u

u
′

u
′′

u
′
u

u
′′
u
′

u
′′
u

If R = u′u and R ′ = u′′u′ are rotors, where u, u′, u′′ are unit vectors
(there is no loss of generality with this assumption), then
R ′R = u′′u′u′u = u′′u

.
= R ′′. This is illustrated in the figure. In

particular we have that ρR′ ◦ ρR = ρR′′ . It has to be remembered,
however, that the rotation amplitudes of R , R ′ and R ′′ are 2θ(u, u′),
2θ(u′, u′′) and 2θ(u, u′′).
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Linking Gn to geometry Hodge duality

The algebra G = G3 has dimension 8. The spaces of scalars (G0 = R)
and pseudoscalars (G3) have dimension 1 and are generated by 1 and
i = e1e2e3. The space of vectors (E3 = G1) and of bivectors (G2)
have dimension 3 and are generated by e1, e2, e3 and e2e3, e3e1, e1e2,
respectively.

These generators can be written in a more compact form using the
relations

e2e3 = ie1 = e1i , e3e1 = ie2 = e2i , e1e2 = ie3 = e3i

which show that i lies in the center of G and that the map G 1 → G2,
v 7→ iv

.
= v ∗, is an isomorphism, with inverse the map w 7→ −iw .

These isomorphisms, which are isometries, are a special case of
Hodge duality.
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Linking Gn to geometry G3 and the Pauli algebra

The algebra G3 admits the (complex) matrix representation
1, e1, e2, e3 7→ I2, σ1, σ2, σ3, where the σk are the Pauli matrices:

σ1 = σx =

(
1

1

)
, σ2 = σy =

(
−i

i

)
, σ3 = σz =

(
1

−1

)
.

Therefore G3 ≃ C(2). Note that i = e1e2e3 7→ σ1σ2σ3 = iI3.

Proof. It is immediate to check that σjσk + σkσj = 2δjk .

The Pauli represention of G3, or any other matrix representation for
that matter, is not needed to understand G3 and its applications. The
advantages of working directly with G3, which can be regarded as the
‘true’ Pauli algebra, have been noticed already and will be further
highlighted in the considerations that follow. The story will repeat
later on when we study the Dirac algebra.

S. Xambó (UPC) GAT 01 First steps SLP · 9-13 March · 2015 34 / 45



Linking Gn to geometry G3 and the Pauli algebra

Multiplication table of G = G3

G3 e1 e2 e3 ie1 ie2 ie3 i

e1 1 ie3 −ie2 i −e3 e2 ie1
e2 −ie3 1 ie1 e3 i −e1 ie2
e3 ie2 −ie1 1 −e2 e1 i ie3
ie1 i −e3 e2 −1 −ie3 ie2 −e1
ie2 e3 i −e1 ie3 −1 −ie1 −e2
ie3 −e2 e1 i −ie2 ie1 −1 −e3
i ie1 ie2 ie3 −e1 −e2 −e3 −1

We see that 〈1, i〉 ≃ C is the center of G.

We also see that the even subalgebra G+
= 〈1, ie1, ie2, ie3〉 is

isomorphic to the quaternion field H = 〈1, I , J ,K 〉, with
ie1 = e2e3, ie2 = e3e1, ie3 = e1e2 7→ I , J ,K .

See the slide 43 for further features about H deduced from this
representation.
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Linking Gn to geometry Rotations of the rotors I , J,K

Since 〈e2, e3〉⊥ = 〈e1〉 and θ(e2, e3) = π/2, the rotation produced by
the rotor I has axis 〈e1〉 and amplitude 2θ = π. In other words, it is
the axial symmetry with respect to the axis 〈e1〉. In a similar way we
find that J and K yield the axial symmetries with respect to the axes
〈e2〉 and 〈e3〉, respectively.

e1

e2

e3
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Linking Gn to geometry The cross product

If v and v ′ are vectors, let v × v ′ be the vector such that

i(v × v ′) = v ∧ v ′ or v ∧ v ′ = −i(v ∧ v ′).

In particular we have, if j , k, l is a cyclic permutation of 1, 2, 3,

ej × ek = −i(ej ∧ ek) = −i(iel) = el .

Lemma

v × v ′ = −iv · v ′.

Proof. Since both sides are linear in v , it is enough to check the
formula for v = ej . In this case, the left hand side is
ej × v ′ = v ′

kel − v ′
l ek , while the right hand side is

−iej · v ′ = −ekel · v ′ = (v ′ · ek)el − (v ′ · el)ek = v ′
kel − v ′

l ek .
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Linking Gn to geometry The cross product

Remark. Since i reverses sign when we reverse the orientation of the
basis, we see that v × v ′ also reverses sign when we reverse the
orientation. This is usually described by saying that the cross product
is an axial vector to distinguish it from the polar vectors (the vectors
in E3) whose nature is independent of the space orientation.

Mixed product

(v × v ′) · v ′′ = −i(v ∧ v ′ ∧ v ′′) = det(v , v ′, v ′′).

Proof. Since v × v ′ is a vector,

2(v × v ′) · v ′′ = (v × v ′)v ′′ + v ′′(v × v ′).

Using v × v ′ = −i(v ∧ v ′), and that i is a central element, we get

2(v × v ′) · v ′′ = −i(v ∧ v ′)v ′′ − iv ′′(v ∧ v ′) = −2iv ∧ v ′ ∧ v ′′.

To finish, use v ∧ v ′ ∧ v ′′ = i det(v , v ′, v ′′).
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Linking Gn to geometry The cross product

Double cross product

(v × v ′)× v ′′ = (v · v ′′)v ′ − (v ′ · v ′′)v .

Proof. Indeed, (v × v ′)× v ′′ = −i(v × v ′) · v ′′ = −(v ∧ v ′) · v ′′ and
(v ∧ v ′) · v ′′ = (v ′ · v ′′)v − (v · v ′′)v ′.

Geometrically, the cross-product of two linearly independent vectors is
determined by the following properties:

1) v × v ′ is orthogonal to v and to v ′.
2) Its length is equal to A(v , v ′).
3) v , v ′, v × v ′ is positively oriented.

Proof. The mixed product formula gives 1). As for 2), we have
|v × v ′|2 = |v ∧ v ′|2 = (v ∧ v ′) · (v ∧ v ′) = A(v , v ′)2. Finally,

det(v , v ′, v × v ′) = (v × v ′) · (v × v ′) > 0.
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Linking Gn to geometry Rotations about any axis

Let u be a unit vector and α a real number. Let ρu,α be the rotation
about u of amplitude α. Then the following variation of Euler’s
spinor formula holds:

ρu,α(v ) = e−
1
2
iuαve

1
2
iuα.

Proof. Let u1, u2 be perpendicular unit vectors in U = u⊥ such that
u1 × u2 = u. If we let iU = u1 ∧ u2, then we know that

ρu,α(v ) = e−
1
2
iUαve

1
2
iUα.

Now note that iP = u1 ∧ u2 = i(u1 × u2) = iu.

Example. The rotor for ρe1,π is e−
1
2
ie1π = e−I

π

2 = I . Similarly, J and
K are the rotors for ρe2,π and ρe3,π, respectively, in accord with the
slide 36.
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Linking Gn to geometry Vector algebra form of Euler’s rotor

Lemma (Vector algebra form of Euler’s rotor)

ρu,α(v ) = (1− cosα)(v · u)u + v cosα + (u × v ) sinα.

Proof. Since this expression is linear in v , and its value for v = u is
u, it is enough to consider the case in which v is orthogonal to u. In
that case, v anticommutes with u and

e−
1
2
iuαve

1
2
iuα = ve iuα = v cosα + v iu sinα = v cosα + (u × v ) sinα

as v iu = ivu = −i(u ∧ v ) = u × v .

In matrix form, say x ′ = xM ,

M =



a2 + (1− a2) cosα abδ + c sinα acδ − b sinα

baδ − c sinα b2 + (1− b2) cosα bcδ + a sinα
caδ + b sinα cbδ − a sinα c2 + (1− c2) cosα




where u ≡ (a, b, c) and δ = 1− cosα.

S. Xambó (UPC) GAT 01 First steps SLP · 9-13 March · 2015 41 / 45



Linking Gn to geometry Olinde Rodrigues’ formulas

To determine the composition ρu′,α′ ◦ ρu,α, it is enough to compute

its rotor, say e
1
2
iu′′α′′

, as the product of the corresponding rotors:

e
1
2
iu′′α′′

= e
1
2
iu′α′

e
1
2
iuα.

This relation can be written in the form

cos α
′′

2
+ iu′′ sin α′′

2
= (cos α

′

2
+ iu′ sin α′

2
)(cos α

2
+ iu sin α

2
) which

itself is equivalent to the equations

cos α
′′

2
= cos α

′

2
cos α

2
− (u · u′) sin α′

2
sin α

2

u′′ sin α′′

2
= u sin α

2
cos α

′

2
+ u′ cos α

2
sin α′

2
+ (u × u′) sin α

2
sin α′

2

There are two solutions to the first equation (±α′′), and hence two
solutions ±u′′ to the second equation, but since ρ−u,−α = ρu,α, they
determine the same rotation.
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Linking Gn to geometry Quaternions revisited

Let us return to the realization of the quaternion field H as the even
algebra G+

3 (slide 35). A quaternion x can be written in the form
x = s + iut, where u is a unit vector and s, t ∈ R. Then
x̄ = s − iut, because iu is a bivector. Thus Q(x) = xx̄ = s2 + t2

and the inverse x−1 of a non-zero quaternion x is x−1 = x̄/Q(x).
Note that |x | =

√
s2 + t2 is the norm on H associated to the

(Euclidean) symmetric bilinear form 〈x |y〉 = 1
2
(xȳ + y x̄).

Given two quaternions x = s + iut and x ′ = s ′ + iu′t ′, we have
Q(xx ′) = xx ′x̄ ′x̄ = Q(x)Q(x ′) and as consequence |xx ′| = |x ||x ′|.
The explicit form of xx ′ is given by the expression

xx ′ = ss ′ + iu′t ′s + iuts ′ − uu′tt ′.

It follows that xx ′ − x ′x = (u′u − uu′)tt ′ = 2(u ∧ u′)tt ′. Thus x and
x ′ commute if and only if one of them is scalar or else u′ = ±u.

S. Xambó (UPC) GAT 01 First steps SLP · 9-13 March · 2015 43 / 45



Appendix Why not trinions

Why not trinions

If there were 3D ’numbers’ a + bi + cj analogous to complex
numbers a + bi in 2D, then in particular we would have
i j = a + bi + cj for some a, b, c ∈ R. Multiplying by i , we obtain

−j = ai − b + c(a + bi + cj ),

which is equivalent to

−b + ca + (a + cb)i + (1 + c2)j = 0,

and this contradicts the assumed (linear) independence of 1, i , j .

Beyond quaternions?

A key result is Hurwitz’s theorem (1898): there are exactly four
normed real division algebras: R,C, H and O (Cayley’s octonion
algebra, wich is non-associative). See Baez-2002.
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Appendix References

Before each lecture, I will try to upload the pdf slides to SLP-GAT.
In particular, you will find there details for references, an in particular
for those mentioned in the course slides: References for SLP-GAT.
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Hitzer 2011
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Riesz 1958
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Introduction Objectives

Until recently I was unacquainted with the Aus-
dehnungslehre [...]. I may, perhaps, therefore be
permitted to express my profound admiration of that
extraordinary work and my conviction that its principles
will exercise a vast influence upon the future of science.

Clifford-1878

The ground ingredient in our presentation is the exterior algebra ΛE
of a vector space E of finite dimension n over a commutative field K .
When E is endowed with a quadratic form, ΛE can be enriched with
an associative product (the geometric product or Clifford product) for
which all non-isotropic vectors are invertible. As illustrated in the
introductory lecture, we can regard ΛE as a stage for defining
geometric objects and relations among them, and the geometric
product, together with the inner product that will be introduced in
general in next lecture, as an efficient toolbox for defining
transformations of the geometric objects with no need of coordinates
or matrices.
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Introduction Notations and conventions

E and F denote vector spaces.

L(E , F ): the vector space of linear maps from E to F .

E ∗ = L(E ,K ): dual space of E .

EndK (E ) = L(E ,E ): the vector space of endomorphisms of E . It
is an associative algebra with the product given by the composition
of endomorphisms: (f , g) 7→ f ◦ g . The algebra with the opposite
product ((f , g) 7→ g ◦ f ) will be denoted End

op

K (E ).

E r = E × r)· · · × E .

Lr(E ; F ): the vector space of multilinear maps E r → F . Note that
L1(E ; F ) = L(E , F ). By convention, L0(E ; F ) = F .

Ar (E ; F ): the vector space of skew-symmetric (also called
alternating) multilinear maps E r → F . Note that
A1(E ; F ) = L(E , F ). By convention, A0(E ; F ) = F ).
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Introduction Notations and conventions

In order to check that a multilinear map f ∈ Lr(E ; F ) is
skew-symmetric, it is enough to show that f (e1, . . . , er ) changes sign
when any two of the (arbitrary) vectors e1, . . . , er are interchanged.

We will also use the tensor powers T rE (r > 0) of E (we will refer
to the elements of T rE as tensors of order r). By convention,
T 0E = K and for r > 0 there is, for any vectors e1, . . . , er ∈ E , a
well defined element e1 ⊗ · · · ⊗ er ∈ T rE , called the tensor product
of e1, . . . , er , such that:

1) the map E r → T rE , (e1, . . . , er ) 7→ e1 ⊗ · · · ⊗ er , is multilinear;

2) for any multilinear map f : E r → F , F a vector space, there
exists a unique linear map f t : T rE → F such that

f t(e1 ⊗ · · · ⊗ er ) = f (e1, . . . , er ).
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Introduction Notations and conventions

Furthermore, there exists a unique bilinear map (tensor product)

T rE × T sE → T r+sE , (x , y ) 7→ x ⊗ y ,

such that

(e1 ⊗ · · · ⊗ er )⊗ (e ′1 ⊗ · · · ⊗ e ′s) = e1 ⊗ · · · ⊗ er ⊗ e ′1 ⊗ · · · ⊗ e ′s .

The tensor algebra is the vector space

TE =
⊕

r>0 T
rE = K ⊕ E ⊕ T 2E ⊕ · · ·

endowed with the tensor product. It is an associative graded algebra.
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Exterior algebra Exterior powers

For any integer r > 0, the r -th exterior power of E , denoted ΛrE , is
characterized as follows:

Λ0E = K and Λ1E = E .

If r > 1, for any elements e1, . . . , er ∈ E there is a well defined
element

e1 ∧ · · · ∧ er ∈ ΛrE ,

called the exterior product of e1, . . . , er , and the map

(e1, . . . , er ) 7→ e1 ∧ · · · ∧ er

is multilinear and skew-symmetric.
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Exterior algebra Exterior powers

Universal property of ΛrE

If f : E r → F is a skew-symmetric multilinear map with values in a
vector space F , then there is a unique linear map f̂ : ΛrE → F such
that f̂ (e1 ∧ · · · ∧ er ) = f (e1, . . . , er). In other words, f 7→ f̂ provides
a natural isomorphism Ar (E ; F ) ≃ L(ΛrE , F ). Note that this
isomorphism also holds for k = 0, 1.

ΛrE = 0 for any r > n.

Exterior product

Given integers r , s > 0, there is a unique bilinear map

ΛrE × ΛsE → Λr+sE , (x , y ) 7→ x ∧ y ,

such that (e1∧ · · ·∧ er )∧ (e ′1∧ · · ·∧ e ′s) 7→ e1∧ · · ·∧ er ∧ e ′1∧ · · ·∧ e ′s .
This map is called exterior (or outer) product.

S. Xambó (UPC) GAT 02 Grassmann-Clifford Algebra SLP · 9-13 March · 2015 8 / 42



Exterior algebra Definition

ΛE =
⊕n

r=0Λ
rE = K ⊕ E ⊕ Λ2E ⊕ · · · ⊕ ΛnE .

with the exterior product is a graded associative algebra (the exterior
algebra of E ). This implies that e1 ∧ · · · ∧ er = e1 ∧ · · ·∧ er and
hence there is no need to distinguish the operator symbols ∧ and ∧.
If x ∈ ΛE , there is a unique decomposition x = x0+ x1+ · · ·+ xn with
xr ∈ ΛrE . The term xr is called the grade r component of x (there
are authors that denote it by 〈x〉r). The grade 0 and 1 components
are also referred to as scalar and vector components. Since
dimK ΛnE = 1, xn is also called the pseudoscalar component of x .

The exterior product is grade-commutative (or skew-commutative, or
supercommutative), which means that if x ∈ ΛrE and y ∈ ΛsE , then

y ∧ x = (−1)rsx ∧ y . (1)

In particular, e ′ ∧ e = −e ∧ e ′, for all e, e ′ ∈ E .
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Exterior algebra Universal property of ΛE

If i : E → A is a linear map with values in an algebra A and i satisfies
i(e)2 = 0 for any e ∈ E , then there exists a unique homomorphism of
algebras j : ΛE → A such that j(e) = i(e) for all e ∈ E .

e

e
′

e ∧ e
′

e

e
′

e
′ ∧ e

e
e
′

e

e
′′e ∧ e

′
e ∧ e

′′

e ∧ (e′ + e
′′)

e
′ + e

′′

An r -blade is an r -vector of the form e1 ∧ e2 ∧ · · · ∧ er ,
e1, . . . , er ∈ E . Any r -vector is the sum of a finite number of
r -blades, but in general there are r -vectors that are not r -blades.
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Exterior algebra On the Ausdehnungslehre

The exterior algebra is also known as Grassmann algebra, inasmuch
as it is the algebraic structure that Hermann G. Grassmann
(1809-1877) discovered in pursuing his Ausdehnungslehre, or
extension theory (cf. Grassmann-2000).

Just as the vectors e ∈ E = Λ1E represent oriented extensions of
dimension 1, the elements of ΛrE , which are called r -vectors,
represent oriented extensions of dimension r .

