ON HALPHEN’S FIRST FORMULA

C. PROCESIT AND S. XAMBO DESCAMPS'T

ABSTRACT. We generalize Halphen’s first formula (for the number
of plane conics in a one dimensional system that satisfy a simple
condition) to quadratic varieties in projective n-space. In fact the
arguments are valid on any algebraic homogeneous space that does
not have compactifications with infinitely many orbits (spherical
varieties).

1. INTRODUCTION

Halphen (1844-1889) devoted several papers to explain his ideas and
results about enumerative geometry. He obtained particularly nice re-
sults for plane conics. The reader is referred to pages 1-12 of the short
survey Halphen [1985], written on the occasion of his candidacy to
the French Academy of Sciences, for an overview of his work; in it
he underlined very neatly the key concepts of his enumerative theory
and the main results he had discovered, taking pains to stress, with
compelling reasons, the radical advance brought in by his theory of
characteristics, as compared to previous works by several authors (in-
cluded himself). His progress was not only not readily understood, but
kindled a long and bitter and unfortunate polemic involving several
authors; the reader is referred to Kleiman [1980] for a very detailed
and masterful historical account, especially pages 131-134.

Roughly speaking, the problems considered by Halphen were to find
the number of (smooth) plane conics in a 1-dimensional system satisfy-
ing a simple condition, and also the number of plane conics satisfying
five independent simple conditions.

The analysis of these problems, which shows a deep understanding
of the issues involved, led Halphen to his first and second formulas
(Halphen [1878], §III, and [1879], Th. I). His ideas were analyzed,
using contemporary language, in Casas—Xambé [1986]. In this work
Halphen’s theory of characteristics was also extended to deal with
the problem of finding the number of (smooth) plane conics in a 2-
dimensional system that satisfy a double condition. Independently, De
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Concini and Procesi [1983, 1985] developed a group-theoretic frame-
work that seems to be well suited for analyzing the kinds of problems
that Halphen’s theory points at (see Section 2).

The goal of this note is to outline a generalization of Halphen’s first
formula to quadratic varieties in P™ (the latter stands for projective
space of dimension n over an algebraically closed field k). As the at-
tentive reader will notice, our arguments are valid for any spherical va-
riety, in particular for symmetric varieties, but here, in order to phrase
the relevant ideas in the simplest terms, we will focus on the concrete
example of quadratic varieties; in this way we also remain closer to the
geometric spirit of Halphen [1878],

Halphen (and Casas—Xambd) worked in the framework of projective
geometry and used, as one of the main tools, the analysis of the singu-
larities of the system and the condition along the variety of Halphen
conics, that is, the variety whose closed points are double lines with a
double focus (= a double dual line). Here the formula will be derived
using the technique of symmetric varieties, as developed by De Concini
and Procesi (loc. cit.)

We end this introduction explainig some notations and conventions.

Notations. Given an abelian group N, we will often consider the Q-
vector space N ® Q. This space sometimes will be denoted Ng.

Cycles. Given a smooth variety X, we will set Z;X (Z9X) to denote
the group of cycles of dimension (codimension) d on X. The quotient
of Z,X by the the subgroup of cycles rationally equivalent to 0 will be
denoted A;X (Chow group of dimension d). The rational class of a
cycle z (the image of z in A4 X under the canonical projection) will be
denoted [z]. A°X is, by definition, A,_.X, where n = dim(X).

Compactifications. Given a variety U, by a compactification of U we
understand a complete variety X which contains U as an open set. A
partial compactification of U is a variety X’ that can be obtained from
a compactification X of U by removing a finite number of subvarieties
of codimension 2 or bigger.

Polyhedral cones and D-functions (See Oda [1988]). Let N be a finitely
generated free abelian group of rank n and set V = Q ® N, so that
V is a Q-vector space of dimension n. A subset C' of V is said to be

a (rational) polyhedral cone if there exist vy, ..., v, € C' (respectively
€ C' N N) such that C = [vy, ...,v,], where [vy, ...,v,] is the set of
rational linear combinations of vy, ..., v, with non-negative coefficients.

