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0. Geometria

e Senda desarguesiana
e Senda grassmanniana

e Senda neocartesiana
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Senda desarguesions
Senda desarguesiana: intuicion visual del espacio

A.3 (Axioma proyectivo). Si Py, Py, P,, P3 son puntos distintos y las
rectas PoP1 y P>Ps son incidentes, entonces las rectas PP, y
P1 P; también lo son:

P0P1/\P2P3%0:>P0P2/\P1P37£0.

n/
P s
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Senda grassmanniana
Senda grassmanniana: puntos, rectas, planos, ...

Un reticulo proyectivo es un reticulo modular, complementado y de
longitud finita.

Teorema

El reticulo S(X) de subespacios de un espacio proyectivo X de
dimensién finita es un reticulo proyectivo.

Resultado clave: Si U y V son subespacios no nulos de un espacio
proyectivo X, entonces U V V es la unién de los conjuntos PQ, con
PelUyQeV.
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0. Geometria Senda neocartesiana

Senda neocartesiana: representacion vectorial

@ Sea K un cuerpo (no necesariamente conmutativo) y E un
K-espacio vectorial. Sea [E] el conjunto de subespacios
vectoriales de dimensién 1 de E. Pongamos X = [E] y definamos
£ como la familia de subconjuntos L de X tales que L = [F],
siendo F un subespacio de dimensién 2 de E. Entonces (X, .%)
€s un espacio proyectivo.

@ La aplicacién F +— [F] establece un isomorfismo entre el reticulo
R(E) de los subespacios vectoriales de E vy el reticulo S([E]) de
subespacios de [E]. De hecho se cumplen las relaciones

[FIN[F1=[FnF'], [FIVI[F]=I[F+F].

S. Xambé (UPC) Escondidas sendas 4 abril 2014 6 /49



Sendas de ronda

@ Todo reticulo proyectivo de dimensién > 3 es isomorfo a un
reticulo proyectivo ‘neocartesiano’. El cuerpo K y el K-espacio
vectorial E quedan determinados salvo isomorfismos semilineales.

@ El dual de un reticulo proyectivo es un reticulo proyectivo. Sus
puntos son los hiperplanos del primero. Mds en general, sus
subespacios son las radiaciones de hiperplanos. Su
representacién neocartesiana es el espacio vectorial dual.

@ Proyeccién y seccién: el espacio proyectante U* de un subespacio
U de un espacio proyectivo X es un espacio proyectivo isomorfo
por seccidon a cualquier subespacio complementario de U. Su
representacién neocartesiana: cociente E/F e isomorfismo
F' ~ E/F para todo subespacio suplementario F’ de F en E.
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Sendas de ronds
Lenguaje afin

Es la clave para obtener la representacion neocartesiana a partir de la
representacion desarguesiana.

@ Espacio afin y grupo afin.

@ Homologias y traslaciones.

Sea P ¢ Y un punto cualquiera. Entonces
t1(t2P) es incidente con la recta (t,P)Qy y
to(t1P) es incidente con la recta (1 P)Qs.
Si Q1 # @, estas rectas se cortan en un
Unico punto y por tanto

ti(t2P) = ta(t1 P).

Esto prueba que ty oty =ty 0t;.

Las traslaciones y homotecias son las colineaciones que dejan
invariantes los puntos del hiperplano del infinito y sélo ellos en el caso
de las traslaciones.
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Sendas de ronds
Teorema de Desargues. Planos proyectivos

@ Existen suficientes homologias si y sélo si se satisface el teorema
de Desargues.

@ El TdD es cierto en dimensidon > 3, pero existen planos
proyectivos que no lo cumplen.
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Diagrama magico

1 1 1
| ! !

1— Z2(K) — K — Int(K) —1
| ! !

1— GL(E) — S(E) — Aut(K) —1
! ! !