For example, if e, e ′ ∈ E , then the 2-vector (or bivector) e ∧ e ′

represents the 2-dimensional extension associated to the oriented
parallelogram defined by e and e ′. The oriented condition of the
notion of extension is echoed in this case by the rule e ′ ∧ e = −e ∧ e ′

(e, e ′ ∈ E ).
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Exterior algebra The skew-derivation ξ̂

Let ξ ∈ E ∗ = L(E ,K ) (dual space of E ). Then there exists a unique

skew-derivation ξ̂ of ΛE such that ξ̂(e) = ξ(e) for all e ∈ E . This
skew-derivation satisfies

ξ̂(e1∧· · ·∧er ) =
r∑

k=1

(−1)k−1ξ(ek) e1∧· · ·∧ek−1∧ek+1∧· · ·∧er (∗)

for any e1, . . . , er ∈ E . The map ξ̂ is graded of degree −1 and
ξ̂ 2 = 0.

Given a vector sequence e = e1, . . . , em ∈ E , and a sequence of
indexes I = i1, . . . , ir ∈ {1, . . . ,m}, we write

êI = ei1 ∧ · · · ∧ eir ∈ ΛrE .

We say that I is multiindex if i1 < · · · < ir .
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Exterior algebra Dimension of the exterior algebra

If e = e1, . . . , en ∈ E is a basis of E , then the blades êI , when I runs
over the set of multiindices (of length r), form a basis of ΛE (ΛrE ).
In particular, dimK ΛrE =

(
n

r

)
and dimK ΛE = 2n.

In terms of the L1, the map Λ(e) → Λ(E ) is an isomorphism. On the
left, the ej are regarded as symbols but on the right they are vectors
in E .
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Exterior algebra Creation operators

If e ∈ E , we define the linear map µe : ΛE → ΛE by the formula

µe(x) = e ∧ x .

The linear map µe is graded of degree 1 and µ2
e = 0.

Since the exterior product is multilinear, the map

E → EndK (ΛE ), e 7→ µe ,

is linear and extends in a unique way to an algebra homomorphism
ΛE → EndK (E ), say x 7→ µx , and it can be easily checked that
µx(y ) = x ∧ y for all x , y ∈ ΛE .
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Exterior algebra Functoriality

If f : E → F is a linear map, for any r > 0 there is unique linear map
Λr f : ΛrE → ΛrF such that

(Λr f )(e1 ∧ · · · ∧ er ) = f (e1) ∧ · · · ∧ f (er).

Gluing the Λr f for the different r we get a linear map Λf : ΛE → ΛF ,
and this map is a homomorphism of algebras.

Main/grade/parity involution

The linear automorphism E → E , e 7→ −e, yields a linear
automorphism α : ΛrE → ΛrE such that

(e1 ∧ · · · ∧ er ) 7→ (−e1) ∧ · · · ∧ (−er ) = (−1r )e1 ∧ · · · ∧ er .

The corresponding automorphism of ΛE , which will also be denoted
by α, acts on even grades as the identity and on odd grades as minus
the identity: if x =

∑
r>0 xr ∈ ΛE is the grade decomposition of x ,

then α(x) =
∑

r>0(−1)rxr .
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Exterior algebra Functoriality

Even subalgebra and superalgebra structure

Λ
+
E =

∑
j>0 Λ

2jE is a (graded) subalgebra of ΛE . In fact,

Λ
+
E = {x ∈ ΛE | xα = x}.

The graded subspace

Λ
−

E = {x ∈ ΛE |α(x) = −x} =
∑

j>0 Λ
2j+1E

is called the odd subspace of ΛE (it is not a subalgebra), and

ΛE = Λ
+
E ⊕ Λ

−

E .

This decomposition is a Z2-grading, in the sense that

Λ
+
Λ
+ ⊆ Λ

+
, Λ

+
Λ
−

,Λ
−

Λ
+ ⊆ Λ

−

, and Λ
−

Λ
− ⊆ Λ

+
.

With respect to this grading, the exterior product is
supercommutative: x ∧ y = (−1)|x ||y |y ∧ x , where |x | = 0 if x ∈ Λ

+
E

and |x | = 1 if x ∈ Λ
−

E .
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Exterior algebra Functoriality

Reversion involution

Since the map E r 7→ Λr such that (e1, . . . , er) 7→ er ∧ · · · ∧ e1 is
multilinear and skew-symmetric, there is a unique linear map

τ : ΛrE → ΛrE , such that e1 ∧ · · · ∧ er 7→ er ∧ · · · ∧ e1.

Gluing these maps for r > 0 we get a linear automorphism
τ : ΛE → ΛE which is an involutive anti-automorphism of the
exterior product: τ(x ∧ y ) = τ(y ) ∧ τ(x) (it is called the main
anti-automorphism or the reversion involution of ΛE ). Since

er ∧ · · · ∧ e1 = (−1)(
r
2)e1 ∧ · · · ∧ er ,

the restriction of τ to ΛrE amounts to multiplication by (−1)(
r
2).
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Exterior algebra Functoriality

Clifford involution

The anti-automorphism x 7→ κ(x) = x̄ , where x̄ = x̃α is called the
Clifford involution or Clifford conjugation. It coincides with x̃α and on

grade r elements it reduces to multiplication by (−1)(
r+1
2 ).

Remark. The integers
(
r

2

)
= r(r − 1)/2 and r//2 have the same

parity, where r//2 is the integer quotient of r by 2, or the integer
part of r/2. Thus we have that x̃ = (−1)r//2x and x̄ = (−1)(r+1)//2x
for all x ∈ ΛrE .

The patterns of these signs for the consecutive integers
4k, 4k + 1, 4k + 2, 4k + 3 are + +−− and +−−+, respectively.
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Duality Duality pairing

Consider the linear map E ∗ → End
op

K (ΛE ) such that ξ 7→ ξ̂.

Since ξ̂ 2 = 0, the universal property of the exterior algebra tells us
that there exists a unique homomorphism of algebras
ΛE ∗ → End

op

K (ΛE ), φ 7→ φ̂, which agrees with ξ 7→ ξ̂ for ξ ∈ E ∗.

If x ∈ ΛE and φ ∈ ΛE ∗, instead of φ̂(x) we will simply write φ(x).
Thus we have a bilinear duality pairing ΛE ∗ × ΛE → ΛE or, more
specifically

ΛrE ∗ × ΛsE → Λs−rE .

Since this map vanishes for r > s, in the remaining of this section we
will assume that r 6 s.

Next step will be to find a practical formula for evaluating φ(x).

Remark. Instead of φ(x), some authors write φ x (left contraction).
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Duality Notations

If r and s are positive integers, r 6 s, Ir ,s will denote the set of
multiindices I ⊆ {1, . . . , s} of length r .

Given I ∈ Ir ,s , we set I ′ = {1, . . . , s} − I . In the special case in
which I has a single element k, instead of {k}′ we will write k ′, so
that k ′ = {1, . . . , s} − {k}.
The number of inversions in the sequence (I , I ′) will be denoted
t(I ), so that (−1)t(I ) is the sign of the permutation (I , I ′) of
{1, . . . , s}.
If M is an r × s matrix and I ∈ Ir ,s , MI will denote the r × r
submatrix of M formed with the columns whose indexes are the
elements of I .
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Duality Duality formula

Let ξ1, . . . , ξr ∈ E ∗ and e1, . . . , es ∈ E , r 6 s. Then we have:

(ξ1 ∧ · · · ∧ ξr)(e1 ∧ · · · ∧ es) =
∑

I∈Ir,s

(−1)t(I ) det(MI ) êI ′,

where M is the r × s matrix whose entries are the scalars ξi(ej), for
i = 1, . . . , r , j = 1, . . . , s.

For r = 1, this formula agrees with the antiderivation ξ̃1.

When s = r , the result is the scalar det(M).

Example. (ξ1 ∧ ξ2)(e1 ∧ e2 ∧ e3) =
∣∣∣∣
ξ1(e2) ξ1(e3)
ξ2(e2) ξ2(e3)

∣∣∣∣ e1 −
∣∣∣∣
ξ1(e1) ξ1(e3)
ξ2(e1) ξ2(e3)

∣∣∣∣ e2 +
∣∣∣∣
ξ1(e1) ξ1(e2)
ξ2(e1) ξ2(e2)

∣∣∣∣ e3
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Duality ΛrE∗
≃ (ΛrE )∗

The map ΛrE ∗ → (ΛrE )∗, φ 7→ φ( ), is a linear isomorphism.

Fix a basis e1, . . . , en of E and let e1, . . . , en ∈ E ∗ be the dual basis
(that is e i(ej) = δij ). The r -blades êI , when I = (i1 < · · · < ir) runs
over the multiindices of order r , form a basis of ΛrE . Similarly, the
dual r -blades êJ , when J = (j1 < · · · < jr) runs over the multiindices
of order r , form a basis of ΛrE ∗.

Moreover, by the duality formula

êJ(êI ) = δIJ

the image of the basis {êJ} of ΛrE ∗ in (ΛrE )∗ is the dual basis of the
basis {êI} of ΛrE .

S. Xambó (UPC) GAT 02 Grassmann-Clifford Algebra SLP · 9-13 March · 2015 22 / 42



Clifford algebra The bilinear form q

From now on we will assume that we have a fixed linear map
q : E → E ∗ or, equivalently, a bilinear map on E , the two views being
related by the equation

q(e, e ′) = q(e)(e ′), e, e ′ ∈ E .

Remark. This relation establishes a canonical linear map

L(E ,E ∗) → L2(E ;K ),

which is an isomorphism (the inverse map is determined by
q(e) = q(e, ·)).
Eventually we will require that q is symmetric, and sometimes also
non-degenerate, but we can go a long way without these assumptions.
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Clifford algebra Annihilating operators

The map δe : ΛE → ΛE is defined as the skew-derivation associated
to ẽ = q(e) ∈ E ∗:

δe(x) = ẽ(x).

Such maps δe , which are graded of degree −1, are called annihilating
operators.

The map

E → EndK (ΛE ), e 7→ δe ,

is linear and satisfies δ2e = 0 for all e ∈ E .

In next statement we will use δe and the creation operators µe , which
also satisfy µ2

e = 0.
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Clifford algebra Key lemma

For any e ∈ E ,

(µe + δe)
2 = q(e, e)IdΛE .

Proof. Expanding the square, we get:

(µe + δe)
2 = µ2

e + δ2e + µeδe + δeµe = µeδe + δeµe .

Now

(δeµe)(x) = ẽ(e ∧ x) = ẽ(e)x − e ∧ ẽ(x) = q(e, e)x −µe(δe(x)),

so that

(µeδe + δeµe)(x) = q(e, e)x = q(e, e)IdΛE (x) for all x .

This, together with the previous relation, completes the proof.
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Clifford algebra The algebra Cq(E )

Consider now the linear map

λ : E → EndK (ΛE ), e 7→ λe = µe + δe .

This map can be extended in a unique way, by the universal property
of the tensor algebra, to a homomorphism of algebras
λ : TE → EndK (ΛE ), a map that satisfies (and is determined by) the
relation

λ(e1 ⊗ · · · ⊗ er ) = λe1 ◦ · · · ◦ λer , e1, . . . , er ∈ E .

Since the elements of the form te = e ⊗ e − q(e, e)1K belong to the
kernel of λ, λ induces a unique algebra homomorphism

λ̄ : CqE → EndK (ΛE ), λ̄(t̄) = λ(t)

where CqE denotes the quotient of TE by the bilateral ideal Iq
generated by the tensors te , e ∈ E , and t̄ ∈ CqE denotes the image
of t ∈ TE under the quotient map TE → CqE .
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Clifford algebra The algebra Cq(E )

The algebra CqE , which in the literature is often denoted Cℓ(E , q) or
by other similar symbols, is called the Clifford algebra of q (or of
(E , q)) and its product (the Clifford product) will be denoted by
juxtaposition of its factors.

Note that if e, e ′ ∈ E , then we have the Clifford relations

ē2 = q(e, e), ē ē ′ + ē ′ē = q(e, e ′) + q(e ′, e).

The first equality is a direct consequence of the fact that t̄e = 0. For
the second, expand (ē + ē ′)2 and q(e + e ′, e + e ′) and use the first
relation for e, e ′ and e + e ′.
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Clifford algebra The canonical linear map Cq(E ) → ΛE

Now λ̄ induces a linear map

∧ : CqE → ΛE , t̄ 7→ λ̄(t̄)1K = λ(t)1K .

Lemma. Let Ē ⊆ Cq(E ) be the image of E = T 1E under the
quotient map π : TE → CqE . Then the quotient map induces an
isomorphism E ≃ Ē and ∧ induces an isomorphism Ē ≃ Λ1E = E .

Proof. Indeed, for any e ∈ E we have

∧(ē) = λ̄(ē)1K = λe1K = µe1K + δe1K = e.

This shows that the composition

T 1E = E
π−→ Ē

∧−→ E = Λ1E

is the identity and from this the two claims follow immediately.

Identifying E , T 1E , Ē and Λ1E , the Clifford relations take the form

e2 = q(e, e), ee ′ + e ′e = q(e, e ′) + q(e ′, e).
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Clifford algebra The canonical linear map Cq(E ) → ΛE

If e1, . . . , en is a basis of E , we set eI = ei1 · · · eir ∈ CqE . Remember
that we have also set êI = ei1 ∧ · · · ∧ eir ∈ ΛrE .

Theorem. The linear map ∧ : CqE → ΛE is an isomorphism.

Proof. The main lemmas in the proof are (1) that the set B = {eI},
where I runs over the set of multiindices taken from {1, . . . , n},
generates CqE as a vector space, so that dimK Cq(E ) ≤ 2n, and (2)
that ∧ is surjective, so that dimK Cq(E ) ≥ 2n.

Proof of (2). The surjectivity can be established by induction by
showing that the image of ∧ contains ΛrE if it contains ΛjE for
j < r . Since this is clearly true for r = 0 and r = 1, we can assume
that r > 1.

Let e1, . . . , er ∈ E and consider ∧(e1 · · · er ) = λe1 ◦ · · · ◦λer1K , where,
by definition, λej = µej + δej . It follows that the term of highest grade
in the expansion of ∧(e1 · · · er ) is µe1 ◦ · · · ◦ µer1K = e1 ∧ · · · ∧ er .
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Clifford algebra The canonical linear map Cq(E ) → ΛE

By the induction hypothesis, there exists x ∈ CqE such that
∧(e1 · · · er ) = e1 ∧ · · · ∧ er + ∧(x), where all the grades involved in
∧(x) are lower than r . This shows that e1 ∧ · · · ∧ er belongs to the
image of ∧ and ΛrE is therefore contained in the image of ∧.
Proof of (1). Since the Clifford product is multilinear, it is clear that
the products of the form ej1 · · · ejr (r > 0, j1, . . . , jr ∈ {1, . . . , n})
generate CqE as a vector space. So it will be enough to show that
such products are linear combinations of elements eI in B with
|I | 6 r . Given that this claim is tautological for r = 0 and r = 1, we
move on to the case r > 1 and proceed by induction on r . The
induction hypothesis allows us to assume that ej2 · · · ejr is a linear
combination of elements eI from B with |I | 6 r − 1 and therefore it
will be enough to show that a product of the form ejeI , I a multiindex
of order s 6 r − 1, is a linear combination of elements in B.
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Clifford algebra The canonical linear map Cq(E ) → ΛE

In fact we can show a more precise claim: if I = {i1, . . . , is}, ejeI is a
linear combination of eI1 , . . . , eIs and, if j 6∈ I , of eĪ , where
Ik = I − {ik} and Ī = I ∪ j (arranged in increasing order). Let us
argue by cases. If j < i1, ejeI = eĪ . If j = i1, then
ejei1 = e2j = q(ej , ej) and ejeI is a scalar multiple of eI1. If j > i1, then
ejei1 = −ei1ej + ρ, ρ = q(ej , ei1) + q(ei1 , ej) ∈ K (Equation (??)) and
ejeI = −ei1ejei2 · · · eis + ρeI1 . By induction, ejei2 · · · eis = ejeI ′
(I ′ = I1) is a linear combination of the eI ′

k
, k = 2, . . . , s, and, if j 6∈ I ′,

of eI ′∪{j}. Finally note that ei1eI ′k = eIk and ei1eI ′∪{j} = eI∪j = eĪ .

Remark. The linear isomorphism ∧ : CqE → ΛE is an algebra
isomorphism if and only if q = 0.
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Clifford algebra Grade involution and even subalgebra of Cq(E )

The grade involution of ΛE is also an involution of Cq(E ), for in the
tensor algebra α(e ⊗ e − q(e, e)) = e ⊗ e − q(e, e). Therefore,

C
+

q (E ) = {x ∈ Cq(E ) | xα = x}
is a subalgebra of Cq(E ) (the even subalgebra). Under the linear
isomorphism CqE ≃ ΛE ,

C
+

q E ≃ Λ
+
E .

The odd subspace C
−

q E is defined as {x ∈ Cq(E ) | xα = −x} and

C
−

q E ≃ Λ
−

E .
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Clifford algebra The algebras Cn and C̄n

Let q be the standard bilinear form of Rn,

q(x , y ) = xTy = x1y1 + · · ·+ xnyn,

and set Cn = Cq(R
n) and C̄n = C−q(R

n).

If e = e1, . . . , en is the standard basis of Rn, then both in Cn and in
C̄n we have eiej = −ejei for all i , j ∈ {1, . . . , n}, i 6= j , but e2i = 1 in
Cn and e2i = −1 in C̄n. So Cn and C̄n are isomorphic to the algebras
C1n(e) and C−1n(e) introduced and in L1.

In essence, these are the algebras introduced by Clifford (1882 and
1878). Note that eI = êI for any multiindex I . This is established in
a more general setting in a later slide, but the main idea of the proof
can be seen in the following computation, where j 6= k:

ejek = (µej + δej )(µek + δek )1K = (µej + δej )ek = ej ∧ ek + ẽj(ek) = ej ∧ ek

as ẽj(ek) = q(ej , ek) = 0.
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Clifford algebra The algebra C1,1

In addition to the algebras C1, C̄1, C2 and C̄2 studied in L1, it will
also play an inportant role the Clifford algebra C1,1 of (R2, q), where
q(x , y ) = x1y1 − x2y2.

