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UPC

4 abril 2014
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0. Geometŕıa Senda desarguesiana

Senda desarguesiana: intuición visual del espacio

A.3 (Axioma proyectivo). Si P0,P1,P2,P3 son puntos distintos y las
rectas P0P1 y P2P3 son incidentes, entonces las rectas P0P2 y
P1P3 también lo son:

P0P1 ∧ P2P3 6= 0⇒ P0P2 ∧ P1P3 6= 0.

P0

P1

P3

P2
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0. Geometŕıa Senda grassmanniana

Senda grassmanniana: puntos, rectas, planos, ...

Un ret́ıculo proyectivo es un ret́ıculo modular, complementado y de
longitud finita.

Teorema

El ret́ıculo S(X ) de subespacios de un espacio proyectivo X de
dimensión finita es un ret́ıculo proyectivo.

Resultado clave: Si U y V son subespacios no nulos de un espacio
proyectivo X , entonces U ∨ V es la unión de los conjuntos PQ, con
P ∈ U y Q ∈ V .
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0. Geometŕıa Senda neocartesiana

Senda neocartesiana: representación vectorial

Sea K un cuerpo (no necesariamente conmutativo) y E un
K -espacio vectorial. Sea [E ] el conjunto de subespacios
vectoriales de dimensión 1 de E . Pongamos X = [E ] y definamos
L como la familia de subconjuntos L de X tales que L = [F ],
siendo F un subespacio de dimensión 2 de E . Entonces (X ,L )
es un espacio proyectivo.

La aplicación F 7→ [F ] establece un isomorfismo entre el ret́ıculo
R(E ) de los subespacios vectoriales de E y el ret́ıculo S([E ]) de
subespacios de [E ]. De hecho se cumplen las relaciones

[F ] ∧ [F ′] = [F ∩ F ′], [F ] ∨ [F ′] = [F + F ′].
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0. Geometŕıa Sendas de ronda

Sendas de ronda

Todo ret́ıculo proyectivo de dimensión > 3 es isomorfo a un
ret́ıculo proyectivo ‘neocartesiano’. El cuerpo K y el K -espacio
vectorial E quedan determinados salvo isomorfismos semilineales.

El dual de un ret́ıculo proyectivo es un ret́ıculo proyectivo. Sus
puntos son los hiperplanos del primero. Más en general, sus
subespacios son las radiaciones de hiperplanos. Su
representación neocartesiana es el espacio vectorial dual.

Proyección y sección: el espacio proyectante U∗ de un subespacio
U de un espacio proyectivo X es un espacio proyectivo isomorfo
por sección a cualquier subespacio complementario de U . Su
representación neocartesiana: cociente E/F e isomorfismo
F ′ ' E/F para todo subespacio suplementario F ′ de F en E .
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0. Geometŕıa Sendas de ronda

Lenguaje af́ın

Es la clave para obtener la representación neocartesiana a partir de la
representación desarguesiana.

Espacio af́ın y grupo af́ın.

Homoloǵıas y traslaciones.

P

Q0

P0 P1

Q1

Y

P

Q2Q1

t1P
t2P

Sea P �∈ Y un punto cualquiera. Entonces
t1(t2P ) es incidente con la recta (t2P )Q1 y
t2(t1P ) es incidente con la recta (t1P )Q2.
Si Q1 �= Q2, estas rectas se cortan en un
único punto y por tanto

t1(t2P ) = t2(t1P ).

Esto prueba que t1 ◦ t2 = t2 ◦ t1.

Y

Las traslaciones y homotecias son las colineaciones que dejan
invariantes los puntos del hiperplano del infinito y sólo ellos en el caso
de las traslaciones.
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0. Geometŕıa Sendas de ronda

Teorema de Desargues. Planos proyectivos

Existen suficientes homoloǵıas si y sólo si se satisface el teorema
de Desargues.