We will say that C' is generated by vy, ...,v,.. A cone C' is said to be
simplicial if it is generated by vectors that are part of a free basis of
N. The dimension of a cone C'is the dimension of the linear space (C')
spanned by C.
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Given a cone C' = [vy, ..., v, and a linear map f: V — Q which
is non-negative on C, the set C' = C' N ker(f) is the cone spanned by
the v; such that f(v;) = 0. Such cones C” are said to be the faces of
C. The faces of dimension 1 are called edges of C'. Any edge is of the
form [v], v € C' N N primitive (that is, not divisible by integers other
than £1). Such primitive vectors will also be referred to as edges of C.

A function f: C — Q is said to be linear on a cone C' if it is
the restriction to C' of a Q-linear function V" — Q. If in addition f
takes integral values on C' N N, then we shall say that f is an inte-
gral linear function on C. Notice that if vy, ..., v, € N are linearly
independent and aq, ...,a, € Q, then there exists a unique linear map
f:lv, ...,v] — Q such that f(v;) = a;. This map is integral if
and only if the a; are integers. If C' = [vq, ..., v,] has dimension s
and, say, vy, ..., vs are linearly independent, then to give a linear map
f: C — Q is equivalent to give its values a; = f(v;) fori =1,...,s.

Given a cone C in V, a polyhedral decomposition of C' is a set of
cones C = {C1, ...,Cy} such that (a) Any face of a cone in C is a
cone in C, (b) for all i and j, C; N C; is a face of C; and Cj, and (c)
C =C1U...UC. If in addition the C; are simplicial, then we we will
speak of a simplicial polyhedral decomposition of C.

We will say that a function f: C' — Q is a D-function (D for divisor
and also for Demazure) if f is continuous and there exists a polyhedral
decomposition of C, C' = (JC;, such that the restrictions f|C; are

linear. We will write D(C, Q) to denote the Q-vector space of all D-
functions of C'. The subgroup of D(C, Q) whose elements are functions
that take integral values on CNN will be denoted D(C, Z). D-functions
are called “C-linear support functions” in Oda [1988].

Given a cone C, the set of all primitive vectors in C' N N will be
denoted Il and will be called the set of primitive vectors of C.

Chains of quadratic varieties. If () is a quadratic variety in P" (qua-
dratic for short), we shall write L(Q) to denote the linear space of
its double points, and ¢(Q)) to denote the dimension of L(Q). Thus
(Q) = —1 if and only if @ is smooth. Moreover, r(Q) = n — £(Q) is
the rank of (). Notice that on P° there is a unique quadratic, which is
empty.

Given any strictly decreasing sequence I = {i; > ... > i} in
{0,1,...,n — 1} (for £k = 0, I is the empty sequence), a quadratic
chain of type I is a sequence @@ = (Qo, ..., Q) with the following
properties:

(1) Qo is a quadratic in P™.

(2) If £ > 0, 0(Qj-1) = i; and Q; is a quadratic variety in L(Q;_1),
=1,k

(3) Qk is smooth.
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Thus a quadratic chain of type () (empty set) is just a smooth qua-
dratic variety. A quadratic chain of type {j}, j € {0,1,...,n — 1},
is a pair (Qo, Q1) consisting of a quadratic variety Qo of rank n — j
together with a smooth quadratic variety @1 in L(Qg). We shall write
2 to denote the set of all quadratic chains of type I, and €2; instead of
Q- Regarding @Q); as a smooth quadratic variety of L;/L;;1, where
L; =L(Qj_q) for j=1,...,k, Ly =P" and Ly, = 0, we see that Q;
is in one-to-one correspondence with a bundle over the variety of flags
of type I with fiber a product of open sets of suitable projective spaces.
Hence §2; has a natural structure of smooth algebraic variety. It is also
not hard to see that the projective group of P" acts transitively on
Q. For example, X, := (p parametrizes smooth quadratic varieties,
which is an open set of a suitable projective space (see the beginning of
Section 2). At the other end, Q0,1 1,0y is isomorphic to the variety
of maximal flags.