In this case the generators 1, e1, e2, e1e2 satisfy

e21 = 1, e22 = −1, e2e1 = −e1e2, (e1e2)
2 = 1.

It follows that C1,1 ≃ R(2),

a + be1 + ce2 + de1e2 7→
(

a + b c + d
−c + d a − b

)
.

The even subalgegra C
+

1,1 is isomorphic to C1.
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Lipschitz groups Notations

The mainspring of scientific thought is not an external
goal toward which one must strive, but the pleasure of
thinking.

A. Einstein, ∼ 1918

We will write C
×

q (E ) to denote the group of invertible elements of
Cq(E ).

A vector e ∈ E is isotropic if q(e, e) = 0. Otherwise it is said to be
non-isotropic (or also anisotropic).

Inverse of a non-isotropic vector. If a vector e ∈ E is non-isotropic,
then e ∈ C

×

q (E ) and e−1 = q(e, e)−1e.

We will write E
×

to denote the set of non-isotropic vectors, so
E

×

= E ∩ C
×

q (E ).
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Lipschitz groups Clifford automorphisms

For any u ∈ C
×

q (E ), the map

ρu : Cq(E ) → Cq(E ), x 7→ uxu−1

is an algebra automorphism. Moreover, the map

C
×

q (E ) → Aut(Cq(E )), u 7→ ρu

is a group homomorphism.

Proof. The computation

ρu(xy ) = uxyu−1 = uxu−1uyu−1 = ρu(x)ρu(y )

proves the first part. For the second part, if u, v ∈ C
×

q (E ) and
x ∈ Cq(E ),

ρuv (x) = uvx(uv )−1 = uvxv−1u−1 = u(vxv−1)u−1 = ρu(ρv (x)),

which shows that ρuv = ρu ◦ ρv .
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Lipschitz groups The group Γq

The Lipschitz group of q, denoted Γq = Γq(E ), is the subgroup of
C

×

q (E ) generated by E
×

. Thus the elements u of Γq have the form

u = e1 · · · er , with e1, . . . , er ∈ E
×

. It is also clear that

u−1 = e−1
r · · · e−1

1 .

Lemma. If u ∈ Γq(E ), then ρu(E ) = E .

Proof. By definition of Γq, and the fact that ρ is a homomorphism, it
is enough to show the relation for u ∈ E

×

. But in this case we have,
for any e ∈ E ,

ueu−1 = ρu−1 − e = q(u, u)−1ρu − e ∈ E ,

where ρ = q(e, u) + q(u, e).
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Lipschitz groups Adjoint representation of Γq

If u ∈ Γq, we have a linear automorphism

ρu : E → E .1

So we have a group homomorphism

ρ : Γq → GL(E ), u 7→ ρu.

In other words, ρ is a representation of Γq by linear automorphisms
of E .

We will say that ρ is the adjoint (or principal, or vector )
representation of Γq.

1 There is no harm in using the same symbol as for the corresponding
automorphism of Cq(E ).
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Lipschitz groups Twisted Clifford operators

For any u ∈ C
×

q (E ), the map

ρ̃u : Cq(E ) → Cq(E ), x 7→ uαxu−1

is a linear automorphism of Cq(E ).

We will say that it is the twisted Clifford operator associated to u.

Note that if u ∈ Γq, then ρ̃u = (−1)|u|ρu.

Finally, the map

C
×

q (E ) → GL(Cq(E )), u 7→ ρ̃u

is a group homomorphism.

Proof. The first part is obvious and the proof of the last part is a
short computation similar to the proof of the last assertion on the
slide 36.
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Lipschitz groups The group Γ̃q

We define the twisted Lipschitz group of q, denoted Γ̃q = Γ̃q(E ), as
the group formed with the even and odd elements u ∈ C

×

q (E ) such
that

ρ̃u(e) = uαeu−1 ∈ E for all e ∈ E .

Note that with this definition the condition uαeu−1 ∈ E is equivalent
to ueu−1 ∈ E , for uα = ±u.

Again, a vector u ∈ E
×

belongs to Γ̃q, for ρ̃u = −ρu. Since E
×

generates Γq(E ), in particular we have the inclusion Γq(E ) ⊆ Γ̃q(E ).

In fact Γq(E ) is a normal subgroup of Γ̃q(E ).
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Lipschitz groups Twisted adjoint representation of Γ̃q

If u ∈ Γ̃q, we have a linear automorphism2

ρ̃u : E → E

So we have a group homomorphism

ρ̃ : Γ̃q → GL(E ), u 7→ ρ̃u.

In other words, ρ̃ is a representation of Γ̃q by linear automorphisms
of E .

We will say that it is the twisted adjoint representation of Γ̃q.

2 There is no harm in using the same symbol as for the corresponding
operator of Cq(E ).
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Lipschitz groups The groups Pinq (E ) and Spinq (E )

The group Pinq(E ) is defined as the subgroup of C
×

q (E ) generated by
the vectors u ∈ E such that q(u, u) = ±1. Clearly, Pinq(E ) ⊆ Γq(E ).

We also write Spinq(E ) = Pinq(E ) ∩ C
+

q (E ).

The restriction of the adjoint representation ρ : Γq(E ) → GL(E ) to
Pinq(E ) and Spinq(E ) gives linear representations

ρ : Pinq(E ) → GL(E ) and ρ : Spinq(E ) → GL(E )

(there is no harm in using the same symbol ρ in all cases).
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Introduction Nature and aims of GA

By the geometric algebra of q we will understand the structure ΛqE
obtained by endowing the exterior algebra ΛE with the Clifford
product (or geometric product, or simply product) through the
canonical linear isomorphism

∧ : CqE → ΛE

and with the interior product x · y defined later in this lecture.

Note that from the definition of the linear map ∧ : CqE → ΛE , we
get the following key formula for the computation of a geometric
product of the form ex , for e ∈ E and x ∈ ΛE :

ex = λex = e ∧ x + ẽ(x).

In general terms, the study of geometric algebra (GA for short)
consists in spelling out the interrelations between these three
products (exterior, geometric and interior) and also the procedures
for its application to specific situations.
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Functoriality of Λq (E ) The map Λf , f ∈ End(E )

Suppose that E is a vector space equipped with bilinear symmetric
form q and that f : E → E is a linear map.

Let Λf : ΛE → ΛE be the algebra homomorphism induced by f .

Lemma

Λf ◦ µe = µf (e) ◦ Λf , for all e ∈ E .

Proof. For any x ∈ ΛE ,

(Λf ◦ µe)(x) = Λf (e ∧ x) = f (e) ∧ Λf (x) = (µf (e) ◦ Λf )(x).
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Functoriality of Λq (E ) Orthogonal maps

We say that f is q-orthogonal if q(f (e), f (e ′)) = q(e, e ′) for all
e, e ′ ∈ E . If in addition f ∈ GL(E ) (in other words, f is a linear
automorphism of E ), we say that f is a q-isometry, or simply an
isometry if q can be understood from the context.

Lemma. If f is q-orthogonal, then

Λf ◦ δe = δf (e) ◦ Λf , for all e ∈ E .

Proof. Both expressions Λf ◦ δe and δf (e) ◦ Λf are skew-derivations of
ΛE . To show that they are equal, it is enough to see that they agree
on E . But this is a direct consequence of the definitions: on one hand

(Λf ◦ δe)(e ′) = q(e, e ′),

and on the other

(δf (e) ◦ Λf )(e ′) = δf (e)(f (e
′)) = q(f (e), f (e ′)) = q(e, e ′).

S. Xambó (UPC) GAT 03 Geometric algebra SLP · 9-13 March · 2015 5 / 54



Functoriality of Λq (E ) Functoriality of the geometric product

Theorem 1. If f is q-orthogonal, then Λf is also a homomorphism of
the geometric product:

Λf (xy ) = Λf (x) Λf (y ) for all x , y ∈ ΛE .

Proof. It is enough to show that if e1, . . . , er ∈ E , then

(Λf )(e1 · · · er ) = f (e1) · · · f (er ).
Since this is obviously true for r = 1, we can assume that r > 1 and
proceed by induction. Let e = e1 and x = e2 · · · er . Then

e1 · · · er = ex = λe(x), λe = µe + δe , and so

Λf (e1 · · · er ) = (Λf ◦ λe)(x) = λf (e)(Λf (x)) = f (e1)Λf (x),

The end of the proof is now immediate because

Λf (x) = f (e2) · · · f (er)
by the induction hypothesis.
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Functoriality of Λq (E ) Involutions

The grade involution α of ΛE is also an involution of the geometric
product.

Proof. This has already been proved in L2. For a variation, note that
e 7→ −e is a q-isometry and so the statement is a direct corollary of
the Theorem above.

The reversion anti-automorphism τ of ΛE is also an
anti-automorphism of the geometric product:

τ(xy ) = τ(y )τ(x), or x̃y = ỹ x̃ .

Proof. The reversion anti-automorphism of the tensor algebra leaves
invariant the generators te = e ⊗ e − q(e, e) of the ideal Iq such that
Cq(E ) = T (E )/Iq, so that the reversion anti-automorphism of T (E )
descends to Cq(E ).

Corollary. The Clifford anti-automorphism of ΛE is also an
anti-automorphism of the geometric product.
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Functoriality of Λq (E ) Remarks

The fact that the parity involution is also an automorphism of the
geometric product implies that the even subalgebra Λ

+
(E ) of the

exterior algebra is also a subalgebra of Λq(E ). Thus we will denote it
also by Λ

+

q(E ) and say that it is the even geometric algebra of q.

In the context of geometric algebra, the involution τ is also called, for
reasons that have to do with matrix representations (cf. L1),
hermitian conjugation, and sometimes it is denoted x †.
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Inner product Introduction

To specify the inner product x · y (also called interior product of two
multivectors x , y ∈ ΛE , it is enough to take care of the case x ∈ ΛrE
and y ∈ ΛsE , for then the general case is determined by bilinearity.

The inner product is called contraction by some authors, and in fact,
as indicated in L1, they distinguish two flavors: left contraction and
right contraction, often denoted x y and x y (cf. Riesz-1993,
Lounesto-1993, Lounesto-1997). Following Hestenes-1966, however,
we will not need to distinguish between the two, and hence we will
use a single symbol x · y . The point is that this expression will be
evaluated differently according to whether r 6 s or r > s.

When r = s, we will show that both ways give the same answer, and
that they yield the same value as the natural extension of the scalar
product q to Λq(E ). Thus in this case the inner product is
symmetric, a property that in general is not satisfied when r 6= s.
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Inner product Case r ≤ s

First assume r ≤ s. The inner product

ΛrE × ΛsE → Λs−rE

is defined as the composition

ΛrE × ΛsE → ΛrE ∗ × ΛsE → Λs−rE ,

where the map on the left is Λrq× Id and the map on the right is the
duality pairing studied in L2.

Example. If e ∈ E and x ∈ ΛE (x not necessarily homogeneous),

e · x = q(e)(x) = ẽ(x).

This, together with the key formula (L2) yield the equation

ex = e ∧ x + e · x .
Consistency of notation: the inner product of two vectors is the same
as their dot product, so we are not using a single symbol for two
different meanings.
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Inner product Inner product of blades

Theorem 2. Let e1, . . . , er , e
′
1, . . . , e

′
s ∈ E . Then

(1) (e1∧· · ·∧er ) ·(e ′1∧· · ·∧e ′s) = (e1∧· · ·∧er−1) ·(er ·(e ′1∧· · ·∧e ′s))

(2) If G is the r × s matrix whose entries are the scalars ei · e ′j , for
i = 1, . . . , r , j = 1, . . . , s, then

(e1 ∧ · · · ∧ er ) · (e ′1 ∧ · · · ∧ e ′s) =
∑

I∈Ir,s

(−1)t(I ) det(GI ) ê ′I ′,

where t(I ) is the number of inversions in the sequence (I , I ′).

(3) In the special case s = r , the result is the scalar det(G ).

Proof. Part (1) is a direct consequence of the definitions; (2) and (3)
are a reformulation of the duality formula (L2).
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Inner product Case r ≥ s

We would like to have a rule analogous to rule (1) in the Theorem 2,
say

(e1 ∧ · · · ∧ er ) · (e′1 ∧ · · · ∧ e′s) = ((e1 ∧ · · · ∧ er ) · e′1) · (e′2 ∧ · · · ∧ e′s).

Moreover, this rule should be consistent with Theorem 2 (3), in the
sense that it should produce, when applied recursively, the same
value. The operation ·e ′1 should act as a skew-derivation, as er · does
in a, but it has to be a right skew-derivation (otherwise, as we will
see, the required consistency when r = s would not hold):

(e1 ∧ · · · ∧ er ) · e ′1 =
∑k=1

k=r (−1)r−k(ek · e ′1)êk′
= (−1)r−1∑k=r

k=1(−1)k−1(ek · e ′1)êk′
= (−1)r−1e ′1 · (e1 ∧ · · · ∧ er ).
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Inner product Case r ≥ s

This rule yields, when we move all the e ′’s to the left, the value

(−1)rs−(
s+1
2 )(e ′s ∧ · · · ∧ e ′1).(e1 ∧ · · · ∧ er ),

as the accumulated number of sign changes is

(r − 1) + · · ·+ (r − s) = rs − (
s+1
2

)
.

Reordering the e ′’s leads to the expression

(e1 ∧ · · · ∧ er ) · (e′1 ∧ · · · ∧ e′s) = (−1)s(r+1)(e′1 ∧ · · · ∧ e′s).(e1 ∧ · · · ∧ er ),

for that reordering produces (−1)(
s
2) additional sign changes, which

means that the sign in front becomes (−1)rs−s = (−1)rs+s . Now we
can apply Theorem 2 (2) to conclude:

(e1 ∧ · · · ∧ er ) · (e′1 ∧ · · · ∧ e′s) = (−1)rs+s
∑

J∈Is,r
(−1)t(J) det(GT

J ) êJ′ ,

where GT is the matrix formed with the scalars e ′j · ei , which is the
transpose of the matrix G = (ei · e ′j ) introduced before.
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Inner product Case r ≥ s

Remark. In the case r = s, the sign in front is (−1)r(r+1) = +1,
while the sum reduces to the scalar det(GT ) = det(G ), so that the
formula yields the same value as Theorem 2 (3).

As a consequence of the preceding discussions, we have a precise
statement about the behavior of the inner product when we exchange
its factors.

Swaping the inner product factors

If x ∈ ΛrE and y ∈ ΛrE , then

x · y = σ(r , s) y · x ,
where σ(r , s) = (−1)rs+r if r 6 s and σ(r , s) = (−1)rs+s if r > s.
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Inner product Functorialities

Notations: f ∈ EndK (E ) is q-orthogonal and x , y are elements of
ΛE .

Theorem 3. Λf (x · y ) = (Λf (x)) · (Λf (y )). So α(x · y ) = α(x) · α(y ).
Proof. By bilinearity we may assume that x ∈ ΛrE and y ∈ ΛsE are
blades, say

x = e1 ∧ · · · ∧ er , y = e ′1 ∧ · · · ∧ e ′s .

Moreover, by the swapping rule we only need to consider the case in
which r 6 s, and rule (1) in Theorem 2 tells us that

x · y = (δe1 ◦ · · · ◦ δer )(y ).
Now apply Λf to this expression, and use the functoriality of δ, to get

Λf (x · y ) = (δf (e1) ◦ · · · ◦ δf (er ))(f (e ′1) ∧ · · · ∧ f (e ′s))

= (f (e1) ∧ · · · ∧ f (er )) · (f (e ′1) ∧ · · · ∧ f (e ′s))

= (Λf (x)) · (Λf (y )).
S. Xambó (UPC) GAT 03 Geometric algebra SLP · 9-13 March · 2015 15 / 54



Inner product Functorialities

τ(x · y ) = τ(y ) · τ(x).
Proof. By bilinearity, we can assume that x and y are as in the proof
of the previous statement. Again we can assume that r 6 s. We will
proceed by induction on r . So the first step is to show that

τ(e1 · (e ′1 ∧ · · · ∧ e ′s)) = τ(e ′1 ∧ · · · ∧ e ′s) · e1.
The left hand side is equal to

τ
(∑s

k=1(−1)k−1(e1 · e ′k)ê ′k′
)

=
∑s

k=1(−1)k−1(e1 · e ′k)τ(ê ′k′)
=

∑s

k=1(−1)k−1(e1 · e ′k)e ′s ∧ · · · ∧ e ′k+1 ∧ e ′k−1 ∧ · · · ∧ e ′1.

Similarly, the right hand side is equal to

(e ′s∧· · ·∧e ′1) ·e1 =
∑s

k=1(−1)k−1(e ′k ·e1)e ′s∧· · ·∧e ′k+1∧e ′k−1∧· · ·∧e ′1

and we see that it coincides with the left hand side.
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Inner product Functorialities

The case r > 1 is now readily settled using rule (1) in Theorem 2 and
induction on r . Indeed, if we put x ′ = e1 ∧ · · · ∧ er−1, e = er , then

τ(x · y ) = τ((x ′ ∧ e) · y )
= τ(x ′ · (e · y ))
= τ(e · y ) · τ(x ′) (induction hypothesis)

= (τ(y ) · e) · τ(x ′) (case r = 1)

= τ(y ) · (e ∧ τ(x ′))

= τ(y ) · τ(x ′ ∧ e)

= τ(y ) · τ(x).

Next relation is an immediate consequence of the preceding two
statements:

κ(x · y ) = κ(y ) · κ(x).
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Inner product Functorialities

If e ∈ E , we know (∗) ex = e · x + e ∧ x . Now we will see that
xe = x · e + x ∧ e.

Proof. A simple coomputation using the properties of the reversion
involution τ and the formula (∗):

xe = τ (eτ(x)) = τ(e · τ(x) + e ∧ τ(x))

= τ(τ(x · e) + τ(x ∧ e)) = x · e + x ∧ e.