El TdD es cierto en dimensión > 3, pero existen planos
proyectivos que no lo cumplen.

P0

P1

Q0

P2

Q1

Q2

R2

R0

R1

O

S. Xambó (UPC) Escondidas sendas 4 abril 2014 9 / 49



0. Geometŕıa Sendas de ronda

Diagrama mágico

1 1 1

1 1 1

1

1

1

1

1

1

Z(K) K Int(K)

GL(E)

PGL(E)

S(E) Aut(K)

Aut(X) AUT(K)
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0. Geometŕıa Sendas de ronda

La esfera de Riemann: proyección estereográfica

P1
C ' Ĉ ' S2, [ξ0, ξ1] 7→ ξ 7→ P(ξ), ξ = ξ1/ξ0.

ξ = x+ iy

P (ξ) � [1, ξ]

x

y

z

N � [0, 1]

S � [1, 0]

[1, i][1,−i]
[1, 1]

[1,−1]

S. Xambó (UPC) Escondidas sendas 4 abril 2014 11 / 49



0. Geometŕıa Sendas de ronda

La esfera de Riemann: coordenadas ϕ y θ

∞

0

θ

ϕ
1

i

−1

[1, ξ] ∼
[
e−iϕ/2 sin(θ2), e

iϕ/2 cos(θ2)
]

ξ

−i
O
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1. Álgebra geométrica

1. Álgebra geométrica: sendas de ida y vuelta

• Álgebra de Grassmann

• Álgebra de Clifford

• Àlgebra geométrica
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1. Álgebra geométrica Álgebra de Grassmann

Álgebra de Grassmann

Dado un K -espacio vectorial E de dimensión n,

ΛE =
⊕n

k=0ΛkE = K ⊕ E ⊕ Λ2E ⊕ · · · ⊕ ΛnE ,

con el producto exterior ∧, es un álgebra graduada asociativa y
anticonmutativa (si x ∈ ΛrE e y ∈ ΛsE , y ∧ x = (−1)rsx ∧ y).

e

e′e ∧ e′

e

e′ e′ ∧ e

e e′

e

e′′e ∧ e′
e ∧ e′′

e ∧ (e′ + e′′)

e′ + e′′
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1. Álgebra geométrica Álgebra de Grassmann

La antiderivación ξ̂, ξ ∈ E ∗

Lemma

Sea ξ ∈ E ∗ = L(E ,K ). Entonces existe una única antiderivación ξ̂ de

ΛE tal que ξ̂(e) = ξ(e) para todo e ∈ E. Esta antiderivación cumple

ξ̂(e1 ∧ · · · ∧ er ) =
r∑

k=1

(−1)k−1ξ(ek)e1 ∧ · · · ∧ ek−1 ∧ ek+1 ∧ · · · ∧ er

cualesquiera que sean e1, . . . , er ∈ E. En particular, ξ̂ tiene grado −1.
Finalmente se cumple que ξ̂ 2 = 0.
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1. Álgebra geométrica Álgebra de Grassmann

Tenemos, pues, una aplicación lineal E ∗ → Endop
K (ΛE ), ξ 7→ ξ̂, tal

que ξ̂2 = 0. Por la propiedad universal del álgebra exterior, existe un
único homomorfismo de álgebras ΛE ∗ → EndK (ΛE ), φ 7→ φ̂, que

coincide con ξ 7→ ξ̂ para ξ ∈ E ∗. Si x ∈ ΛE y φ ∈ ΛE ∗, en lugar de
φ̂(x) escribiremos simplemente φ(x).

Lemma

Sean x = x1, . . . , xr ∈ E y ξ = ξ1, . . . , ξr ∈ E ∗. Entonces

(ξ1 ∧ · · · ∧ ξr )(x1 ∧ · · · ∧ xr ) = det[ξ × x ],

siendo [ξ × x ] la matriz r × r formada con los escalares ξi(xj).

