
ON HALPHEN’S FIRST FORMULA

C. PROCESI† AND S. XAMBÓ DESCAMPS††

Abstract. We generalize Halphen’s first formula (for the number
of plane conics in a one dimensional system that satisfy a simple
condition) to quadratic varieties in projective n-space. In fact the
arguments are valid on any algebraic homogeneous space that does
not have compactifications with infinitely many orbits (spherical
varieties).

1. Introduction

Halphen (1844-1889) devoted several papers to explain his ideas and
results about enumerative geometry. He obtained particularly nice re-
sults for plane conics. The reader is referred to pages 1-12 of the short
survey Halphen [1985], written on the occasion of his candidacy to
the French Academy of Sciences, for an overview of his work; in it
he underlined very neatly the key concepts of his enumerative theory
and the main results he had discovered, taking pains to stress, with
compelling reasons, the radical advance brought in by his theory of
characteristics, as compared to previous works by several authors (in-
cluded himself). His progress was not only not readily understood, but
kindled a long and bitter and unfortunate polemic involving several
authors; the reader is referred to Kleiman [1980] for a very detailed
and masterful historical account, especially pages 131-134.

Roughly speaking, the problems considered by Halphen were to find
the number of (smooth) plane conics in a 1-dimensional system satisfy-
ing a simple condition, and also the number of plane conics satisfying
five independent simple conditions.

The analysis of these problems, which shows a deep understanding
of the issues involved, led Halphen to his first and second formulas
(Halphen [1878], § III, and [1879], Th. I). His ideas were analyzed,
using contemporary language, in Casas–Xambó [1986]. In this work
Halphen’s theory of characteristics was also extended to deal with
the problem of finding the number of (smooth) plane conics in a 2-
dimensional system that satisfy a double condition. Independently, De
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Concini and Procesi [1983, 1985] developed a group-theoretic frame-
work that seems to be well suited for analyzing the kinds of problems
that Halphen’s theory points at (see Section 2).

The goal of this note is to outline a generalization of Halphen’s first
formula to quadratic varieties in Pn (the latter stands for projective
space of dimension n over an algebraically closed field k). As the at-
tentive reader will notice, our arguments are valid for any spherical va-
riety, in particular for symmetric varieties, but here, in order to phrase
the relevant ideas in the simplest terms, we will focus on the concrete
example of quadratic varieties; in this way we also remain closer to the
geometric spirit of Halphen [1878],

Halphen (and Casas–Xambó) worked in the framework of projective
geometry and used, as one of the main tools, the analysis of the singu-
larities of the system and the condition along the variety of Halphen
conics, that is, the variety whose closed points are double lines with a
double focus (= a double dual line). Here the formula will be derived
using the technique of symmetric varieties, as developed by De Concini
and Procesi (loc. cit.)

We end this introduction explainig some notations and conventions.

Notations. Given an abelian group N , we will often consider the Q-
vector space N ⊗Q. This space sometimes will be denoted NQ.

Cycles. Given a smooth variety X, we will set ZdX (ZdX) to denote
the group of cycles of dimension (codimension) d on X. The quotient
of ZdX by the the subgroup of cycles rationally equivalent to 0 will be
denoted AdX (Chow group of dimension d). The rational class of a
cycle z (the image of z in AdX under the canonical projection) will be
denoted [z]. AcX is, by definition, An−cX, where n = dim(X).

Compactifications. Given a variety U , by a compactification of U we
understand a complete variety X which contains U as an open set. A
partial compactification of U is a variety X ′ that can be obtained from
a compactification X of U by removing a finite number of subvarieties
of codimension 2 or bigger.