The functoriality statements show that for any q-orthogonal map
f : E → E , Λf is is an algebra endomorphism of Λq(E ). This
endomorphism is an automorphism if f is a q-isometry. This proves
that we have a group homomorphism (clearly injective)

Oq(E ) → Aut(Λq(E )),

where Oq(E ) denotes the group of q-isometries of E .
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Inner product Multivector metric

Definition. The vector metric q (the symmetric map q : E → E ∗ that
we fixed at the beginning of this lecture) extends to a metric on ΛE
in a natural way:

Λq : ΛE → ΛE ∗ ≃ (ΛE )∗.

Instead of Λq(x , y ) = (Λq)(x)(y ), we will write 〈x |y〉. This pairing is
bilinear and symmetric and 〈e|e ′〉 = e · e ′ when e, e ′ ∈ E .

The fact that the isomorphism ΛE ∗ ≃ (ΛE )∗ is the direct sum of
isomorphisms ΛrE ∗ ≃ (ΛrE )∗ implies that ΛrE and ΛsE are
Λq-orthogonal when r 6= s. Consequently, for the determination of
the metric 〈x |y〉 we can assume that x and y belong to the same
exterior power, say x , y ∈ ΛrE . Owing to the bilinearity, we can
further assume that x and y are blades.
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Inner product Multivector metric

The metric formula. If x = e1 ∧ · · · ∧ er and x ′ = e ′1 ∧ · · · ∧ e ′r
(e1, . . . , er , e

′
1, . . . , e

′
r ∈ E ), then

〈x |x ′〉 = det(G ) = x · x ′,

where G is the r × r matrix such that Gij = ei · e ′j .
Proof. Indeed, since

〈x |x ′〉 = (Λrq(x))(x ′) and Λrq(x) = ẽ1 ∧ · · · ∧ ẽr ,

by the duality formula we get that 〈x |x ′〉 = det(G ), where
Gij = ẽi(e

′
j) = ei · e ′j . But this determinant agrees with the inner

product x · x ′ by the formula giving the inner product of blades.

The metric norm. The metric norm Q(x) of a multivector x is
defined by Q(x) = 〈x |x〉. If x =

∑n

r=0xr is the grade decomposition
of x , then Q(x) =

∑n

r=0Q(xr). In the case when x is an r -blade, say
x = e1 ∧ · · · ∧ er , then Q(x) = det(G ), where Gij = ei · ej .
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Further relations and examples Riesz formulas

Lemma

ex + (−1)rxe = 2e ∧ x and ex − (−1)rxe = 2e · x .
Proof. We know that

ex = e · x + e ∧ x and xe = x · e + x ∧ e.

Now x · e = (−1)r+1e · x and x ∧ e = (−1)re ∧ x and hence
xe = (−1)r(−e · x + e ∧ x), or

(−1)rxe = −e · x + e ∧ x .

To obtain the two equalities in the statement it suffices to add and
subtract the expressions for ex and (−1)rxe.

These formulas are the basis to express the exterior and interior
products in terms of the geometric product. For the case of two
vectors e, e ′ ∈ E they give the relations

2e ∧ e ′ = ee ′ − e ′e, 2e · e ′ = ee ′ + e ′e.
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Further relations and examples δe is a skew-derivation of the geometric product

Lemma

e · (xy ) = (e · x)y + xα(e · y ).
Proof. e· = δe : E → K extends to a unique skew derivation of the
tensor algebra T (E ), which means that

e · (x ⊗ y ) = (e · x)⊗ y + xα ⊗ (e · y ).
So it suffices to observe that this extension vanishes on the
expressions tx = x ⊗ x − q(x , x), x ∈ E . But this is clear because e·
kills scalars and e · (x ⊗ x) = (e · x)x − x(e · x) = 0.

Note that the extension of e· to a skew-derivation of T (E ) follows
from the (necessary) relation

e ·(e1⊗· · ·⊗er ) =
∑r

k=1(−1)k−1(e ·ek)e1⊗· · ·⊗ek−1⊗ek+1⊗· · ·⊗er ,

which in turn is well defined because the right-hand side is multilinear
in e1, . . . , er .
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Further relations and examples Grade decomposition of a product

Theorem 3. Let x ∈ ΛrE and y ∈ ΛsE and set z = xy . Then the
indices k ∈ {0, 1, . . . , n} such that zk 6= 0 have the form
k = |r − s|+ 2i , i > 0 and k 6 r + s.

Furthermore, z|r−s| = x · y and zr+s = x ∧ y .

Proof. It is enough to prove the statement when x and y are blades
and r 6 s. So let e1, . . . , er , e

′
1, . . . , e

′
s ∈ E , and set x = e1 ∧ · · · ∧ er

and y = e ′1 ∧ · · · ∧ e ′s . Then we can express the product z = xy in
the following form:

z = λx(y ) = (λe1 ◦ · · · ◦ λer )(y ) = (µe1 + δe1) · · · (µer + δer )(y ).

If in the expansion of this expression we choose i µ’s (0 6 i 6 r) and
r − i δ’s, we get a term of grade s + i − (r − i) = s − r + 2i . The
highest possible grade is when i = r , and in this case it is plain that
the term zr+s is x ∧ y . On the other hand the minimum grade is
attained when i = 0, so k = s − r , and in this case it is also clear
that zs−r = x · y .
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Further relations and examples Grade decomposition of a product

Remark. In the case that e ∈ E and x ∈ Λr (E ), the relations
(ex)r−1 = e · x and (ex)r+1 = e ∧ x are a direct consequence of
ex = e · x + e ∧ x . Similarly, xe = x · e + x ∧ e imply that
(xe)r−1 = x · e and (xe)r+1 = x ∧ e.

Note also that the case r ≥ s in the previous theorem can be
deduced by induction on s. For s = 0, it is tautological and the case
s = 1 has been established in the previous paragraph. So assume that
s > 1. Then, with the same notations as in the proof above, and
with y ′ = e ′2 ∧ · · · ∧ e ′s (so that y = e ′1 ∧ y ′) we have

x · y = (x · e ′1) · y ′ = (xe ′1)r−1 · y ′

= (xe ′1y
′)(r−1)−(s−1) = (xe ′1y

′)r−s

= (xy )r−s + (x(e ′1 · y ′))r−s = (xy )r−s

because the minimum grade of x(e ′1 · y ′) is r − (s − 2) = r − s + 2.
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Orthogonal systems Definitions and conventions

Two vectors e, e ′ ∈ E are q-orthogonal if and only if q(e, e ′) = 0.
Note that this implies that two orthogonal vectors anti-commute:
ee ′ + e ′e = q(e, e ′) = 0. Note also that two parallel vectors commute
(if e ′ = αe, then both ee ′ and e ′e are equal to αe2).

If e1, . . . , en ∈ E and q(ei , ej) = 0 for i 6= j , we say that the sequence
{e1, . . . , er} is an orthogonal system.

It is an easy exercise to prove that any metric q admits an orthogonal
basis if 2 6= 0 in K , and that if 2 = 0 in K then there are metrics for
which there are no orthogonal basis.1 Henceforth we will avoid such
metrics, which means that in characteristic 2 no metrics will be
considered that do not admit an orthogonal basis.

1 For the metric q(x , y) = x1y2 + x2y1 in E = Z2
2, no pair of distinct non-zero

vectors is orthogonal. On the other hand, (1, 0), (0, 1) ∈ E is an orthogonal
system for the metric x1y1 + x2y2. Note that both metrics are non-degnerate.
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Orthogonal systems Key proposition

Proposition . If e1, . . . , er ∈ E is an orthogonal system, then

e1e2 · · · er = e1 ∧ e2 ∧ · · · ∧ er .

Proof. By induction with respect to r . Since for a single vector e ∈ E
the claim is obvious, we can assume that r > 1 and that the relation
holds for orthogonal systems of r − 1 vectors. Then we have

e1e2 · · · er = e1(e2 ∧ · · · ∧ er ) (by induction)

= e1 ∧ e2 ∧ · · · ∧ er + δe1(e2 ∧ · · · ∧ er )

= e1 ∧ e2 ∧ · · · ∧ er ,

for

δe1(e2∧· · ·∧ er ) =
∑r

k=2(−1)k−1ẽ1(ek)e2∧· · ·∧ ek−1∧ ek+1 ∧· · ·∧ er

and ẽ1(ek) = e1 · ek = 0 for k = 2, . . . , r .
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Orthogonal systems Orthogonal bases of Λq (E )

Lemma. If e1, . . . , en is an orthogonal basis of E , then the blades
eI = êI , where I runs over the set of multiindices I ⊆ {1, . . . , n},
form an orthogonal basis of Λq(E ). Moreover, Q(eI ) = qI , where
qI = q(ei1 , ei1) · · · q(eir , eir ).
Proof. The equality eI = êI is justified by the previous Proposition.
Then the metric formula implies that 〈êI |êJ〉 is 0 if I 6= J and that
〈êI |êI 〉 = qI .

Now we will use this lemma to see that the computations of the
Clifford product take the simplest form when we know a q-orthogonal
basis e1, . . . , en ∈ E .

S. Xambó (UPC) GAT 03 Geometric algebra SLP · 9-13 March · 2015 27 / 54



Orthogonal systems Notations

N: The set of indices {1, . . . , n}.
K : a sequence of indices k1, . . . , kr ∈ N.

eK = ek1 · · · ekr .
lj = lj(K ), for j ∈ N: the number of times that j appears in K .

K̂ : the multiindex such that j ∈ K̂ if and only if lj is odd.

t(K ): the number of pairs i , j ∈ N such that i < j and ki > kj .

q̄K :
∏n

j=1 q(ej , ej)
lj//2, where lj//2 denotes the integer quotient of

lj by 2 (it is lj/2 if lj is even and (lj − 1)/2 if lj is odd).
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Orthogonal systems Reduction formula

Lemma (Reduction formula)

eK = (−1)t(K)q̄K e
K̂
.

Proof. Since two distinct contiguous factors in eK anticommute, it
follows that

eK = (−1)t(K)
∏n

j=1 e
lj
j .

If lj = 2l ′j + rj , rj ∈ {0, 1}, it is clear that

e
lj
j = q

l ′
j

j e
rj
j .

Consequently,

eK = (−1)t(K)
∏n

j=1 q
l ′j
j

∏n

j=1 e
rj
j ,

and this coincides with the expression in the statement as a direct
consequence of the definitions.
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Orthogonal systems Artin’s product formula

Corollary 1. If I and J are multiindices, then

eI eJ = (−1)t(I ,J)qI∩J eI△J ,

where △ denotes the symmetric difference operation.

Note that this formula was taken in L1 as the basis for the ad hoc
definition of the Clifford product in Λ(e).

Corollary 2

eJeI = (−1)c(−1)rseI eJ ,

where r = |I |, s = |J|, c = |I ∩ J|.
Proof. There are rs pairs (ik , jl) (k = 1, . . . , r , j = 1, . . . , s). The
number of pairs with ik > il is t(I , J), the number of pairs with ik < il
is t(J , I ), and there are c pairs such that ik = jl (coincidences). Thus
rs = t(I , J) + t(J , I ) + c and t(J , I ) ≡ rs + c + t(I , J) mod 2. Now
the claim is immediate, for J ∩ I = I ∩ J and J △ I = I △ J .
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Orthogonal systems On Vahlens’ formula

Remark. What we have called Artin’s formula was already discovered
by Vahlen-1897 (for the case where e2i = −1, i = 1, . . . , n, and in
another guise; cf. Lounesto-1993 for interesting historical remarks).
Instead of eI , Vahlen wrote (using here a slightly different notation)
e i11 e

i2
2 · · · e inn , where i1, i2, . . . , in ∈ {0, 1}. Then the product formula in

question for two such ‘monomials’ can be expressed as follows:

e i11 e
i2
2 · · · e inn e j11 e j22 · · · e jnn = (−1)

∑

k>l ik jl e i1+j1
1 e i2+j2

2 · · · e in+jn
n .

where the exponent sums are modulo 2. If we allow the more general
relation e2i = qi ∈ K (i = 1, . . . , n), then the formula takes the form

e i11 e
i2
2 · · · e inn e j11 e j22 · · · e jnn = (−1)

∑

k>l ik jle i1+j1
1 e i2+j2

1 · · · e in+jn
n ,

now with the exponents added as integers.
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Orthogonal systems On Vahlens’ formula

Proof

The key to show this is that

e i11 e
i2
2 · · · e inn e j11 e j22 · · · e jnn = (−1)

∑

l<n injle i11 e
i2
2 · · · e in−1

n−1e
j1
1 e

j2
2 · · · e jn−1

n−1e
in+jn
n ,

which itself is easily checked. Note that if in = 0 the relation is
obvious and that if in = 1, then moving the en of the left factor just
after the en−1 of the right factor introduces

∑
l<n jl sign changes.
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Orthogonal systems Alternative definition of the multivector metric and norm

Proposition . 〈x |y〉 = (x τy )0. In particular, Q(x) = (x τx)0.

Proof. Theorem 3 implies that (x τy )0 = 0 if x ∈ Λr
q(E ), y ∈ Λs

q(E )
and r 6= s. Since the expression (x τy )0 is bilinear, to show the
claimed equality it is enough to check it when x and y are any pair of
elements taken from a basis of Λr

q(E ).

If we choose an orthogonal basis e1, . . . , en of E , then we can use the
basis {eI = êI}, where I runs over Ir ,n. By the Lemma on slide 27,
we know that this basis is orthogonal and that Q(eI ) = qI . On the
other hand, it is clear that (eτI eI )0 = eτI eI = qI = Q(eI ), while for
J 6= I we get (eτI eJ)0 = ±(eI eJ)0 = 0 by Artin’s formula.

Remark. We have (x τy )0 = (xy τ)0, because

(x τy )0 = 〈x |y〉 = 〈y |x〉 = (y τx)0 = ((x τy )τ )0 = (x τy )0.

In the last step we use that τ preserves the grading.
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Orthogonal systems Antisymmetrization of the geometric product

Proposition . If e1, . . . , er ∈ E , then
∑

I (−1)I ei1 · · · eir = r ! e1 ∧ · · · ∧ er ,

where I = i1, · · · , ir runs over all permutations of 1, . . . , r .

Proof. The left hand side is a multilinear skew-symmetric function of
(e1, . . . , er ). By the universal property of the exterior product, there
exists a unique linear map a : ΛrE → ΛqE such that

a(e1 ∧ · · · ∧ er ) =
∑

I (−1)I ei1 · · · eir .
If now e1, . . . , er is an orthogonal system, then all terms in the sum
are equal to e1 ∧ · · · ∧ er , so that in this case

a(e1 ∧ · · · ∧ er ) = r ! e1 ∧ · · · ∧ er .

In particular we have that if e1, . . . , en is an orthogonal basis of E ,
then a(êI ) = r ! êI for any multiindex I of rank r . Since these êI form
a basis of ΛrE , we actually have that a(x) = r ! x for all x ∈ ΛrE .

S. Xambó (UPC) GAT 03 Geometric algebra SLP · 9-13 March · 2015 34 / 54



Orthogonal systems Non-degenerate metrics

Definition

The metric q : E → E ∗ is said to be non-degenerate if it is an
isomorphism, which is equivalent to say that ker(q) = {0}.
In terms of the dot product, q is non-degenerate if and only if, given
any e ∈ E , e · e ′ = 0 for all e ′ implies e = 0.

In terms of the matrix G of q with respect to a basis e1, . . . , en (so
Gij = ei · ej), q is non-degenerate if and only if det(G ) 6= 0. Actually
G is the matrix of q with reference to the basis e1, . . . , en of E and
the dual basis e1, . . . , en of E ∗.

If q is non-degenerate, then the induced multivector metric is also
non-degenerate. In fact, Λrq : ΛrE → ΛrE ∗ is an isomorphism for
all r .
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Pseudoscalars and Hodge duality i

e

Definition

Given a basis e = e1, . . . , en of E , let

i

e

= e1 ∧ · · · ∧ en ∈ ΛnE .

We will say that it is the pseudoscalar associated to e. Note that by
the metric formula we have:

Q(i
e

) = det(G ), Gij = ei · ej .
If e ′ = e ′1, . . . , e

′
n is another basis of E , then

i

e

′ = det
e

(e ′)i
e

,

where det
e

(e ′) is the determinant of the matrix of the vectors e

′ with
respect to the basis e.
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Pseudoscalars and Hodge duality i

e

Remark

Without further structure on E , on the field K , or on both, we do
not have any clue for distinguishing one pseudoescalar from another.

For example, is it possible to select a pseudoscalar of norm ±1?

In general it is not possible, for if we pick any pseudoscalar i , then
any other pseudoscalar has the form i

′ = λi , λ ∈ K , λ 6= 0, and for i

′

to have norm ±1 we would have to solve for λ the equation
λ2Q(i) = ±1. But this equation does not have a solution unless
±Q(i)−1 is a square in K , a condition that is not always satisfied.

But there are some general properties concerning the behavior of
pseudoscalars that can be formulated for any of them and which will
be very handy in the following.
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Pseudoscalars and Hodge duality Playing with a pseudoscalar

Assume that the metric q is non-degenerate and let i ∈ Λn
q(E ) be any

non-zero pseudoscalar. Then we have:

Theorem 4

1) i ∈ C
×

q (E ), i
−1 = Q(i)−1

i

τ = (−1)n//2Q(i)−1
i and

i

2 = (−1)n//2Q(i).

2) For any x ∈ Λr
q(E ), we have ix , x i ∈ Λn−r

q (E ) and the maps
x 7→ ix and x 7→ x i are linear isomorphisms Λr

q(E ) → Λn−r
q (E ).

The inverse maps are x 7→ i

−1x and x 7→ x i−1, respectively.

3) i ∈ Γq. Therefore the map E → E such that e 7→ iei−1 is a
q-isometry.

4) If n is odd, i commutes with all elements of Λq(E ). This is also
expressed by saying that i belongs to the center of Λq(E ).