Corolario

La aplicación ΛrE ∗ → (ΛrE )∗, ξ 7→ ξ̂, es un isomorfismo.
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1. Álgebra geométrica Álgebra de Grassmann

Observación

Con las notaciones del lema anterior, podemos mirar los vectores
x1, . . . , xr ∈ E como elementos de E ∗∗ y entonces tiene sentido
formar la expresión (x1 ∧ · · · ∧ xr )(ξ1 ∧ · · · ∧ ξr ). Por el corolario, este
valor debiera coincidir con (ξ1 ∧ · · · ∧ ξr )(x1 ∧ · · · ∧ xr ) = det[ξ × x ].
El lema, en cambio, nos suministra
(x1 ∧ · · · ∧ xr )(ξ1 ∧ · · · ∧ ξr ) = det[x × ξ], de manera que se debiera
verificar det[x × ξ] = det[ξ × x ]. Pero esta igualdad es clara, ya que
[x × ξ]ij = xi(ξj) = ξj(xi) = [ξ × x ]ji y por tanto [x × ξ] = [ξ × x ]T .
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1. Álgebra geométrica Álgebra de Grassmann

El lema anterior admite una simple generalización para evaluar
(ξ1 ∧ · · · ∧ ξr )(x1 ∧ · · · ∧ xs). Si r > s, el resultado es nulo (ya que es
un elemento de grado negativo). El lema nos da cuenta del caso
r = s. Si r < s, sea J el conjunto de multíındices J de orden r tales
que J ⊂ {1, . . . , s} y pongamos J ′ = {1, . . . , s} − J = {j ′1, . . . , j ′s−r}.
Entonces

(ξ1 ∧ · · · ∧ ξr )(x1 ∧ · · · ∧ xs) =
∑

J

(−1)J det([ξ × x ]J)x̂J′ ∈ Λs−rE ,

siendo (−1)J el signo de la permutación J , J ′ de {1, . . . , s}, [ξ × x ]J
la submatriz de [ξ × x ] formada por las columnas J y
x̂J′ = xj ′1 ∧ · · · ∧ xj ′s−r

.
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1. Álgebra geométrica Álgebra de Grassmann

En el caso r > s, el punto de vista de la observación anterior nos
permite aplicar esta generalización para atribuir el valor∑

J(−1)J det([x × ξ]J)ξJ′ ∈ Λr−sE ∗ a (x1 ∧ · · · ∧ xs)(ξ1 ∧ · · · ∧ ξr ),
siendo {J} el conjunto de multíındices de orden s de {1, . . . , r},
J ′ = {1, . . . , r} − J = {j ′1, . . . , j ′r−s}, [x × ξ]J la submatriz de [x × ξ]
formada por las filas J y ξJ′ = ξj ′1 ∧ · · · ∧ ξj ′r−s

.
De ahora en adelante, las expresiones de la forma
(ξ1 ∧ · · · ∧ ξr )(x1 ∧ · · · ∧ xs) serán interpretadas como un
(s − r)-vector si r 6 s y como una (r − s)-forma si s 6 r . La
consistencia en el caso r = s está garantizada por la observación
anterior.

Si e ∈ E , definimos µe : ΛE → ΛE por x 7→ e ∧ x (por motivaciones
f́ısicas, a los µe se les llama operadores de creación). Es un operador
de grado 1. Como e ∧ e = 0, resulta que µ2

e = 0. Siendo el producto
exterior multilineal, la aplicación E → EndK (ΛE ), e 7→ µe es lineal.

S. Xambó (UPC) Escondidas sendas 4 abril 2014 19 / 49



1. Álgebra geométrica Álgebra de Clifford

Álgebra de Clifford

Sea ahora q : E → E ∗ una aplicación lineal o, equivalentemente, una
forma bilineal de E (q(e, e ′) = q(e)(e ′)). Definimos δe : ΛE → ΛE
por la relación e 7→ ẽ(x), donde ẽ = q(e) (a la antiderivación δe se le
llama operador de aniquilación, también por motivaciones f́ısicas). La
aplicación E → EndK (ΛE ), e 7→ δe es lineal y cumple δ2

e = 0.

