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I n t r o d u c t i o n .  

T h i s  w o r k  d e a l s  on the  one h a n d  w i t h  u n d e r s t a n d i n g  the  c o n t e n t s  o f  

H a l p h e n  ' s c o n t r i b u t i o n  to the  s u b j e c t  o f  e n u m e r a t i v e  t h e o r y  o f  con i c s ,  a n d  

on the  o t h e r  w i t h  e x t e n d i n g  h i s  t h e o r y  to c o n d i t i o n s  o f  a n y  c o d i m e n s i o n .  The 

r e a d e r  i n t e r e s t e d  in the  h i s t o r y  o f  t h i s  s u b j e c t  may  p r o f i t  f rom the  b e a u t i f u l  

paper of Kleiman [ K.2 ]. 

In the enumerative theory of conics there have been basically three 

approaches, namely those associated to De Jonqui~res, to Chasles, and to 

Ha]phen /see the works of these authors referred to in the references, as well 

as [K.2 ] and the references thereinJ. Conceptually the first two are similar 

in that they correspond to computations performed in the Chow ring of P5 

and of the variety of complete conics, respectively. Unfortunately the numbers 

obtained with these aproaches : need not have enumerative significance, even 

if the data in the problem under consideration are in general position. A 

famous example of this failure is the answer given by De Jonquibres theory 

to the problem of finding the number of conics that are tangent to five given 

conics in general position. Similarly, Halphen gave examples of this unsatis- 

factory situation, needless to say a little more involved, for the theory of 

Chasles (see [H.3.], §15, or the example 1~.8 in this memoir]. 

On the  o t h e r  h a n d ,  t he  s t a r t i n g  p o i n t  in  H a l p h e n ' s  t h e o r y  i s  t he  d i s t i n -  

tion between proper and improper solutions /see §bJ to an enumerative problem 

and his goal is to count the number of proper solutions. The numbers produced 

with this theory have always enumerative significance in the sense that if 

the data of the /reduced] conditions involved are in general position, then 

such numbers always are the number of distinct proper solutions of the 

problem. In addition, it turns out that all nondegenerate solutions are proper 

solutions and, if the data of the conditions are in general position, then, 

conversely, all proper solutions are non-degenerate, so that for (reduced] 

conditions with data in general position Halphen ' s theory gives the number 

of non-degenerate solutions. 

In  r e l a t i o n  to t h i s  l a s t  p o i n t  we s h o u l d  s a y  t h a t  r e c e n t l y  De Conc in i  

a n d  P r o c e s i  /D-P] h a v e  t a k e n  the  n u m b e r  o f  n o n - d e g e n e r a t e  s o l u t i o n s ,  in  the  

g e n e r a l  s e t t i n g  o f  s y m m e t r i c  s p a c e s ,  as  the  c o r n e r  s tone  for  an a b s t r a c t  e n u m e -  

r a t i v e  t h e o r y .  



IV 

The p r e s e n t  work is  the r e s u l t  of  a p r o j e c t  begun  about  two y e a r s  ago 

by  the f i r s t  au thor  wi th  the idea of  u n d e r s t a n d i n g  H a l p h e n ' s  r e s u l t s  and  of  

p r o v i d i n g  modern proo f s  for  them. This  took about  one y e a r  and the ou tpu t  

was  r o u g h l y  the con ten t s  of  §§ 1-1~. Halphen cons ide red  two k i n d s  of  enume-  

r a t i v e  p rob l ems ,  name ly ,  (1) to f i n d  the number  of  conics  in a o n e - d i m e n s i o n a l  

sys t em tha t  p r o p e r l y  s a t i s f y  a g i v e n  f i r s t  order  cond i t ion ,  and  (2) to f i n d  

the number  of  conics  p r o p e r l y  s a t i s f y i n g  f i v e  i n d e p e n d e n t  cond i t i ons .  These 

prob lems  are so l ved  by  wha t  we cal l  t t a l p h e n ' s  f i r s t  and second formula ,  which 

are the con ten t s  of  Theorem 9.2 and 1~.6. 

A l t h o u g h  the bas ic  ideas  of  t h i s  f i r s t  p a r t  are due to Halphen ,  the p r e -  

s en ta t i on  and  many  of  the proo f s  are new.  This  is  e s p e c i a l l y  so for the d e f i n i -  

t ion o f  local  c h a r a c t e r i s t i c  numbers  o f  f i r s t  order  cond i t i ons  and  the p r o o f  

of  H a l p h e n ' s  f i r s t  f o rmula .  

A f t e r  t h i s  f i r s t  p a r t  had  taken  shape  we became i n t e r e s t e d  in f i n d i n g  

ana logues  to these  ideas  for  cond i t i ons  of  a n y  codimens ion .  The j o i n t  

work in t h i s  d i rec t ion  has  been deve loped  in the l a s t  twe lve  months  and  the 

r e s u l t s  are the con ten t s  of  §§ 15-23. In  s p i t e  of  the f ac t  t ha t  the r e s u l t s  o f  

the first part can be obtained again from results of the second, we have 

nevertheless maintained the two parts in order to offer, in the first, a 

rather elementary and updated version of Halphen's work on the subject, and, 

in the second, a general treatment for conditions of any codimension. 

F i n a l l y  we g i v e  a b r i e f  d e s c r i p t i o n  o f  the con ten t s  of  §§ 15-23. Sect ion 

15 is  d e v o t ed  to r e c a l l  the s t r u c t u r e  o f  the Chow r i n g  of  the v a r i e y  W of  

complete  conics  and  to l i s t  a number  of  cyc l e s  and  r e l a t i o n s  among them which  

are needed  l a t e r  on. 

Sec t ions  16, 17 and  18 are more g e n e r a l  than the r e s t  and  are devo ted  

to p r o v e  a g e n e r a l i z a t i o n  of  the c l a s s i c a l  formula  of  Noether  about  the i n t e r s e c -  

t ion o f  p l a n e  c u r v e s  (see  theorem 16.6)  and  to use i t  fo r  a g e n e r a l i z a t i o n  

of  H a l p h e n ' s  f i r s t  formula  (see theorem 18 .5) .  

Sec t ions  19 and  20 are devo ted  to the cons t ruc t i on  of  cer ta in  cond i t i ons  

( c y c l e s ) ,  to the d e f i n i t i o n  of  s t r i c t  e q u i v a l e n c e  of  cond i t i ons  and  the groups  

H a l "  (W), and  to p r o v e  tha t  the s t r i c t  e q u i v a l e n c e  c l a s s e s  of  those cyc les  

p r o v i d e  a f r e e  7Z-basis for  Hal ' (W) .  The main tool h e r e  i s  a p a r t i c u l a r i z a t i o n  

of Halphen's generalized formula (18.5) to the case of conics and a numerical 

criterion for strict equivalence proved with the resulting formula (20.2 and 

theorem 20.4). 



I n  s e c t i o n  2I the  g r a d e d  g r o u p  H a l ' ( W )  i s  ~ i v e n  a s t r u c t u r e  o f  g r a d e d  

c o m m u t a t i v e  r i n g  w i t h  u n i t ,  t he  e n u m e r a t i v e  s i g n i f i c a n c e  o f  w h i c h  i s  e x p l a i n e d  

in theorem 21 .7 .  T h i s  r i n g  i s  the  a b s t r a c t  r i n g  o f  De Conc in i  a n d  P r o c e s i  

in  the  c a s e  of  c o n i c s .  The p r o d u c t  in  H a l ' ( W )  i s  m a d e  e x p l i c i t  in  s e c t i o n  22 

b y  s h o w i n g  how to c o m p u t e  the  p r o d u c t s  o f  a n y  two t e r m s  o f  t h e  b a s i s  c o n s t r u c -  

t ed  b e f o r e .  In  s e c t i o n  23 we w o r k  ou t  two e x a m p l e s .  

E.  C a s a s  A l v e r o  S.  )Camb6 D e s c a m p s  



List of notations and conventions 

g 

Q 

C 

R* 

P 
n 

n 

o r d  ( f )  
X 

~'x,z 

ring of integers 

field of rational numbers 

field of real numbers 

field of complex numbers 

group of units of the ring R 

n-dimensional projective space over C 

dual space of Pn' or projective hyperplane space 

least exponent of the non-zero terms of the (broken) power series f 

local ring of the irreducible subvariety Z of an algebraic variety X 

I f  Z c_ y c_X, 

i n  ~. " 
X ,Z  " 

Y defines an ideal in GX, Z t h a t  we s h a l l  c a l l  "ideal of Y 

Sing(X) the singular set of an algebraic variety X 

D~D ' divisors D and D' are linearly equivalent 

o (K), K ° t h e  r e s u l t  o f  t r a n s f o r m i n g  K b y  a n  e l e m e n t  o of  a g r o u p  a c t i n g  
on  a s e t  o f  o b j e c t s  w h e r e  K b e l o n g s .  

Given cycles K and K' on a smooth algebraic vari¢ty X, and a component 

Z of  IKInIK'I, 

+ d i m ( K '  ) - d i m ( X ) ,  

s e c t i o n  K n K'  

b e  d e n o t e d  b y  

If K and K' 

then K.K' will denote their intersection cycle, i.e., Eiz(K'K')'Z, 

summation extended over all components of the intersection. 

where [K[ means the support of K, if dim(Z) = dim(K)+ 

then Z will be called a proper component of the inter- 

and the intersection multiplicity of K and K' at Z will 

iz(K'K'). The variety X will be clear from the context. 

meet properly, i.e., all components of K~K' are proper, 

the 

Given a zero cycle K on X, and a subset V of X, #V K will 

mean the sum of the multip.licities in K of the points of V. Instead of 
-£ 

#X K we will also write IX K or deg(K). If X is complete and a is a 
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( 
rational class of O-cycles, IX ~ will denote the degree for any cycle repre- 

senting c, . 

Suppose K and K' are such that 

that K and K' intersect properly. Then 

X (K'K') 

will also be denoted simply by (K.K'), or K.K' 

arise, and will be called (total) intersection number of 

dim(K)+dim(K') = dim(X) and 

if no confusion should 

K and K'. 

A" (X) will denote the intersection ring of X, graded by codimension. 

The class of a cycle K in A" (X) will be denoted by [K]. 

I~ X and X' are smooth projective varieties and f: X----+ X' is 

a morphism, f,: A'(X) > A'(X') and f*: A" (X') ,A" (X) will denote 

the usual push-forward and pull-back maps associated to f. 
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§i. Conics. 

We shall reserve the term conic to mean a curve of degree 2 in P2 

(the projective plane over the field C of complex numbers). As a reference 

for conics see [S-K ]. Here we recall a few basic facts for convenience of 

the reader. With respect to a projective system of coordinates ~o' gl' ~2 

of P2' a conic is given by an equation of the form 

(i) .~ aij $i ~j = 0, i,j=O,l,2, 
1,3 

where aij6 C, aij=aji, and not all aij vanish. The coefficients aij deter- 

mine the same conic as the coefficients b if and only if there exists x e C* 
U 

such that bij = xaij. In other words, the matrix A = (aij) is symmetric 

and determined up to a non-zero scalar factor by the conic; we will say that 

A is the conic matrix Therefore the set of conics is in a one-to-one 

correspondence with the projective space P5 associated to the vector space 

of symmetric 3x3 matrices. The projective structure induced on the set of conics 

via this correspondence is independent of the coordinate system. 

A linear system of conics is a linear subspace of P5" A pencil of conics 

is a l-dimensional linear system of conics. 

A conic (I) is irreducible (or non-degenerate ) if and only if det(a,,)~0. 
13 

An irreducible conic is smooth and rational (isomorphic to PI)' whereas 

a degenerate conic (i.e., a conic such that det(aij)=O) is a pair of lines 

(if rank (aij) = 2) or a double line (if rank(aij) = l). The equation 

det(aij) = 0 defines a cubic hypersurface DCPS, the hypersurface of dege- 

nerate conics. 

Let P2 denote the dual of P2' so that P2 is the projective plane of 

lines of P2 Then the image V of F2 in P5 by the Veronese map, 



which sends the line u: Uo~ ° + Ul~ 1 + u2~ 2 = 0 to the double line u2=0, 

is the Veronese surface in PS" As usual we will take (Uo,Ul,U 2) as projec- 
~v 

tive coordinates of u and will identify P2 to P2" 

We will set a.. to denote the cofactor of a in the matrix (a.). 
i ]  1.j i j  

Then ~..=0, 0_< i,j _< 2, are equations for V with its reduced structure 
I] 

(see [S], Ch. I, §g). Moreover, V is equal to the singular set of D, 

whereas D is the chord variety of V, as an elementary computation shows. 

By a conic envelope we will understand a conic in ~2" The 5-dimen- 

sional projective space of conic envelopes can be identified with PS' the 

dual of the P5 of conics, through the apolarity relation 

(2 )  ~ a . .  ~ . .  = 0 
• . I j  i ]  l , j  

between a conic and a conic envelope given by matrices (aij) and (~ij), 

respectively. Thus each conic envelope can be identified with the g-dimensional 

linear system of those conics which are apolar to it. If for instance the conic 

envelope is a pair of points P, Q, then the linear system of apolar conics 

to this pair is the set of conics that harmonically divide PQ and if the 

conic envelope is a double point P, then it is the system of conics that 

go through P. 

By f) we will denote the cubic hypersurface of P5 whose points are 

degenerate conic envelopes, and by 1} the Veronese surface of double points, 

so that V is the singular set of D and [) is the chord variety of I}. 

The dual of a non-degenerate conic is a non-degenerate envelope, and 

v v 

conversely. This gives an isomorphism P5-D ~, P5-D. If A is the matrix 

of a non-degenerate conic, then the associated conic envelope has matrix 

A -I, or, equivalently, the matrix A of cofactors of A. 