Polyhedral cones and D-functions (See Oda [1988]). Let N be a finitely
generated free abelian group of rank n and set V = Q ⊗ N , so that
V is a Q-vector space of dimension n. A subset C of V is said to be
a (rational) polyhedral cone if there exist v1, . . . , vr ∈ C (respectively
∈ C ∩ N) such that C = [v1, . . . , vr], where [v1, . . . , vr] is the set of
rational linear combinations of v1, . . . , vr with non-negative coefficients.
We will say that C is generated by v1, . . . , vr. A cone C is said to be
simplicial if it is generated by vectors that are part of a free basis of
N . The dimension of a cone C is the dimension of the linear space 〈C〉
spanned by C.
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Given a cone C = [v1, . . . , vr] and a linear map f : V → Q which
is non-negative on C, the set C ′ = C ∩ ker(f) is the cone spanned by
the vi such that f(vi) = 0. Such cones C ′ are said to be the faces of
C. The faces of dimension 1 are called edges of C. Any edge is of the
form [v], v ∈ C ∩ N primitive (that is, not divisible by integers other
than ±1). Such primitive vectors will also be referred to as edges of C.

A function f : C → Q is said to be linear on a cone C if it is
the restriction to C of a Q-linear function V → Q. If in addition f
takes integral values on C ∩ N , then we shall say that f is an inte-
gral linear function on C. Notice that if v1, . . . , vr ∈ N are linearly
independent and a1, . . . , ar ∈ Q, then there exists a unique linear map
f : [v1, . . . , vr] → Q such that f(vi) = ai. This map is integral if
and only if the ai are integers. If C = [v1, . . . , vr] has dimension s
and, say, v1, . . . , vs are linearly independent, then to give a linear map
f : C → Q is equivalent to give its values ai = f(vi) for i = 1, . . . , s.

Given a cone C in V , a polyhedral decomposition of C is a set of
cones C = {C1, . . . , Ck} such that (a) Any face of a cone in C is a
cone in C, (b) for all i and j, Ci ∩ Cj is a face of Ci and Cj, and (c)
C = C1 ∪ . . .∪Ck. If in addition the Ci are simplicial, then we we will
speak of a simplicial polyhedral decomposition of C.

We will say that a function f : C → Q is a D-function (D for divisor
and also for Demazure) if f is continuous and there exists a polyhedral
decomposition of C, C =

⋃
i

Ci, such that the restrictions f |Ci are

linear. We will write D(C,Q) to denote the Q-vector space of all D-
functions of C. The subgroup of D(C,Q) whose elements are functions
that take integral values on C∩N will be denoted D(C,Z). D-functions
are called “C-linear support functions” in Oda [1988].

Given a cone C, the set of all primitive vectors in C ∩ N will be
denoted ΠC and will be called the set of primitive vectors of C.

Chains of quadratic varieties. If Q is a quadratic variety in Pn (qua-
dratic for short), we shall write L(Q) to denote the linear space of
its double points, and `(Q) to denote the dimension of L(Q). Thus
`(Q) = −1 if and only if Q is smooth. Moreover, r(Q) = n − `(Q) is
the rank of Q. Notice that on P0 there is a unique quadratic, which is
empty.

Given any strictly decreasing sequence I = {i1 > . . . > ik} in
{0, 1, . . . , n − 1} (for k = 0, I is the empty sequence), a quadratic
chain of type I is a sequence Q = (Q0, . . . , Qk) with the following
properties:

(1) Q0 is a quadratic in Pn.
(2) If k > 0, `(Qj−1) = ij and Qj is a quadratic variety in L(Qj−1),

j = 1, . . . , k.
(3) Qk is smooth.
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Thus a quadratic chain of type ∅ (empty set) is just a smooth qua-
dratic variety. A quadratic chain of type {j}, j ∈ {0, 1, . . . , n − 1},
is a pair (Q0, Q1) consisting of a quadratic variety Q0 of rank n − j
together with a smooth quadratic variety Q1 in L(Q0). We shall write
ΩI to denote the set of all quadratic chains of type I, and Ωj instead of
Ω{j}. Regarding Qj as a smooth quadratic variety of Lj/Lj+1, where
Lj = L(Qj−1) for j = 1, . . . , k, L0 = Pn and Lk+1 = ∅, we see that ΩI

is in one-to-one correspondence with a bundle over the variety of flags
of type I with fiber a product of open sets of suitable projective spaces.
Hence ΩI has a natural structure of smooth algebraic variety. It is also
not hard to see that the projective group of Pn acts transitively on
ΩI . For example, X0 := Ω∅ parametrizes smooth quadratic varieties,
which is an open set of a suitable projective space (see the beginning of
Section 2). At the other end, Ω{n−1,...,1,0} is isomorphic to the variety
of maximal flags.