1— PGL(E) — Aut(X) — AUT(K)— 1
! | !
1 1 1
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Sendas de ronds
La esfera de Riemann: proyeccion estereografica

Pt~ C =~ S [, &] = € P(E), € = &1 /o
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La esfera de Riemann: coordenadas ¢ y 6

0

[1,£] ~ {e—w/z sin(g), elel? cos(g)}
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1. Algebra geométrica: sendas de ida y vuelta

° Algebra de Grassmann
o Algebra de Clifford

° Algebra geométrica
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1. Algebra geométrica Algebra de Grassmann

Algebra de Grassmann

Dado un K-espacio vectorial E de dimension n,
NE =B, NE=KOEONE® - -®NE,

con el producto exterior A\, es un dlgebra graduada asociativa y
anticonmutativa (six e "E ey € NE, y Ax = (—1)"x A y).
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La antiderivacién &, £ € E*

Lemma

Sea ¢ € E* = L(E, K). Entonces existe una tnica antiderivacion & de

~

AE tal que &(e) = &(e) para todo e € E. Esta antiderivacion cumple

r

Sl he) = S A A Ao A A e
k=1

cualesquiera que sean ey, ..., e, € E. En particular, E tiene grado —1.
Finalmente se cumple que £ > = 0.

v
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1. Algebra geométrica Algebra de Grassmann

Tenemos, pues, una aplicacién lineal E* — End?(AE), € + &, tal
que £2 = 0. Por la propiedad universal del dlgebra exterior, existe un
inico homomorfismo de algebras AE* — Endk(AE), ¢ — ¢, que

coincide con & 5para e E*.Sixe NEy ¢ € NE*, en lugar de
¢(x) escribiremos simplemente ¢(x).

Lemma
Seanx =xq,...,x, € Ey&=&,...,& € E*. Entonces

(GaA-ANE)a A A x) = det[§ x x],

siendo [€ x x| la matriz r x r formada con los escalares &;(x;).

Corolario

La aplicacién ATE* — (ATE)*, € — &, es un isomorfismo.
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1. Algebra geométrica Algebra de Grassmann

Observacién

Con las notaciones del lema anterior, podemos mirar los vectores

X1, ...,X € E como elementos de E** y entonces tiene sentido
formar la expresion (x3 A< A x.)(& A -+ A&,). Por el corolario, este
valor debiera coincidir con (3 A -+ A& )(xg A=+ A x,) = det[€ x x].
El lema, en cambio, nos suministra

(xt A Ax ) (&L A - ANE) = det[x x €], de manera que se debiera
verificar det[x x £] = det[¢ X x]. Pero esta igualdad es clara, ya que

[x x €l = xi(&) = &(xi) = [§ x xji y por tanto [x x ] = [§ x x] .
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1. Algebra geométrica Algebra de Grassmann

El lema anterior admite una simple generalizacién para evaluar
(EaN---NE) (X1 A+ AXs). Sir>s, el resultado es nulo (ya que es
un elemento de grado negativo). El lema nos da cuenta del caso
r=s.Sir<s, sea ¢ el conjunto de multiindices J de orden r tales
que J C{1,...,s} y pongamos J' = {1,...,s} —J={j,...,J._,}.
Entonces

(G- A& A Ax) =D (—1) det([¢ x x])xy € NTE,

siendo (—1)7 el signo de la permutacién J, J' de {1,...,s}, [ x x|,
la submatriz de [¢ x x| formada por las columnas J y
Xp=xg N Axj
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1. Algebra geométrica Algebra de Grassmann

En el caso r > s, el punto de vista de la observacién anterior nos
permite aplicar esta generalizacién para atribuir el valor
So(=1)det([x x E]))éy eNTTE a (xa A AX)(E A AE),
siendo {J} el conjunto de multiindices de orden s de {1,...,r},
J=A{1,... r}—=J =1 J_} [x x&], la submatriz de [x x {]
formada por las filas Jy §r =& A -+ A&y .

De ahora en adelante, las expresiones de la forma

(N NE)(xa A -+ A xs) serdn interpretadas como un

(s — r)-vector si r < sy como una (r — s)-formasi s < r. La
consistencia en el caso r = s estd garantizada por la observacién
anterior.