2. Complete conics 

The traditional point of view in projective geometry has been to consider 

the plane of points P2 and the plane of lines P2 simultaneously, and to 

think each as the dual of the other. It is in this sense that the classical 

geometers, when thinking of a (non-degenerate) conic, really understood it 

as a pair formed by the conic and its line envelope and regarded each of 

these as an aspect of the conic. 

In the non-degenerate case, the consideration of its conic evelope adds 

no information to the given conic. It is only when dealing with degenerate 

conics (usually considered as limits of non-degenerate ones) that the simulta- 

neous consideration of a point conic and one of its envelopes contains more 

information than the conic alone, as this does not determine uniquely the 

envelope nor conversely. Conics, when considered in this double aspect as 

locus of points and evelope of lines, are called, since Van der Waerden's 

work [W], complete conics. 

To give a precise definition, consider the duality isomorphism 

v v 

e: P5-D ~ ~P5-D which transforms a conic locus into its conic envelope. 

Set W to denote the clousure in P5 × P5 of the graph Wo of e . Then 

W is called the variety of complete conics. The elements of W ° are called 

non-degenerate complete conics; the elements of W-W are referred to as 
o 

degenerate complete conics. Let p: W '})5 be the restriction of the first 
v 

projection, and t: W 'P5 the restriction of the second projection. Then 

p-i (p5 t-i (P5 -B P5 -D Y5- , t :  W ~ , D ,  s o  -D) ) = W ° and P: Wo ' o 

that in particular p and t are birrational isomorphisms. For a given 

C6 W, we will say that p(C) is the conic locus of C and that t(C) is 

t he  con ic  envelope of C. 

v 

Since e : P5-D ~ P5-D can be viewed as the map which transforms 

a non-degenerate 3x3 symmetric matrix a=(aij) into the matrix a = (~ij) 



of cofactors of a, we see that a is actually regular on the open set 

Ps-V. In fact p: W--~ P5 can be identified with the blowing up of P5 

along V. Dually, t: W---~P5 can be identified with the blowing up of 

(the Veronese surface of double points). In particular W is a smooth irre- 

ducible projective variety. 

Let us denote aij the coordinates of PS' 

dual coordinates of 6 5 . Then the points of W 

eliminating p in the relation 

as before, and ~.. the Ij 

satisfy the equations got 

(i) (aij)(~ij) = pl, 

where I is the 3 × 3 identity matrix, or, in other words, the relations 

obtained setting the non diagonal entries of (aij)(aij) equal to zero and 

equating the three diagonal entries of the same matrix. In particular, for 

the degenerate complete conics ~=0, so that they satisfy the relation 

(aij)(~ij) = 0. These relations imply immediately the following statements: 

2.1. If the conic locus of a complete conic is a pair of (distinct) lines, then 

its conic envelope is the common point of the two lines, counted twice. 

Dually, if the conic envelope of a complete conic is a pair of (distinct) 

points, then its conic locus is the line joining the two points, counted 

twice. 

2.2. If the conic locus of a complete conic is a double line, then its conic 

envelope is a pair of points (not necessarily distinct) on the line. 

Dually, if the conic envelope of a complete conic is a double point, 

then its conic locus is a pair of lines (not necessarily distinct) through 

the point. 

Conversely we have the following statements: 

2.3. A pair consisting of a double line and a pair of points (possibly equal) 



on it is a complete (degenerate) conic. 

Dually, a pair consisting of a pair of lines (possibly equal) and a 

common point, counted twice, is a complete conic. 

P r o o f  

Let L be a line and P,Q E L. First assume that P~Q. In this 

case consider a pencil of conics bitangent at P and Q. Then {L,{P,Q }} 

belongs to the closure of the 1-dimensional rational family of non-degenerate 

conics in the pencil. If P=Q one uses a four point contact pencil with base 

point P and fixed tangent L. [] 

Actually it turns out that the relations before are equations for the sub- 

variety W of P5 × ~5" 

Now that we have described the degenerate complete conics we will fix 

some notation. Consider the map p: W ' P5' which we know to be the blowing 

up of P5 along the Veronese surface V of double lines. Thus we see that 

the points of p-l(v), the exceptional variety, are the complete conics consist- 

ing of a double line and a pair of points on it. We will set /~ = p-l(v). 

In a similar way, A:= t-l(v) is the exceptional variety of the blowing up 

t: W ' P5 of F5 along V. By the general properties of the blowing 

up, A and A are irreducible and smooth. Clearly, p(A) = D and t(A) = f), 

so that A and A are the strict transforms of D and [) under the 

blowing up maps p and t, respectively. 

In the sequel we will set B to denote the intersection of A and 

A. As we will see, B is irreducible and smooth. Moreover, A and /k 

meet transversally along B. This allows to distinguish the following three 

types of complete degenerate conics: 



Type A: The conics in A-B, i.e., two distinct hines with their common point 

counted twice. 

Type /~: The conics in ] ( - B ,  i . e . ,  a double line with two distinct points 

on it, usually called foci of the degenerate conic. 

Type B: The conics in B, i.e., a double line with a double point on it, 

called the double focus of the complete conic. 

Types A and A are dual of each other, while type B is seld-dual. 

2.4. Definitions 

Let C=(c,@) be a complete conic. Then we will say that C goes 

t h r o u g h  a g i v e n  p o i n t  P i f f  P EC;  t h a t  C is  t a n g e n t  to a l i n e  u ,  

i f f  u e ~; t h a t  C cu t s  on the  l i ne  u the  two p o i n t s  P, Q i f f  u n c  = 

{P ,Q] ;  t h a t  C h a s  t a n g e n t s  u,  v from a g i v e n  p o i n t  P,  i f f  

P * n  6 = { u , v } ,  w h e r e  P* is  the  p e n c i l  of l i n e s  g o i n g  t h r o u g h  P; t h a t  

C is apolar with a conic envelope c~ iff c and ~v are apolar; and 

that C is apolar with a conic locus c, iff ~ and 5 are apolar. 

Now le t  ( a i j )  be the  m a t r i x  of c a n d  ( a i j )  the  m a t r i x  of 6. 

Given a p o i n t  X a n d  a l i n e  u we wi l l  se t  (Xo ,Xl ,X  2) a n d  (Uo ,Ul ,U  2) 

to deno te  t h e i r  c o o r d i n a t e s .  Then two p o i n t s  X, X' a r e  s a i d  to be conjugate 

wi th  r e s p e c t  to C i f f  ~ a i j x i x i  = O, or  e q u i v a l e n t l y ,  i f f  the  p a i r  of p o i n t s  

t h a t  c c u t s  on the  l i n e  X X' h a r m o n i c a l l y  s e p a r a t e s  the  p a i r  X, X' ( in  

c a s e  X=X' t h i s  means  t h a t  c goes  t h r o u g h  X).  The p o i n t s  w h i c h  a r e  

c o n j u g a t e  of a n y  o t h e r  p o i n t  a r e  s a i d  to be double p o f n t s  of C; t h e y  

a r e  the  p o i n t s  s a t i s f y i n g  the  r e l a t i o n  ( X o , X i , X 2 ) ( a i j )  = (0,0,0). The se t  

of d o u b l e  p o i n t s  is  empty  if  C is  n o n - d e g e n e r a t e ,  is  r e d u c e d  to the  common 

p o i n t  of t he  two l i n e s  in  c a s e  of c o n i c s  of t y p e  A, a n d  c o i n c i d e s  wi th  the  

se t  of p o i n t s  on the  ( d o u b l e )  l i n e  for  con i c s  of t y p e  A or  B. 



Dually, two lines u,u' are said to be conjugate with respect to C 

iff ~. ~..u u'. = 0. This is equivalent to assert that the pair of tangents 1j 1 j  

to C from the common point of u and u' harmonically separates the 

pair u,u' (if u=u', this simply means that u is tangent to C). A line 

is said to be a double tangent if it is conjugate to any other line; they 

satisfy the relation (uo,ul,u2)(~ij) = 0. Thus the set of double tangents 

is empty if the conic is non-degenerate, is reduced to the (double) line in 

conics of type A, and is the pencil of lines through the double point in conics 

of types A and B. 
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(Uo,Ul,U 2) = (Xo,Xl,X2)(aij). This line is called the poTar 7ine of X with 

respect to C. Dually, if u is a line which is not a double tangent, then 

the lines u' which are conjugate to u with respect to C pass through 

a fix point X given by the relations (Xo,Xl,X 2) = (Uo,Ul,U2)(~ij). This 

point is called the poTe of u with respect to C. For double points (resp. 

lines) the notion of polar line (resp. pole) is not defined. 

Let X be a point which is not a double point of C, and let u 

be a line which is not a double tangent of C. Let u' and X' be the 
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each vertex which is not a double point of C is equal to the opposite side, and 

the pole of each line which is not a double tangent is equal to the opposite 



v e r t e x .  

The set of conic loci for which a given triangle ~ is self-polar are the 

points of a plane S in I> 5 . If the triangle is taken as a system of coordi- 

nates, then the equations of the plane are simply a.. = O, i~j. It is easy 
i] 

to see  t h a t  t he  c o m p l e t e  c o n i c s  w h i c h  a d m i t  t a s  a s e l f - p o l a r  t r i a n g l e  a r e  

t h e  p o i n t s  of a smooth  s u r f a c e  St in  W w h i c h  c o i n c i d e s  w i t h  t h e  b l o w i n g  

u p  of S t a t  the  t h r e e  p o i n t s  c o r r e s p o n d i n g  to t h e  t h r e e  s i d e s  of t h e  t r i a n g l e ,  

e a c h  c o u n t e d  t w i c e .  

The last observation can be used to show: 

2.5. Lemma 

The hypersurfaces A and /~ meet transversally along B. 

Proof 

Let C be an element of B, so that C consists of a line u and 

a point P, both counted twice. Choose any triangle T in P2 such that 

u is a side of • and P a vertex. Let St c W be the surface of 

complete conics for which T is self-polar. Then it is enough to see that AnSi 

a n d  A n S t  meet  t r a n s v e r s a l l y  a t  C. But t h i s  i s  c l e a r  if  one u s e s  t h e  

f a c t  t h a t  P: S t  *S  t i s  t he  b l o w i n g  up  of S T a t  t h r e e  p o i n t s .  

Remark 

In the sequel, unless otherwise stated, the elements of W will be 

referred to as conics, the elements of P5 as conic loci, and the elements 

of [D 5 as conic envelopes. 

§3. Systems of conics 

By a (l-dimensional) system of conics we will understand a reduced 
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c u r v e  r in  W such  t h a t  no componen t  of r i s  c o n t a i n e d  in  A or  A. The 

sys t em is s a i d  to be i r r e d u c i b l e  ( r e s p .  r a t i o n a l )  i f  r is  i r r e d u c i b l e  ( r e s p .  

r a t i o n a l ) .  

Let r be a sys t em of c o n i c s .  Then p ( r )  a n d  t ( r )  a r e  c u r v e s  in  

a n d  P 5 '  r e s p e c t i v e l y .  We wi l l  s a y  t h a t  p ( r )  is  the  sys t em of conic  P5 

loc i ,  a n d  t ( r  ) of conic  e n v e l o p e s ,  a s s o c i a t e d  to r .  Notice t h a t  s i n c e  

n e i t h e r  A nor  /~ c o n t a i n  componen t s  of r , bo th  p ( r )  a n d  t ( r )  h a v e  

the  same n u m b e r  of c o m p o n e n t s  as  r .  F u r t h e r m o r e ,  i f  r i s  i r r e d u c i b l e  

t h e n  p:  r - - p ( r )  a n d  t :  r , t ( r )  a r e  b i r r a t i o n a l  m o r p h i s m s .  

3 .1 .  D e f i n i t i o n  

The i n t e g e r s  

n u m b e r s  of  r .  

= deg p(r),  = deg t ( r )  w i l l  be c a l l e d  c h a r a c t e r i s t i c  

3.2. Proposition 

Let r be a sys t em of con ic s  a n d  le t  ( ~ , u )  be i t s  p a i r  of c h a r a c t e -  

r i s t i c  n u m b e r s .  Then I~ is  the  num b e r  of c o n i c s  in  r t h a t  p a s s  t h r o u g h  

a g e n e r i c  p o i n t  of P2" D u a l l y ,  ~ is  the  n u m b e r  of c o n i c s  in r wh ich  a r e  

t a n g e n t  to a g e n e r i c  l i ne  of P2" 

Proof  

The conic  loci  t h a t  go t h r o u g h  a p o i n t  P form a h y p e r p l a n e  H p in  

P S '  so t h a t  i f  Hp ~ r t hen  ~ is  the  n u m b e r  of c o n i c s  in r go ing  t h r o u g h  P, 

e a c h  c o u n t e d  wi th  a s u i t a b l e  m u l t i p l i c i t y .  T h e r e f o r e  i t  wi l l  be e n o u g h  to show 

t h a t  if  P is  g e n e r i c  in  P2 t h e n  Hp is  not  t a n g e n t  to p ( r ) .  Now the  

se t  of h y p e r p l a n e s  Hp is  the  Veronese  s u r f a c e  V c P S '  so t h a t  i f  fo l lows  

t h a t  i f  a l l  t h e s e  Hp a re  t a n g e n t  to 

r '  of p ( r )  such  t h a t  for  e a c h  p o i n t  

Hp t a n g e n t  to r '  a t  c .  Thus ,  i f  

l i ne  T to r '  a t  

h y p e r p l a n e s  of the  form 

p(r) then there exists a component 

c of r' there are 1 hyperplanes 

c is generic on r ', the tangent 

c, which is a pencil of conics, is contained in I 

Hp. This means that the r)encil T has infinitely 
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many base points, which is only possible if all conics in T, in particular 

c, are degenerate. But this implies that p(r) has a component whose points 

are all degenerate conics. Since this contradicts the definition of system of 

conics, the proof is complete. [] 

3.3 .  Remark 

It is clear that p also coincides with the number of conics in r that 

harmonically divide a pair of generic points, or that are apolar with a generic 

envelope. Dually, , is the number of conics in r whose tangents through 

a generic point harmonically divide a pair of generic lines through that point. 