Lemma

Para todo e ∈ E se cumple la relación

(µe + δe)2 = q(e, e)IdΛE .
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1. Álgebra geométrica Álgebra de Clifford

Consideremos la aplicación lineal λ : E → EndK (ΛE ),
e 7→ λe = µe + δe y su única extensión a un homomorfismo de
álgebras λ : TE → EndK (ΛE ), siendo TE = K ⊕ E ⊕ T 2E ⊕ · · · el
álgebra tensorial de E . Dado que los elementos de la forma
te = e ⊗ e − q(e, e)1K están en el núcleo de λ, λ induce un
homomorfismo de álgebras λ : CqE → EndK (ΛE ), siendo CqE el
cociente de TE por el ideal bilátero generado por los tensores te ,
e ∈ E , es decir, el álgebra de Clifford de q (el producto en CqE
será denotado por simple yuxtaposición). A su vez, λ induce una
aplicación lineal ∧ : CqE → ΛE , a 7→ λa1K .

Si e1, . . . , en es una base de E , pondremos eJ = ej1 · · · ejr ∈ CqE .
Recordemos que hemos puesto êJ = ej1 ∧ · · · ∧ ejr ∈ ΛrE .
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1. Álgebra geométrica Álgebra de Clifford

Lemma

El conjunto Γ de los elementos eJ ∈ CqE, cuando J recorre el
conjunto de los mulíındices de {1, . . . , n}, es un sistema de
generadores de CqE como espacio vectorial.

A partir de aqúı supondremos que q es simétrica. Diremos que dos
vectores e, e ′ ∈ E son q-ortogonales si y sólo si q(e, e ′) = 0. Si
e1, . . . , en ∈ E y q(ei , ej) = 0 cuando i 6= j decimos que {e1, . . . , er}
es un sistema ortogonal.

Lemma

Si e1, . . . , er ∈ E es un sistema ortogonal, entonces

∧(e1e2 · · · er ) = e1 ∧ e2 ∧ · · · ∧ er .
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1. Álgebra geométrica Álgebra de Clifford

Theorem

Si E admite una base q-ortogonal (lo cual es cierto siempre que la
caracteŕıstica de K no sea 2), entonces la aplicación lineal
∧ : CqE → ΛE es un isomorfismo.

Observación

Si K es de caracteŕıstica 2, existen formas bilineales simétricas que no
admiten bases ortogonales. Para evitar estas anomaĺıas, en el caso de
caracteŕıstica 2 siempre supondremos que q se escoge de manera que
admita una base ortogonal.
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1. Álgebra geométrica Álgebra de Clifford

Notaciones. Sea e1, . . . , en es una base ortogonal de E y pongamos
N = {1, . . . , n}. Si K = k1, . . . , kr ∈ N es una sucesión arbitraria de
ı́ndices, pondremos eK para denotar el producto ek1 · · · ekr . Para
tratar este producto, introducimos las siguientes notaciones. Para
j ∈ N , ponemos lj para designar el número de veces que j aparece en

K y K̂ para denotar el multíındice definido de manera que j ∈ K̂ si y
sólo si lj es impar. También ponemos t(K ) para denotar el número de
pares i , j ∈ N tales que i < j y ki > kj . Finalmente ponemos qK para
designar

∏n
j=1 q(ej , ej)

lj//2, siendo lj//2 el cociente entero de la
división de lj por 2.