5) If n is even, i commutes with even multivectors and
anticommutes with odd multivectors.
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Pseudoscalars and Hodge duality Playing with a pseudoscalar

6) If Q(i) = 1, then the maps defined in (2) are isometries (Hodge
duality).

Proof. (1) Since Q(i) = i

τ
i and Q(i) 6= 0, we see that i ∈ C

×

q (E )
and that i

−1 is given by the formula (1).

(2) Choose an orthogonal basis e = e1, . . . , en of E . Then

i = λi
e

= λe1 · · · en = λeN ,

for some λ ∈ K (N = {1, . . . , n}). Now for any multiindex I of order
r , Artin’s formula shows that eI i , ieI ∈ Λn−r (E ).

(3) Obvious.

(4) and (5) are a direct consequence of the Corollary 2 on slide 30:

ej i = ejeN = (−1)n+1eNej = (−1)n+1
iej ,

so i commutes (anticommutes) with all vectors for odd n (for n
even).
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Pseudoscalars and Hodge duality Playing with a pseudoscalar

(6) Let us compute 〈x i |y i〉, for x , y ∈ ΛrE , using the alternative
definition of the norm:

〈x i |y i〉 = ((x i)τy i)0 = (i τx τy i)0

= i

τ (x τy )0i = i

τ 〈x |y〉i = 〈x |y〉i τ i
= 〈x |y〉Q(i) = 〈x |y〉.

In the third step we have used that z 7→ i

τz i preserves grades, a fact
that follows from (2). That 〈ix |iy〉 = 〈x |y〉 is even simpler, because

(ix)τ iy = x τ
i

τ
iy = Q(i)x τy .

This completes the proof.

Remark. If Q(i) = −1, then the maps ΛrE → Λn−rE such that
x 7→ x i and x 7→ ix are antiisometries. Indeed, the proof above
shows that 〈x i |y i〉 = −〈x |y〉.
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Adjoint representations ρ : Γq → Oq, ρ̃ : Γ̃q → Oq

Toward the end of L2, we described the adjoint and twisted adjoint
representations ρ : Γq → GL(E ) and ρ̃ : Γ̃q → GL(E ). The aim of
this section is to establish further properties of these representations.

We will assume that q is non-degenerate and that 2 6= 0 in K .

Writing Oq = Oq(E ) to denote the group of q-isometries of E , which
is called the orthogonal group of q, then we can start with a simple
observation:

Lemma. The linear automorphisms ρ̃u ∈ GL(E ), for u ∈ Γ̃q, are
q-isometries, which means that the representation ρ̃ is actually a
group homomorphism

ρ̃ : Γ̃q → Oq.

Since ρ̃u = (−1)|u|ρu, for u ∈ Γq, we also have a homomorphism

ρ : Γq → Oq.
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Adjoint representations ρ : Γq → Oq, ρ̃ : Γ̃q → Oq

Proof

Let us compute Q(ρ̃u(e)) for u ∈ Γ̃q and e ∈ E :

Q(ρ̃u(e)) = (ρ̃u(e))
2 = (uαeu−1)2

= (ueu−1)2 = ue2u−1

= e2 = Q(e),

where in the third step we have used that uα = (−1)|u|u. The proof
follows because Q determines, when 2 6= 0 in K , the bilinear form q
by the polarization formula 2q(e, e ′) = Q(e+ e ′)−Q(e)−Q(e ′).
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Adjoint representations Axial and reflection symmetries

Given u ∈ E
+
, we have a decomposition E = 〈u〉 ⊥ u⊥, where u⊥ is

the hyperplane {e ∈ E | u · e = 0}. The axial symmetry with respect
to u is the linear map su such that

su(u) = u and su(e) = −e if e ∈ u⊥.

The linear map mu = −su satisfies

mu(u) = −u and mu(e) = e for e ∈ u⊥,

and it is called the reflection in the direction u or across the the
hyperplane u⊥.

Warning. The more familiar term reflection across the hyperplane u⊥

is acceptable because we assume that the metric is non-degenerate,
for in that case u⊥ determines the line 〈u〉 as u⊥⊥. For degenerate
metrics this need not be true. Indeed, simple examples show that we
may have dim u⊥⊥ > 1 and hence u⊥ does not determine uniquely
the line 〈u〉.
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Adjoint representations Axial and reflection symmetries

Lemma

If u ∈ E
+
, then su = ρu and mu = ρ̃u.

Proof. We have ρu(u) = uuu−1 = u and for e ∈ u⊥,

ρu(e) = ueu−1 = −euu−1 = −e,

where we have used that two orthogonal vectors anticommute. This
proves the first part.

On the other hand ρ̃u = −ρu (since u is odd) and hence

mu(e) = −su(e) = −ρu(e) = ρ̃u(e).

This completes the proof.
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Adjoint representations Generating rotations

If we set SOq = O
+

q to denote the subgroup of Oq formed with the
isometries that have determinant +1 (we will say that it is the
rotation group, or the special orthogonal group of q), then we have:

Lemma

If u, v ∈ E
+
, then

su ◦ sv = mu ◦mv ∈ SOq.

Proof. The relation su ◦ sv = mu ◦mv is a direct consequence of the
definitions. On the other hand, it is clear that det(mu) = −1 and
therefore det(mu ◦mv ) = 1.

The action of mu ◦mv = su ◦ sv on a vector e is given by

e 7→ uvev−1u−1 = ReR−1,

where R = uv . Since this map is a rotation, expressions of the form
R = uv , where u, v ∈ E

×

, are called rotors.
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Adjoint representations Generating rotations

Remark

If n is odd, then we have

det(ρu) = det(su) = (−1)n−1 = 1.

Thus in this case the image of ρ is contained in SOq and there is no
hope to obtain in this way the elements of Oq that are not in SOq.
Overcoming this defect is the job of the twisted Lipschitz group, as
established in next result.
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Adjoint representations Fundamental exact sequence

Theorem 5. The image of ρ̃ : Γ̃q → GL(E ) is Oq(E ) and its kernel is
K

×

. So we have an exact sequence

1 → K
× →֒ Γ̃q

ρ̃−→ Oq → 1.

Proof. We know that the image of ρ̃ is contained in Oq. Now
ρ̃u = mu for any u ∈ E

×

, where mu is the reflection in the direction
u. Therefore, if u1, . . . , uk ∈ E

×

, and we set u = u1 · · · uk ∈ Γq, then

ρ̃u = ρ̃u1 ◦ · · · ◦ ρ̃uk = mu1 ◦ · · · ◦muk .

This shows that the image of ρ̃ contains all the isometries that can
be expressed as the product of reflections in the direction of
non-isotropic vectors. But by the Cartan-Dieudonné theorem, any
q-isometry can be expressed in this way (even with k 6 n) and
consequently the image of ρ̃ contains Oq. Thus the image of ρ̃ is Oq.
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Adjoint representations Fundamental exact sequence

It remains to prove that ker(ρ̃) = K
+
. If λ ∈ K

+
, then ρ̃λ = Id, as

ρ̃λ(e) = λαeλ−1 = e for all e ∈ E . So K
+ ⊆ ker(ρ̃).

To show the converse inclusion, suppose that u ∈ Γ̃q is an element of
ker(ρ̃). Then ρ̃u = Id, which means that (−1)|u|ueu−1 = e, or
(−1)|u|ue = eu, for all e ∈ E . In particular we will have, if we pick an
orthogonal basis e = e1, . . . , en of E , (−1)|u|uej = eju for
j = 1, . . . , n. Using the basis {eI} of Λq(E ) asociated to e, it is clear
that we can write, for any given j , u = u′ + eju

′′, with u′ and u′′ not
involving ej , and hence we have that the condition (−1)|u|uej = eju
takes the form (−1)|u|u′ej + (−1)|u|eju

′′ej = eju
′ + e2j u

′′. But

(−1)|u|u′ej = eju
′, for |u′| = |u|, and so we get (−1)|u|eju

′′ej = e2j u
′′.

Since the parity of u′′ is opposite to the parity of u, this boils down
to the relation −e2j u

′′ = e2j u
′′. Thus we conclude that u′′ = 0 and so

u does not involve ej . Since j was arbitrary, it follows that u must be
a scalar.
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Adjoint representations Fundamental exact sequence

Corollary. The group Γ̃q is the subgroup of Λ
×

q (E ) generated by K
×

and E
×

. This can also be expressed by the formula Γ̃q = K
×

Γq.

Proof. In the proof of the previous theorem we have seen that
ρ̃ : Γq → Oq is surjective. This implies that any element of Γ̃q has
the form λu, with u ∈ Γq and λ ∈ ker(ρ̃) = K

×

.

If we set Γ
+

q to denote the even part of Γq, then its image under ρ̃ is,

again by the Cartan-Dieudonné theorem, the subgroup O
+

q = SOq of
Oq consisting of the q-isometries that have determinant +1. It
follows that ρ̃−1(SOq) = K

×

Γ
+

q , which is, by the Corollary above, the

even subgroup Γ̃
+

q of Γ̃q. To summarize:

Corollary. The sequence

1 → K
× →֒ Γ̃

+

q

ρ̃−→ SOq → 1

is exact and Γ̃
+

q = K
×

Γ
+

q .
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Adjoint representations Fundamental exact sequence

Corollary (The quotient Γ̃q/Γq). If we set
K

×

0 = K
× ∩ Γq = K

× ∩ Γ
+

q , then there is a canonical isomorphism

K
×

/K
×

0 ≃ Γ̃q/Γq. Furthermore, if K
×2

= {λ2 | λ ∈ K
×} is the

subgroup of squares of K
×

, then K
×2 ⊆ K

×

0 and consequently

K
×

/K
×

0 is a quotient of K
×

/K
×2
.

Proof. The map K
× → Γ̃q/Γq (the inclusion K

× →֒ Γ̃q = K
×

Γq
followed by the quotient map Γ̃q → Γ̃q/Γq) is surjective and its kernel
is Γq ∩ K

×

= K
×

0 . We therefore have a canonical isomorphism

K
×

/K
×

0 ≃ Γ̃q/Γq.
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Adjoint representations Fundamental exact sequence

For the second statement, first note that if u ∈ E
×

, then

q(u, u) = u2 ∈ Γq ∩ K
×

= K
×

0 .

In particular, for any λ ∈ K
×

,

λ2 = q(λu, λu)/q(u, u) ∈ K
×

0 ,

and this completes the proof.
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Adjoint representations Pin and Spin exact sequences

A field K is said to be a spin field (Lawson-Michelsohn-1989) if 2 6= 0
in K and for any a ∈ K at least one of the equations λ2 = ±a has a
solution λ ∈ K . Any algebraically closed field, and in particular C, is
spin. The real field R is spin, as for any a ∈ R either a > 0 or
−a > 0. Another example are the fields Zp, where p is a prime
number of the form 4k + 3 (p = 3, 7, 11, 19, . . . ).

Theorem 6. Assume that K is a spin field. Let U = {±1} if√
−1 6∈ K and U = {±1,±

√
−1} if

√
−1 ∈ K . Then the sequences

1 → U → Pinq(E )
ρ̃−→ Oq(E ) → 1

1 → U → Spinq(E )
ρ̃−→ SOq(E ) → 1

are exact.

S. Xambó (UPC) GAT 03 Geometric algebra SLP · 9-13 March · 2015 52 / 54



Adjoint representations Pin and Spin exact sequences

Proof

If λ = u1 · · ·uk ∈ Pinq (so u2
j = ±1) is in the kernel of ρ̃, then we

must have λ ∈ K . But λ2 = ±u2
1 · · ·u2

k = ±1. This shows that in
both sequences the kernel is U.

To finish the proof it is enough to see that any reflection in the
direction of a vector u ∈ E

×

can be realized as the reflection mû for a
vector û such that û2 = ±1.

To see this, note that mu = mλu for any non-zero scalar λ, and for
(λu)2 = λ2u2 to be ±1 it is necessary and sufficient that
λ2 = ±(u2)−1. But this relation has at least one solution λ ∈ K if K
is spin.
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Introduction Definitions, notations and conventions

Historically, the spacetime algebra was the first modern
implementation of geometric algebra. This is because
it provides a sythetic framework for studying spacetime
physics.

Doran-Lasenby-2003, Ch. 5.

A Lorentzian spacetime is a real quadratic space (E , η) of signature
(1, 3). We express this by writing E1,3 instead of E . We also write
x · y to mean η(x , y). The elements x ∈ E are called events. We will
use the customary terms time-like, space-like and light-light to refer
to vectors such that η(x , x) is positive, negative or null, respectively.

An (inertial) frame of E1,3 is an orthonormal basis γ = γ0, γ1, γ2, γ3:

γ0 · γ0 = 1, γ0 · γj = 0, γj · γk = δj ,k (j , k ∈ {1, 2, 3}.

Or, in the familiar relativistic notations,

γµ · γν = ηµν (µ, ν ∈ {0, 1, 2, 3}).
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Introduction Definitions, notations and conventions

The components of an event x in the frame γ are denoted xµ, and so
x = xµγµ. Instead of x0 we often write ct, so that x = ctγ0 + x jγj .

The reciprocal frame of γ is the frame γ0, γ1, γ2, γ3, where γ0 = γ0

and γj = −γj . The components of an event x in the reciprocal frame
are denoted xµ, so that x = xµγ

µ. Clearly, x0 = x0 and xk = −xk .

Remark

In Dirac’s theory, the symbols γµ are certain 4× 4 matrices (the
Dirac matrices), but here they are just vectors. The Dirac matrices
produce a concrete representation of the spacetime algebra (the
geometric algebra of E1,3), so that we can say that the spacetime
algebra encodes Dirac’s algebra without matrices (see Appendix, slide
31). The beauty and usefulness of this approach will be apparent
along the way, much in the same way as it happened with the
treatment of quaternions by geometric algebra in previous lectures.
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Lorentzian GA G = G1,3 = ΛηE

We will write G = G1,3 to denote the geometric algebra ΛηE . In
terms of the frame γ, the basic computational rule is

γµγν + γνγµ = 2ηµν .

Let i = iγ be the pseudo-scalar unit associated to the frame γ:

i = γ0γ1γ2γ3.

By L3.30, Corollary 2, i anticommutes with vectors and trivectors and
commutes with scalars, bivectors and pseudo-scalars. In a compact
form, x i = (−1)r ix for x ∈ Gr . Moreover, by the general results
presented in L3 (Theorem 4 and Remark after its proof), we have:

Proposition

1) i2 = Q(i) = det(diag(+,−,−,−)) = −1.
2) The Hodge duality map Gr → G4−r , x 7→ x∗ = x i = (−1)r ix is

an antiisometry for r = 0, 1, 2, 3. This implies that the
signatures of G2, G3 and G4 are (3, 3), (3, 1) and (0, 1) = 1̄.
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Lorentzian GA G = G1,3 = ΛηE

Let σ1 = γ1γ0 = γ10, σ2 = γ2γ0 = γ20, σ3 = γ3γ0 = γ30. Then a
short computation shows that σ∗j = σj i = −γkγl = −γkl (j , k , l a
cyclic permutation of (1, 2, 3)).1 Explicitely,

σ∗1 = −γ23, σ
∗
2 = −γ31, σ

∗
3 = −γ12.

The σj and σ∗j have signatures −1 and +1, respectively, and together
form a basis of G2.

The γ∗µ = γµi form a basis of G3 and they have signatures −1 for
µ = 0 and +1 otherwise. Note that

γ∗0 = γ123, γ
∗
1 = γ023, γ

∗
2 = γ031, γ

∗
3 = γ012.

With these notations, we finally have

i = γ0123.

1 This is often condensed as σ∗
j = −εjklγkγl , where εjkl denotes the sign of the

permutation jkl of 123 (Levi-Civita symbol).
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Lorentzian GA G = G1,3 = ΛηE

These facts are summarized in the following table:
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Lorentzian GA G = G1,3 = ΛηE

G γ0 γ1 γ2 γ3 σ1 σ2 σ3 σ∗1 σ∗2 σ∗3 γ∗0 γ∗1 γ∗2 γ∗3 i

γ0 1 σ̄1 σ̄2 σ̄3 γ̄1 γ̄2 γ̄3 γ̄∗1 γ̄∗2 γ̄∗3 i σ̄∗1 σ̄∗2 σ̄∗3 γ∗0
γ1 σ1 -1 σ̄∗3 σ∗2 γ̄0 γ∗3 γ̄∗2 γ̄∗0 γ̄3 γ2 σ∗1 -i σ3 σ̄2 γ∗1
γ2 σ2 σ∗3 -1 σ̄∗1 γ̄∗3 γ̄0 γ∗1 γ3 γ̄∗0 γ̄1 σ∗2 σ̄3 -i σ1 γ∗2
γ3 σ3 σ̄∗2 σ∗1 -1 γ∗2 γ̄∗1 γ̄0 γ̄2 γ1 γ̄∗0 σ∗3 σ2 σ̄1 -i γ∗3
σ1 γ1 γ0 γ̄∗3 γ∗2 1 σ∗3 σ̄∗2 i σ̄3 σ2 γ∗1 γ∗0 γ3 γ̄2 σ∗1
σ2 γ2 γ∗3 γ0 γ̄∗1 σ̄∗3 1 σ∗1 σ3 i σ̄1 γ∗2 γ̄3 γ∗0 γ1 σ∗2
σ3 γ3 γ̄∗2 γ∗1 γ0 σ∗2 σ̄∗1 1 σ̄2 σ1 i γ∗3 γ2 γ̄1 γ∗0 σ∗3
σ∗1 γ̄∗1 γ̄∗0 γ̄3 γ2 i σ̄3 σ2 -1 σ̄∗3 σ∗2 γ1 γ0 γ̄∗3 γ∗2 σ̄1

σ∗2 γ̄∗2 γ3 γ̄∗0 γ̄1 σ3 i σ̄1 σ∗3 -1 σ̄∗1 γ2 γ∗3 γ0 γ̄∗1 σ̄2

σ∗3 γ̄∗3 γ̄2 γ1 γ̄∗0 σ̄2 σ1 i σ̄∗2 σ∗1 -1 γ3 γ̄∗2 γ∗1 γ0 σ̄3

γ∗0 -i σ∗1 σ∗2 σ∗3 γ̄∗1 γ̄∗2 γ̄∗3 γ1 γ2 γ3 1 σ̄1 σ̄2 σ̄3 γ̄0

γ∗1 σ̄∗1 i σ̄3 σ2 γ̄∗0 γ̄3 γ2 γ0 γ̄∗3 γ∗2 σ1 -1 σ̄∗3 σ∗2 γ̄1

γ∗2 σ̄∗2 σ3 i σ̄1 γ3 γ̄∗0 γ̄1 γ∗3 γ0 γ̄∗1 σ2 σ∗3 -1 σ̄∗1 γ̄2

γ∗3 σ̄∗3 σ̄2 σ1 i γ̄2 γ1 γ̄∗0 γ̄∗2 γ∗1 γ0 σ3 σ̄∗2 σ∗1 -1 γ̄3

i γ̄∗0 γ̄∗1 γ̄∗2 γ̄∗3 σ∗1 σ∗2 σ∗3 σ̄1 σ̄2 σ̄3 γ0 γ1 γ2 γ3 -1

This is the multiplication table of G in terms of the described basis. The bar over

symbols indicates minus sign, not Clifford conjugation.
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Lorentzian GA G = G1,3 = ΛηE

A product γIγJ is determined by the rule L3.30, Corollary 1. In this
case it yields ±γK , K = I M J (symmetric difference) and
±1 = (−1)ν , where ν is the sum of the number of elements in
{1, 2, 3} ∩ I ∩ J and the number of inversions in the sequence I , J .