Si e € E, definimos pie : AE — AE por x — e A x (por motivaciones
fisicas, a los . se les llama operadores de creacion). Es un operador
de grado 1. Como e A e = 0, resulta que 12 = 0. Siendo el producto
exterior multilineal, la aplicacién E — Endk(AE), e — p. es lineal.
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Algebra de Clfford
Algebra de Clifford

Sea ahora g : E — E* una aplicacién lineal o, equivalentemente, una
forma bilineal de E (q(e, €’) = q(e)(e’)). Definimos 6. : ANE — AE
por la relacién e — €(x), donde € = g(e) (a la antiderivacién . se le
llama operador de aniquilacién, también por motivaciones fisicas). La
aplicacién E — Endk(AE), e — J. es lineal y cumple 62 = 0.

Lemma
Para todo e € E se cumple la relacion

(,Ue + ) ) (e e)[d/\E
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1. Algebra geométrica Algebra de Clifford

Consideremos la aplicacién lineal A : E — Endx(AE),

€ — Ae = lle + 0c Y su Unica extensién a un homomorfismo de
4lgebras \ : TE — Endk(AE), siendo TE=KSE® T’E& - el
algebra tensorial de E. Dado que los elementos de la forma

e =e®e—q(e,e)lk estan en el nicleo de A, A induce un
homomorfismo de algebras A : C,E — Endx(AE), siendo C4E el
cociente de TE por el ideal bilatero generado por los tensores t,,

e € E, es decir, el dlgebra de Clifford de g (el producto en C,E
serd denotado por simple yuxtaposicién). A su vez, A induce una
aplicacién lineal A : G E — AE, a— A 1k.

Sier,...,e, es una base de E, pondremos e; = ¢;, - - - ¢, € C4E.
Recordemos que hemos puesto e, = e, A--- A e, € NE.
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1. Algebra geométrica Algebra de Clifford

Lemma

El conjunto I de los elementos e; € C4E, cuando J recorre el
conjunto de los muliindices de {1,...,n}, es un sistema de
generadores de C4E como espacio vectorial.

A partir de aqui supondremos que g es simétrica. Diremos que dos
vectores e, €’ € E son g-ortogonales si y sélo si g(e, e’) = 0. Si
er,...,en € Eyq(ej,e)=0cuando i # j decimos que {ey,..., e}
es un sistema ortogonal.

Lemma
Siey,...,e € E es un sistema ortogonal, entonces

ANeer---e)=e AeaA---Ae.
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1. Algebra geométrica Algebra de Clifford

Theorem

Si E admite una base g-ortogonal (lo cual es cierto siempre que la
caracteristica de K no sea 2), entonces la aplicacién lineal
N CqE — NE es un isomorfismo.

Observacién

Si K es de caracteristica 2, existen formas bilineales simétricas que no
admiten bases ortogonales. Para evitar estas anomalias, en el caso de
caracteristica 2 siempre supondremos que g se escoge de manera que
admita una base ortogonal.
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1. Algebra geométrica Algebra de Clifford

Notaciones. Sea ey, ..., e, es una base ortogonal de E y pongamos
N=A{1,...,n}.Si K=kq,...,k € N es una sucesién arbitraria de
indices, pondremos ex para denotar el producto e, - - - e, . Para
tratar este producto, introducimos las siguientes notaciones. Para

J € N, ponemos /; para designar el nimero de veces que j aparece en
Ky K para denotar el multiindice definido de manera que j € K si y
sélo si /; es impar. También ponemos t(K) para denotar el niimero de
pares i,j € N tales que i < j y kj > k;. Finalmente ponemos qx para
designar [/, q(e), e;)i//2, siendo I;//2 el cociente entero de la
divisién de /; por 2.

Lemma

El producto ex se puede calcular por la férmula ex = (—1)"F) gy ez
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Algebra geomeética
Algebra geométrica

El producto interior resulta de combinar g con el acomplamiento de
dualidad AE* x AE — AE, (¢, x) — ¢(x). Esta idea se concreta en
el acomplamiento AE x AE — AE, (x,y) — x -y = (gx)(y), siendo
g = Aq : NE — AE* el endomorfismo de 4lgebras exteriores inducido
por g : E — E*. Por ejemplo, el producto interior e - € de dos
vectores es igual a g(e, €).