Lemma

El producto eK se puede calcular por la fórmula eK = (−1)t(K)qKeK̂
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1. Álgebra geométrica Álgebra geométrica

Álgebra geométrica

El producto interior resulta de combinar q con el acomplamiento de
dualidad ΛE ∗ × ΛE → ΛE , (φ, x) 7→ φ(x). Esta idea se concreta en
el acomplamiento ΛE × ΛE → ΛE , (x , y) 7→ x · y = (q̂ x)(y), siendo
q̂ = ∧q : ΛE → ΛE ∗ el endomorfismo de álgebras exteriores inducido
por q : E → E ∗. Por ejemplo, el producto interior e · e ′ de dos
vectores es igual a q(e, e ′).

Llamaremos álgebra geométrica de q a la estructura ΛqE que resulta
de dotar al álgebra exterior ΛE con el producto de Clifford (producto
geométrico o simplemente producto) obtenido via el isomorfismo
lineal canónico ∧ : CqE → ΛE y del producto interior. En términos
generales, el estudio del álgebra geométrica consiste en dilucidar las
interrelaciones entre estos tres productos y también los
procedimientos para aplicarla a situaciones concretas.
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1. Álgebra geométrica Álgebra geométrica

Involuciones

La involución lineal e 7→ −e de E induce un automorfismo
involutivo α de ΛqE (automorfismo canónico). Su restricción a
Λr
qE es (−1)r . Como consecuencia,

Λ+
q E = ⊕jΛ

2j
2 = {x ∈ ΛqE |α(x) = x} es una subálgebra de ΛqE .

La involución x 7→ x t de T (E ) que invierte el orden de los
factores de grado 1 es un antiautomorfismo y conserva las
relaciones que definen el álgebra exterior y el álgebra de Clifford.
Induce pues un antiautomofismo involutivo de ΛqE , que
seguimos denotando x 7→ x t . Su restricción a Λr

q es (−1)r(r−1)/2.

La composición x 7→ x̄ = α(x t) = (α(x))t es un
antiautomorfismo involutivo (conjugación de Clifford). Su
restricción a Λr

q es (−1)r(r+1)/2.

Una q-isometŕıa de E induce un automorfismo de ΛqE .
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1. Álgebra geométrica Álgebra geométrica

Formulario

Si e, e1, . . . , er , e
′, e ′1, . . . , e

′
s ∈ E , x ∈ Λr

qE , y ∈ Λs
qE :

ex = e · x + e ∧ x , xe = x · e + x ∧ e = (−1)r (−e · x + e ∧ x).

ex + (−1)rxe = 2e ∧ x ex − (−1)rxe = 2e · x .
ee ′ = e · e ′ + e ∧ e ′, 2e · e ′ = ee ′ + e ′e, 2e ∧ e ′ = ee ′ − e ′e.

x ∧ y = (−1)rsy ∧ x , x · y = (−1)rs+ḿın(r ,s)y · x .
xy sólo puede tener componentes no nulas en los grados
|r − s|, |r − s|+ 2, . . . , r + s − 2, r + s.

(xy)r+s = x ∧ y . (xy)|r−s| = x̃ · y si r 6 s, x · ỹ si r > s.

(e1 ∧ · · · ∧ er ) · (e ′1 ∧ · · · ∧ e ′s)

=

{
(e2 ∧ · · · ∧ er ) · (e1 · (e ′1 ∧ · · · ∧ e ′s)) si r 6 s

((e1 ∧ · · · ∧ er ) · e ′s) · (e ′1 ∧ · · · ∧ e ′s−1) si r > s
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1. Álgebra geométrica Álgebra geométrica

Ejemplo: plano euclidiano V2

Sean u1, u2 una base ortonormal. Los elementos de ΛqV2 tienen la
forma x = α + λu1 + µu2 + βi, α, β, λ, µ ∈ R, siendo
i = u1u2 = u1 ∧ u2. Dado que i2 = u1u2u1u2 = −u2

1u
2
2 = −1,

L+
q = {α + βi} es isomorfa al cuerpo C de los números complejos,

siendo i la unidad imaginaria. La multiplicación por i induce en V2 la
rotación de amplitud π/2 en sentido antihorario: u1i = u1u1u2 = −u2

y u2i = u2u1u2 = −u1. Nótese también que (α + βi)t = α− βi.