By L3.30, Corollary 2, the table is symmetric up to sign, because
γJγI = (−1)c(−1)rsγIγJ , where r = |I |, s = |J | and c = |I ∩ J |. The
result can be summarized as follows: γJγI = −γIγJ if one of the
following two cases occurs:

c = 1, 3 and r or s is even

c = 0, 2 and both r and s are odd.

Otherwise γJγI = γIγJ .

Example. γ1σ
∗
2 = γ1γ13 = −γ3.
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Lorentzian GA G = G1,3 = ΛηE

Example. Consider σ2γ
∗
3 = γ20γ012 = γ2γ12 = γ1. We can also argue

that the result must be ±γ1. Since there are three inversions (20
twice and 21), and 2 is the only −1 index in common, we get
σ2γ

∗
3 = γ1. Since the product shares two indices (0 and 2), and only

one factor is odd, we conclude that γ∗3σ2 = γ1 as well.

Example. We have defined γ∗I = γI i, and have observed that
iγI = ±γ∗I , the sign being +1 when |I | is even and −1 when it is odd.
This simplifies the computation of products in which one of the
factors is a Hodge dual. Here are a couple of illustrations:

σ∗3γ3 = σ3iγ3 = −σ3γ3i = γ0γ3γ3i = −γ0i = −γ∗0 .

γ∗1σ
∗
2 = γ1iσ2i = −γ1σ2 = γ1γ0γ2 = −γ0γ1γ2 = −γ∗3 ,

and similarly σ∗2γ
∗
1 = γ∗3 .
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Lorentzian GA Involutions and G
+

If x = x0 + x1 + x2 + x3 + x4 ∈ G, the three involutions α, τ, κ of G
act as follows:

xα = x0 − x1 + x2 − x3 + x4,

xτ = x0 + x1 − x2 − x3 + x4,

xκ = x0 − x1 − x2 + x3 + x4.

The elements of the even subalgebra G+
have the form

x = x0 + x2 + x4 and in this case xτ = xκ = x0 − x2 + x4. The
elements of the odd subspace G− have the form x = x1 + x3 and in
this case xα = −x and xτ = x1 − x3.

Lemma. 1) The multivector x has the form x0 + x4 if and only if

x = xα and x = xτ .

2) The multivector x ∈ G1 (or x = x1) if and only if xα = −x and
xτ = x .
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Lorentzian GA Complex structure

The subspace 〈1, i〉 = G0 + G4 is a subalgebra isomorphic to C. We
will say that this is the algebra of complex scalars. Henceforth, C will
denote this algebra. By the Lemma, C = {x ∈ G | x = xα = xτ}. A
typical complex scalar will be denoted α + βi, α, β ∈ R.

The space G− = G1 + G3 = G1 + G1i is closed under multiplication by
i, and hence by complex scalars, and will be called the space of
complex vectors. A basis of this C-space is γ0, γ1, γ2, γ3. A typical
complex vector will be denoted a + bi, a, b ∈ G1. Note that
γ0G

−
= G−γ0 = G+

.

The space G2 of bivectors is closed under multiplication by i and
hence it is a C-space. As a basis of this C-space we may take
σ1, σ2, σ3. A typical bivector will be denoted x + y i,
x , y ∈ 〈σ1, σ2, σ3〉.

We thus see that a typical multivector has the form

(α + βi) + (a + bi) + (x + y i).
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Lorentzian GA Interpretation of the even subalgebra

Let E be the space 〈σ1, σ2, σ3〉, so that G2 = E + E i. With the
multivector metric, E is Euclidean and σ1, σ2, σ3 is an orthonormal
basis. We will say that it is the relative (Euclidean) space. If
necessary, we will denote it by E(γ0) to underline that it is a
frame-dependent space. The geometric algebra of E will be denoted
P (the Pauli algebra).

Proposition

(1) The even algebra G+
is isomorphic to P and the pseudoscalar of

P coincides with i.
(2) The linear grading of P is given by

P0 = R, P1 = E , P2 = E i, P3 = Ri.

Proof. The σ1, σ2, σ3 generate G+
as an R-algebra, for σjσk = −σ∗l

(j , k , l a cyclic permutation of 1, 2, 3) and iσ = σ1σ2σ3 = i. Now (1)
follows from this and the relations σ2

j = 1 and σjσk + σkσj = 0 (if
k 6= j) and (2) is straightforward.
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Lorentzian GA Polar form of a bivector

Given a bivector z = x + y i, we have

z2 = |x |2 − |y |2 + 2(x · y)i ∈ C.

In particular we see that z2 ∈ R if and only if x · y = 0, in which
case we say that z is plain (or simple). We also say that z is positive,
null or negative according to whether |x |2 > |y |2, |x |2 = |y |2, or
|x |2 < |y |2. If x · y 6= 0 (hence also z2 6= 0), we say that z is slanted
(or composite).

Examples. (1) A non-zero x ∈ E is plain and positive (xx = |x |2 > 0)
and x i is plain and negative ((x i)2 = −x2 = −|x |2 < 0).

(2) If u, v ∈ E are two unit orthogonal vectors, like σ1 and σ2, then
u + v i is null.

Remark. The Lorentzian norm of z = x + y i is |y |2 − |x |2, because
Q(z) = 〈z |z〉 = (zzτ )0 = −(z2)0 = |y |2 − |x |2.
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Lorentzian GA Polar form of a bivector

Lemma. If z2 6= 0, then there exists a unique plain positive bivector
z ′ and a unique α ∈ (−π/2, π/2] such that z = z ′e iα (polar
decomposition of z).

Proof. First let us show existence. If z is plain, then z2 is real and
non-zero. If z2 > 0, it suffices to take z ′ = z and α = 0, and if
z2 < 0, then we can take z ′ = −z i and α = π

2
, for z ′

2 = −z2 > 0
and z = z ′i = z ′e i

π
2 .

So we may assume that z is slanted. Then we can write, z2 = ρ2e2iα,
with ρ ∈ R, ρ > 0, and α ∈ (0, π). So z2 = (ρe iα)2. Now define z ′

as follows: if α ≤ π/2, set z ′ = ze−iα, in which case
z ′

2 = (ze−iα)2 = z2e−2iα = ρ2 > 0 and z = z ′e iα; and if
π/2 < α < π, define z ′ = ze i(π−α), in which case
z ′

2 = z2e2πie−2iα = z2e−2iα = ρ2 > 0 and z = z ′e i(α−π) (note that
−π/2 < α− π < 0).
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Lorentzian GA Polar form of a bivector

As for uniqueness, suppose that we have z ′e iα = z ′′e iβ, with z ′ and
z ′′ plain and positive and α, β ∈ (−π/2, π/2]. Without loss of
generality we may assume that α ≤ β, which implies that
z ′ = z ′′e i(β−α) with −π < β − α < π. Taking squares and using that
z ′

2 and z ′′
2 are real and positive, we conclude that e i(2β−2α) is real

and positive. In the range of 2β − 2α, namely (−2π, 2π), the only
possibilities for e i(2β−2α) to be real are 2β − 2α = 0 or
2β − 2α = ±π, and of these, only the first (equivalent to β = α)
yields a positive value.

Corollary

With the same notations and assumptions as in the Lemma, if z is
slanted, then z = z1 + iz2 with z1 and z2 plain and positive.

Proof. Indeed, we have z = z ′e iα = z ′ cosα + iz ′ sinα, and both
z1 = z ′ cosα and z2 = z ′ sinα are plain and positive.
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Lorentzian GA Polar form of a bivector

Remark. This Corollary explains why instead of slanted some authors
use the term composite, and consequently the term simple for plain
(the non-slanted).

Definition. Given the polar decomposition z = z ′e iα of a non-null
bivector z , we have z ′

2 > 0 and z2 = z ′
2e2αi. We define the

magnitude of z , |z |, as
√
z ′2, so that |z | > 0, z2 = |z |2e2αi, and

|z | = |z ′|. The angle α = α(z) will be called the slant angle of z .

Remark. In terms of the angle θ = θ(x , y), the magnitude of z is
given by the formula

|z |2 = (|x |2 − |y |2)2 + 4|x |2|y |2 cos2 θ.

Proof. From the definitions we have that |z |2 is equal to

|z2| = |x2 − y 2 + 2(x · y)i|2,

which is equal to (x2 − y 2)2 + 4(x · y)2, and x · y = |x ||y | cos θ.
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Lorentzian GA Polar form of a bivector

Remark

Let z ∈ G2 be a bivector. If z2 6= 0, then z is invertible (so
z ∈ G2 ∩ G×) and

z−1 = z/z2 = −z̃/z2.

Indeed, we have seen that z2 ∈ C (so z2 commutes with with all
even elements, and in particular with all bivectors) and hence
z(z/z2) = 1. Since z̃ = −z , we can also write z−1 = −z̃/z2.
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Lorentzian GA Generating Lorentz isometries

Lemma

Let z ∈ G2 and assume z2 6= 0.

Let Lz : G → G be the automorphism of G defined by

Lzx = zxz−1.

Then LzG1 = G1.

Proof

Let x ∈ G1 and put y = Lz(x) = zxz−1. To check that y ∈ G1, it
suffices to see that yα = −y and ỹ = y (by the Lemma on slide 11):

yα = zαxα(zα)−1 = −zxz−1 = −y ,

y τ = (zτ )−1xτzτ = z−1xz = zxz/z2 = y .
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Lorentzian GA Generating Lorentz isometries

Lemma. With the same assumptions as in the previous Lemma, the
induced R-linear map Lz : G1 → G1 is a proper Lorentz isometry
(Lz ∈ O

+

η ).

Proof. The computation

y 2 = zxz−1zxz−1 = zx2z−1 = x2

shows that Lz preserves que Lorentz quadratic form and therefore it
is a Lorentz isometry.

On the other hand, using that i commutes with bivectors,

Lz(i) = z iz−1 = i.

But we also have

Lz(i) = det(Lz)

and hence det(Lz) = 1.
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Space-time kinematics Space-time paths

Let x = x(s) be a parametrized curve, or path, in E = E1,3.

Lemma. The sign of dx/ds2 is invariant under strictly monotonous
reparametrizations s = s(τ).

Proof. Since dx/dτ = (dx/ds)(ds/dτ), and ds/dτ is a non-zero
scalar, (dx/dτ)2 = (ds/dτ)2(dx/ds)2 shows that the signs of
(dx/dτ)2 and (dx/ds)2 are the same.

If we regard (as we will) two paths differing in a strictly monontonous
reparameterization as the same (geometric) curve (or trajectory), the
Lemma says that there is a well defined sign associated to any curve.

A path x = x(s) is said to be timelike (lightlike or null, spacelike) if
(dx/ds)2 > 0 ((dx/ds)2 = 0, (dx/ds)2 < 0).
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Space-time kinematics Space-time paths

Timelike paths

If x = x(s) is a timelike curve, the quantity

τ(s) =

∫ s

0

(
dx

ds
(ξ) · dx

ds
(ξ)

)1/2

dξ

does not depend on the parametrization of the curve and will be
called proper time on the curve.

Since τ(s) is a strictly increasing function of s, it has an inverse,
s = s(τ). Then we can consider the parametrization x(τ) = x(s(τ))
by proper time. We will denote dx/dτ by ẋ and we will say that it is
the (unit) tangent vector of the path.
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Space-time kinematics Space-time paths

Lemma. The unit tangent vector satisfies ẋ2 = 1.

Proof. Let α(ξ) =

(
dx

ds
(ξ) · dx

ds
(ξ)

)1/2

, so that dτ/ds = α(s) and

ds/dτ = 1/α(s(τ)). Then

ẋ2 =

(
dx

dτ

)2

=

(
ds

dτ

)2(
dx

ds
(s(τ))

)2

= α(s(τ))−2α(s(τ))2 = 1.

Remark. The path x(τ) = τγ0 represents the space-time trajectory of
a particle at rest at the γ0 frame. Since ẋ = γ0 and γ2

0 = 1, τ is the
proper time of that particle. More generally, the Lemma indicates
that ẋ is to be regarded as the instantaneous rest frame of the path,
and that the proper time is the time measured along the path by the
instanteneous rest frame.
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Space-time kinematics Space-time paths

Lightlike paths

For a timelike path, there is no preferred parameter, proper time is 0.

Spacelike paths

There is a preferred parameter s such that (dx/ds)2 = −1. This
parameter measures proper distance.
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Space-time kinematics Space-time paths
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Space-time kinematics Relative vectors

The bivector x = x ∧ γ0 ∈ E will be called the relative vector (with
respect to the frame γ) of the event x . This satisfies that

xγ0 = xkγk ,

for xγ0 = (x ∧ γ0)γ0 = (xγ0 − (x · γ0))γ0 = x − x0γ0 = xkγk .

We have

xγ0 = x · γ0 + x ∧ γ0 = t + x ,

where we write t = x0. So

x2 = xγ0γ0x = (x · γ0 + x ∧ γ0)(x · γ0 + γ0 ∧ x)

= (t + x)(t − x) = t2 − x2.
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Space-time kinematics Relative velocity

Let v = v(τ) be the proper velocity of a particle x = x(τ), so that
v = dx/dτ). Set u = γ0. Then

vu = vγ0 = d
dτ

(xv) = d
dτ

(t + x),

and consequently

dt
dτ

= v · u, dx
dτ

= v ∧ u.

Let v be the relative velocity, so v = dx/dt. Then we have:

v = dx/dt = (dx/dτ)(dτ/dt) = v∧u
v ·u .

Since Q(v ∧ u) = 1− (v · u)2, it follows that

Q(v) = 1− (v · u)−2 < 1.

This gives v · u = 1/
√

1− Q(v) (the Lorentz factor γ of v).

Note also that v = vuu = (v · u + v ∧ u)u = γ(1 + v)u.
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Lorentz transformations Lorentz boosts

The Lorentz bost

t ′ = γ(t − βx), x ′ = γ(x − βt)

is equivalent to the frame transformation

γ′0 = γ(γ0 + βγ1), γ′1 = γ(γ1 + βγ0).

Note that

(γ′0)2 = γ2(1− β2) = 1, (γ′1)2 = γ2(β2 − 1) = −1, γ′0 · γ′1 = 0,

which show that the transformation γµ → γ′µ is a Lorentz isometry.

Introduce the angle α so that tanh(α) = β. Then

γ = (1− tanh2(α))−/2 = cosh(α), and

γ′0 = cosh(α)γ0 + sinh(α)γ1

= (cosh(α) + sinh(α)γ1γ0)γ0 = eασ1γ0.

Similarly, γ′1 = cosh(α)γ1 + sinh(α)γ0 = eαγ1γ0γ1 = eασ1γ1.
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Lorentz transformations Lorentz boosts

Now we can see that the Lorentz boost can be expressed as follows:

γ′µ = e
1
2
ασ1γµe

− 1
2
ασ1 .

Indeed, σ1 commutes with γ2 and γ3, and they are fixed by the right
hand side expression, in agreement with the Lorentz boost. On the
other hand, σ1 anticommutes with γ0 and γ1, and so for µ = 0, 1
that expression is equal to eασ1γµ, also in agreement with the Lorentz
boost.

Note that this is a special case of the Lemma proved on slide 15.
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EM field Lorentz group

We can represent a spacetime point x as the Hermitian matrix

H(x) =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 + x3

)
. In this representation, the

Lorentz quadratic form is the determinant: det(h(x)) = Q(x).

Given A ∈ SL2(C), then AH(x)A† is again a hermitian matrix, say
H(LA(x)), and

Q(LA(x)) = det(AH(x)A†) = det(H(x)) = Q(x). It follows that
LA is a Lorentz isometry. Moreover, the map SL2(C)→ O1,3 is a
group homomorphism. The image of this homomorphism turns out
to be the connected component of the identity of O1,3, and its kernel
is {±1}. From this it follows that SL2(C) ' Spin1,3.

This construction is analogous to the identification of SU2 as Spin3

(cf. Appendix B).
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Appendix A The Dirac representation of G

Proposition. Define

Γ0 =

(
σ0

−σ0

)
and Γk =

(
−σk

σk

)
, k = 1, 2, 3.

Then there exists an algebra isomorphism G → R(4) such that
γµ 7→ Γµ.