Llamaremos dlgebra geométrica de q a la estructura AgE que resulta
de dotar al algebra exterior AE con el producto de Clifford (producto
geométrico o simplemente producto) obtenido via el isomorfismo
lineal canénico A : C4E — AE 'y del producto interior. En términos
generales, el estudio del dlgebra geométrica consiste en dilucidar las
interrelaciones entre estos tres productos y también los
procedimientos para aplicarla a situaciones concretas.
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1. Algebra geométrica Algebra geométrica

Involuciones

@ La involucién lineal e — —e de E induce un automorfismo
involutivo @ de AqE (automorfismo candnico). Su restriccién a
A,E es (—1)". Como consecuencia,

NS E = @A) = {x € AyjE|a(x) = x} es una sublgebra de A4E.

@ La involucién x — x* de T(E) que invierte el orden de los
factores de grado 1 es un antiautomorfismo y conserva las
relaciones que definen el dlgebra exterior y el dlgebra de Clifford.
Induce pues un antiautomofismo involutivo de AjE, que
seguimos denotando x — x*. Su restriccién a A} es (—1)7(r=1)/2,

@ La composicién x — x = a(x*) = (a(x))* es un
antiautomorfismo involutivo (conjugacién de Clifford). Su
restriccion a Af es (—1)"(r+1)/2,

@ Una g-isometria de E induce un automorfismo de AgE.
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1. Algebra geométrica Algebra geométrica

Formulario

Siee,....e, € e,...,e€ E, xe NJE, y € NJE:

eex=e-xt+eAx, xe=x-e+xNe=(-1)(—e-x+eAx).

o ex+(—1)xe=2eAx ex—(—1)xe=2e-x.

ece=e-ét+ene, 2e-é=ee+ee, 2eNe =ee —¢e.

o xAy=(-1)"y Ax, x-y=(=1)stmin(rs)y . x

@ xy sblo puede tener componentes no nulas en los grados

|r—s|,|r—s|+2,....r+s—2r+s.

© (XY)r4s =XAY. (XY)jr—s| =X-ysir<s,x-ysir=s.

o (g N---Ne)-(efAN---NE€)
(eN---Ne)-(er-(efN---NeL))  sir

_ <s
(e A-ne)€)(efA--Ae ) sir>s
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Algebra geomeética
Ejemplo: plano euclidiano V5,

Sean uy, u; una base ortonormal. Los elementos de A, V5 tienen la
forma x = o + Aug + puy + B, o, B, A\, u € R, siendo

1= ujup = u; N\ up. Dado que P = uhu ity = —udu3 = —1,

Ly = {a + Bi} es isomorfa al cuerpo C de los niimeros complejos,
siendo ¢ la unidad imaginaria. La multiplicacién por ¢ induce en V; la
rotacién de amplitud 7/2 en sentido antihorario: u1% = uyuitr = —us
y Upi = upuiup = —uy. Nétese también que (o + f1)f = o — fi.

Si ay b son vectores, entonces a- b = |a||b|cosp y
a/N b= A(a,b)i=|a||b|sen ¢ 1, siendo A(a, b) el drea orientada del

paralelogramo de lados a y b. Por tanto,

ab=a-b+aAb=]|a|lb|(cosy + isen p) = |a||b|e*
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Algebra geomeética
Espacio euclidiano V,: simetrias y rotaciones

Proposicién

Si a es un vector unitario de V,, la aplicacién o, : V,, — V,,

x +— axa~! = —axa, es la simetria respecto del hiperplano a*.
Dem. Es claro que 0,(a) = —aaa = —a. Por otra parte, si x € at,
0.(x) = —axa = xaa = x. O

Corolario

Sean ay b son vectores unitarios no paralelos de V,, y ¢ = a, b.
Pongamos u = ba. Entonces la aplicacién p, : V,, — V,,, x — uxu®,
es la rotacién de amplitud 2¢ con eje a* N bt.

Dem. Basta notar que
uxu® = baxab = —b(—axa)b = o,(op(x)).
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1. Algebra geométrica Algebra geométrica

Representacion de la composicidn de rotaciones en V3.

Uy =ca
U2=bC
U = ba

A los elementos de la forma u = ab, a y b vectores unitarios no
paralelos, los llamamos rotores.