Here are some more specific examples. Since all elements in ΩI are
projectively equivalent, it is enough to give a projective description of
one element ωI ∈ ΩI . For n = 2 we have: ω0, a pair of disctinct lines
(its partial flag is the intersection point); ω1, a line with a distinguished
pair of points (its flag is the line); and ω10, a line with a distinguished
point on it (its flag consists of the line and the point). If n = 3, the
description is as follows: ω0, a quadric cone (the flag is the vertex); ω1,
a pair of distinct planes with a pair of distinct points on the double line
(the flag is this last line); ω2, a plane with a distinguished smooth conic
(the flag is the plane); ω10, a pair of distinct planes with a distinguished
point on the double line (the flag is the line and its distinguished point);
ω20, a plane containing a pair of distinct lines (the flag is the plane and
the point of intersection of the two lines); ω21, a plane containing a line
with a distinguished pair of distinct points on it (the flag is the plane
and the line); and ω210, a complete flag of P3.

2. Halphen groups of X0

Let X0 be the variety of smooth quadratic varieties in Pn, so that
X0 is the open set det(aij) 6= 0 of the projective space Pn(n+3)/2 with
homogeneous coordinates [aij], 0 ≤ i ≤ j ≤ n (henceforth, as usual,
we set aij = aji when i > j). Here the point [a] = [aij] corresponds,
if x0, . . . , xn are projective coordinates for Pn, to the quadratic variety
given by the equation ∑

i,j

aijxixj = 0 .

Using matrix notation, with x = (x0, . . . , xn) and a = (aij), the equa-
tion may be written as xaxt = 0.

The group GL(n+ 1, k) acts in Pn,

GL(n+ 1, k)× Pn → Pn , α · [x] = [x(αt)−1] .
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This action induces an action on X0, which is easily seen to be

GL(n+ 1, k)×X0 → X0 , α · [a] = [αtaα] .

Since for any [a] ∈ X0 there exists α ∈ GL(n + 1, k) such that αtaα is
the identity matrix I, GL(n+1, k) acts transitively on X0. The isotropy
group of [a] is the subgroup{

α ∈ GL(n+ 1, k) | there exists λ ∈ k∗ such that αtaα = λa
}
.

If we let G = SL(n+ 1, k), then G also acts transitively on X0 and the
isotropy group of [a] is

G[a] =
{
α ∈ G′ |αtaα = a

}
,

which is the group SO(a). Thus

X0 ' G/SO(a) .

Notice that

α 7→ (αt)−1

is an involution σ of G such that Gσ = SO(a). Thus X0 is an example
of a symmetric variety.

The fact that X0 is homogeneous under the action of G allows us to
define a Halphen pairing

ZdX0 × ZdX0 → Z , (δ, γ) 7→ 〈δ|γ〉 ,
where

〈δ|γ〉 := deg(δ · αγ) = deg(αδ · γ) ,

α generic in G. This definition may be justified using the transversality
theorem of general translates on a homogeneous variety (see Kleiman
[1974]). It means that given δ and γ there exists a non-empty open set
U in G such that the intersection cycles δ · αγ and αδ · γ are defined
for all α ∈ U and have a common degree which is idependent of α.