Proof. The Γµ satisfy the Clifford relations ΓµΓν + ΓνΓµ = 2ηµν I4.
This follows from the Clifford relations σjσk + σkσj = 2δjk satisfied
by the Pauli matrices σ1, σ2, σ3 and straightfoward matrix
computations. So there is an algebra homomorphism G → R(4) such
that γµ 7→ Γµ. Finally, this homomorphism is an isomorphism: the
images ΓI of the γI (I running over the multiindeces of 0, 1, 2, 3) turn
out to be lineraly independent.
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Appendix B Action of HH× on V

Definition. Given x ∈ H
×

, let ρx : H→ H denote the the
automorphism of H defined by ρx(y) = xyx−1.

Theorem1. The map ρx satisfies that ρx(V ) = V and the map
ρx : V → V belongs to SO(V ) ' SO3. Furthermore, the sequence

1→ R
× → H

× ρ

−→ SO3 → 1

is exact.

Proof. To show that v ′ = ρx(v) ∈ V when v ∈ V , it is enough to
show that v ′2 is real and non-positive:

v ′2 = (xvx−1xvx−1) = xv 2x−1 = v 2,

which is real and non-positive. Now

Q(v ′) = Q(xvx−1) = Q(x)Q(v)Q(x)−1 = Q(v)

says ρx ∈ O(V ), so det(ρx) = ±1. Since H
×

is connected and
x 7→ det(ρx) is continuous, ρx ∈ SO(V ).
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Appendix B The homomorphism SU2 → SO3

Since the elements x ∈ H
×

such that ρx = Id satisfy xvx−1 = v for
all v ∈ V , we see that ker(ρ) is the center of H

×
and so

ker(ρ) = R
×

. Finally ρ is surjective because for a vector v ∈ V we
have ρv = mv (the reflection in the direction v with mirror v⊥) and
these reflections generate SO3 by the Cartan-Dieudonné theorem.

If we restrict ρ to H1 = {x ∈ H
× |Q(x) = 1}, then ρ : H1 → SO3 is

still surjective (by the same argument), but its kernel is reduced to
R
× ∩H1 = {±1}. Since in addition H1 = SU2, we have:

Corollary. We have an exact sequence

1→ {±1} → SU2

ρ

−→ SO3 → 1.
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Introduction Settings

In this chapter the field K will be R or C and we will assume that E
is endowed with a non-degenerate metric g : E → E ∗. In the real
case, the metric g is said to be positive, or positive definite, if
g(e, e) > 0 for all e ∈ E and it is said to be negative, or negative
definite, if −g is positive. A metric which is neither positive nor
negative is said to be indefinite.

For K = C, (E , g) is uniquely determined, up to isometry, by
n = dimC(E ). Indeed, if e = e1, . . . , en ∈ E is an orthogonal basis,
and we choose rk ∈ C such that r 2k = g(ek , ek) (k = 1, . . . , n), then
the êk = r−1

k ek satisfy g(êk , êk) = 1 and hence (E , g) is isometric to

Cn with the standard metric (g(z , z ′) = zz ′T = z1z
′
1 + · · ·+ znz

′
n).

An orthogonal basis e such that g(ek , ek) = 1 for all k is said to be
orthonormal.
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Introduction Settings

For K = R, (E , g) is uniquely determined, up to isometry, by its
signature (r , s), where r counts, given any orthogonal basis
e = e1, . . . , en ∈ E , the number of k such that g(ek , ek) > 0 and
s = n − r (so s counts the the number of k such that g(ek , ek) < 0).
It is an easy exercise to see that this definition does not depend on
the basis used to compute (r , s). If we choose rk ∈ R such that
r 2k = g(ek , ek) or r

2
k = −g(ek , ek), depending on the sign of g(ek , ek),

and define êk = r−1
k ek , then g(êk , êk) = ±1, with 1 and −1

appearing r and s times, respectively. Reordering this normalized
basis, we can achieve that 1 occurs for k = 1, . . . , r and that −1
occurs for k = r + 1, . . . , r + s = n. Orthogonal bases satisfying this
condition will be said to be orthonormal (some authors say
pseudo-orthonormal).
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Introduction Notations

We write Er ,s to denote a real vector space with a metric of signature
(r , s). Instead of En,0 we will simply write En, a symbol that will also
be used for the complex case. Instead of E0,n we will write Ēn.

We adapt the general notations and conventions of the preceding
chapters to the present context as follows:

1) Or ,s : The orthogonal group of Er ,s . In terms of matrices, it is
isomorphic to the subgroup of the group GLn of invertible real
matrices of orden n formed by the matrices A such that
AT Ir ,sA = Ir ,s , where Ir ,s = diag(1r ,−1s). Note that this
relation implies that det(A) = ±1.

2) SOr ,s = O
+

r ,s : The subgroup of Or ,s of rotations, that is, of the
isometries whose determinant is +1.

3) Gr ,s = Λg (Er ,s): The geometric algebra of Er ,s .
4) G×

r ,s : The multiplicative group of invertible elements of Gr ,s .
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Introduction Notations

5) Γ̃r ,s : The twisted Lipschitz group of Gr ,s . It is the subgroup
formed by the even and odd u ∈ G×

r ,s such that uEr ,su
−1 = Er ,s .

6) Γ̃
+

r ,s : the subgroup of even elements of Γ̃r ,s .

7) Γr ,s : The Lipschitz group of Gr ,s . It is the subgroup of G×

r ,s

consisting of the elements u = u1 · · · um with uk ∈ E
×

r ,s

(k = 1, . . . ,m). It is a normal subgroup of Γ̃r ,s .
8) Γ

+

r ,s : the subgroup of even elements of Γr ,s .

9) Pinr ,s : The group Ping (Er ,s), which is the subgroup of G×

r ,s

whose elements u have the form u = u1 · · · um, with uk ∈ E
×

and g(uk , uk) = ±1 (k = 1, . . . ,m).
10) Spinr ,s : The subgroup of even elements of Pinr ,s . Its elements u

have the form u = u1 · · ·um, with uk ∈ E
×

, g(uk , uk) = ±1
(k = 1, . . . ,m) and m even.
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Introduction Notations

Remark

In all cases, we set Xn = Xn,0, X̄n = X0,n (Xn(C) in the complex
case), where X stands any of the symbols define above:

O, SO = O
+

, G, G×

, Γ̃, Γ̃
+
, Γ, Γ

+
, Pin and Spin.

Note Xn and X̄n point to difference structures, as for example Gn and
Ḡn. The exceptions are O and SO, for it is plain that On = Ōn and
SOn = S̄On.

Now we can proceed to specialize the main results of Lecture 3 to the
present context.

Remark

Let ir ,s be the pseudoscalar of Gr ,s . Then i2r ,s = (−1)s+n//2, where

n = r + s. Indeed, we know that the value is (−1)n//2Q(ir ,s) and it is
clear that Q(ir ,s) = (−1)s .
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Fundamental exact sequences Case K = C

Case K = C. Γ̃n(C) = Γn(C) and the following sequences are exact:

1 → C
× → Γn(C)

ρ̃−→ On(C) → 1

1 → C
× → Γ

+

n (C)
ρ̃−→ SOn(C) → 1

1 → {±1,±i} → Pinn(C)
ρ̃−→ On(C) → 1

1 → {±1,±i} → Spinn(C)
ρ̃−→ SOn(C) → 1

Proof. The first assertion is a direct consequence of the Corollary on
slide 50 of Lecture 3. Indeed, every element of C

×

is a square, hence

C
×

= C
×2 ⊆ C

×

0 ⊆ C
×

, and hence Γ̃n(C)/Γn(C) ≃ C
×

/C
×

0 = {1}.
Now the first and second exact sequences are special cases of the
sequences established in Lecture 3: Theorem 5 and second Corollary
on slide 49, respectively. The third and fourth sequences are special
cases of the exact sequences of Theorem 6.

S. Xambó (UPC) GAT 05 R and C geometric algebras SLP · 9-13 March · 2015 8 / 36



Fundamental exact sequences Case K = R

Case K = R. For any signature (r , s), R
×

0 = R
×

(R
×

0 = R
× ∩ Γr ,s),

Γ̃r ,s = Γr ,s and the following sequences are exact:

1 → R
× → Γr ,s

ρ̃−→ Or ,s → 1

1 → R
× → Γ

+

r ,s

ρ̃−→ SOr ,s → 1

1 → {±1} → Pinr ,s
ρ̃−→ Or ,s → 1

1 → {±1} → Spinr ,s

ρ̃−→ SOr ,s → 1

Proof. For the first assertion, we know that R
×

0 contains R
×2

= R>0.

If we show that −1 ∈ Γr ,s , then R
×

0 also contains −R
×2

= R<0 and
so R

×

0 = R
×

, as wanted. To see that −1 ∈ Γr ,s , pick any u ∈ E
×

r ,s

and normalize it so that g(u, u) = ±1. If the sign is −, then
−1 = g(u, u) = u2 ∈ Γr ,s and if the sign is +, then
−1 = −u2 = u(−u) ∈ Γr ,s .
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Fundamental exact sequences Case K = R

The other assertions are derived as in the complex case from the
results given in Lecture 3.

Proposition. The 2 to 1 surjection Spinr ,s → SOr ,s is non-trivial if
r > 2 or s > 2.

Proof. It will be enough to construct a path on Spinr ,s connecting 1
and −1. To that end, let u1, u2 be an orthonormal pair of positive
(ǫ = 1) or negative (ǫ = −1) vectors. Now define s(t) ∈ Spinr ,s ,
t ∈ [0, π/2], as follows:

s(t) = (u1 cos(t) + u2 sin(t))(u1 cos(t)− u2 sin(t))

= ǫ cos2(t)− ǫ sin2(t)− u1u2 sin(t) cos(t) + u2u1 sin(t) cos(t)

= ǫ cos(2t)− u1u2 sin(2t).

Now it is clear that s(0) = ǫ and s(π/2) = −ǫ.
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Topological facts The algebra K (n)

The K -algebra of square matrices of orden n with entries in K will be
denoted K (n). The group K (n)

×

of invertible matrices will be
denoted GLn(K ). We also set

SLn(K ) = {A ∈ GLn(K ) | det(A) = 1}.
Note that these objects are defined when K is a commutative ring, as
for example the ring of integers Z. For K = R we simply write GLn

and SLn.

As a complex (real) vector space, C(n) is isomorphic to Cn2 (R2n2).
The topology so induced in C(n) is equivalent to the one defined by
the hermitian metric (this means that it is linear in B and complex
conjugate linear in A) given by

〈A|B〉 = Tr(A†B),

where A† = ĀT is the hermitian adjoint of A (the transpose of the
complex conjugate of A). Note that 〈A|A〉 = ∑

j ,k |Ajk |2.
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Topological facts Matrix Lie groups

The group GLn(C) is an open set of C(n) and any subgroup
G ⊆ GLn(C) that is closed (in GLn(C), but not necessarily in C(n))
is said to be matrix Lie group. It is a basic fact that a matrix group is
automatically a Lie group (see, for example, Hall-2003 or
Goodman-Wallach-2009).

Since the topology of C(n) is Euclidean, a matrix group is compact if
and only if it is bounded.

Henceforth, all Lie groups that we consider will be matrix Lie groups
unless we indicate otherwise explicitly.

A closed subgroup of a compact Lie group is a compact Lie group.
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Topological facts Connectedness

Since a Lie group is locally arc-connected, it is connected if and only
if it is arc-connected. A group G ⊆ GLn(C) is arc-connected when
for any A,B ∈ G there is a continuous path X (t) ∈ G , 0 6 t 6 1,
such that X (0) = A and X (1) = B (in this case we say that B is
reachable from A on G , or that X connects A and B on G ). Notice
that it is sufficient to check that any A ∈ G is reachable from In
on G .

Connected component of the identity. Let G be a Lie group and let
G 0 be the connected component of In ∈ G . Then G 0 is a (closed)
subgroup of G .

Proof. If A,B ∈ G 0, there are continuous paths X (t),Y (t) ∈ G ,
t ∈ [0, 1], connecting In to A and B , respectively. Then
Z (t) = A(t)B(t) is a continuous path on G connecting In = Z (0) to
AB = Z (1). This proves that G 0 is closed under multiplication.
Since X (t)−1 is a continuous path on G that connects In to A−1, it
also follows that A−1 ∈ G 0.
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Topological facts Classical groups

As commonly understood, the following families of Lie groups fall
under the label of classical groups:

1) GLn(C), SLn(C), GLn, and SLn (n > 1). GLn(C) is connected
and GLn has two connected components that are distinguished
by the sign of the determinant. The connected component of In
in GLn is GL

+

n = {A ∈ GLn | det(A) > 0}. The groups SLn(C)
and SLn are both connected. Since SLn has matrices with

unbounded elements, like

(
m + 1 1
m 1

)
in SL2 (any m), none of

these groups is compact.
2) On(C), On, SOn(C), SOn (n > 1). The group On has two

connected components: O
+

n = SOn (the connected component
of In) and O

−

n = JnSOn, where Jn = diag(−1, 1n−1). Similar
statements are valid for the complex case. The group On, and
hence also SOn, are compact, whereas SOn(C), and hence also
On(C), are non-compact.
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Topological facts Classical groups

3) Or ,s , SOr ,s . Since Os,r = Or ,s and SOs,r = SOr ,s , we can
assume 0 < r 6 s (the case r = 0 is included in the previous
list). If we set J = diag(−1, 1n−1) (n = r + s), then Jn ∈ Or ,s

and det(Jn) = −1. This implies that Or ,s = SOr ,s ⊔ JnSOr ,s

(where ⊔ denotes disjoint union) and hence we are reduced to
study SOr ,s . This group has two connected components, SO±

r ,s ,

where SO
+

r ,s is the subgroup of the f ∈ SOr ,s such that

det(f
+
) = 1, where f

+
: E

+

r ,s → E
+

r ,s is the composition of f with

the orthogonal projection of Er ,s to E
+

r ,s .
4) Un and SUn. The unitary group Un is formed by the unitary

matrices A ∈ C(n) (AA† = In). The special unitary group SUn is
the subgroup of Un of matrices A such that det(A) = 1.

5) Spn, Spn(C) and USpn. The symplectic group Spn is the
subgroup of symplectic matrices A ∈ GL2n, i.e. A

TΩA = Ω,

where Ω =

(
In

−In

)
. USpn = Spn(C) ∩U2n.
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Classification of Clifford algebras The basic ingredients

Notations. K will denote one of the fields R (real field), C (complex
field) and H (quaternion field). For any integer n ≥ 2, K(n) will
denote the ring of n × n matrices with coefficients in K. Since
K(n) = K⊗ R(n), its real dimension is dKn

2, where
dK = dimRK = 1, 2, 4, respectively. Note: K(m)⊗ R(n) ≃ K(mn).

Lemma

(1) C⊗ C ≃ C⊕ C

(2) C⊗H ≃ C(2)

(3) H⊗H ≃ R(4)

Proof. (1) Since (i ⊗ i)2 = 1⊗ 1, the elements e± = 1
2
(1⊗ 1± i ⊗ i)

are idempotents with e+ + e− = 1⊗ 1 and e+e− = e−e+ = 0⊗ 0.
Then the map C⊕ C → C⊗ C, (x , y ) 7→ xe+ + ye−, satisfies
(xe+ + ye−)(x

′e+ + y ′e−) = xx ′e+ + yy ′e− and with this it is easy to
prove that it is an isomorphism.
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Classification of Clifford algebras The basic ingredients

(2) If z is a complex number and q a quaternion, let fz ,q : H → H be
defined by fz ,q(h) = zhq̄. Then fz ,q is C-linear, so that we have a
map C×H → EndC(H), (x , q) 7→ fz ,q. The map is clearly bilinear
and hence induces a linear map C⊗H → EndC(H). This map is an
algebra homomorphism, for

z2z1hq̄1q̄2 = (z1z2)h q1q2.

It can be checqued that this map sends the basis {1, i} ⊗ {1, I , J ,K}
into linearly independent endomorphisms, and hence the map is an
isomorphism, for both sides have dimension 8. Finally note that
EndC(H) ≃ EndC(C

2) ≃ C(2).

(3) If q1, q2 ∈ H, define fq1,q2 : H → H by fq1,q2(h) = q1hq̄2. In this
way we we get, as in 2), an algebra homomorphism
H⊗H → End(H) which can be shown to be an isomorphism (both
sides have dimension 16). Finally End(H) ≃ End(R4) ≃ R(4).
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Classification of Clifford algebras A corner of the Clifford chessboard

We are aiming at giving isomorphic descriptions of Cr ,s and C
+

r ,s in
terms of basic algebra forms. It will turn out that it is enough to
achieve this for 0 ≤ r , s ≤ 7. So we will first look at how to fill in the
slots in this 8× 8 chessboard.

The main tools will be the explicit description of Cr ,s for slots close
to the corner (0, 0), which contains C0,0 = R, and three inductive
formulas.

Let us begin with the slots near (0, 0), For row 0, C0,s = C̄s , and we
know that C̄1 ≃ C and C̄2 ≃ H. Then C1,0 = C1 ≃ R⊕ R,
C1,1 ≃ R(2) and C2,0 = C2 ≃ R(2). In sum,

r\s 0 1 2
0 R C H

1 R⊕ R R(2)
2 R(2)
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Classification of Clifford algebras Inductive formulas

Proposition

(1) Cr+2 ≃ C̄r ⊗ C2 ≃ C̄r ⊗ R(2).

(2) C̄r+2 ≃ Cr ⊗ C̄2 ≃ Cr ⊗H

(3) Cr+1,s+1 ≃ Cr ,s ⊗ R(2).

Proof. (1) Let γ̄1, . . . , γ̄r be standard generators of C̄r , so γ̄2
k = −1,

and γ1, γ2 standard generators of C2, so γ2
1 = γ2

2 = 1. Let i2 = γ1γ2,
so that i 22 = −1.

Consider the elements Γk ∈ C̄r ⊗ C2 defined by Γk = γ̄k ⊗ i2

(k = 1, . . . , r), and Γr+ℓ = 1⊗ γℓ (ℓ = 1, 2).

The Γj (j = 1, . . . , r + 2) are linearly independent and satisfy the
relations of a standard basis of Cr+2.