Here are some more specific examples. Since all elements in {2; are
projectively equivalent, it is enough to give a projective description of
one element wy € €);. For n = 2 we have: wy, a pair of disctinct lines
(its partial flag is the intersection point); wy, a line with a distinguished
pair of points (its flag is the line); and wyg, a line with a distinguished
point on it (its flag consists of the line and the point). If n = 3, the
description is as follows: wg, a quadric cone (the flag is the vertex); wy,
a pair of distinct planes with a pair of distinct points on the double line
(the flag is this last line); ws, a plane with a distinguished smooth conic
(the flag is the plane); wig, a pair of distinct planes with a distinguished
point on the double line (the flag is the line and its distinguished point);
wao, & plane containing a pair of distinct lines (the flag is the plane and
the point of intersection of the two lines); woy, a plane containing a line
with a distinguished pair of distinct points on it (the flag is the plane
and the line); and weyg, a complete flag of P3.

2. HALPHEN GROUPS OF X

Let Xy be the variety of smooth quadratic varieties in P", so that
X is the open set det(a;;) # 0 of the projective space P""3)/2 with
homogeneous coordinates [a;;], 0 < i < j < n (henceforth, as usual,
we set a;; = aj; when i > j). Here the point [a] = [a;;] corresponds,
if xg, ..., x, are projective coordinates for P”, to the quadratic variety
given by the equation

Z Qi TiTj = 0.
i.j

Using matrix notation, with x = (zo, ..., x,) and a = (a;;), the equa-
tion may be written as zaz® = 0.
The group GL(n + 1, k) acts in P",

GL(n+1,k) xP" = P" | «-[r]=[z(a")7"].
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This action induces an action on X, which is easily seen to be
GL(n+1,k) x Xg = Xo, «-la]=[d'aq].

Since for any [a] € Xy there exists & € GL(n + 1, k) such that afacq is
the identity matrix I, GL(n+1, k) acts transitively on Xy. The isotropy
group of [a] is the subgroup

{a € GL(n+1,k)| there exists A € k" such that o’aa = Aa} .

If we let G = SL(n+ 1, k), then G also acts transitively on X, and the
isotropy group of [a] is

Gl ={a e G dlaa=a} ,
which is the group SO(a). Thus
Xo >~ G/SO(a) .

Notice that
o (af)7!
is an involution o of G such that G” = SO (a). Thus X, is an example
of a symmetric variety.
The fact that X, is homogeneous under the action of G allows us to

define a Halphen pairing
ZXo x ZyXog = 7, (0,7) = (0l

where
(0]y) = deg(d - ay) = deg(ad - ),

a generic in G. This definition may be justified using the transversality
theorem of general translates on a homogeneous variety (see Kleiman
[1974]). It means that given ¢ and ~y there exists a non-empty open set
U in G such that the intersection cycles ¢ - ay and «d - v are defined
for all & € U and have a common degree which is idependent of a.

Here v plays the role of a d-dimensional system of (smooth) quadratic
varieties and ¢ of a d-fold condition. Given a d-dimensional system -~y
and a d-fold condition ¢, Halphen observed that even when the inter-
section cycle 0 - v is defined, deg (¢ - ) need not be the right number,
but that it is correct if § is “independent” of +. His notion of indepen-
dence amounts to allowing a general translate of § (cf. Kleiman [1980]),
which has the efect of placing the data used to define the condition in
a general position (cf. Casas—Xamb6 [1986]). Halphen explicitely ruled
out of his inquiries (cf. Halphen [1985], p. 7) the study of numbers
(0]7y) with 0 “special” with respect to v, although he informs us in a
brief remark that his point of view in relation to these questions is a
dynamical one, in the sense that to him the difficulty is to determine
in which ways the solutions to the corresponding general problem can
coalesce when ¢ is specialized, say by letting the data used to define o
come to satisfy some non-trivial aditional relation.
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Let BYX, C Z9X, be the subgroup of all those cycles ¢ such that
(6]y) = 0 for all v € Z;X,. We set Hal?X, to denote the quo-
tient group Z¢X,/B?X, and we will say that it is the Halphen group
(of codimension d) of Xy. The class of § € Z4X, will be denoted
(0]. We define the subgroup B;X, of Z;X, in the same way and
let Hal, Xy = Z;X0/BsXo (Halphen group of dimension d), so that
Hal Xy = Hal™ X, if m = dim(X,). We shall write |y) to denote
the class of v € Z;Xy in Hal Xo. If z is a cycle, (z] and |z) denote
the same element, the only difference being that in the first notation
we declare the codimension of z while in the second we declare its di-
mension. From the definitions it follows that we have a non-degenerate
pairing

Hal’X, x Hal Xy — Z

given by ((d], 7)) — (4|7). Thus we shall write
O - [7) =l -

The main questions to ask about these groups are to describe explic-
itly:
e The groups Hal?Xj;
e The pairings Hal?X, x Hal X, — Z; and
e The maps Z4X, — Hal?X,.