Here γ plays the role of a d-dimensional system of (smooth) quadratic
varieties and δ of a d-fold condition. Given a d-dimensional system γ
and a d-fold condition δ, Halphen observed that even when the inter-
section cycle δ · γ is defined, deg(δ · γ) need not be the right number,
but that it is correct if δ is “independent” of γ. His notion of indepen-
dence amounts to allowing a general translate of δ (cf. Kleiman [1980]),
which has the efect of placing the data used to define the condition in
a general position (cf. Casas–Xambó [1986]). Halphen explicitely ruled
out of his inquiries (cf. Halphen [1985], p. 7) the study of numbers
〈δ|γ〉 with δ “special” with respect to γ, although he informs us in a
brief remark that his point of view in relation to these questions is a
dynamical one, in the sense that to him the difficulty is to determine
in which ways the solutions to the corresponding general problem can
coalesce when δ is specialized, say by letting the data used to define δ
come to satisfy some non-trivial aditional relation.



6 C. PROCESI & S. XAMBÓ

Let BdX0 ⊆ ZdX0 be the subgroup of all those cycles δ such that
〈δ|γ〉 = 0 for all γ ∈ ZdX0. We set HaldX0 to denote the quo-
tient group ZdX0/B

dX0 and we will say that it is the Halphen group
(of codimension d) of X0. The class of δ ∈ ZdX0 will be denoted
〈δ|. We define the subgroup BdX0 of ZdX0 in the same way and
let HaldX0 = ZdX0/BdX0 (Halphen group of dimension d), so that
HaldX0 = Halm−dX0 if m = dim(X0). We shall write |γ〉 to denote
the class of γ ∈ ZdX0 in HaldX0. If z is a cycle, 〈z| and |z〉 denote
the same element, the only difference being that in the first notation
we declare the codimension of z while in the second we declare its di-
mension. From the definitions it follows that we have a non-degenerate
pairing

HaldX0 × HaldX0 → Z

given by (〈δ|, |γ〉) 7→ 〈δ|γ〉. Thus we shall write

〈δ| · |γ〉 = 〈δ|γ〉 .

The main questions to ask about these groups are to describe explic-
itly:

• The groups HaldX0;
• The pairings HaldX0 × HaldX0 → Z; and
• The maps ZdX0 → HaldX0.

Here is a quite trivial illustration: it is easy to check that Hal0X0 = Z
(generated by 〈X0|) and Hal0X0 = Z (generated by |a〉, for any point
a ∈ X0). Moreover, under these isomorphisms the pairing Hal0X0 ×
Hal0X0 → Z is just the product map Z× Z→ Z.

In Section 4 of this note we give a description of Hal1X0, as some
group of D-functions, and of the funtion that corresponds to a given
divisor on X0. Then, in the two Sections that follow, we will give an
explicit description of Hal1X0, of the map Z1 → Hal1X0 and of the
pairing HaldX0×HaldX0 → Z. A similar description of HaldX0 for the
remaining d seems to be not yet known, except for the case n = 2,
which is worked out in Casas–Xambó [1986].

To end this section we will define the fundamental conditions on X0.
Consider the flag F : L0 ⊂ L1 ⊂ ... ⊂ Ln−1 ⊂ Ln = Pn, where Lk is the
linear space xk+1 = . . . = xn = 0. A quadratic variety [a] is tangent
to Lk if and only if the restriction of the quadratic form

∑
aijxixj

to Lk is degenerate, which happens if and only if the determinant of
(aij), 0 ≤ i, j ≤ k, vanishes. Thus the quadratic varieties which are
tangent to Lk form a hypersurface Λk of X0. Since the determinant of a
generic symmetric matrix is irreducible, the varieties Λk are themselves
irreducible. The elements λk = 〈Λk| ∈ Hal1X0 do not depend on the
flag, because any two flags are conjugate under the action of G. We
will say that λ0, . . . , λn−1 are the fundamental conditions of X0. The
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varieties Λk will be called fundamental varieties (with respect to the
flag F ).

Notice that if we let Λ denote the union of the varieties Λk, then the
open set X0 −Λ is an orbit of the isotropy group B ⊂ G of F (thus B
is the group of upper-triangular matrices). Moreover, if we let S ⊂ X0

denote the diagonal quadrics, then S is an n-dimensional algebraic
torus and X0 − Λ ' S × An(n+1)/2. Here An(n+1)/2 is an affine space
with coordinates uij, 0 ≤ i < j ≤ n, and a pair ([q], u) ∈ S × An(n+1)/2

corresponds to the quadratic [a], a = (I+u)tq(I+u), where we identify
u with the matrix that has zeroes in the entries with i ≥ j, and uij in
the entry (i, j).