Si a y b son vectores, entonces a · b = |a||b| cosϕ y
a ∧ b = A(a, b)i = |a||b| senϕ i, siendo A(a, b) el área orientada del
paralelogramo de lados a y b. Por tanto,

ab = a · b + a ∧ b = |a||b|(cosϕ + i senϕ) = |a||b|eiϕ
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1. Álgebra geométrica Álgebra geométrica

Espacio euclidiano Vn: simetŕıas y rotaciones

Proposición

Si a es un vector unitario de Vn, la aplicación σa : Vn → Vn,
x 7→ axa−1 = −axa, es la simetŕıa respecto del hiperplano a⊥.

Dem. Es claro que σa(a) = −aaa = −a. Por otra parte, si x ∈ a⊥,
σa(x) = −axa = xaa = x .

Corolario

Sean a y b son vectores unitarios no paralelos de Vn y ϕ = â, b.
Pongamos u = ba. Entonces la aplicación ρu : Vn → Vn, x 7→ uxut ,
es la rotación de amplitud 2ϕ con eje a⊥ ∩ b⊥.

Dem. Basta notar que

uxut = baxab = −b(−axa)b = σa(σb(x)).
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1. Álgebra geométrica Álgebra geométrica

Representación de la composición de rotaciones en V3.

A los elementos de la forma u = ab, a y b vectores unitarios no
paralelos, los llamamos rotores.
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1. Álgebra geométrica Álgebra geométrica

Ejemplo: espacio euclidiano V3

Sea u1, u2, u3 una base ortonormal de V3. Entonces tenemos una base
de ΛqV3, siendo v1 = u2u3 = u2 ∧ u3, v2 = u1u3 = u1 ∧ u3,
v3 = u1u2 = u1 ∧ u2 e 1 = u1u2u2:

1 u1, u2, u3} v1, v2, v3 1
1 escalar 3 vectores 3 bivectores 1 trivector

Formulas. 12 = −1, 1uk = (−1)k−1vk y
v 2

1 = v 2
2 = v 2

3 = v1v2v3 = −1.
Poniendo i = v1, j = v2, k = v3 vemos que H = Λ+

q V3 es un álgebra
isomorfa al cuerpo de los cuaternios de Hamilton. Nótese que
(α + βi + γj + δk)t = (α− βi − γj − δk).
Además, ρi , ρj , ρk son las simetŕıas axiales respecto de u1, u2, u3.
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1. Álgebra geométrica Álgebra geométrica

Ejemplo: álgebras de Dirac y de Pauli

Consideremos una base ortonormal γ0, γ1, γ2, γ3 (notaciones de
Dirac) del espacio de Minkowski V1,3 (ηµν =diag(+,−,−,−)):

γ2
0 = 1 γ2

k = −1 para k = 1, 2, 3, o

γµγν + γνγµ = 2γµ · γν = 2ηµν .

ΛqV1,3: álgebra del espacio-tiempo.

I = γ0γ1γ2γ3 (unidad seudoescalar). I2 = −1.

Si σk = γkγ0, σjσk + σkσj = 2σj · σk = 2δjk (Àlgebra de Pauli).

I = σ1σ2σ3 y Iγk = −γkI.

S. Xambó (UPC) Escondidas sendas 4 abril 2014 32 / 49



2. Formalismos cuánticos

2. Formalismos cuánticos

He pensado cien veces más sobre el problema cuántico
que sobre la teoŕıa general de la relatividad.

Albert Einstein

Aprend́ı a desconfiar de los conceptos f́ısicos como base
para una teoŕıa. Se tiene que confiar, en cambio, en un
formalismo matemático, incluso si a primera vista no
parece estar conectado con la f́ısica, y concentrarse en
obtener resultados matemáticos interesantes.