Here is a quite trivial illustration: it is easy to check that Hal’ X, = Z
(generated by (Xo|) and Halg Xy = Z (generated by |a), for any point
a € X;). Moreover, under these isomorphisms the pairing Hal?X, x
Halg Xy — Z is just the product map Z X Z — 7.

In Section 4 of this note we give a description of Hal'X|, as some
group of D-functions, and of the funtion that corresponds to a given
divisor on Xjy. Then, in the two Sections that follow, we will give an
explicit description of Hal; Xy, of the map Z; — Hal; Xy and of the
pairing Hal?X, x Hal 4 X, — Z. A similar description of Hal?X, for the
remaining d seems to be not yet known, except for the case n = 2,
which is worked out in Casas—Xambd [1986].

To end this section we will define the fundamental conditions on Xj.
Consider the flag F': Lo C Ly C ... C L,y C L, = P", where L; is the
linear space x4y = ... = z, = 0. A quadratic variety [a] is tangent
to Ly if and only if the restriction of the quadratic form » a;;z;z;
to Ly is degenerate, which happens if and only if the determinant of
(a;;), 0 < 4,5 < k, vanishes. Thus the quadratic varieties which are
tangent to L form a hypersurface Ay of Xy. Since the determinant of a
generic symmetric matrix is irreducible, the varieties Ay are themselves
irreducible. The elements A\, = (Ax| € Hal' X do not depend on the
flag, because any two flags are conjugate under the action of G. We
will say that Ag, ..., \,_1 are the fundamental conditions of Xy. The
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varieties A will be called fundamental varieties (with respect to the
flag F).

Notice that if we let A denote the union of the varieties Ay, then the
open set Xo — A is an orbit of the isotropy group B C G of F' (thus B
is the group of upper-triangular matrices). Moreover, if we let S C X
denote the diagonal quadrics, then S is an n-dimensional algebraic
torus and Xy — A ~ S x A*"t1)/2 Here A™M"+1/2 is an affine space
with coordinates u;;, 0 < i < j < n, and a pair ([g],u) € S x An(+1)/2
corresponds to the quadratic [a], a = (I +u)'q(I +u), where we identify
u with the matrix that has zeroes in the entries with 7 > j, and u;; in
the entry (4, 7).

3. THE VARIETY OF COMPLETE QUADRATICS

Studied by many authors, it is a projective variety X, with a G-
action, which has the following properties (cf. Thorup—Kleiman [1988]
and the references therein):

(1) X has an open orbit isomorphic to Xy (in what follows we will
identify Xy with this open orbit).

(2) There is a ono-to-one correspondence I — O between subsets
Iof{0,1,...,n— 1} and the G-orbits Oy in X such that |I| =
codim(Oy). In particular Oy = X.

(3) For all I, the closure Dy of Oy is smooth. In particular, X is
smooth, since X is the closure of X,. If 0 <7 <n — 1, we shall
write O; and D; instead of Oy and Dy;y. Thus Dy, ..., D,
are smooth divisors on X.

(4) For all I = {i1,... i}, D;y,..., D;, intersect transversally and
its intersection is D;. In particular we have that D; C Dy if
and only if J C [I.

(5) For all I, Oy = D; — |J D;. In particular

J¢l

X():X—UDZ» or X—XO:UDZ-.

(6) The variety Dj is isomorphic to the variety Q; of quadratic
chains of type I. To conform to the conventions set up in Sec-
tion 1, each [ is to be arranged in decreasing order.