3. The variety of complete quadratics

Studied by many authors, it is a projective variety X, with a G-
action, which has the following properties (cf. Thorup–Kleiman [1988]
and the references therein):

(1) X has an open orbit isomorphic to X0 (in what follows we will
identify X0 with this open orbit).

(2) There is a ono-to-one correspondence I 7→ OI between subsets
I of {0, 1, . . . , n− 1} and the G-orbits OI in X such that |I| =
codim(OI). In particular O∅ = X0.

(3) For all I, the closure DI of OI is smooth. In particular, X is
smooth, since X is the closure of X0. If 0 ≤ i ≤ n− 1, we shall
write Oi and Di instead of O{i} and D{i}. Thus D0, . . . , Dn−1

are smooth divisors on X.
(4) For all I = {i1, . . . , ik}, Di1 , . . . , Dik intersect transversally and

its intersection is DI . In particular we have that DI ⊆ DJ if
and only if J ⊆ I.

(5) For all I, OI = DI −
⋃
j /∈I

Dj. In particular

X0 = X −
⋃
i

Di or X −X0 =
⋃
i

Di .

(6) The variety DI is isomorphic to the variety ΩI of quadratic
chains of type I. To conform to the conventions set up in Sec-
tion 1, each I is to be arranged in decreasing order.

The Picard group of X0 is isomorphic to Z/(n + 1), because its
the complement in Pn(n+3)/2 of a hypersurface of degree n + 1. So
Pic(X0)Q = 0. This implies that Pic(X)Q is Q vector space of dimen-
sion n with basis the classes δj = [Dj], j = 0, . . . , n − 1. It is well
known, and not too hard to establish directly (cf. Xambó [1988]), that
if we set µj = [Λj] (Λ0, . . . ,Λn−1 the fundamental varieties, Λk the
closure of Λk in X), then

δn−j−1 = −µj−1 + 2µj − µj+1 ,
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with the convention that µ0 = µn = 0. These relations show that
µ0, . . . , µn−1 is also a basis of Pic(X)Q. Actually we have the expres-
sions (loc. cit.)

(n+ 1)µj =
∑

0≤k≤j

(k + 1)(n− j)δn−k−1 +
∑
j<k<n

(j + 1)(n− k)δn−k−1 ,

which are useful for recursive explicit computations.

4. The group Hal1X0

We are going to see that Hal1(X0)Q is isomorfic to a Q-vector space of
D-functions. Our arguments here are closely related to those that Bifet
introduced in his thesis (see Bifet [1990]) and use in an essential way
the technology introduced in De Concini–Procesi [1983, 1985], which
in turn is based on toric geometry. In this section we summarize some
facts in a form that is useful for our purposes. We refer to De Concini–
Procesi for the basic terminology concerning toric varieties, equivariant
and wonderful compactifications, etc. For a thorough treatment of toric
varieties, see Oda [1988], or Fulton [1989].

Let e0, . . . , en be the standard basis of Zn+1. The group W = Sn+1

acts in Zn+1 permuting coordinates and this action leaves invariant the
subgroup M whose equation is m0 +m1 + . . .+mn = 0, thus inducing
an action of W on M . The group M is free of rank n. Notice that the
vectors αi = ei−1 − ei, i = 1, . . . , n, form a free basis of M . We shall
put N = M∗ (the dual group) and V = N ⊗Q, so that V is a Q-vector
space of dimension n. The group W still acts, by the dual action, on
N and V . The pairing between an element m of M and an element ψ
of N will be denoted 〈m,ψ〉.