Paul A. M. Dirac
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2. Formalismos cuánticos

V́ıas sorprendentes

• La senda del esṕın

• La senda axiomática

• La senda de la lógica cuántica
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2. Formalismos cuánticos La senda del esṕın

Cuando la luz era opaca

Background Imaging of Cosmic Extragalactic Polarization (BICEP2)
descubre la primera evidencia directa de la inflación y las ondas
gravitacionales primordiales (1o = 240x106 años-luz).
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2. Formalismos cuánticos La senda del esṕın

Polarizaciones clásicas

E1

E2

0

0.7

π/2

π

0.5 + π/2
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2. Formalismos cuánticos La senda del esṕın

Estados de polarización de la luz

Campo eléctrico de una onda electromagnética que se propaga en la
dirección Oz :

(Ex ,Ey ) = (E0xe
i(kz−ωt+φx ),E0ye

i(kz−ωt+φy )) = (E0xe
φx ,E0ye

φy )e i(kz−ωt)

Estado de polarización: [E0xe
φx ,E0ye

φy ] ∈ P1
C ' Ĉ ' S2.

X = [1, 0], Y = [0, 1]: horizontal y vertical.

U = [ρ, ρ], V = [ρ,−ρ]: diagonal y antidiagonal (ρ = 1/
√

2)

I = [ρ, ρi ], J = [ρ,−ρi ]: circular dextrógira y levógira.
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2. Formalismos cuánticos La senda del esṕın

Luz en la esfera de Riemann

x

y

z

[0, 1] � Y

[1, 0] � X

[1, i] � I[1,−i] � J

[1, 1] � U

[1,−1] � V
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2. Formalismos cuánticos La senda del esṕın

Experimento de Stern-Gerlach

Esquema del experimento de Stern-Gerlach (1922)
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2. Formalismos cuánticos La senda del esṕın

q-bit

Z � |1〉

Z̄ � |0〉

θ

ϕ
X � |0〉 + |1〉

|ξ〉 � e−iϕ/2 sin
(
θ
2

)
|0〉 + eiϕ/2 cos(θ2)|1〉

ξ

O

X̄ � |0〉 − |1〉

Y � |0〉 + i|1〉Ȳ � |0〉 − i|1〉
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2. Formalismos cuánticos La senda axiomática

La senda axiomática

Aspectos fundamentales de los que una formalismo cuántico ha de
dar cuenta:

Sistema cuántico

Espacio de estados

Aparatos de preparación

Observables

Medida de un observable

Evolución temporal

S. Xambó (UPC) Escondidas sendas 4 abril 2014 41 / 49



2. Formalismos cuánticos La senda axiomática

Contrastes esenciales con la f́ısica clásica

Infefinición objetiva

Estocasticidad y probabilidad

Entrelazamiento y no localidad

Refutación experimental de las teoŕıas con variables locales ocultas.
Experimento GHZ = Greenberger-Horne-Zeilinger (1989).
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2. Formalismos cuánticos La senda axiomática

Q1. a) Sistemas y estados cuánticos

Sistema cuántico: Un espacio vectorial herḿıtico E .

Estados cuánticos (puros): Los puntos del espacio proyectivo [E ].

El producto herḿıtico 〈x |y〉 se supone lineal en y y
conjugado-lineal en x .

|x | =
√
〈x |x〉, x̂ = x/|x |.

El estado definido por x ∈ E − {0} se suele denotar |x〉
(notación ket de Dirac).

Dado que |x〉 = |x̂〉, todo estado se puede representar por un
vector unitario u = x̂ .

Dos vectores unitarios u y u′ definen el mismo estado si i sólo si
u′ = e iϕu para algún ϕ ∈ R (el estado determina el vector de
estado salvo un factor de fase (o fasor)
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2. Formalismos cuánticos La senda axiomática

Q1. b) Superposición cuántica

Si u, u′ ∈ E − {0} y ξ, ξ′ ∈ C, el estado |ξu + ξ′u′〉 se suele denotar
ξ|u〉+ ξ′|u′〉 (¡abuso de notación!) y se dice que es la superposición
de |u〉 y |u′〉 (con coeficientes ξ y ξ′).