In the case p=l (resp. ,=i) the system is called a penci7 of conics (resp. 

a range of conics). Both are irreducible and rational. 

By definition, in a system r of conics there are at most a finite 

number of degenerate conics. According to the classical view which regards 

degenerate conics as limits of non-degenerate ones (1) , we define a degeneration 

of  r a s  a b r a n c h  of  r c e n t e r e d  a t  a d e g e n e r a t e  c o n i c .  We w i l l  s a y  t h a t  

a d e g e n e r a t i o n  i s  of  t y p e  A, A o r  B a c c o r d i n g  to w h e t h e r  i t s  c e n t e r  i s  r e s -  

p e c t i v e l y  of  t y p e  A, A o r  B. 

3 . 4 .  D e f i n i t i o n  

Let ~ be  a d e g e n e r a t i o n  of a s y s t e m  r .  T h e n  t h e  l o c a l  c h a r a c t e r i s t i c  

numbers of ~, or of r at -(, are the pair of non-negative integers (m,n) 

defined as the intersection multiplicities of -( with A and A, respectively. 

We w i l l  a l s o  s a y  t h a t  m is  t h e  o r d e r  o f  ¥ a n d  n t h e  class o f  ~ . 

A b r a n c h  o f  r whose  c e n t e r  is  a n o n - d e g e n e r a t e  c o n i c  w i l l  be a s s i g n e d  o r d e r  

and class both equal to O. It is clear that a degeneration is of type A 

iff m=O and n >0; of type A iff m >0 and n=O; and of type B iff 

( i )  " I I  peut se trouver des figures qui ne soient pas des coniques, mals des l imites de c0Mques" 
([H1], p.6). 
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m > 0 and n > 0. 

3.5. Remark 

M : = (r.A) and N : = (r.A) are, respectively, the sum of the orders 

and classes of all degenerations of r . 

§4. Equat ions  of the degenera t ion  h y p e r su r f a c e s  

Let (Po,PI,P2; Q) be a projective system of coordinates and let U 2 

denote the open set in W of conics which are not tangent to u 2 : = PoP1 , 

It is clear that a conic is in U 2 iff ~22 ~ 0, so that we will also write 

U 2 = D(a22). Now any complete conic satisfies the relations (i) of 52 which 

imply the relations ~22aij = ~ija22, so that for conics in U 2 

aij = ~ 22 a22 

Since a =0 are equations for /~, it turns out that for any form F of degree 
i] 

2 in the aij the rational function a22/F is a local equation for A in the 

open set U2nD(F). On the other hand a22 vanishes on Lu2 : = W-U 2, 

the hypersurface of conics which are tangent to u 2. It follows that the di- 

visor of zeroes of a22 has A and Lu2 as its components, both counted 

once. L counts once because in a neighbourhood of a non-degenerate conic 
u 2 

a22 can be used, instead of ~22' as a local equation of Lu2 The hyper- 

surfaces A and W-U 2 have as intersection the variety of double lines with 

one of its foci on u 2. 

Suppose now that u is a line and that Po,PI,Q2 

points on u. Let C be a conic not going through 

be the points at which C meets u. Define the function 

are three dis t inc t  

P and let Z,Z '  
0 
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Y : Y(C) : = [(Po,Pl,Q2,Z)- (po,Pi,Q2,Z')] 2, 

where (a,b,c,d) means the cross ratio of a,b,c,d. Then one has: 

4. i. Proposition 

Y is rational function on W which is regular on the open set 

of con ics  not  go ing  t h r o u g h  Po" Moreover ,  i t  is  a l oca l  e q u a t i o n  of 

in  a n e i g h b o u r h o o d  of a n y  conic  not t h r o u g h  Po and  not t a n g e n t  to u.  

Proof  

We may choose a p r o j e c t i v e  sys tem of c o o r d i n a t e s  whose f i r s t  po in t s  a r e  

Po and  P1 and  such  t h a t  Q2 is the  p r o j e c t i o n  of the u n i t  po in t  Q on 

u from the  t h i r d  po in t  P2" Then the c o o r d i n a t e s  (Zo,Zl ,Z  2) of the  po in t s  

in which  C meets u a r e  those  s a t i s f y i n g  the  r e l a t i o n s  

2 2 
= 0, aooX ° + 2aolXoX 1 + allX 1 = O. X 2 

To say that C does not go through Po is equivalent to say that aoo~0. 

This implies that Xl~0 and so t = Xo/X 1 satisfies the quadratic equation 

t 2 aoo + 2aolt + all = 0. If tl,t 2 are the roots of this equation, then it 

is clear that 

Y(C) ( t l - t 2 ) 2  _2So I 2 
= = = -- ~ a 

O0 O0 

which is a rational function on W. The second statement of the proposition 

is a direct consequence of this expression of Y and the considerations at 

the beginning of this §. [] 

Dually, let P be a point in P2 and pick three distinct lines Uo,Ul,U 

through P. Given a conic C not tangent to u o, let v,v' be the 

tangents to C drawn from P. Define the function 

X = X(C) : = [(Uo,Ul,U,V)- (Uo,Ul,U,V')]2 



Then one has 
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4.1 ~- Proposition 

X is a rational function on W which is regular on the open set of 

conics which are not tangent to u o. Moreover, X is a local equation of 

A in a neighbourhood of any conic which is not tangent to u ° and does 

not go through P. 

4.2. Remarks 

(a) From the expression of Y obtained in the proof of proposition 4.1 it 

follows that its divisor of poles on W is twice the hypersurface of conics 

through Po' whereas its divisor of zeroes has two components, each counted 

once --A and the hypersurface of conics tangent to u. The points of indeter- 

minacy of Y are double lines which pass through Po and conics which 

are tangent to u at Po" Dually, the polar divisor of X is twice the 

hypersurface of conics tangent to u o, and its divisor of zeroes has two 

components, each counted once -- A and the hypersurface of conics going 

through P. The points where X is indeterminate are the conics which are 

tangent to u ° at P and the pairs of lines with its double point at P. 

(b) From propostions 4.1 and 4.1 ~ it turns out that X,Y are local equations 

of B in a neighbourhood of any conic which does not go through P or 

Po and is not tangent to u or u o. In particular, and for the sake of 

simplicity, in the sequel we take P=Po and U=Uo, in which case X,Y 

are local equations of A and A, respectively, in the neighbourhood of 

any conic which does not go through P and is not tangent to u. 

(c) Given P and u a change in the points of u used to define Y, 

or in the lines through P used to define X, only changes Y, or X, into 

~Y, or ~X, where ~(or ~) is a non-zero scalar. 
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We end this section stating a direct corollary of propositions ~.i and 

~ - 3 -  C o r o l l a r y  

Le t  C = C ( s )  b e  a p a r a m e t r i z a t i o n  of a d e g e n e r a t i o n  ~ of a s y s t e m  

of  c o n i c s  r . Le t  ( m , n )  be  t h e  p a i r  of c h a r a c t e r i s t i c  n u m b e r s  of ~. A s s u m e  

t h a t  C(O) i s  n o t  t a n g e n t  to  t h e  l i n e  u a n d  d o e s  n o t  go  t h r o u g h  t h e  p o i n t  

P u s e d  to  d e f i n e  X a n d  Y. T h e n  

o r d  o r d  [] m = r ~ L ~ s ~ j ,  n = A ~ t s j j .  
S S 

§5 .  C o n d i t i o n s  i m p o s e d  on  c o n i c s  

An effective codimension i cycle of W shall be called a condition of order 

i (imposed on conics). In this section we will deal with conditions of order 

i, i.e., effective divisors of W, which for simplicity will be called conditions. 

The first step will be to define local and global characteristic numbers for 

such conditions. 

Let us start recalling the structure of the group 

P5 is the blowing up of 

p*: Pic(P 5) , Pie(W) 

Pic (W). Since 

]P5 along the Veronese surface V and 

is a monomorphism, ~- [A] is infinite 

p: W 

: p-1(v), 

cyclic, and 

Pic(W) = p*Pic(P 5) • Z'[A] , 

where IX] denotes the class in Pie(W) of a divisor X ([ Hat], Ch. If, 

Ex. 8.5). Now Pic (P5) is infinite cyclic generated by a hyperplane, hence 

p*Pic(P 5) is infinite cyclic generated by the class L of the inverse image 

of a hyperplane. In the sequel, unless some confusion could arise, instead 

of denoting [X] the class of a divisor X we will write X for short. Some- 
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times it will be enough to comment whether a statement is to be considered 

as a cycle relation or a relation between cycle classes. In any event, X~Y 

will denote that X and Y are linearly equivalent, or, if Y is a class 

already, that X is in the class Y. 

The same argument applied to t: W ' ~5 shows that Pie(W) is 

as well a free abelian group with generators h and A, where L is the 

class of the inverse image under t of a hyperplane of ~5" 

5. i. Proposition 

In Pic (W) the following relations hold: 

A ~ 2 L - L ,  A ~ 2 L - L  . 

From this relations it follows that Pie(W) is free abelian on the generators 

L and L. 

P roof 

Since the hypersurface D c P5 of degenerate conic loci has degree 

3, p*(D) ~ 3L. On the other hand, since the strict transform of D under 

p is A and since Sing(D) = V, it turns out that p*D = A + 27% (this 

may also be directly verified). Thus A + 2A ~ 3L. Dually, 2A + A ~ 3L. 

From these the stated relations are easily deduced. [] 

5.2. Definition 

Given a condition 

s,8 will be called global 

K, if K ~ ~L+SL, e,Se 2Z, 

characteristic numbers, of K. 

t hen  the  i n t e g e r s  

5.3. Proposition 

Let K be an irreducible hypersurface of W and assume K~L+BL. 

Then if K~A (resp. K~A), deg p,(K) = ~+2B (resp. deg t,(K) = 2~+B). 
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Proof 

In fact p,(L) is the class of a hyperplane in P5 and p,(L) = 

= p,(2L-A) = 2p,(h). [] 

5.4. Examples of conditions 

(a) Conditions K~ L have global characteristic numbers (i,0). They will 

be called point-linear conditions. Among them we have the condition Lp 

of going through a point P, the condition of harmonically dividing a pair 

of points, or the condition of being apolar with a fixed envelope. 

(a) Conditions K~L have global characteristic numbers (0,i). They will 

be called tanEentialZy linear. Among them we have the condition Lu of being 

tangent to a line u. 

(b) A is the condition "to have a double point as envelope component"; 

its global characteristic numbers are (-1,2). 

(b) Dually, A is the condition "to have a double line as locus component"; 

its global characteristic numbers are (2,-1). 

5.5. Theorem (Chasles' formula) 

Let r be a system of conics and K a condition satisfied by finitely 

many conics of r . Let (~,~) and (~,S) be the global characteristic 

pairs of r and K, respectively. Then if we count each conic of r sa- 

tisfying K with its intersection multiplicity, the number N of such conics 

is given by the formula 

= a~ + B~) 

Proof 

By definition N = [r]. [K] and [K] = aL+BL, so that N= ~([r] .L) + 
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s ( [ r ] . L ) .  Bu t  [ r ] . L  = d e g  p ( r )  = ~ a n d  [ r ] ' L  = d e g  t ( r )  = ~ .  O 

5 . 6 .  C o r o l l a r y  ( H a l p h e n )  

Le t  M ( r e s p .  N) be  t h e  s u m  of  t h e  o r d e r s  ( r e s p .  c l a s s e s )  of  t h e  d e g e n e -  

r a t i o n s  o f  r • T h e n  

Hence 

M = 2g-v a n d  N = 2v-~ 

3u = 2M+N a n d  3 u  = 2N+M 

P r o o f  

I t  i s  e n o u g h  to o b s e r v e  t h a t  

f o r m u l a .  O 

M = (F 'A) ,  N = (r .A) and apply Chasles' 

5.7. Examples 

(a) Let r be the system of conics passing through four points in general 

linear position. Then ~=i because r is a pencil of conics. It is also clear 

that M=O. Therefore v=2 and N=3, so that there are two conics in r 

that are tangent to a line and three degenerate conics consisting each of a 

pair of lines. 

(a) Dually, for the range of conics r tangent to four lines in general 

linear position one obtains that ~=2, ~=i, M=3, and N=0. 

(b) Let r be a pencil of bitangen/ conics. Then 

teristic numbers (i,i). Therefore M=N=I, so thai r 

ation of type A and a single degeneration of type A. 

r has global charac- 

has a single degener- 

(c) Consider the system of conics passing through three given non-colinear 

points and which are tangent to a given general line. Then ~=2 by example 

(a). Moreover, since there are no degenerations of type A, M=0 so that 
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(~) Dually, the system of conics tangent to three non-concurrent lines and 

going through a general point has the following characteristic numbers: ~ =4, 

~=2, M=6 and N=0. 

§ 6.  Ac t ion  of t h e  p r o j e c t i v e  g r o u p  a n d  p r o p e r  s o l u t i o n s  
of a n  e n u m a r a t i v e  p r o b l e m  

Let G be the group of linear projective transformations of P2' G = 

PGL(P2). The group G acts on P2 and G ~ PGL(P 2) under this action. 

The elements of G will be called homographies. 

Since homographies transform conics in conics, G acts likewise on 

~5' and P5 x ~5" Under this last action G leaves invariant W, and P5' 

so G also acts on the variety of complete conics. As is well known, the 

orbits of G under its action on W are as follows: 

W ° = W-(AuA), the open set of non-degenerate conics; 

A-B, the locally closed set of degenerate conics of type A; 

A-B, the locally closed set of degenerate conics of type A; and 

B, the closed set of degenerate conics of type B. 