We will identify the character group Ŝ of S with M : an m =
(m0, . . . ,mn) ∈M corresponds to the character χm defined by χm(a) =

am0
0 . . . amnn , a = diag(a0, . . . , an). So the elements χ of Ŝ can be eval-

uated over elements ψ of the group N := M∗ (or over elements of the
space V = Q⊗N). We will still write 〈χ, ψ〉 to denote the evaluation;
hence 〈χm, ψ〉 = 〈m,ψ〉.

The basic fact (cf. De Concini–Procesi [1985], Thm. 5.3) is that there
exists a rational (with respect to N) simplicial cone C = [v1, . . . , vn]
in V such that the cones {σC |σ ∈ W}, together with all their faces,
form a complete (simplicial) rational fan FX of V and that there is
a one-to-one natural correspondence between G-equivariant wonder-
ful compactifications Y of X0 lying over X and W -invariant complete
simplicial rational fans FY of V which are subdivisions of FX . More-
over, under this correspondence the set Ψ = ΨY , whose elements are
the primitive vectors ψ in C ∩M that span edges of cones in FY , is in
one-to-one correspondence with the boundary divisors of Y , that is, the
irreducible components of Y −X0, or equivalently, the codimension one
orbits of Y . For example, the boundary divisors Di of X correspond
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bijectively to the primitive vectors v1, . . . , vn of C. It is not hard to see
that any primitive vector in C defines a codimension one orbit in some
compactification Y . The open set in Y obtained by removing all orbits
with codimension greater or equal than 2 is a partial compactification
of X0 that depends only on Ψ; we will denote it by XΨ. For example,
if ∆ = {v1, . . . , vn}, then X∆ is the union of X0 and the codimension
one orbits O1, . . . , On of X.

Remark. If Ψ1 ⊆ Ψ2, then XΨ1 ⊆ XΨ2 . In particular, any primitive
vector ψ in C ∩N defines a codimension one orbit of any YΨ such that
ψ ∈ Ψ. This orbit will be denoted Dψ.

Now from the theorem of classification of equivariant compactifica-
tions (De Concini–Procesi [1985], Thm. 5.2) and the determination of
the Picard group of toric varieties (Oda [1988], Chapter II) it follows
(see Bifet [1990]) that the group Pic(Y )Q = Pic(XΨ)Q can be canoni-
cally identified with the space DY (C,Q) of rational functions defined
on C which are continuous and linear on the cones of FY contained in
C, and that the map Pic(Y )Q → Pic(Y ′)Q induced by a G-equivariant
map Y ′ → Y of wonderful compactifications is just the canonical in-
clusion DY (C,Q)→ DY ′(C,Q).

Since Hal1(X0) is the direct limit of Pic(Y ), when Y ranges over the
wonderful compactifications of X0 that lie over X (see De Concini–
Procesi [1985], Thm. 6.3), we conclude that there is a canonical iso-
morphism Hal1(X0)Q ' D(C,Q). Thus we can identify Hal1(X0)Q with
the space of D-functions on C.

Computation of ϕD. Let D be a divisor in X0. The 〈D| ∈ Hal1(X0)Q
corresponds to a function fD ∈ D(C,Q). We want to describe fD. To
this end we may assume thatD does not contain any of the fundamental
varieties Λ0, . . . ,Λn−1. We know that

X − (Λ0 ∪ ... ∪ Λn−1) = S × U ,

U an affine space of dimension n(n + 1)/2. So D ∩ (S × U) has an
equation of the form

fD =
∑

χfχ ,

where the sum runs over the character group M = Ŝ of S and fχ
are polynomial functions on U , almost all zero. Let |fD| denote the
finite set of characters χ such that fχ 6= 0. Let Y be any wonderful
compactification of X, with {Dψ}, ψ ∈ Ψ ⊂ ΠC , the set of boundary
divisors. On Y

div(fD) = D +
∑

nψDψ ,

where D is the closure of D in Y and nψ = ordDψ(fD). If fD were a
single character ψ, then nψ = 〈χ, ψ〉 (Fulton [1989], Lemma 3.3). In
general

nψ = minχ〈χ, ψ〉
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where χ runs in the set |fD|.
Let us sketch a proof. In the rational simplicial cone decomposition