Ejemplos:

V. Luz en la esfera de Riemann y q-bit

Si uj (j = 0, ..., n − 1) es la base estándar de Cn y
ξ = (ξ0, ..., ξn−1) ∈ Cn,

|ξ〉 = |ξ0u0 + · · ·+ ξn−1un−1〉
= ξ0|u0〉+ · · ·+ ξn−1|un−1〉
= ξ0|0〉+ · · ·+ ξn−1|n − 1〉

(usualmente se escribe |j〉 en lugar de |uj〉).
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2. Formalismos cuánticos La senda axiomática

Q2. Aparatos y observables

Aparato: Conjunto de pares A = {(a1,E1), . . . , (ar ,Er )} tales que

Los aj son números reales distintos ({a1, . . . , ar} es la escala o
graduación del aparato); y

Los Ej son subespacios vectoriales de E , 2 a 2 ortogonales, con
E = ⊕jEj .

Observación o medida con A: Suponiendo que el estado es |u〉,
(i) selecciona un valor aj con probabilidad pj = |πEj

u|2, y

(ii) cambia el estado |u〉 al estado |πEj
u〉.

Suma de probabilidades:

∑

j

pj =
∑

j

|πEj
u|2 = |

∑

j

πEj
u|2 = |u|2 = 1.
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2. Formalismos cuánticos La senda axiomática

Observable ↔ operador autoadjunto:

A cada observable A se le puede asignar el operador autoadjunto
Â =

∑
j ajπEj

.

Rećıprocamente (teorema de representación espectral), todo operador

autoadjunto Â : E → E da lugar a un observable formado con los
valores propios distintos aj de Â y los correspondientes subespacios
Ej = Eaj de vectores propios.

Ejemplo (observables de Pauli). σz = {(1,Z ), (−1, Z̄ )} es el aparato
SG para medir si el esṕın está dirigido hacia arriba o hacia abajo.

Como operador es la matriz

[
1
−1

]
. σx y σy se definen

análogamente y sus matrices resultan ser

[
1

1

]
y

[
−i

i

]
,

respectivamente.
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2. Formalismos cuánticos La senda axiomática

Q3. Dinámica unitaria

Supongamos que el sistema E está aislado en el intervalo [0, t]. Sea
x0 el estado del sistema E en el instante t = 0. Entonces existe un
operator unitario Ut : E → E tal que xt = Utx0 es el estado del
sistema en el instante t.

Si Ut = e−iHt , siendo H un observable, decimos que la evolución es
hamiltoniana, y que H es el hamiltoniano del sistema.

Nota. UtU
†
t = e−iHt(e−iHt)† = e−iHte+iH†t = Id .

Ecuación de Schrödinger: Si H no depende de t,
dx

dt
= −iHx .
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2. Formalismos cuánticos La senda axiomática

Q4. Entrelazamiento

Dados dos sistemas cuánticos E y E ′, el sistema cuántico compuesto
por los dos sistemas es E ⊗ E ′ con la métrica herḿıtica que cumple

〈x ⊗ x ′|y ⊗ y ′〉 = 〈x |y〉 · 〈x ′|y ′〉.

De los estados de la forma |x ⊗ x ′〉 se dice que son compuestos.

Los otros estados de E ⊗ E ′ son estados entrelazados (entangled).

Por ejemplo, si |x〉 e |y〉 son estados ortogonales de E , y |x ′〉 y |y ′〉
estados ortogonales de E ′, entonces

|x ⊗ x ′ + y ⊗ y ′〉 = |x〉|x ′〉+ |y〉|y ′〉 es un estado entrelazado

(estado EPS).
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