So we have an injective homomorphism Cr+2 → C̄r ⊗ C2, which must
be an isomorphism because both algebras have dimension 2r+2.
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Classification of Clifford algebras Inductive formulas

(2) Let γ1, . . . , γr be standard generators of Cr , so γ2
k = 1, and γ̄1, γ̄2

standard generators of C̄2, so γ̄2
1 = γ̄2

2 = −1. Let i2 = γ̄1γ̄2, so that
i

2
2 = −1.

Consider the elements Γ̄k ∈ Cr ⊗ C̄2 defined by Γ̄k = γk ⊗ i2

(k = 1, . . . , r), and Γ̄r+ℓ = 1⊗ γ̄ℓ (ℓ = 1, 2).

The Γ̄j (j = 1, . . . , r + 2) are linearly independent and satisfy the
relations of a standard basis of C̄r+2.

So we have an injective homomorphism, C̄r+2 → Cr ⊗ C̄2, which
must be an isomorphism because both algebras have dimension 2r+2.
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Classification of Clifford algebras Inductive formulas

(3) Let γ1, . . . , γr , γ̄1, . . . , γ̄s be standard generators of Cr ,s : γ
2
j = 1

(j = 1, . . . , r) and γ̄2
k = −1 (k = 1, . . . , s). Let γ, γ̄ be standard

generators of C1,1 (γ2 = 1, γ̄2 = −1) and let i2 = γγ̄, so that i 22 = 1.

Consider the elements Γj and Γ̄k of Cr ,s ⊗ C1,1, j = 1, . . . , r + 1,
k = 1, . . . , s + 1, defined as Γj = γj ⊗ i2 (j = 1, . . . , r), Γr+1 = 1⊗ γ,
Γ̄k = γ̄k ⊗ i2 (k = 1, . . . , r) and Γ̄s+1 = 1⊗ γ̄.

The Γ1, . . . , Γr+1 are linearly independent and satisfy the relations of
a standard basis of Cr+1,s+1.

Now argue as in the previous cases.
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Classification of Clifford algebras The full chessboard

Remark. The Cr and C̄r , r = 0, . . . , 7, fill the chessboard 0-th column
and 0-th row, respectively, and the Proposition, (1) and (2), says
that if for either one we know the values up to r , then we can know
the values of the other up to r + 2. Since we know the values up to
r = 2 for both of them, the determination of the other values can be
carried out, for example, as follows:

C3 ≃ C̄1 ⊗ R(2) ≃ C⊗ R(2) ≃ C(2); C4 ≃ C̄2 ⊗ R(2) ≃ H(2);

C̄3 ≃ C1 ⊗H ≃ H⊕H; C̄4 ≃ C2 ⊗H ≃ H(2);

C̄ 5 ≃ C3 ⊗H ≃ C(2)⊗H ≃ C(4) (use the Lemma);

C̄6 ≃ C4 ⊗H ≃ H(2)⊗H ≃ R(8) (use the lemma again);

C5 ≃ C̄3 ⊗ R(2) ≃ H(2)⊕H(2); C6 ≃ C̄4 ⊗ R(2) ≃ H(4);

C7 ≃ C̄5 ⊗ R(2) ≃ C(8); C̄7 ≃ C5 ⊗H ≃ R(8)⊕ R(8).

Now use the Proposition (3) to fill in the rest:

S. Xambó (UPC) GAT 05 R and C geometric algebras SLP · 9-13 March · 2015 22 / 36



Classification of Clifford algebras The full chessboard

r\s 0 1 2 3
0 R C H H⊕H

1 R⊕ R R(2) C(2) H(2)
2 R(2) R(2)⊕ R(2) R(4) C(4)
3 C(2) R(4) R(4)⊕ R(4) R(8)
4 H(2) C(4) R(8) R(8)⊕ R(8)
5 H(2)⊕H(2) H(4) C(8) R(16)
6 H(4) H(4)⊕H(4) H(8) C(16)
7 C(8) H(8) H(8)⊕H(8) H(16)

r\s 4 5 6 7
0 H(2) C(4) R(8) R(8) ⊕ R(8)
1 H(2) ⊕ H(2) H(4) C(8) R(16)
2 H(4) H(4)⊕ H(4) H(8) C(16)
3 C(8) H(8) H(8) ⊕H(8) H(16)
4 R(16) C(16) H(16) H(16) ⊕H(16)
5 R(16)⊕ R(16) R(32) C(32) H(32)
6 R(32) R(32) ⊕ R(32) R(64) C(64)
7 C(32) R(64) R(64) ⊕ R(64) R(128)
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Classification of Clifford algebras Periodicity mod 8

Corollary

(1) Cn+8 ≃ Cn ⊗ R(16)

(2) C̄n+8 ≃ C̄n ⊗ R(16)

(3) Cr+4,s+4 ≃ Cr ,s ⊗ R(16)

Proof. The Proposition, (1) and (2), allows us to write:

Cn+8 ≃ C̄n+6 ⊗ C2 ≃ Cn+4 ⊗ C̄2 ⊗ C2

≃ C̄n+2 ⊗ C2 ⊗ C̄2 ⊗ C2

≃ Cn ⊗ C̄2 ⊗ C2 ⊗ C̄2 ⊗ C2

Now we have, using the chessboard and part (3) of the Lemma,

C̄2 ⊗ C2 ⊗ C̄2 ⊗ C2 ≃ H⊗ R(2)⊗H⊗ R(2)

≃ H⊗H⊗ R(4)

≃ R(4)⊗ R(4) ≃ R(16).

With this we conclude the proof of (1).
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Classification of Clifford algebras Periodicity mod 8

The proof of (2) follows the same pattern as the proof of (1):

C̄n+8 ≃ Cn+6 ⊗ C̄2 ≃ C̄n+4 ⊗ C2 ⊗ C̄2

≃ Cn+2 ⊗ C̄2 ⊗ C2 ⊗ C̄2

≃ C̄n ⊗ C2 ⊗ C̄2 ⊗ C2 ⊗ C̄2

and clearly C2 ⊗ C̄2 ⊗ C2 ⊗ C̄2 ≃ R(16).

The proof of (3) is simpler: it suffices to apply rule (3) of the
Proposition four successive times to conlude that

Cr+4,s+4 ≃ Cr ,s ⊗R(2)⊗4 ≃ Cr ,s ⊗R(16).
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Classification of Clifford algebras Periodicity mod 8
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Classification of Clifford algebras Periodicity mod 8

Remark (Reduction to the chessboard). Given r , s, let m = min(r , s)
and k the greatest non-negative integer such that 4k ≤ m. Let
r ′ = r − 4k, s ′ = s − 4k and m′ = m − 4k = min(r ′, s ′). Then part
(3) of the Corollary tells us that Cr ,s ≃ Cr ′,s′ ⊗ R(16k) and by part
(3) of the Proposition Cr ′,s′ ≃ Cr ′′,s′′ ⊗ R(2m

′

), with r ′′ = r ′ −m′,
s ′′ = s ′ −m′, or Cr .s ≃ Cr ′′,s′′ ⊗ R(2m

′

16k). Since either s ′′ = 0
(when s 6 r) or r ′′ = 0 (when r 6 s), we see that Cr ,s ≃ Cr ′′ (when
s 6 r) or Cr ,s ≃ C̄s′′ (when r 6 s).

Algorithm. While r , s > 4, we jump to r − 4, s − 4 and update the
matrix factor by R(16). At some point we will cross either the red
line (case r > s) or the blue line (the case r 6 s). At this moment,
and while r , s > 1, we jump to r − 1, s − 1 and update the matrix
factor by R(2). After at most three steps, we are going to hit the
’red boundary’ (the Cn) or the ’blue boundary’ (the C̄n). Now, while
n > 8, we jump along the boundary to n − 8 and update the matrix
factor by R(16). See illustration on next slide.
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Classification of Clifford algebras The classification theorem

Theorem . Let n = r + s = dim(Er ,s) and set dk = 2
n−k
2

(k = 0, . . . , 4). Let ν = r − s mod 8. Then the isomorphism classes
of Cr ,s and C

+

r ,s are determined according to the following tables:

ν Cr ,s

0, 2 R(d0)
1 R(d1)⊕ R(d1)

3, 7 C(d1)
4, 6 H(d2)
5 H(d3)⊕H(d3)

ν C
+

r ,s

1, 7 R(d1)
0 R(d2)⊕ R(d2)

2, 6 C(d2)
3, 5 H(d3)
4 H(d4)⊕ H(d4)

Proof. The integer r − s mod 8 is clearly invariant in the reduction
process. It follows that Cr ,s ≃ Cν ⊗ R(d) if r > s and
Cr ,s ≃ C̄8−ν ⊗ R(d ′) if r < s, where d and d ′ are positive integers.
Now in the 15 algebras Cν (ν = 0, . . . , 7) and C̄8−ν (ν = 1, . . . , 7)
there appear exactly 5 forms (up to tensoring by R(2m), for some m):
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Classification of Clifford algebras The classification theorem

Form R R+R C H H+H
ν 0, 2 1 3, 7 4, 6 5

So the classification in terms of ν has indeed the form of the first
table in the statement. That the d ’s are as claimed follows by
counting dimensions. The dimension of Cr ,s is 2

n, and the dimensions
of the five forms are

Form R(m) R(m)⊕ R(m) C(m) H(m) H(m)⊕H(m)
d(m) m2 2m2 2m2 4m2 8m2

Solving for m in the equation 2n = d(m) we get the claimed
expressions. For example, if 2n = 8m2, then m2 = 2n−3 and hence
m = 2(n−3)/2 = d3.

To prove the second part, we first establish the following

Lemma. For any signature (r , s), we have

Cr ,s ≃ C
+

r ,s+1 ≃ C
+

s+1,r .
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Classification of Clifford algebras The classification theorem

Proof. Take a standard basis of Cr ,s+1 of the form γj (j = 1, . . . , r),
γ̄k (k = 1, . . . , s + 1) and write γ̄ = γ̄s+1. Now consider the elements
Γj = γ̄γj (j = 1, . . . , r) and Γ̄k = γ̄γ̄k (k = 1, . . . , s). These elements
belong to C

+

r ,s+1, are linearly independent, anticommute and satisfy
the standard relations for the signature (r , s): Γ2j = 1 (j = 1, . . . , r)

and Γ̄2k = −1 (k = 1, . . . , s). This implies the isomorphism
Cr ,s ≃ C

+

r ,s+1.

For the other isomorphism, take a standard basis of Cs+1,r of the
form γk (k = 1, . . . , s + 1), γ̄j (j = 1, . . . , r) and write γ = γr+1.
Now consider the elements Γj = γγ̄j (j = 1, . . . , r) and Γ̄k = γγk
(k = 1, . . . , s). These elements belong to C

+

s+1,r , are linearly
independent, anticommute and satisfy the standard relations for the
signature (r , s): Γ2j = 1 (j = 1, . . . , r) and Γ̄2k = −1 (k = 1, . . . , s).

This implies the isomorphism Cr ,s ≃ C
+

s+1,r .
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Classification of Clifford algebras The classification theorem

Corollary. If s > 0, then C
+

r ,s ≃ Cr ,s−1, and C
+

n ≃ C̄n−1.

Now ν(r , s − 1) = ν(r , s) + 1 = ν + 1, and so the class of C
+

r ,s has
the same form as the class of Cr ,s corresponding to ν + 1. And this
covers all the cases, because the type of C̄n−1 coincides with the type
of C9−ν . The orders of the R(m) involved are determined with the
same procedure as before, that is, solving 2n−1 = d(m) for m. For
example, for ν = 0 we have to solve 2n−1 = 2m2, or m2 = 2n−2,
which gives m = d2. ��
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Classification of Clifford algebras The complex case

n mod 2 Cn C
+

n

0 C(d0) C(d2)⊕ C(d2)
1 C(d1)⊕ C(d1) C(d3)
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Appendix Components of SOr,s

Assume, as we may, that 0 < r < r + s.

Let e1, . . . , er , er+1, . . . , er+s be orthonormal basis.

Timelike and spacelike vectors e: e2 > 0, e2 < 0.

E
+
= 〈e1, . . . , er〉, E−

= 〈er+1, . . . , er+s〉.

If f ∈ Or ,s , its matrix has the form f ∼
(
A B
C D

)
, according to

decompostion E = E
+ ⊥ E

−

.

Lemma. det(A) 6= 0.

Proof. Indeed, A is the matrix of the composition π
+ ◦ f : E

+ → E
+
,

where π
+
is the orthogonal projection E → E

+
. The kernel of this

map is formed by the vectors e ∈ E
+
such that f (e) ∈ E

−

, which
implies that f (e) · f (e) ≤ 0. But f (e) · f (e) = e · e > 0, which
implies that e = 0.
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Appendix Components of SOr,s

Let SO±
r ,s be defined according to the sign of det(A).

Lemma

SO±
r ,s are the connected components of SOr ,s

Proof

We will assume r > 2 (the case r = 1 requires a little extra work).

Any element of SOr ,s can be written as mu1 · · ·mu2m , where each uj is
either timelike of spacelike.

Claim: mumu′ = mmu(u′)mu, or mumu′mu = mmu(u′). Indeed, both
sides of the second relation map mu(u

′) to −mu(u
′), and both sides

leave invariant any vector v orthogonal to mu(u
′) (note that

v = mu(v
′), with v ′ orthogonal to u′).
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Appendix Components of SOr,s

(*) As a result, we assume that in the product mu1 · · ·mu2m the
u1, . . . , uk are timelike and uk+1, . . . , u2m spacelike.

Let x ∈ E such that x · x = 1, and write x = x
+
+ x

−

, x
+ ∈ E

+
and

x
− ∈ E

−

. Then x
+ · x+

> 1, so x
+
= αu

+
with u

+ · u+
= 1. If

x
− 6= 0, we can write x

−

= βu
−

, u
− · u−

= −1. And if x
−

= 0, set
u

−

= er+1 and β = 0. So we have x = αu
+
+ βu

−

and
1 = x · x = α2 − β2. This implies that there exists t ∈ R such that
x = cosh(t)u

+
+ sinh(t)u

−

. Letting t → 0, we see that x can be
continuously deformed to e1.

This shows that the timelike vectors form a connected domain. A
similar argument shows that a spacelike vectors can be connected to
er+1 and so the spacelike vectors also form a connected domain.
Since the map u 7→ mu is continuous, (*) implies that any f ∈ SOr ,s

can be deformed to mǫ
e1
mǫ

r+1, with ǫ = 0, 1. If ǫ = 0, f ∈ SO
+

r ,s ,

otherwise f ∈ SO
−

r ,s .
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Introduction Behaviour of ir,s

Let n = r + s and ν = r − s mod 8.

We define dk = 2(n−k)/2 (it will be used for k = 0, 1, . . . , 4 and in
cases that will guarantee that (n − k)/2 is an integer).

Let i = ir ,s be the pseudoscalar (volume element) of Cr ,s .

Lemma

(1) i2 = (−1)s+n//2 = (−1)(r−s+1)//2. Thus

i
2 = 1 if ν ≡ 0, 3 mod 4

i
2 = −1 if ν ≡ 1, 2 mod 4

(2) For any vector e, ei = (−1)n−1
ie. Therefore, i is central if n is

odd and anticommutes with vectors if n is even (so it anticommutes
with odd multivectors and commutes with even multivectors). Since
n ≡ ν mod 2, we can use ν instead of n.
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Introduction Repesentations

Let K be one of the fields R, C, H.

A K-representation of a real algebra A is an R-linear homomorphism
ρ : A → EndK(E ) for some K-vector space E .

Equivalent K-representations are defined as usual: isomorphic under
a K-linear isomorphism. Note that ρ defines an A-module structure
on E .

A representation ρ is irreducible if the only there are no non-trivial
submodules.

Similar definitions can be phrased for groups instead of algebras.
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Introduction Irreducible representations of K(n)

Facts

(1) Every irreducible R-representation of the real algebra R(n) is
isomorphic to R

n

(2) Every irreducible H-representation of the real algebra H(n) is
isomorphic to H

n (as a right H-vector space).

(3) Every irreducible C-representation of the real algebra C(n) is
isomorphic either to C

n or to C̄
n.
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Introduction Pinor representations

A pinor representation of Pinr ,s is the restriction to Pinr ,s of an
irreducible representation of Cr ,s .

Theorem. The type of the pinor representations depends only on ν.

ν even. Unique pinor respresentation Ps,t .

ν = 0, 6: real of dimension d0 (Majorana)

ν = 2, 4: quaternionic of dimension d2 (symplectic Majorana).

ν odd. Two pinor representations.

ν = 3, 7, so i
2 = 1. There are two pinor representations P±

r ,s ,
distinguished by the action (+1 or −1) of i.

ν = 7: real of dimension d1 (Majorana).

ν = 3: quaternionic of dimension d3 (symplectic Majorana).

ν = 1, 5, so i
2 = −1: complex Pr ,s and P̄r ,s of complex dimension d1,

distinguished by the action (+i or −i) of i (Dirac).
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Introduction Spinor representations

A spinor representation of Spinr ,s is the restriction to Spinr ,s of an

irreducible representation of C
+

r ,s .

Theorem. The type of the spinor representations depends only on ν.

ν odd. There is a unique spinor representation Sr ,s .

ν = 1, 7: real of dimension d1 (Majorana).

ν = 3, 5: quaternionic of dimension d3 (symplectic Majorana).

ν even. Two representations (Weyl spinors).

ν = 2, 6 (i2 = −1): S and S̄ of complex dimension d2, distinguished
by the action of i: i and −i .

ν = 0, 4 (i2 = 1): S±, distinguished by the action of i: +1 and −1.

ν = 0: real, dimension d2 (Majorana-Weyl).

ν = 4: quaternionic, dimension d4 (symplectic Majorana-Weyl).

S. Xambó (UPC) GAT 06 On spinors SLP · 9-13 March · 2015 6 / 6


	lecture-01
	lecture-02
	lecture-03
	lecture-04
	Introduction
	Lorentzian GA
	Space-time paths


	lecture-05
	lecture-06