The Picard group of X is isomorphic to Z/(n + 1), because its
the complement in P*("+3)/2 of a hypersurface of degree n + 1. So
Pic(Xo)p = 0. This implies that Pic(X)gq is Q vector space of dimen-
sion n with basis the classes 0; = [D;], 7 = 0,...,n — 1. It is well
known, and not too hard to establish directly (cf. Xambé [1988]), that

if we set p; = [Aj] (Ao, ..., A,—1 the fundamental varieties, Ay the
closure of A in X)), then

On—j—1 = —Hj—1+ 2015 — fjt1
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with the convention that gy = p, = 0. These relations show that
Moy - - -5 fn—1 1S also a basis of Pic(X)g. Actually we have the expres-
sions (loc. cit.)

(4 D= 3 (k+ D)(n—)dusr+ 3. G+ 10— k)us

0<k<j j<k<n

which are useful for recursive explicit computations.

4. THE GrOUP HAL'X,

We are going to see that Hal'(Xj)g is isomorfic to a Q-vector space of
D-functions. Our arguments here are closely related to those that Bifet
introduced in his thesis (see Bifet [1990]) and use in an essential way
the technology introduced in De Concini-Procesi [1983, 1985], which
in turn is based on toric geometry. In this section we summarize some
facts in a form that is useful for our purposes. We refer to De Concini—
Procesi for the basic terminology concerning toric varieties, equivariant
and wonderful compactifications, etc. For a thorough treatment of toric
varieties, see Oda [1988], or Fulton [1989].

Let eg, ..., e, be the standard basis of Z"*1. The group W = S, 1,
acts in Z"*! permuting coordinates and this action leaves invariant the
subgroup M whose equation is mg +my + ... +m, = 0, thus inducing
an action of W on M. The group M is free of rank n. Notice that the
vectors o; = €;_1 —€;, 1 = 1,...,n, form a free basis of M. We shall
put N = M* (the dual group) and V= N ®Q, so that V is a Q-vector
space of dimension n. The group W still acts, by the dual action, on
N and V. The pairing between an element m of M and an element
of N will be denoted (m, ).

We will identify the character group S of § with M: an m =
(mo, ...,m,) € M corresponds to the character x defined by x™(a) =
a™ ... a™ a = diag(ag, ...,a,). So the elements y of S can be eval-
uated over elements ¢ of the group N := M* (or over elements of the
space V = Q® N). We will still write (x, ) to denote the evaluation;
hence (™, ) = (m, ).

The basic fact (cf. De Concini-Procesi [1985], Thm. 5.3) is that there
exists a rational (with respect to N) simplicial cone C' = [vy, ..., v,]
in V' such that the cones {cC'| o € W}, together with all their faces,
form a complete (simplicial) rational fan Fx of V and that there is
a one-to-one natural correspondence between G-equivariant wonder-
ful compactifications Y of X lying over X and W-invariant complete
simplicial rational fans Fy of V' which are subdivisions of Fx. More-
over, under this correspondence the set ¥ = Wy, whose elements are
the primitive vectors ¢ in C'N M that span edges of cones in Fy, is in
one-to-one correspondence with the boundary divisors of Y, that is, the
irreducible components of Y — Xy, or equivalently, the codimension one
orbits of Y. For example, the boundary divisors D; of X correspond
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bijectively to the primitive vectors vy, ..., v, of C. It is not hard to see
that any primitive vector in C' defines a codimension one orbit in some
compactification Y. The open set in Y obtained by removing all orbits
with codimension greater or equal than 2 is a partial compactification
of Xy that depends only on ¥; we will denote it by Xy. For example,
if A ={vy,...,v,}, then Xa is the union of X, and the codimension
one orbits Oy, ...,0, of X.

Remark. If Uy C Wy, then Xy, C Xy,. In particular, any primitive
vector ¢ in C'N N defines a codimension one orbit of any Yy such that
1 € W. This orbit will be denoted D,,.

Now from the theorem of classification of equivariant compactifica-
tions (De Concini-Procesi [1985], Thm. 5.2) and the determination of
the Picard group of toric varieties (Oda [1988], Chapter II) it follows
(see Bifet [1990]) that the group Pic(Y)g = Pic(Xy)g can be canoni-
cally identified with the space Dy (C, Q) of rational functions defined
on C' which are continuous and linear on the cones of Fy contained in
C', and that the map Pic(Y)g — Pic(Y”)q induced by a G-equivariant
map Y’ — Y of wonderful compactifications is just the canonical in-
clusion Dy (C, Q) — Dy/(C, Q).