The action of G on W is essential for the distinction, according to 

Halphen's point of view, of proper solutions of an enumerative problem from 

improper ones. Actually, such a distinction and the consideration of only 

proper solutions in the computations are distinguishing features of Halphen's 

theory as compared with those preceeding it. Later on we will analyze more 

closely the differences between the theories of De Jonqui~res, Chasles, and 

Halphen, as well as the discordancies between their formulae. 
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6.1. Definition (Halphen) 

Let K be a condition and C 

satisfies K iff C satisfies K 

does not satisfy o(K). Equivalently, 

and not all points in the orbit of C under G satisfy 

a conic. We will say that C proper]y 

and there exists o E G such that C 

C properly satisfies K iff C elKl 

K. 

This definition calls for some comments. First of all notice that enumera- 

tive problems of conics are formulated in the frame of projective geometry 

(possibly using metric relations) and that they naturally undergo the action 

of G. This said, it is worthwhile to reflect on what the nature of conditions 

imposed to conics is. So far we have accepted to call (simple) conditions the 

hypersurfaces (or, more generally, the divisors) of W, without delving into 

the question of whether or not a relation of the form C e D really expresses 

a fact of a projective nature that may occur or not to C. From a purely 

projective point of view, to impose a condition to a conic means to force the 

conic to satisfy certain projectively invariant relation between the conic and 

some given configuration (the datum of the condition) in F~. With respect z 

to a projective system of coordinates, the verification of this relation will 

be translated by the vanishing of one or more (simultaneous) invariants of 

the conic and the datum. 

Now the point is that any condition in the former sense (i.e., a hyper- 

surface of W) may be considered in this way. In fact a system of bihomo- 

geneous equations Fr(aij'=i'j') = 0 can be understood as the expression 

of an invariant relation between a conic and the configuration of the elements 

of the system of projective coordinates. This relation may be intrinsically 

phrased in terms of cross ratios between elements of the conic and of the pro- 

jective system of coordinates. 

This understanding of conditions leads to the following view of the action 

of G on them. Let K be the condition which a conic C satisfies iff 
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c e r t a i n  p r o j e c t i v e l y  i n v a r i a n t  r e l a t i o n  R(C,F)  b e t w e e n  C a n d  a da tum 

F is v e r i f i e d .  The p r o j e c t i v e  i n v a r i a n c e  of R means  t h a t  R(C,F)  is  t r u e  

iff R(o(C),o(F)) is true for any o a G, and so o(K) is the condition 

obtained impossing that a conic is in the relation R to o(F), the transfor- 

med datum. 

We summarize this digression in three remarks. 

6.2. Remarks 

(a) The belonging of a conic C to a hypersurface K of W is a relation 

which is equivalent to a projectively invariant relation R(C,F) between the 

conic and a certain configuration F in the plane (which may be the coor- 

dinate system). 

(b) If K is interpreted in this way, then o(K) 

by demanding that a conic C' be in the relation 

o(F). 

is the condition given 

R to the configuration 

(c) The conics which improperly satisfy a condition K described by R(C,F) 

are the conics for which R(C,o(F)) holds for all o e G, i.e., for "any 

position of the datum". 

At this point one may ask for the existence of absolute conditions, i.e., 

conditions whose datum is empty. Clearly, these must be invariant hyper- 

surfaces under G, so that, by the description of the orbits of G on W, 

we have : 

6 .3 .  P r o p o s i t i o n  

The o n l y  i r r e d u c i b l e  a b s o l u t e  ( f i r s t  o r d e r )  c o n d i t i o n s  a r e  A a n d  A. [] 
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6.~.  Definition 

A c o n d i t i o n  K w i l l  be  s a i d  to b e  degeneration f r e e  

a r e  c o m p o n e n t s  o f  K. 

iff neither A nor 

This definition is relevant insofar as we are not interested here in 

enumerating how many degenerate conics a system has. For these conditions 

the improper solutions have a very simple characterization: 

6.5.  Proposition ( H a l p h e n )  

A c o n i c  C i m p r o p e r l y  s a t i s f i e s  

CeB a n d  KgB. 

a degeneration free condition K iff 

Proof 

If K is degeneration free, the only orbit under G that may be 

contained in K is B, so that from the last part of 6.1 the proof follows. [] 

Henceforth, and unless otherwise stated, we will deal only with degenera- 

tion free conditions. 

We end this section with a description of an example of Halphen which 

this author used [H.I] to reject Chasles' formulation. We will maintain his 

using of metric (euclidian) terminology, more expressive than the usual pro- 

jective phrasing that instead could be given. 

6 . 6 .  E x a m p l e  

Le t  P b e  a p o i n t  a n d  u a l i n e  i n  t h e  p l a n e .  G i v e n  a c o n i c  C,  

l e t  Y = Y(C) b e  t h e  s q u a r e  o f  t h e  l e n g t h  o f  t h e  s e g m e n t  t h a t  C c u t s  on  

u ,  a n d  X = X(C)  t h e  s q u a r e  o f  t h e  t a n g e n t  of  t h e  a n g l e  b e t w e e n  t h e  

t a n g e n t s  to  C d r a w n  f r o m  P .  C o n s i d e r  t h e  c o n d i t i o n  K d e f i n e d  b y  t h e  

relation Y = X. Then B c K and so Chasles' formula does not give the 
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K in  a g i v e n  s y s t e m  r if the l a t t e r  has 

§ 7. G e n e r i c i t y  of t he  d a t a  of c o n d i t i o n s  

In enumerative geometry problems one cannot hope for precise results, 

and still having reasonably simple solutions, unless one disregards a multitude 

of particular cases whose description is too cumbersome. This is usually done 

by assuming an hypothesis of generality for the data of the conditions. Often 

this generality of the data is handled by means of the following theorem. 

7.1. Theorem (Kleiman, [K.1]) 

Let U be an irreducible quasi-projective algebraic variety over C 

and assume that an algebraic group O acts transitively on U. Let VI,V 2 

be two equidimensional subvarieties of U. Then 

(a) There exists a non-empty open set G' 

is either empty or has pure dimension 

all o 6 G' and 

of G such that o(V l)n V 2 

dim V 1 + dim V 2 - dim U for 

(b) If V 1 and V 2 are smooth, then G' can be choosen in such a way 

that O(Vl)n V 2 is smooth. 

7.2. Corollary (Halphen [ H.I ], § 24) 

Let r be a system of conics and K a condition. For o generic 

in G, the conics in r which properly satisfy o(K) are non-degenerate, 

finite in number, and if K is reduced each appears with multiplicity 1 in 

the intersection o (K)n r . 
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P r o o f  

Since the first two assertions are satisfied for 

for Kre d, we may assume that K 

the orbits A-B, A-B, or B and set 

then by the theorem o(V l)n V2 = 

K iff they are satisfied 

itself is reduced. Let U be one of 

V 1 = Kn U, V 2 = r n U. If VI~U, 

for o • G generic, which implies that 

o(K)  e r d o e s  no t  c o n t a i n  c o n i c s  in  t h e  o r b i t  U. I f  V 1 : U t h e n  K ~  U 

a n d  t h i s  o n l y  c a n  h a p p e n  i f  U=B ( s i n c e  c o n d i t i o n s  a r e  a s s u m e d  to be  d e g e n e -  

ration free), in which case tile conics of B improperly satisfy 

so r does not contain conics of B which properly satisfy <~(K). 

for o • G generic the proper solutions of o(K) n z are in W o, 

of non-degenerate conics. This proves the first assertion. 

o(K) and 

Therefore 

the orbit 

Now take U = Wo, V 1 = Knu - Sing(K), V 2 = rn U - Sing(P). The 

theorem implies that for o • G generic O(Vl ) e V2 is a non-singular 0-dimen- 

sional variety. This implies that o(K) N r is finite (for oe G generic). 

To end the proof it is enough to show that o(K)NpnU _c o(VI) nv2 ' again 

for o generic. But this is seen applying Kleiman's theorem to the pairs 

(Sing(K)nU, r n U), (KnU, Sing(P)N U), where it says that for o e G 

g e n e r i c  S i n g ( o ( K ) ) C ~ r  n u  = ~ a n d  ~ ( K ) o  S i n g ( r ) N  U = ~ a n d  t h e  c l a i m  

follows. [] 

§ 8.  Loca]L c h a r a c t e r s  of  a c o n d i t i o n  

Let K be a condition on conics. We are going to define "local charac- 

teristic numbers" of K. In case K ~B, these numbers are defined to be 

zero. So assume K-m B and set ~= O~W,B , the local ring of W along 

B, and m = mw, B its maximal ideal. Let X,Y be the rational functions 

of W defined in ~. Then m = (X,Y), by propositions ,~.I and ~.i ~. Let 

fe (X,Y) be a local equation of K, i.e., (f) is the ideal I(K) of 

K in O~. 
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Let CY be the m-completion of £Y. Then there exists a Cohen subfield 

k of (7 such that k ~/m = CY/m = C(B), the field of rational functions 
o o 

of B, and such that the inclusion ko[X,y ] _c O" induces an isomorphism 

ko[X,Y ] ~, ~. Consequently we may write f as a formal power series 

f = ~ b..Xiy j 
i,jM t] 

with coefficients b..• k . Associated to this power series we may consider 
I] o 

the (Newton-Cram•r) set (or diagram) of points P. = (i,j •~2 such that 
ij 

b.. ~ O. Since f is not divisible by X or Y (because K is degenera- 
i] 

tion free), this set contains points on each coordinate axls. As usual, for 

the Newton-Cramer set thus defined we may consider its convex envelope E 

and the associated Newton-Cramer polygon. The sides of this polygon are the 

maximal segments contained in the boundary of E+(~+) 2. 

8. i. Definition 

A pair of positive integers (p,q) is said to be a pair of local 

characteristic numbers of K if p and q are coprime and there is a 

side S in the Newton-Cramer polygon whose slope is -q/p. The multiplicity 

of the pair (p,q) is defined as the positive integer r such that r+l 

is the number of points on S that have integer coordinates. Symbollically 

we are going to write r(p,q) to denote that (p,q) is a pair of local 

characteristic numbers of K with multiplicity r. 

It is easy to check that the Newton-Cramer polygon of K, and hence 

the local characteristic numbers, does not depend on the selection of the local 

equation f for K, of the local equations X and Y for A and A, 

nor of the Cohen field k . In fact the local characteristic numbers of K 
o 

are related to the structure of the singularity of K along B. More informa- 

tion on this aspect can be found in [C.I] or [C.2]. In any event, a 

proof in a broader context is given in § 18. 
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9. H a l p h e n ' s  f i r s t  f o r m u l a  

9 .1 .  D e f i n i t i o n  

Let F be a sys t em a n d  

c o n i c s  in  r s a t i s f y  K. 

e '  = i c ( o ( K ) . r ) ,  o • G g e n e r i c .  

section multiplicity of K and 

n e c e s a r y  a n d  s u f f i c i e n t  t h a t  C 

to s a y ,  t h a t  C he a p o i n t  in  

by 6.5, that C~ B and KD B. 

K a c o n d i t i o n  such  t h a t  on]y  f i n i t e l y  many  

Given a conic  C, se t  e = i c ( K . F )  a n d  

Then 

F at 

is in 

I" 

e' will be called improper inter- 

C. For e' to be positive it is 

o(K) n r for all o • G, that is 

that improperly satisfies K, and hence, 

The difference e-e', which is non-negative, will be called proper inter- 

section multiplicity of K a n d  r a t  C. We wi l l  w r i t e  P c ( K . r )  to deno te  

i t .  Thus  we h a v e  t h a t  P c ( K . r )  = i c ( K . r )  u n l e s s  C e B  a n d  K D B ,  in  w h i c h  

c a s e  0~< P c ( K . F ) <  i c ( K . r ) .  However ,  even  in t h i s  c a s e ,  P c ( K . r )  may be 

p o s i t i v e  (see  e x a m p l e  9 . 3 ) .  

The sum of all proper multiplicities will be denoted 

sum of all improper multiplicities imp(K, r). Clearly 

= (K.r), the total intersection number. 

p ( K . F ) ,  and  the  

p ( K . r ) + i m p ( K . r )  = 

The goal in this section is to give an expression of p(K.r) in terms 

of the characteristic numbers of K and ~. This is done in the theorem 

that follows. 

9.2. Theorem (Halphen's first formula) 

Let r be a system of conics and let (~,v) be its glcbal characteris- 

tic numbers, "rl,...,'f h its degenerations, and mi,n i the zrder and class 

of Yi' i=l,...,h. Let K be a condition with global characteristic numbers 

(a,B) and local characteristic numbers rj(pj,qj), j=l ..... h' Assume that 

only finitely many conics of r satisfy K (i.e., that K does not contain 

any component of r ). Then 
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p(K.r) = a~+B~ - ~, rj min(miqj,niP j) . 
I,] 

R e m a r k s  

(a)  Given K a n d  r t h e r e  i s ,  by  7 .2 ,  a n o n - e m p t y  open  se t  G' c G such  

t h a t  o(K) n r is f i n i t e  for  a n y  ~ •  G. Theorem 9.2 t h e n  a p p l i e s  to ~(K) 

and r, so all conics in o(K) n (r-B) are non-degenerate and, if K is 

reduced, counted once in the intersection. Furthermore, by the definition of 

improper intersection number the open set O' may be chosen in such a way 

t h a t  p c ( o ( K ) . r )  = 0 for  e v e r y  C •  r n B .  It  fo l lows  t h a t  p ( o ( K ) . r )  is  

the  n u m b e r  of d i s t i n c t  n o n - d e g e n e r a t e  con i c s  w h i c h  s a t i s f y  o (K) ,  for  a n y  

• G ' ,  i . e . ,  the  f o rmu la  g i v e s  the  n u m b e r  of d i s t i n c t  n o n - d e g e n e r a t e  c o n i c s  

in  r w h i c h  p r o p e r l y  s a t i s f y  a r e d u c e d  c o n d i t i o n  whose  da tum is g e n e r i c a l l y  

c h o s e n .  