4 abril 2014
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Ejemplo: espacio euclidiano V3
Sea uq, u», U3 una base ortonormal de V3. Entonces tenemos una base

de /\qV3, siendo Vi = UplUz = Up N\ U3, Vo = Uiz = U1 N\ U3,
Vs =i =1 ANt el = ujuu:

1 Uy, Uy, Us} Vi, Vo, V3 1
1 escalar | 3 vectores | 3 bivectores | 1 trivector

Formulas. 1> = —1, 1u, = (—=1)* v, y

vZ = 22 = v32 = v = —1.

Poniendo i = v1,j = v», k = v3 vemos que H = A V3 es un élgebra
isomorfa al cuerpo de los cuaternios de Hamilton. Nétese que

(a+ Bi +7j + 0k)' = (o — i —~j — 0k).

Ademas, pj, pj, pk son las simetrias axiales respecto de uy, up, us3.
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1. Algebra geométrica Algebra geométrica

Ejemplo: algebras de Dirac y de Pauli

Consideremos una base ortonormal o, 71, 72,73 (notaciones de
Dirac) del espacio de Minkowski Vi 3 (1,, =diag(+, —, —, —)):

va=1~2=—-1lparak=123 0
VYo + VoV = 2% Vo = 2w
Ng Vi 3: dlgebra del espacio-tiempo.
I = Y0717273 (unidad seudoescalar). I> = —1.
Si ok = VYo, 0jok + 0k0j = 20} - o) = 20 (Algebra de Pauli).

| = o10203 y Iy = —dl.
Escondidas sendas
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2. Formalismos cuanticos

He pensado cien veces mds sobre el problema cudntico
que sobre la teoria general de la relatividad.

ALBERT EINSTEIN

Aprendi a desconfiar de los conceptos fisicos como base
para una teoria. Se tiene que confiar, en cambio, en un
formalismo matemdtico, incluso si a primera vista no
parece estar conectado con la fisica, y concentrarse en
obtener resultados matemdticos interesantes.

PauL A. M. DIRAC
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Vias sorprendentes

e La senda del espin
e La senda axiomatica

e La senda de la légica cuantica

S. Xambé (UPC) Escondidas sendas 4 abril 2014

34 / 49



2. Formalismos cudnticos La senda del espin

Cuando la luz era opaca

- ~N Y

A A~~~

N

Background Imaging of Cosmic Extragalactic Polarization (BICEP2)
descubre la primera evidencia directa de la inflacién y las ondas
gravitacionales primordiales (1° = 240x10° afios-luz).
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La senda del espin
Polarizaciones clasicas
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L senda del espin
Estados de polarizacion de la luz

Campo eléctrico de una onda electromagnética que se propaga en la
direccién Oz:

(EX7 Ey) — (EOXei(szthr@()’ Eoyei(szwt+¢>y)) — (EOXe¢X7 Eoye¢y)ei(szwt)
Estado de polarizacion: [Eg.e®*, Ey,e”] € PE ~ C~ S
X =[1,0], Y = [0, 1]: horizontal y vertical.

U=[p,pl, V = [p,—p]: diagonal y antidiagonal (p = 1/1/2)
I = [p, pi], J = [p, —pi]: circular dextrégira y levégira.
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La senda del espin
Luz en la esfera de Riemann
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Experimento de Stern-Gerlach

Ag Horno

Campo magnético
no uniforme

Esquema del experimento de Stern-Gerlach (1922)
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2. Formalismos cudnticos La senda del espin

g-bit

Y ~|0) —i|1)

7 ~

Y o~ |0) + 1)

|€) ~ e~¥/2gin (g) |0) + elef? Cos(g)|1)
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La senda axiomética
La senda axiomatica

Aspectos fundamentales de los que una formalismo cudntico ha de
dar cuenta:

@ Sistema cuantico

@ Espacio de estados

@ Aparatos de preparacion
@ Observables

@ Medida de un observable

@ Evolucién temporal
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La senda axiomética
Contrastes esenciales con la fisica clasica

@ Infefinicién objetiva
@ Estocasticidad y probabilidad
@ Entrelazamiento y no localidad

Refutacién experimental de las teorias con variables locales ocultas.
Experimento GHZ = Greenberger-Horne-Zeilinger (1989).
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Q;. a) Sistemas y estados cuanticos

Sistema cuantico: Un espacio vectorial hermitico E.
Estados cuanticos (puros): Los puntos del espacio proyectivo [E].
@ El producto hermitico (x|y) se supone lineal en y y
conjugado-lineal en x.
o |x| =/ (x|x), x=x/|x|.
o El estado definido por x € E — {0} se suele denotar |x)
(notacién ket de Dirac).

e Dado que |x) = |X), todo estado se puede representar por un
vector unitario u = X.