Since Hal'(Xj) is the direct limit of Pic(Y"), when Y ranges over the
wonderful compactifications of Xy that lie over X (see De Concini-
Procesi [1985], Thm. 6.3), we conclude that there is a canonical iso-
morphism Hal'(X;)g ~ D(C, Q). Thus we can identify Hal'(Xy)q with
the space of D-functions on C.

Computation of ¢p. Let D be a divisor in Xy. The (D] € Hal'(X)g
corresponds to a function fp € D(C,Q). We want to describe fp. To
this end we may assume that D does not contain any of the fundamental
varieties Ag, ..., A,_1. We know that

X = (AU ..UM, 1) =S xU,

U an affine space of dimension n(n + 1)/2. So D N (S x U) has an
equation of the form
fD = Z Xfx )

where the sum runs over the character group M = S of S and fx
are polynomial functions on U, almost all zero. Let |fp| denote the
finite set of characters x such that f, # 0. Let Y be any wonderful
compactification of X, with {Dy}, ¥ € ¥ C Il¢, the set of boundary
divisors. On Y

dIV(fD) = 5—'— anDw y
where D is the closure of D in Y and n, = ord p,(fp). If fp were a

single character ¢, then n, = (x,v) (Fulton [1989], Lemma 3.3). In
general

n"l’ = minX<X7 ¢>
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where x runs in the set |fp].

Let us sketch a proof. In the rational simplicial cone decomposition
of C corresponding to Y, there is a cone with edges ¢ = 91, ...,¥, € N,
which are a basis for N. Let &, ... &, € M be the dual basis. This
basis determines a torus embedding S < A", to which it corresponds
an open set A" x U in Y that contains S x U. Since D, NS x U is
the subspace x;1 = 0, ny will be the order of fp with respect to xi,
that is, the minimum exponent of y; in the expression of fp obtained
substituting every character x € |fp| by the corresponding monomial
in x1, ..., x,. But the exponent of y; in the monomial associated to x
is jllSt <X7 ¢1> = <X7 ¢>

Now we can describe fp:

fo() = —miny(x, ) ,

where x ranges over |fp|. To prove this, notice that the formula for
div(fp) implies that

[D] = = min(x, ¥)[Dy]
v

in Pic(Y). If we take now Y in such a way that D intersects properly
all orbits of Y (De Concini—Procesi [1985], Thm. 4.7), we see that the
function fp corresponding to D has the claimed form.

Remark. For a particular Y, the boundary divisors form a basis of
Pic(Y)g, and it is tempting to believe that all possible boundary divi-
sors (in one-to-one correspondence with I1¢) form a basis of Hal' (Xg)g.
However this is wrong, inasmuch as the maps involved in the direct
limit of Pic(Y')q are total transforms, and not strict transforms. In
other words, a given boundary divisor D, of a given Y certainly de-
fines, through the isomorphism of Pic(Y)g ~ Dy (C,Q), a D-function
on C', namely the (unique) D-function fy, that has value 1 at ¢ and
0 at all other edges of the fan Fy. But this function depends on the
fan (that is, it depends on Y') and hence it does not define an element
of Hal'(Xy)g. If, on the other hand, we take the element of Hal'(X;)q
defined by fy,, this element is the one that corresponds to the total
transforms of Dy, in all compactifications Y’ that dominate Y.

Example. Let ti, ...,t, be the basis of M that is dual of the basis
vy, ...,u, of N. Let p = (p1, ...,pn) € N” be non-zero and consider
the divisor S), in X, defined by #{' 4+ ... +t?*). Let f, = fs,. Then

folgr-v1 4 o4 Gn - vn) = min(piqu, - - -, Pnln) -

In particular we have functions f, € D(C,Q) for all primitive p. In
the case n = 2, these functions form a basis, because the classes (.S,|
form a basis of Hal'(Xy)g (see Casas-Xambé [1986]). But for n > 2
this is no longer true. For example (Kleiman—Xambg, June 1990), the
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function min (3¢, 4q2,5q3, ¢1 + g2 + g3) is a D-function but it is not a
linear combination of functions of the form f,, p, ps)-

5. HALPHEN’S FIRST FORMULA

Let H; = QIl¢ denote the rational vector space with basis IIo. The
basis element corresponding to a primitive vector v will be denoted [v].
More generally, given an integral non-zero vector v in C', there exists a
unique positive integer m such that v = mav’ with v’ a primitive vector
in C' and hence we may identify v with the element [v] := m[v'] of H;.