(b)  C h a s l e s '  f o rmula  g i v e s  the  number  of p r o p e r  s o l u t i o n s  e i t h e r  i f  r does  

not  h a v e  d e g e n e r a t i o n s  of t y p e  B or if  B {  K. O t h e r w i s e  i t  g i v e s  a n u m b e r  

g r e a t e r  t h a n  H a l p h e n ' s .  

P roof  of 9 . 2 .  

By the  d e f i n i t i o n s  

l a t t e r  by  C h a s l e s '  f o r m u l a .  Now s i n c e  a b r a n c h  

c o n t r i b u t e s  to i m p ( K . r  

p r o v e  t h a t  

as  i c ( o ( K ) . r ) ,  o • G 

p ( K . r )  = ( K . r ) - i m p ( K . r )  = ~ + ~ v - i m p ( K . r ) ,  the  

y of r c e n t e r e d  a t  C 

g e n e r i c ,  i t  i s  e n o u g h  to 

~C(O(K). "0 = ~  rj  m i n ( m q j , n p j ) ,  
] 

are the order and class of y. This will be done by 

o• G generic, which is clearly equal 

where m and n 

actually computing to(c) (K. 0(3,)) for 

to ic(~(K).y) for o •G generic. 

Using the notations explained in 

b . . e k  c ~Y 
1] o 

§8, 

in the power series expansion of 

we see that the coefficients 

f can be approximated, up 
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to  a n y  p r e a s s i g n e d  o r d e r ,  b y  e l e m e n t s  of  (Y. T h u s ,  i f  we l e t  s be  a n  

i n t e g e r  s u c h  t h a t  s >~(K. r )  a n d  s > i+j fo r  a n y  p o i n t  ( i , j )  in  t h e  N e w t o n -  

Cramer polygon of f, 

b!.-b.. • mS+i(~, so that 
I j  I j  

then there exist elements b !  • £Y such t h a t  
1] 

Z b 7-xiYj - f • mS+l~A (Y= mS+l 
i,j >i l] 
i+j ~<s 

(we t a k e  b ! .  = 0 i f  b . .  = 0 ) .  S i n c e  b .  i s  i n v e r t i b l e  i f  i t  i s  n o n - z e r o ,  i t  t j  i j  I j  

' b i j ~ 0  , t u r n s  ou t  t h a t  b t j  i s  a l s o  i n v e r t i b l e  w h e n  a n d  so t h e  N e w t o n - C r a m e r  

p o l y g o n  a s s o c i a t e d  to ~ . b ! . X i y  j c o i n c i d e s  w i t h  t h e  N e w t o n - C r a m e r  p o l y g o n  of  1j 

f .  

c B be  a n o n - e m p t y  o p e n  s e t  o f  B s u c h  t h a t  Let  B ° _ 

( a )  The  f u n c t i o n s  X , Y , f ,  a n d  b ! .  a r e  r e g u l a r  on  Bo; 1J 

(b )  Fo r  e a c h  C •  B o,  X, Y, a n d  f r e s p e c t i v e l y  g e n e r a t e ,  i n  (TW, C , t h e  

i d e a l s  o f  A, ~ ,  a n d  K; a n d  

(c) b!. is either identically zero or everywhere non-zero on B (this can 
tj o 

be accomplished because b:. • (Y* if b.. ~ 0). ij ij 

I n  t h e  c o m p u t a t i o n  of  i ( c ) ( K . o ( ~ ) ) ,  o • G  g e n e r i c ,  t h e  c o n i c  D = o ( C )  

b e l o n g s  to B o.  Let  ~D = (YW,D' so t h a t  UD _c (y a n d  m n £YD ~ mD' t h e  

m a x i m a l  i d e a l  o f  ( Y D "  S i n c e  X , Y , f ,  b'..1]• (Y D, we a c t u a l l y  h a v e  t h a t  

b~.Xiy j _ f • m~ +I 
i,j~l i j  
i+j4s 

a n d  s i n c e  i D ( K . o ( y ) )  = o r d o ( T ) ( f )  ¢ ( K . r )  ~ s ,  i t  t u r n s  o u t  t h a t  

i D ( K . o ( - ( ) )  = o r d a ( y ) ( f ' ) ,  w h e r e  f '  ~ .  b ' . . x i y  j 
i + j ~ s  13 

Let  t be  a p a r a m e t e r  fo r  t h e  b r a n c h  o ( ~ ) ,  a n d  s e t  ~ = ~ ( t )  to  
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denote the restriction of an element ~ e O~ D to o(x). Then 

are power series in t of orders n and m, respectively. 

assume that 

~. = t n + ... , = ct m + • • . , 

where 

We will set c = c(o(¥)) 

o(x). Then the contribution in 

power series in t of the form 

b' (C) c j t ni+mj + ... 
U 

Now our task will be first to compute ~ = min(ni+mj), 

that b ~ 0, and then show that the coefficient of t ~ 
13 

so that we will have iD(K.o(¥))_ = ordtf' = ~. 

cj0 and where ... stands for higher order terms. 

if we need to stress that c 

f '  of  a m o n o m i a l  b ' . . x i y  j ,  1j 

in 

and 

Hence we may 

depends on 

blj~O, is  a 

for all i,j such 

f' is non-zero, 

For the computation of ~, notice that we only need take into account 

the points (i,j) on the Newton-Cramer polygon. We will assume that the 

sides of this polygon are indexed successively starting with the side which 

has a vertex (say (a,0)) on the X-axis. With this convention a point on the 

i-th side of the polygon can be expressed as 

(a,O) + rl(-pl,ql) + ... + ri_l(-Pi_l,qi_ I) + r(-pi,qi) , 

O~r~<r.. 
1 

exponent of 

This point thas integer coordinates when r itself is an integer. The 

t corresponding to such a point is 

~' = (a -rlP 1 - ... - rPi)n + (rlq I + ... + rqi)m = 

= an + rl(-Pln+qlm) + ... + ri_l(-Pi_in+qi_im)+r(-Pin+qim). 

Because of the way the sides of the polygon have been indexed we have that 

the quotients qi/Pi increase with i, so that there exists j such that: 
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qj/pj < n/m 4 qj+I/Pj+l 

(we set j=O if n/m < ql/Pl , and j=h' if qh,/Ph, < n/m. Then we see that 

-pi n + qi m 

< 0 for i ~ j 

> 0 for i > j 

and hence ~' will be minimum only when i-l=j and r=O if n/m < qj+i/Pj+l 

(i.e., the minimum is taken exactly at a vertex of the polygon), or when 

i-l=j and for any r such that O< r~< rj+ 1 if n/m = qj+i/Pj+l (i.e., 

the minimum is taken at all points that lie on the (j+l)-th side of the 

polygon). In any case the minimum we are seeking is 

= (rlql+...+rjqj)m + (a-rlPl--..-rjPj)n = 

= (rlql+...+rjqj)m + (rj+iPj+l+...+rh,'Ph,)n = 

= ~ r i min(mqi,nP i) 

The proof of the theorem will be completed if we show that the coefficient 

of t ~ in f is non-zero. Notice that this is automatically true if 

n/m < qj+i/Pj+l . If n/m = qj+i/Pj+l , then the coefficient of t ~ has the form 

g(c), where g is a non-zero polynomial which only depends on y, and not 

on o • Since g has only a finite number of roots, it will be enough to 

show that there are elements ~EG leaving D fixedand such that c(To(¥)) 

is not a root of g. This will be done by seeing that c(~o(¥)) takes infini- 

tely many values as a function of T, T leaving D fixed. 

Indeed, let P and u be the point and the line used to define X 

and Y (see §~). Let ~ be the homology-with center at P, axis the 

2 
line v such that v is the point component of D, and modulus ze C*. 

Then it is clear that ~(D) = D. Since • leaves invariant the lines 

through P, Xo~ = X. However, Yoz = zY, as one sees considering the 

restriction of T to u. Thus, for such a T, c(~o(¥)) = zc(o(~)). [] 



9.3. Example 

We construct a condition K, 

Ce B, K DB, and Pc(K.F) = i. 

Let Po,PI,P2, U 

and Qt=(l,0,t), t~O. 

and let 

H e r e  Y ,X  

where R,R' 

30 

a system r and a conic C such that 

be a projective system of coordinates. Let U'=(I,I,O) 

Now let r be the pencil of conics 

2 
C X: x(X2o-2X1X2 ) + X 2 

K b e  t h e  c o n d i t i o n  d e f i n e d  b y  

K t :  Y = y 2 + x  . 

a r e  d e f i n e d  a s  f o l l o w s :  

Y = Y ( C )  = [ ( P 2 , P o , Q t , R ) - ( P 2 , P o , Q t , R ' ) ]  2 , 

a r e  t h e  p o i n t s  w h e r e  C i n t e r s e c t s  t h e  l i n e  P o P 2  , a n d  

2 
X = X ( C )  = . [ ( U l , U o , U ' , V ) - ( U l , U o , U ' , V ' ) ]  , 

where 

and u' =P2 U' . 

The system F has the conic 

as a degeneration of type B. Let C 

and X(C x) = 4~, as one easily computes, then 

in ~ of the polynomial 

~t  4 X(4x+tA_t2). 

v,v' are the tangents to C drawn from P2 and Ul=P2Po , Uo=P2P I, 

X • = O ,  with PI as a double focus, 

denote this conic. Since Y(C x) = 4X/t 2 

ic(K.r) is the multiplicity 

For t= +-i, this multiplicty is i, while for t=+l it is equal to 2. Since 

clearly all the conditions K t are in the same orbit we see that for t=+l 

imPc(Kt.r) = i and Pc(Kt.r) = i. [] 
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§ 10. C o m p u t a t i o n  of c h a r a c t e r i s t i c  n u m b e r s  

In  t h i s  s e c t i o n  we e s t a b l i s h  a me thod  for  d e t e r m i n i n g  t h e  ( l o c a l  a n d  

g l o b a l )  c h a r a c t e r i s t i c  n u m b e r s  of a c o n d i t i o n .  Th i s  i s  done  b y  i n t e r s e c t i n g  

t he  c o n d i t i o n  w i t h  a s u i t a b l e  s u r f a c e  a n d  by  r e l a t i n g  t he  c h a r a c t e r i s t i c  

n u m b e r s  to n u m e r i c a l  c h a r a c t e r s  of t he  i n t e r s e c t i o n  c u r v e .  

10 .1 .  Lemma 

Given  a c o n d i t i o n  K, t h e r e  e x i s t s  a n o n - e m p t y  open  se t  BoC-B s u c h  

that if S is an irreducible surface cutting B transversally at C• B 
o 

then the restrictions X and ? of X and Y to S, respectively, form 

a s y s t e m  of p a r a m e t e r s  for  S in  a n e i g h b o u r h o o d  of C. F u r t h e r m o r e ,  i f  

S ~  K t h e n  t he  N e w t o n - C r a m e r  p o l y g o n  of t h e  c u r v e  K n  S w i t h  r e s p e c t  to 

t he  p a r a m e t e r s  X,~r c o i n c i d e s  w i t h  the  N e w t o n - C r a m e r  p o l y g o n  of K. 

Proof 

With the same notations as in the proof of 9.2, given C e B 
o 

exists b'ij ~ 0"  C s u c h  t h a t  t he  N e w t o n - C r a m e r  p o l y g o n  of 

b ? X i y  j 
i+ j4s  t j  

t h e r e  

coincides with the Newton-Cramer polygon of K. Moreover, 

f - ~. b'..xiy j e mc +I 
i+ j<s  l] 

a n d  b~j~O if  b i j / O .  Now t he  t r a n s v e r s a l i t y  c o n d i t i o n  i m p l i e s  t h a t  X,Y g e -  

n e r a t e  t he  m a x i m a l  i d e a l  rn C of (Y5,C' a n d  so we h a v e  

- s+l  
T -  E 5 ' , -xi~j  • m C , 

i+j.<s 1] 

where for an element hE (YC' h denotes its restriction to S. From this re- 

lation the last part of the statement follows immediately. [B 
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10.2. Corollary 

The local characteristic numbers of degeneration free conditions are 

additive. 

Proof 

Lemma i0.i allows us to deal with locally plane curves instead of condi- 

tions (not necessarily reduced). Now for locally plane curves it is well known 

(cf. [Wal]) that the negative slopes of the sides of the Newton-Cramer polygon 

are the first exponents in the Puiseux series of the branches of the curve 

and that the sum of the orders of the branches corresponding to a given side 

is the number of integral points on that side decreased by 1 from what the 

additivity for curves is clear. 

To describe the particular surface S which will be used, fix a triangle 

T in P2 and set x i, u i, i=0,I,2, to denote its vertexes and sides, respec- 

tively, with u i the side opposite x i. Let S=S T be the surface in W of 

all conics for which T is a self-polar triangle. If we take T as a projec- 

tive system of coordinates then the conics C=(c,c') of S T are precisely 

those for which the matrices of c and c' are diagonal. 

2 
Let us denote by u i the point conic consisting of the line u i counted 

twice and by x 2 the envelope consisting of the pencil of lines through x. 
i 1 

counted twice. Then p(S T) is a plane in ID 5 and p: S T ~ p(S T) is 

the blowing up of p($T ) at the points u 2, u 2, and u 2. Similarly, t(S T) 

is a plane in ~5 and t: S T ~ t(S T) is the blowing up of t(S T) at the 

2 x~, and x~. Equivalently S T is the graph of the quadratic points x ° , 

Cremona transformation p($T ) ' * t($ T) whose fundamental triangles are 

(u 2 2 2 
Ul,U 2) in p(S T) and (x 2 2 2 ,Xl,X 2) in t(ST). o' 

The intersection ST n A consists of the three mutually disjoint pencils 

H i , i=0,i,2, defined as follows: H i is the pencil of pairs of lines that 

have x i as a double point and harmonically divide the pair of lines (uj,uj,) 
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going through x i. Each of these pencils has multiplicity one in the intersec- 

tion -- notice that p(A) = D and p(S T) are respectively a cubic hyper- 

surface and a plane in P 
5" 

Dually, the intersection ST n A consists of three disjoint ranges Hi' 

2 i=0,i,2, where the conics in I~ have u as point component and two 
1 1 

points on u i harmonically dividing the two vertexes of T on u i as line 

component. The multiplicity of Hi in S T n A is one. 