@ Dos vectores unitarios u y v’ definen el mismo estado si i sélo si
u' = €e'?u para algin ¢ € R (el estado determina el vector de
estado salvo un factor de fase (o fasor)
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2. Formalismos cudnticos La senda axiomatica

Q1. b) Superposicién cuantica

Siu, v € E—{0}y¢,& €C, el estado |Eu+ &'u') se suele denotar
&lu)y 4+ &'|u') (jabuso de notacién!) y se dice que es la superposicién
de |u) y |u) (con coeficientes £ y &').
Ejemplos:
@ V. Luz en la esfera de Riemann y g-bit
@ Siu (j=0,..,n—1) es la base estandar de C" y
§=(80,--,6n1) € C,

1£) = [Eotio + -+ - + En1Un-1)
= oluo) + -+ + Enm1lUn-1)
= &ol0) + -+ Gl — 1)

(usualmente se escribe |j) en lugar de |u;)).
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2. Formalismos cudnticos La senda axiomatica

Q,. Aparatos y observables

Aparato: Conjunto de pares A = {(a1, E1),...,(a,, E;)} tales que

@ Los aj son ndmeros reales distintos ({ai, ..., a,} es la escala o
graduacién del aparato); y

@ Los E; son subespacios vectoriales de E, 2 a 2 ortogonales, con
E = @jE;.

Observacion o medida con A: Suponiendo que el estado es |u),
(i) selecciona un valor a; con probabilidad p; = |7gu
(i) cambia el estado |u) al estado |7g ).

Suma de probabilidades:

> =D lmgul =) wguf =u =1
j j

Jj

2vy
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2. Formalismos cudnticos La senda axiomatica

Observable <> operador autoadjunto:

A cada observable A se le puede asignar el operador autoadjunto
A= amE.

Reciprocamente (teorema de representacién espectral), todo operador
autoadjunto A:E— FEda lugar a un observable formado con los

valores propios distintos a; de Ay los correspondientes subespacios
Ej = E,, de vectores propios.

Ejemplo (observables de Pauli). o, = {(1, Z),(—1,2)} es el aparato
SG para medir si el espin estd dirigido hacia arriba o hacia abajo.

. 0y y 0, se definen

Como operador es la matriz [1 1

[ : 1 —I
analogamente y sus matrices resultan ser [1 } y L }

respectivamente.
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2. Formalismos cudnticos La senda axiomatica

Q3. Dindmica unitaria

Supongamos que el sistema E estd aislado en el intervalo [0, t]. Sea
X el estado del sistema E en el instante t = 0. Entonces existe un
operator unitario U; : E — E tal que x; = U;xg es el estado del
sistema en el instante t.

Si U, = e Mt siendo H un observable, decimos que la evolucién es
hamiltoniana, y que H es el hamiltoniano del sistema.

Nota. UtUtT _ e‘th(e_th)T _ e—the+iHTt —Id.

Ecuacidon de Schrodinger: Si H no depende de t, % = —iHx.
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Qs. Entrelazamiento

Dados dos sistemas cudnticos E y E’, el sistema cuantico compuesto
por los dos sistemas es E ® E’ con la métrica hermitica que cumple

xexly@y) = (xly)- Xy
De los estados de la forma |x ® x’) se dice que son compuestos.
Los otros estados de E ® E’ son estados entrelazados (entangled).

Por ejemplo, si |x) e |y) son estados ortogonales de E, y |x') y |y’)
estados ortogonales de E’, entonces

x@x" +y®y')=|x)|x)+|y)ly’) es un estado entrelazado
(estado EPS).
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