Now let us define a canonical map

'UIZlX—>H1.

By linearity it is enough to define v(I") for any irreducible curve I' on
Xo. Let X be the complete smooth model of I'. Given any compacti-
fication Y of X, there exists a unique map v : ¥ — Y which extends
the normalization of I'. Take a wonderful Y with the property that
v(X) meets the boundary Y — Xy of X in Y only along codimension
one orbits. This implies that there is a finite set ¥ of primitive vectors
in C such that v(¥) C Xy. For ¢p € ¥, let D, be the corresponding
codimension one orbit in Xy. Then we set

v, = Zordp(l/*Dw)W] ;

where the sum runs through all points P of 3. Because of the first Re-
mark in the previous section, the expression on the right is independent
of W, for no additional codimension one orbit meets v(3).

Given v € Z;1 X, instead of v(7) we shall also write v, or 7.

Notice also that an element ¢ € D(C, Q) can be extended to a unique
linear function H; — @, which we shall still denote by ¢. Now let I' be
a curve and D a divisor on X. Let ¢, € D(C,Q) be the D-function
corresponding to D in D(C, Q), as explained in the previous section.
Then

A

(DIF) = ¢, (I') . (%)

Indeed, choose a wonderful compactification ¥ of X such that the
closures I' and D of I' and D properly meet all orbits in Y. Then
it is clear that (D|I') equals the degree of the O-dimensional rational

class [D] - [T]. On the other hand, we know that [D] = > ¢, (¢)[Dy],
where the sum runs through all primitive vectors ¢ corresponding to
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the codimension one orbits in Y. Thus we have

(D|T') = deg([D] - [I'])
=Y @p(W)deg([Dy] - [I7)
"

=> ¢, (¥)> ordp(v'Dy)
¥ J3

= ¥p (Ur) :
We will refer to (x) as Halphen’s first formula.

6. THE GROUP HAL{ X,
In this section we shall prove the following:

Theorem. The map v induces a canonical isomorphism
(O Ha/lX — H .

Moreover, under this isomorphism and the isomorphism Hall(Xo)Q ~
D(C,Q) described in Section 4, the intersection pairing

Hal' Xo x Hal; Xqg — Q
1s represented, due to Halphen’s first formula, by the pairing
D(C,Q) x Hy — Q
given by evaluation of functions, (f, ) — f(¥).

The kernel of v. From Halphen’s first formula it follows that a 1-cycle ~
for which v, = 0 isin B"'X. Now we shall see that the converse is also
true. In order to do this, it is enough to see that if v is a 1-cycle on X
and v, # 0, then there exists D such that (D|y) # 0. To see this, take
any D-function ¢ such that ¢(v,) # 0. Take any compactification Y
on which ¢ is represented as a divisor D on Xy whose closure in Y has
proper intersection with all the orbits of Y. We also can arrange that
the closure of v on Y has proper intersection with the orbits. Then, by
Halphen'’s first formula again, (D|y) # 0.

The map v is surjective. It is enough to see that a given primitive vector
v in C' is in the image of v. To see this, choose a wonderful compacti-
fication Y such that ¢ = 1 is among the primitive vectors ¢, ..., ¥,
indexing boundary divisors in Y. We know that [Dy,],...,[Dy,] are
a basis of AIY@. Let oy, ..., € A;Yg be a dual basis, that is, such
that deg(a; - [Dy,]) = d;;. By Chow’s moving lemma, there exists a
1-cycle v in X such that its closure 4 in Y has proper intersection with
the orbits and such that [§] = ;. By construction it is clear that
vy = 1. U

Using the canonical isomorphism v to identify
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Hal; X, and Hy, we see that |I') = [, for any curve I' on Xg. In the
classical spirit, we can say that [ is the characteristic of I', or better,
that the ¢ appearing in the expression of [ are the characteristics of T'.
The multiplicity of a characteristic 1 of I' is the coefficient of v in I.

[1]
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