Each pencil H i meets precisely two Hi's, and conversely, each Hi 

meets two H 's. In fact if (i,j,k) is a permutation of (1,2,3), then 
] 

H i intersects Hj and Hk but not ~li, and Hi intersects Hj and Hk, 

but not H i . If for i~j we let Ci] denote the conic (u~,xiZ), then 

Irl i n Hj = { Cij }. From this it follows that 5 T n B consists of the six conics 

C and each of them has multiplicity one in this intersection. 
13 

Let K be a reduced {degeneration free) condition. Let (~,B) and 

ri(Pi,qi), i=l,...,s, denote the global and local characteristic numbers of 

K, respectively. Given a triangle T = {Xo,Xl,X2} in P2 we will as before 

denote by Uo,Ul,U 2 the sides of T, with the convention that xi~ u i. 

We choose such a triangle T in such a way that the conics Cij = {u2,x 2} 

belong to the open set B ° of lemma I0.i and that S T ~ K is a reduced 

2 2 
curve. Let T be the triangle of P5 whose vertexes are U2o, Ul,U 2, so 

that the plane that T determines consists of the point conics which have 

T as a self-polar triangle, i.e., T=p(ST). With these notations we have: 

10.3. Theorem 

The conic locus componenets of the conics in S T that satisfy 

a curve K' in the plane of 7" which has the following properties: 

(a) 

(b) 

(c) 

K form 

deg K' = ~+28 ; 

The vertexes of 7~ are points of multiplicity ~ on K'; and 

Given a vertex of ~ and a side concurring in it, for each branch 
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T of K' with center at the vertex and tangent to the given side there exist 

a unique i such that ordy = ~Pi' class "r = gqi' g a positive integer. 

Moreover, ~ ~=ri, where the sum ranges over all such branches with 

fixed i. 

Proof 

Let S = S T c W be the surface of conics which have T as a self-polar 

triangle and set K = KN S. We will analyze the behaviour of K in the 

neighbourhood of Col. If X and Y denote the restrictions of X and 

Y to S ( n o t a t i o n s  of lemma 10.1) ,  then  X is a loca l  e q u a t i o n  of H1 

and Y of H o, both at Col. By lemma i0.i, for each branch ~ of 

at  Col the re  ex i s t s  a u n i q u e  i ,  1 .< i ~ s,  such t h a t  the p a r a m e t r i c  

e q u a t i o n s  of ~ a re  of the  form 

= xgPif (x) ,  ? = x~qig(x) ,  f(O) ~ O, g(O) ~ 0 

Moreover, ~£ = r i, where the sum ranges to all such branches ~ with 

i fixed. On the other hand, by Chasles' theorem 5.5 the intersection number 

of K with H 1 and Ho are, respectively, ~ and g. Now K' = p(K), 

2 
p(I~ o) = U2o , and since p is, locally at u 2, the blowing up of u o, 

we see that K' has multiplicity ~ at u 2. Furthermore, the correspondence 
o 

~ I ~ 'r=p(~) establishes a bijection between the branches ~ of K at 

2 which are tangent to p(H I) one Col and the branches of K' at u ° ~ , 

of the sides of ~ going through u 2 (the other side is P(H2)). Now if 
o 

~ is the branch given by the equations above, then 'r is a branch of order 

~Pi and its intersection multiplicity with p(H I) is ~(pi+qi ), so that its 

class is Ic qi" Moreover, the order of K' is a +2 6, because 

K' = p(K)n p(S T) is a plane section of p(K). The proof of the theorem 

is complete if we take into account that the same analysis that we have 

applied to Col works for any Cij, i~j. [] 
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10.4. Corollary 

If K is a degeneration free condition with global characteristic numbers 

(a,fl) and local characteristic numbers ri(pi,qi), i=l ..... s, then 

a ~ 2Zriq i, g ~ 2ZriP i. 

P r o o f  

a s  in  t h e  t h e o r e m ,  n o t i c e  t h a t  t h e  i n t e r s e c t i o n  n u m b e r  of 

i s  ~+2B, a n d  h e n c e  

By 10.2 we may assume that K is irreducible. With the same notations 

p(H 1 ) with K' 

~+2~ ~ i 2(P(HI).K') + i 2(P(HI).K') 

u o u 2 

But by the theorem both summands are = B +~riq i. The second inequality 

can be seen either by duality or else by noticing that since B is the multi- 

plicity of K' at the vertex it cannot be greater than the sum of the orders 

of the branches of K' centered at u 2. [] 
o 

§ 11. Examples 

Ii.I. (The conditions S ) 
P,q 

Let X and Y be functions defined as at the end of §4, say by 

means of a line u and a point P, P ~ u. For any non-zero polynomial 

Q(X,Y), the relation Q(X,Y) = 0 determines a hypersurface in the open 

set of conics that do not pass through P and are not tangent to u. We 

will set KQ to denote the clousure of such a hypersurface. 

To get some intuitive feeling for this type of hypersurfaces recall that 

in Euclidean terms the function X is the square of the lenghth of the segment 

cut out on u by a conic and that Y is the square of the tangent of the 

angle between the tangents to a conic drawn from P. 



35 

10.4. Corollary 

If K is a degeneration free condition with global characteristic numbers 

(a,fl) and local characteristic numbers ri(pi,qi), i=l ..... s, then 

a ~ 2Zriq i, g ~ 2ZriP i. 

P r o o f  

a s  in  t h e  t h e o r e m ,  n o t i c e  t h a t  t h e  i n t e r s e c t i o n  n u m b e r  of 

i s  ~+2B, a n d  h e n c e  

By 10.2 we may assume that K is irreducible. With the same notations 

p(H 1 ) with K' 

~+2~ ~ i 2(P(HI).K') + i 2(P(HI).K') 

u o u 2 

But by the theorem both summands are = B +~riq i. The second inequality 

can be seen either by duality or else by noticing that since B is the multi- 

plicity of K' at the vertex it cannot be greater than the sum of the orders 

of the branches of K' centered at u 2. [] 
o 

§ 11. Examples 

Ii.I. (The conditions S ) 
P,q 

Let X and Y be functions defined as at the end of §4, say by 

means of a line u and a point P, P ~ u. For any non-zero polynomial 

Q(X,Y), the relation Q(X,Y) = 0 determines a hypersurface in the open 

set of conics that do not pass through P and are not tangent to u. We 

will set KQ to denote the clousure of such a hypersurface. 

To get some intuitive feeling for this type of hypersurfaces recall that 

in Euclidean terms the function X is the square of the lenghth of the segment 

cut out on u by a conic and that Y is the square of the tangent of the 

angle between the tangents to a conic drawn from P. 



36 

The l o c a l  c h a r a c t e r i s t i c  n u m b e r s  of 

t he  N e w t o n - C r a m e r  p o l y g o n  of Q, i n a s m u c h  as  Q(X,Y) 

of KQ a t  t he  g e n e r i c  p o i n t  of B. 

In  p a r t i c u l a r ,  se t  

Q(X,Y) xxP-Y q, w h e r e  

KQ c a n  be  o b t a i n e d  d i r e c t l y  from 

is  a l o c a l  e q u a t i o n  

S to d e n o t e  t h e  c o n d i t i o n  
P , q  

p , q  a r e  c o p r i m e  p o s i t i v e  i n t e g e r s  a n d  x i s  a n o n -  

KQ o b t a i n e d  t a k i n g  

ze ro  complex  n u m b e r .  Then  i t  is  c l e a r  t h a t  S h a s  a s i n g l e  p a i r  of l o c a l  
P , q  

c h a r a c t e r i s t i c  n u m b e r s ,  n a m e l y  ( p , q ) .  

n u m b e r s  a r e  g i v e n  by  ~.=2q, B =2p. 

description of X and Y in § 4, 

in § 10. 

Moreover ,  i t s  g l o b a l  c h a r a c t e r i s t i c  

T h i s  c a n  be  s e e n  d i r e c t l y  u s i n g  the  

or  b y  m e a n s  of t he  me thod  d e s c r i b e d  

In  f a c t  i f  P o , P 1 , P 2 ,  Q is  a p r o j e c t i v e  s y s t e m  of c o o r d i n a t e s  a n d  

Uo,Ul,U2, v i s  t he  d u a l  s y s t e m ,  l e t  Q2 be  t he  p r o j e c t i o n  of Q on u 2 

f rom P2 '  a n d  l e t  v ° be  t he  l i n e  c o n s t r u c t e d  as  Q2 b u t  d u a l l y ,  u s i n g  

Po a n d  u ° ( see  f i g u r e ) .  

U 0 

e, 

Then if we use u 2 and the points Po,PI, 

( see  t he  p r o o f  of 4 . 3 ) .  

t h e n  

and Q2 to define Y we get 

Y(C) = 4 a22/a2o 

If we define X dually, with respect to Po,U2,Ul,Vo 
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- 2 

X(C) = g aoo/~22 

From these expressions it is easy to see that the hypersurface 

defined by means of X and Y is given by the bihomogeneous equation 

S 
P,q 

x a q a 2p a2q~p 
22 22 = oo oo 

This shows that S lies in the linear pencil generated by the (linearly 
P,q 

equivalent) divisors qA+(2p+q)Lu2 and pA+(p+2q)LPo. In particular the 

global characteristic numbers of S are (2q,2p). 
P,q 

11.2. Pr o po s i t i on  

The conditions 

s s 
>- 2 Y. r i q i ,  B >/ 2 Y. r ip  i 

i=l  i=1 

are necessary and sufficient in order that it exists a degeneration free condi- 

tion whose global and local characteristic numbers are, respectively, (a,B) 

and ri(Pi,qi) , i=l ..... s. 

Proof 

The conditions are necessary by corollary 10.g. To see that they are 

sufficient, let 

K = 

s s s 

Y riS + (~-2~. riqi)L + (~-2~ riqi)h 
i=l Pi'qi i=l i=l 

Then K is effective and degeneration free, and by corollary 10.2 its global 

and local characteristic numbers are, respectively, (~,B) and ri(Pi,qi), 

i=l,...,s. [] 

We proceed with the examples. 

11.3. (Conditions expressing a relation to a fixed conic) 

Let C and C' be conics with matrices ((aij),(aij)) and ((bij),(Bij)), 
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respectively. As usual we will denote by a, @, ®', and 6' the funda- 

mental invariants of C and C', so that 

d e t ( x ( a i j )  + ~ b i j ) )  = Ax 3 + @x2~ + @'x~ 2 + ~x' 3. 

In the special case that (aij) is a diagonal matrix, say diag(ao,al,a2) 

(so that the triangle of reference T is self-polar with respect to C), 

(*) 

= a o a l a  2 

@ = b o o a l a  2 + b l l a o a  2 + b22aoa 1 

@'= aoBoo + a l B l l  + a2B22 

A'= d e t ( b i j )  

These expressions are useful because if K is the condition that a conic 

C satisfies a relation to a fix conic C' expressed as a polynomial relation 

(** )  Q ( A , @ , ® ' , a ' )  = 0 

between the fundamental invariants of the pair 

of the curve p(K n S T) is obtained substituting 

the expressions (*). 

C , C ' ,  t h e n  the  e q u a t i o n  

A,®,@', A' in (**) for 

Here are a few examples (cf. [S-K], Ch. Vlll, 3): 

(K 1) The c o n d i t i o n  t h a t  a conic  C is t r i a n g u l a r l y  c i r c u m s c r i b e d  to a conic  

C' is  e x p r e s s e d  by  the  r e l a t i o n  

@ '2 - ~a '® = O. 

Af te r  p e r f o r m i n g  the  a b o v e  s u b s t i t u t i o n  one g e t s  a conic  in t he  p l a n e  

p(S T) t h a t  does  not  go t h r o u g h  the  v e r t e x e s  of ~ ( n o t a t i o n s  as  in  

theorem 10,3) ,  T h e r e f o r e  a=2,  f l=O a n d  t h e r e  a r e  no l o c a l  c h a r a c t e r i s t i c  

n u m b e r s ,  
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(KI) By duality the condition that a conic C is triangularly inscribed in 

a conic C' will have a=O, B=2, and no local characteristic numbers. 

Notice however that such a condition is expressed by the relation 

@2 _ ~a®' = 0 , 

which, after performing the substitution (*), yields a 9uartfc curve 

in P(ST). This quartic has an ordinary node at each vertex of T 

the tangents of which are distinct from the sides of T concurring 

thereto. Thus we get indeed a=0, B=2, and that there are no local 

characteristic numbers. 

(K 2) The condition that a conic C has a pair of common tangents with 

C' whose intersection point is collinear with two points of cn C' 

is expressed by the (self-dual) relation 

a® '3  + a'® 3 = 0 . 

A f t e r  s u b s t i t u t i n g  ( * )  in  i t  one  g e t s  a s e x t i c  in  p ( S  T) w i t h  a n  o r d i n a r y  

n o d e  a t  e a c h  v e r t e x  w h o s e  t a n g e n t s  c o i n c i d e  w i t h  t h e  s i d e s  of "T 

concurring thereto. Therefore a=B=2 and (i,i) is the only pair of 

local characteristic numbers. 

iI.~. (Tangency to a curve) 

Let F be an irreducible curve in P2" 

a conic C through P, we will say that 

if F and C have a common tangent at P. 

conics that are tangent to F. 