of C corresponding to Y , there is a cone with edges ψ = ψ1, ..., ψn ∈ N ,
which are a basis for N . Let ξ1, . . . , ξn ∈ M be the dual basis. This
basis determines a torus embedding S ↪→ Ar, to which it corresponds
an open set Ar × U in Y that contains S × U . Since Dψ ∩ S × U is
the subspace χ1 = 0, nψ will be the order of fD with respect to χ1,
that is, the minimum exponent of χ1 in the expression of fD obtained
substituting every character χ ∈ |fD| by the corresponding monomial
in χ1, . . . , χr. But the exponent of χ1 in the monomial associated to χ
is just 〈χ, ψ1〉 = 〈χ, ψ〉.

Now we can describe fD :

fD(ψ) = −minψ〈χ, ψ〉 ,

where χ ranges over |fD|. To prove this, notice that the formula for
div(fD) implies that

[D] = −
∑
ψ

min〈χ, ψ〉[Dψ]

in Pic(Y ). If we take now Y in such a way that D intersects properly
all orbits of Y (De Concini–Procesi [1985], Thm. 4.7), we see that the
function fD corresponding to D has the claimed form.

Remark. For a particular Y , the boundary divisors form a basis of
Pic(Y )Q, and it is tempting to believe that all possible boundary divi-
sors (in one-to-one correspondence with ΠC) form a basis of Hal1(X0)Q.
However this is wrong, inasmuch as the maps involved in the direct
limit of Pic(Y )Q are total transforms , and not strict transforms. In
other words, a given boundary divisor Dψ of a given Y certainly de-
fines, through the isomorphism of Pic(Y )Q ' DY (C,Q), a D-function
on C, namely the (unique) D-function fY,ψ that has value 1 at ψ and
0 at all other edges of the fan FY . But this function depends on the
fan (that is, it depends on Y ) and hence it does not define an element
of Hal1(X0)Q. If, on the other hand, we take the element of Hal1(X0)Q
defined by fY,ψ, this element is the one that corresponds to the total
transforms of Dψ in all compactifications Y ′ that dominate Y .

Example. Let t1, . . . , tn be the basis of M that is dual of the basis
v1, . . . , vn of N . Let p = (p1, . . . , pn) ∈ Nr be non-zero and consider
the divisor Sp in X0 defined by tp1

1 + . . .+ tpnn ). Let fp = fSp . Then

fp(q1 · v1 + . . .+ qn · vn) = min(p1q1, . . . , pnqn) .

In particular we have functions fp ∈ D(C,Q) for all primitive p. In
the case n = 2, these functions form a basis, because the classes 〈Sp|
form a basis of Hal1(X0)Q (see Casas-Xambó [1986]). But for n > 2
this is no longer true. For example (Kleiman–Xambó, June 1990), the
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function min(3q1, 4q2, 5q3, q1 + q2 + q3) is a D-function but it is not a
linear combination of functions of the form f(p1,p2,p3).

5. Halphen’s first formula

Let H1 = QΠC denote the rational vector space with basis ΠC . The
basis element corresponding to a primitive vector v will be denoted [v].
More generally, given an integral non-zero vector v in C, there exists a
unique positive integer m such that v = mv′ with v′ a primitive vector
in C and hence we may identify v with the element [v] := m[v′] of H1.

Now let us define a canonical map

v : Z1X → H1 .

By linearity it is enough to define v(Γ) for any irreducible curve Γ on
X0. Let Σ be the complete smooth model of Γ. Given any compacti-
fication Y of X0, there exists a unique map ν : Σ → Y which extends
the normalization of Γ. Take a wonderful Y with the property that
ν(Σ) meets the boundary Y −X0 of X0 in Y only along codimension
one orbits. This implies that there is a finite set Ψ of primitive vectors
in C such that ν(Σ) ⊆ XΨ. For ψ ∈ Ψ, let Dψ be the corresponding
codimension one orbit in XΨ. Then we set

v
Γ

=
∑

ordP (ν∗Dψ)[ψ] ,

where the sum runs through all points P of Σ. Because of the first Re-
mark in the previous section, the expression on the right is independent
of Ψ, for no additional codimension one orbit meets ν(Σ).