Given a point P e F and 

is tangent to F at P 

Let K = K F be the set of 

Notice  t h a t  i f  we h a d  t a k e n  t h e  t a n g e n c y  of  C a n d  F a t  P to 

m e a n  t h a t  i p ( C . F )  > 1 t h e n  the  se t  of  c o n i c s  t a n g e n t  to F ( in  t h i s  w e a k e r  

sense) would be KFU K', where K' is the set of conics going through 

a singular point of F. 
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Let g be the geometric genus of F, d its degree and d its class. 

d i, 14 i~< r, be the orders of the singular branches Yi of F (i.e., 

L of conics 

On t h e  o t h e r  h a n d  

Dually, 

2g - 2 + 2d d + ~ (di-1) , 

as is seen by a similar argument with a generic pencil of lines instead of 

L. Hence 

+ 28 = 2d + d . 

2~+B = d+2d, 

Let 

branches whose order is greater than one). Fix a generic pencil 

and consider the map 

a : F , L 

such that o (P) is the unique conic in L going through P. Clearly 

deg(o) = 2d and so, by Hurwitz's formula, 

2g - 2 = -gd + deg (R) , 

where R is the ramification divisor of o. Now since L is generic, the 

finitely many conics in L that are tangent to F have a single tangency. 

It turns out that R is the sum of the points P on F for which there 

is a conic of L which is tangent to F at P plus the singular branches 

•i of F, the i-th such being counted with multiplicity d-l. Therefore 
1 

r r 

deg R = deg p(K F) + ~ (di-1) = a + 2B + Y, (di-i , 
r=l i:l 

where (~,B) are the global characteristic number of K F. Comparing with the 

previous relation we get that 

+ 2B = 2g - 2 + &d - ~ (d.-l) 
i 
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numbers. 

Since 

41 

SCK v there are no local characteristic 

§ 12. S t r i c t  e q u i v a l e n c e  of  c o n d i t i o n s  

Let  Z be  t h e  g r o u p  of d i v i s o r s  t h a t  do no t  h a v e  A o r  A a s  c o m p o -  

n e n t s .  The elements of Z will be called degeneration free divisors of W. 

The effective divisors in Z is what we have been calling degeneration free 

conditions. The additive character of Halphen's formula 9.2 implies that it 

is also valid for degeneration free divisors if the notions of local and global 

characteristic numbers are extended to Z by additivity. 

12.1. Definition (Halphen [H2], ~27) 

Given DI,D 2 • Z, D 1 is said to be strictly equivalent to D 2 iff for 

any system of conics r the proper intersection numbers of r with D 1 

and D 2 coincide whenever they are defined. 

Halphen calls this relation "equivalence de conditions". It is a numerical 

equivalence, but relative to the number of proper solutions. As we will see in a 

moment, this is a much stronger equivalence than the usual numerical equivalen 

ce. 

The quotient group of Z 

Halphen's group and denoted by 

under the strict equivalence will be called 

Hal(W). The strict equivalence class of 

a divisor De Z will be denoted by <Z>. 

12.2. Theorem 

Two degeneration free divisors are strictly equivalent iff their global 

and local characteristic numbers coincide. 
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Proof 

That the condition is sufficient is clear due to the extension of Halphen's 

formula to degeneration free divisors. To see the necessity, it is enough to 

consider the case of two degeneration free conditions K and K'. Let a,8, 

and ri(Pi,qi), 14 i~< s, be the global and local characteristic numbers 

of K, and a',~', and ri(pi,qi), i~< j.< s' the like characters for K'. 

Assume that K and K' are strictly equivalent. We want to show that the 

two sets of characteristic numbers are equal. 

That the global characters coincide can be seen by taking for r a 

pencil or a range of conics, cases in which Halphen's formula does not involve 

local terms, and expressing that p(K.r) = p(K'.r). 

Now it is easy to see that for any pair (m,n) of positive integers there 

e x i s t s  a s y s t e m  r of c o n i c s  no t  c o n t a i n e d  i n  a n y  c o m p o n e n t  of K o r  K' 

and such that it has a unique degeneration ~ of type B whose order and 

• (-1 
class are m and n, respectlvely . The definition of strict equivalence 

between K and K', together with the equality of the global characteristic 

numbers of K and K', yield the equality 

S S' 

(*) ~ r i min(mPi,nqi) = ~ r' min(mpi,nqi) 
i=l j=l ] ' 

which must be fulIfilled for all pairs (re,n) of positive integers. 

Without loss of generality we may assume that 

p i / q i  < P i + l / q i + l  a n d  P J / q i  < P i + l / q i + l '  1 4  i <  s ,  1 ~< j < s ' .  

I f  we h a d  t h a t  r .=r : l  1 a n d  P i / q i  = P i / q ' i  f o r  14  i~< i n f ( s , s ' ) ,  t h e n  (* )  

would imply immediately that s=s' and hence the two sets of characteristic 

(*) Such a system is actual ly constructed in § 19 
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numbers would coincide. So assume that for some i, i,< i < inf(s,s'), rh=r ~ 

= '/ ' for all h < i, but that either and ph/qh Ph qh 

or else 

P i / q i  ~ P~/q~ 

p i / q i  = p l /q~ a n d  r i ~ r~ 

From this we will derive a contradiction and hence the theorem will be proved. 

Let us  f i r s t  c o n s i d e r  the a s s u m p t i o n  P i / q i  ~ Pi ' /qi"  Aga in ,  wi thout  

loss of generality, we may assume t ha t  pi/qi < p~/q~. Now choose (m,n) 

so that 

(**) 
p i / q i  < n /m < p~/q~ 

Then one has the following relations: 

pjm = pim < q jn  = q i n  for 1~< j.< i -1 ,  

p i  m < qi n ,  p[m > q~n 

pjm > q j n  for i < j.< s , 

Pim > q i n  for i <  j.< s '  • 

Combining these relations with (*) we obtain that 

S' S 

riPi m = ~ ' ' - E j=l  r j q j  j=i+l r j q j  

which contradicts the fact that there are infinitely many rational numbers 

satisfying (**). 

The a s s u m p t i o n  P i / q i  = Pi ' /qi" 

t i on .  This  t ime choose (m ,n )  so t h a t  

ri~r~, leads likewise to a contradic- 

, / , ) 
p i / q i  = p i /q~  < m/n < m i n ( P i + l / q i + l ,  Pi+l  qi+l  " 
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A s i m i l a r  a r g u m e n t  t h e n  s h o w s  t h a t  

s '  s 
m X (ri-ri)Pi n = J'=" 1 r i q i  j=i~+l 

r j q j  , 

which gives a contradiction of the same sort as above. 

12.3. Corollary 

Hal(W) is a free abelian group for which the classes <L>. <L>, and 

<S > where (p,q) is any pair of positive coprime integers are a free p,q ' 

basis. Furthermore, a linear combination of distinct elements of such a basis 

is the class of a degeneration free condition iff the coefficients of the combina- 

tion are non-negative and not all zero. 

P r o o f  

F i r s t  n o t i c e  t h a t  g i v e n  a p a i r  of p o s i t i v e  c o p r i m e  i n t e g e r s  ( p , q )  t h e n  t h e  

c o n d i t i o n s  S i n t r o d u c e d  i n  11.1  a r e  s t r i c t l y  e q u i v a l e n t  to  e a c h  o t h e r .  
P , q  

I n  f a c t  t h e  c h a r a c t e r s  of  S a r e  i n d e p e n d e n t  of t h e  c h o i c e s  m a d e  i n  t h e i r  
P , q  

definition. Similarly, L and L uniquely define classes under the strict 

equivalence, since they do not have local characteristic numbers and their 

global characteristic numbers are (I,0) and (0,i), respectively. 

Next notice that given a degeneration free divisor D with characteris- 

tic numbers a,8, ri(Pi,qi), 1< i< s, then the divisor 

D' : (~-2Zqqi)L + (B-2XriPi)i + Z rS 
i pi,qi 

has the same characteristic numbers as D, so that <D> = <D'> is a linear 

combination with integer coefficients of <L >, <L >, and the < S >. 
P,q 

If D is a condition, then by 11.2 these coefficients are non-negative 

and not all zero. Conversely, if they are non-negative and not all zero then 

D is strictly equivalent to a condition. That < L >, < L >, and the < $ > 
P,q 
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are Z-linearly independent is cl~ar enough. 

12 .4 .  Remark 

T h e  c o n d i t i o n s  L,  L ,  a n d  S a r e  c a l l e d  elementary conditions b y  
P , q  

Halphen. He proves ([H.2] , theorem IV) that they generate Hal(W). This 

fact turns out to be a fundamental one in [H.3]. However, it is not until 

the end of [ H.3] that Halphen characterizes in intrinsic terms, for a condition 

D, the coefficient of a given elementary condition in a linear combination 

of elementary conditions expressing D. This characterization actually implies 

that the linear combination that expresses a given D is unique. [] 

513. Systems of conics contained in S 
P,q 

In this section we are interested in analyzing the possible degenerations 

of a system of conics under the hypothesis that all of them satisfy an elemen- 

tary condition. 

To start with, let P be a point and u a line in P2 such that P e u. 

Let S be a condition defined as in ii.i using P and u (here we 
P,q 

need not specify the other choices in the definition). Then we have: 

1 3 . 1 .  P r o p o s i t i o n  

Le t  r be  a s y s t e m  of  c o n i c s  s u c h  t h a t  F c S a n d  l e t  T b e  a 
P , q  

d e g e n e r a t i o n  of  t y p e  B of  r .  Se t  ( v 2 , Q  2) to d e n o t e  t h e  c e n t e r  of  ¥, so  t h a t  

v i s  a l i n e  a n d  Q a p o i n t  on  i t ,  a n d  l e t  m , n  be  t h e  o r d e r  a n d  c l a s s  

of % respectively. With these notations, 

(a) If m/n > p/q, 

(b) If m/n < p/q, 

(c) Therefore, if v 

then v goes through P; 

then Q lies on u; 

does not go through P and Q does not lie on u then 
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m / n  = p / q  . 

P r o o f  

In §4 we saw that 

divw(X) = A + Lp - 2L u 

divw(Y) = A + I"u - 2Lp 

where X, Y are the functions used to define Sp,q, divw(f) is the divisor 

on W of the rational function f, and where Lp and Lu are, respecti- 

vely, the hypersurface of conics which go through P and which are tangent 

to u. Consequently, 

ord (X) = n + (~.Lp) - 2(~.L u) 
Y 

ordy(Y) = m + (Y.Lu) - 2(y.Lp) 

w i t h  t h e  c o n v e n t i o n  t h a t ,  fo r  a h y p e r s u r f a c e  H, ( y . H )  = ~ t f f  y i s  c o n -  

tained in H. 

S i n c e  r c S p , q ,  

and so 

we have 

p ord (X) = q ordy(Y) 
Y 

(*) pn- qm = (2p+q)(y.L u) - (p+2q)(y. Lp) . 

Now i f  we a s s u m e  t h a t  m / n  < p / q ,  i . e . ,  p n - q m  > 0 ,  

( ' r . L  u )  > 0 .  Bu t  t h i s  m e a n s  t h a t  t h e  o r i g i n  ( v 2 , Q  2) o f  

u a n d  h e n c e  t h a t  Q ~ u .  

then necessarily 

¥ is tangent to 

This proves (b). The proof of (a) is similar. [] 

The previous proposition can be somewhat extended to other conditions. 

In order to explain this, (symbollically) denote Lp by S0,1/2 and Lu 

by SI/2, 0. Actually we will think of SO, I/2 as defined by means of point 

P and an undetermined line (which we do not need to specify), and of SI/2, 0 

as defined by an undetermined point and the line u. With these conventions 
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notice that proposition 13.1(a) is also true for SO,I/2 and $1/2, 0. Indeed, 

for SO,I/2 we have p=O, so that the hypothesis m/n > p/q in 13.1(a) is 

always true, and obviously the thesis is also true; on the other hand the 

hypothesis in 13.1(b) is never true, so that 13.1(b) is correct for SO,I/2 

too. The case of SI/2, 0 works now by duality. 

Proposition 13.i is also true for the degenerations of r of types A 

and A. In fact for the degeneration of type A we have that m=0, n~0 so that 

the hypothesis of 13.1(a) cannot occur, whereas the hypothesis in 13.1(b) 

is always true, and so is the thesis, because (*), which is still correct for 

y, implies that ~.L > 0 and so the double point Q of the center of u 

lies on u. The case of a degeneration of type A is dual. Sumarizing we 

have : 

13.2 The conclusions of 13.1 hold true in the following cases: 

(a) For the condition Lp when considered as a S0,1/2 

a point P and an unspecified line. 

(b) For the condition Lu when considered as a 
$I/2,0 

an unspecified point and to a line u. 

(c) For degenerations ¥ of type A or A, and any Sp,q. If 

of type A then Q is the double point of the center of y , 

if y is of type A, then v 

relative to 

relative to 

is 

while 

is the double line of the center of 

T. 

13.3. Remark 

The reason for taking 1/2 in the symbolic representation of L and 

as conditions of type 50,1/2 and 51/2, 0 will be seen in next section. 

Here let us only say that the global characteristic numbers of Sp,q are 

(2q,2p), and that this is again also true for these special cases. 
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§1~. Con ic s  s a t i s f y i n g  f i v e  i n d e p e n d e n t  c o n d i t i o n s  

In this section we will consider the problem of determining the number 

of conics properly satisfying five conditions under the assumption that their 

data are in independent general position. In other words, the problem we 

want to solve is the determination of the number of conics properly satisfying 

oiK i, i.< i.<5, where K i are conditions and where o = (o I ..... 0 5 ) • G 5 

varies in a suitable open set of G 5 (cf. Remark 7.3). 

14. i. Proposition 

Given degeneration free reduced conditions K i, 1 ~< i ~< 5, there exists 

a non-empty open set U in G 5 such that for any 0= (01 ..... o 5 ) •U 

the conics properly satisfying oiKi , i< i.< 5, (a) are non-degenerate and 

isolated components of multiplicity one of the intersection OlK 1 n ... n o5K5, 

hence finite in number, and (b) this number is independent of o •U. 