Given γ ∈ Z1X0, instead of v(γ) we shall also write vγ or γ̂.
Notice also that an element ϕ ∈ D(C,Q) can be extended to a unique

linear function H1 → Q, which we shall still denote by ϕ. Now let Γ be
a curve and D a divisor on X. Let ϕ

D
∈ D(C,Q) be the D-function

corresponding to D in D(C,Q), as explained in the previous section.
Then

〈D|Γ〉 = ϕ
D

(Γ̂) . (∗)

Indeed, choose a wonderful compactification Y of X such that the
closures Γ and D of Γ and D properly meet all orbits in Y . Then
it is clear that 〈D|Γ〉 equals the degree of the 0-dimensional rational
class [D] · [Γ]. On the other hand, we know that [D] =

∑
ϕ
D

(ψ)[Dψ],
where the sum runs through all primitive vectors ψ corresponding to
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the codimension one orbits in Y . Thus we have

〈D|Γ〉 = deg([D] · [Γ])

=
∑
ψ

ϕ
D

(ψ)deg([Dψ] · [Γ])

=
∑
ψ

ϕ
D

(ψ)
∑
P

ordP (ν∗Dψ)

= ϕ
D

(v
Γ
) .

We will refer to (∗) as Halphen’s first formula.

6. The group Hal1X0

In this section we shall prove the following:

Theorem. The map v induces a canonical isomorphism

v : Hal1X → H1 .

Moreover, under this isomorphism and the isomorphism Hal1(X0)Q '
D(C,Q) described in Section 4, the intersection pairing

Hal1XQ × Hal1XQ → Q

is represented, due to Halphen’s first formula, by the pairing

D(C,Q)×H1 → Q

given by evaluation of functions, (f, ψ) 7→ f(ψ).

The kernel of v. From Halphen’s first formula it follows that a 1-cycle γ
for which vγ = 0 is in Bn−1X. Now we shall see that the converse is also
true. In order to do this, it is enough to see that if γ is a 1-cycle on X
and vγ 6= 0, then there exists D such that 〈D|γ〉 6= 0. To see this, take
any D-function ϕ such that ϕ(vγ) 6= 0. Take any compactification Y
on which ϕ is represented as a divisor D on X0 whose closure in Y has
proper intersection with all the orbits of Y . We also can arrange that
the closure of γ on Y has proper intersection with the orbits. Then, by
Halphen’s first formula again, 〈D|γ〉 6= 0.

The map v is surjective. It is enough to see that a given primitive vector
ψ in C is in the image of v. To see this, choose a wonderful compacti-
fication Y such that ψ = ψ1 is among the primitive vectors ψ1, . . . , ψr
indexing boundary divisors in Y . We know that [Dψ1 ], . . . , [Dψr ] are
a basis of A1YQ. Let α1, . . . , αr ∈ A1YQ be a dual basis, that is, such
that deg(αi · [Dψj ]) = δij. By Chow’s moving lemma, there exists a
1-cycle γ in X such that its closure γ̄ in Y has proper intersection with
the orbits and such that [γ̄] = α1. By construction it is clear that
vγ = ψ. �

Using the canonical isomorphism v to identify
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Hal1X0 and H1, we see that |Γ〉 = Γ̂, for any curve Γ on X0. In the

classical spirit, we can say that Γ̂ is the characteristic of Γ, or better,
that the ψ appearing in the expression of Γ̂ are the characteristics of Γ.
The multiplicity of a characteristic ψ of Γ is the coefficient of ψ in Γ̂.
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[12] S. Xambó-Descamps [1988]: On Schubert’s method of degeneration for com-
puting geometric numbers. Max-Planck-Institut für Mathematik, MPI/88-35.

• Dip. di Matematica, G. Castelnuovo, Univ. di Roma, Piazzale A.
Moro 00185, Roma, Italy
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