Proof. 

Applying Kleiman' s theorem (quoted as theorem 7.1 ) successively on 

W ° = W-(AuA), A-B, A-B, and B one obtains that there exists a non-empty 

open set Uc-G 5 such that if o = (o I ..... o 5 ) • U and 

Io: : Ol(K I) n ... n o5(K 5) 

t h e n  

(i) I n W is a finite set and each point of this set has multiplicity one 
o O 

in the intersection, 

(ii) 1 n ((A-B) u (A-B)) = (~, and 
o 

(iii) I n B is either empty or at least one of the conditions contains B. 
o 

So we see that for o ~ U 

10 = (l onw o) u(1 ° riB). 

n W are non-degenerate and hence properly satisfy Now the elements of Io o 
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t h e  f i v e  c o n d i t i o n s ,  w h e r e a s  I n B i s  e i t h e r  e m p t y  o r  c o n s i s t s  of  i m p r o p e r  

solutions for at least one condition. This proves (a). 

I n  o r d e r  to  p r o v e  ( b ) ,  s e t  K ° = K n W  a n d  d e f i n e  
1 1 O 

o o ×G 5 
Z c KlX ... ×K 5 

as the closed subvariety defined by the relations 

Ol(X I) ..... o5(x 5) • 

Let  p :  Z * G 5 be  t h e  r e s t r i c t i o n  to Z 

c l o s e d  s e t  p - 1  (o )  c a n  b e  i d e n t i f i e d  w i t h  

s e t  i s  f i n i t e  i t  f o l l o w s  ( f o r  i n s t a n c e  u s i n g  

n a l  of  t h i s  s e t  i s  c o n s t a n t  on  s o m e  n o n - e m p t y  o p e n  s e t  c o n t a i n e d  i n  

of PrG5. Given o e G 5, the 

1 N W . Since for o E U this 
o O 

[S], Ch. II, §5) that the cardS- 

U. 

This completes the proof. 

1 4 . 2 .  R e m a r k  

P r o p o s i t i o n  14 .1  c a n  b e  e x t e n d e d  a t  o n c e  to  n o n - r e d u c e d  d e g e n e r a t i o n  

f r e e  c o n d i t i o n s  e x c e p t  f o r  t h e  m u l t i p l i c i t y  o n e  p r o p e r t y  of  p a r t  ( a ) .  [] 

14.3. Corollary 

Given five reduced conditions 

s e t  UC- G 5 s u c h  t h a t  f o r  a n y  

s e t  o f  n o n - d e g e n e r a t e  c o n i c s  o f  

KI,...,K 5 there exists a non-empty open 

o = (o I ..... 05) e U the clousure of the 

Ol(Kl) n ... n o&(K&) is a (1-dimensional) 

system of conics r and, moreover, the set of conics which properly satisfy 

oI(K I) ..... o5(K 5) is the set of conics in r which properly satisfy o5(K5). 

Proof 

Let f: G 5 = G4× G ~ G & be the projection onto the first factor. 

For simplicity we will write, for oeG 5, o = (c',o5), so that o' = f(o). 

Let U' be a non-empty open set of G 5 satisfying 14.1. Since flu' is 

dominant, using once more Kleiman's theorem there exists a non-empty open 
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set V-f(U') such that for any o' = (o I .... ,o~) e V 

FO? : of(K1) n ... n og(K&) n W ° 

is a reduced curve and hence the clousure of r ° in W, which we will 
O' 

denote by to,, is a system of conics. Now take U = U' n f-l(v). We claim 

t h a t  g i v e n  o' • V t h e r e  e x i s t s  o 5 •  G s u c h  t h a t  ( o ' , o 5 )  • U a n d  t h e  

n u m b e r  of  c o n i c s  p r o p e r l y  s a t i s f y i n g  o i ( K i ) ,  i = 1 . . . . .  5, a g r e e s  w i t h  t h e  

n u m b e r  of  c o n i c s  i n  r w h i c h  p r o p e r l y  s a t i s f y  ~5 (K5) .  T h i s  c l a i m  f o l l o w s  

f rom t h e  f o l l o w i n g  two o b s e r v a t i o n s .  

The first is that if a conic properly satisfies oi(K i), i,< i~< 5, for 

o = (Ol,...,o 5 ) e U, then this conic obviously is on to, and properly 

satisfies o5(K5). The second is that given o' = (oi,...,o g) • V there exists 

a non-empty open set U" of G such that for any o 5• U" the conics 

in r o, properly satisfying o5(K 5) are non-degenerate (see 9.3.i), and 

consequently these conics properly satisfy Ol(K I) ..... og(Kd) as well. The 

existence of the o 5 in the claim follows because U n (o' x U") is non-empty. 

Now by proposition 14.1, and for oe U, the number n of conics 
o 

properly satisfying oi(Ki), i=I,...,5, is independent of o. On the other 

hand, given o' 6 V, the number of conics in Fo, properly satisfying 

o5(K 5) is independent of o5, by definition of proper intersection multiplicity 

(see 9.1). Let no, be this number. Then by the claim before we have that 

n = n , for any o6U. 
G O 

In order to end the proof, given 

properly satisfying oi(Ki), i=l ..... 5, 

t o ,  properly satisfying o 5(K5). 

So nWo = S(~ nw o, 

o 6 U let 

and S ' 
o 

Since So c_ S' 
O ~ 

S be the set of conics 
o 

be the set of conics in 

because S ~ W 
o 0 

t h e  e q u a l i t y  S O = S O f o l l o w s  b e c a u s e  n o = n o , .  [] 

and 

Thus we observe that in the problem of determining the number of conics 

properly satisfying five conditions, the result is a 5-1inear function of the 
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s t r i c t  e q u i v a l e n c e  c l a s s e s  of t he  c o n d i t i o n s .  T h e r e f o r e ,  b y  12.3 ,  the  p r o b l e m  

is  r e d u c e d  to t he  c o m p u t a t i o n  of t he  n u m b e r  of c o n i c s  p r o p e r l y  s a t i s f y i n g  

f i v e  e l e m e n t a r y  c o n d i t i o n s .  

In  o r d e r  to s o l v e  t h i s  p r o b l e m  i t  is  c o n v e n i e n t  to p r o v e  f i r s t  two a u x i -  

l i a r y  r e s u l t s .  We r e c a l l  t h a t  t he  e l e m e n t a r y  c o n d i t i o n s  a r e  t he  S p , q ,  ( p , q )  

a p a i r  of c o p r i m e  p o s i t i v e  i n t e g e r s ,  a n d  a l s o  L a n d  L, w h i c h  a r e  d e n o t e d  

b y  5 0 , 1 / 2  a n d  S 1 / 2 , 0 ,  r e s p e c t i v e l y .  

14 .4 .  Lemma 

Let S , i = i , . . . , 4 ,  be four  e l e m e n t a r y  c o n d i t i o n s  o r d e r e d  so t h a t  
Pi,qi 

Pl/ql ~< P2/q2 < P3/q3 ~< PJq4" Then there exists a non-empty open set 

V in  G 4 s u c h  t h a t  for  a n y  o '  = ( O l , . . . , 0 4 )  E V th e  c l o u s u r e  of the  

se t  of n o n - d e g e n e r a t e  c o n i c s  s a t i s f y i n g  t he  four  c o n d i t i o n s  ° i ( S p i ' q i )  i s  a 

s y s t e m  of c o n i c s  to ,  i n  W s u c h  t h a t  t he  r a t i o  of o r d e r  to c l a s s  of a n y  

of i t s  d e g e n e r a t i o n s  i s  e i t h e r  p 2 / q 2  or  p 3 / q 3 .  

P roof  

T h a t  t h e r e  e x i s t s  a n o n - e m p t y  open  se t  V' in  G 4 s u c h  t h a t  t h e  c l o u -  

s u r e  of t he  se t  of n o n - d e g e n e r a t e  c o n i c s  s a t i s f y i n g  t he  four  c o n d i t i o n s  

°i(SPi'qi) is a system of conics ro, is once again a direct consequence 

of Kleiman's theorem. 

Now given o' eV', 

and class n. The set of 

subset of V', 

of the center of 

the conditions 

o' e V' such t h a t  

F i n a l l y ,  t he  s e t  of 

c l o s e d  s u b s e t  of V ' ,  

let x be a degeneration of r o, of order m 

o' E V' for which m/n< p2/q2 is a proper closed 

because in such a case, by proposition i$.1, the double focus 

y would belong to the three lines with respect to which 

o (S ), i=2,3,4, are defined. By duality, the set of 
i pi,qi 

p3/q3 < m/n is also a proper closed subset of V'. 

o'e V' such that p2/q2 < m/n < p3/q3 is a proper 

because, by proposition 13.1 again, in this case the 
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doubleline of the center of y , would pass through the two points with respect 

to which Ol(Spl,q I) and a2(Sp2,q 2) are defined, so that the first two 

lines and the line joining the last two points are concurrent. [] 

lg.5. Lemma 

In the same situation as in lemma l&.4, let ~, u be the global charac- 

teristic numbers of to,, o' ~ V'. Denote by aP2,aq2 the sums of orders 

and classes, respectively, of the degenerations of r , for which the ratio 

of order to class is p2/q2 . Likewise, let a'p$, a'q3 be the analogous 

sums for the degenerations whose ratio of order to class is p$/q$. Then 

aP2 + a'ps = 2~ - 

aq2 + a'q$ = 2~ - ~. 

P roof 

By lemma 1&.4 the sum M of the orders of all degenrations of c 

is equal to aP2+a'P3 , and the sum N of the corresponding classes is 

aq2+a'q3. But by 5.6 we know that M = 2~-~ and N = 2v-~. [] 

Notice that ig.5 really allows to determine the sum of orders and the 

sum of classes of the degenerations of each type. This is clear if p2/q2 

P3 /q3" But if p2/q2 = p3/q3, there iS only one type of degeneration, 

so it suffices to determine a+a', which can be done using either equation. 

ig.6. Theorem (Halphen's second formula) 

Given five elementary conditions Spi,qi, i~< i ~ 5, ordered in such 

a way that pi/qi~ < Pi+i/qi+l for I~ < i-< g, there exists a non-empty open 

set U in G 5 such that for any o = (o 1 ..... o5) eU the number N of 

conics properly satisfying the conditions oi(Spi,q i) is finite and given by 

the formula 

N = 8(Pl+2ql)(P2+2q2 (p3+q3)(2pg+qg)(2P5+q5). 
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Proof 

Let 

in (3 5 

L a n d  

o•U' 

I~ i~ 5, 

K i = Spi,q i Then we can determine a non-empty open set U 

such that for any five conditions chosen among the Ki, I~ < i< 5, 

L, proposition 14.1 and corollary 14.3 apply. In particular for 

there are on]y finitely many conics properly satisfying oi(K i), 

and the number N of such conics does not depend on ~ •U'. 

Now in order to compute N we will proceed recursively on the number of 

conditions L or L that appear among the five elementary conditions K i. 

If each of the five conditions is of type L or L, then there are no impro- 

per solutions and the number N can take on the following values: 

L 5 = 1, L4L = 2,  L3L 2 = 4, L2L 3 = 2, LL 4 = 2,  L 5 = 1. 

As it is checked immediately these values agree with the answer given by 

the claimed formula. 

Therefore we may assume that among the conditions K = 5 there 
Pi,qi 

is at least one, say K5, which is neither of type L nor of type L (so 

we do not assume so far that the ratios pi/qi are non-decreasing with 

respect to i). Given o • U', let r , be the system of conics determined 
o 

by the conditions oi(Ki) , i< 5, where o' eG g is the result of dropping 

o 5 in o. Now by recursion the claimed formula holds true for the condi- 

tions Ki, i< 5, together with either 50,1/2 or SI/2,0, and for some 

non-empty open set U that we can assume is contained in U'. Without 

~< and loss of generality we may assume that pl/ql-< p2/q2 4 p3/q3 p4/q4 

so for o E U the number ~ of conics properly satisfying oi(Ki), i< 5, 

and o5(50,1/2 ) will be 

= 8(Pl+2ql )(P2+q2 ) (2p3+q 3) (2p4+qg) 

and the number v of conics properly satisfying o i(K i), 

o5(51/2, 0) will be 

i < 5, and 
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x = 8(Pl+2ql)(P2+2q 2)(p3+q3 )(2pg+q&) 

But, by the last part of l&.3, ~ and v are the number of conics in 

r , properly satisfying o5(S0,1/2 ) and 05(SI/2, 0), respectively, and 

so (~,v) is the pair of global characteristic numbers of ro,. Using Ig.5 

a straightforward computation shows that if 

and 

a : 8(Pl+2ql)(2P3+q3)(2pg+qg) 

a' = 8(Pl+2ql)(P2+2q2 )(2P3+q3) 

then aP2, a¢]2 are the sums of the orders and classes, respectively, of the 

d e g e n e r a t i o n s  of to, for  which  the r a t i o  of o r d e r  to c l a s s  is p2 /q2  and  

a ' p 3 ,  a ' q 3  a r e  to a n a l o g o u s  sums for p 3 / q 3 .  In  c a s e  p2 /q2  = p 3 / q 3 ,  

then  ( a + a ' ) P 2 ,  ( a + a ' ) q 2  a re  the sums of o r d e r s  and  c l a s s e s ,  r e s p e c t i v e l y ,  

of a l l  d e g e n e r a t i o n s .  

Now given a ~ U, and according to 14.3, the conics that properly 

satisfy the five conditions oi(Ki) are the conics in to, that properly 

satisfy o5(K5) , and so we may compute the number N of such conics using 

Halphen's first formula 9.2. In principle we should consider five cases, accor- 

ding to the position of ps/q5 with respect to the ratios pi/qi , i <5. 

However, by duality the number N must be unaffected by interchanging 

the p's and q's, and so we only need consider the following two cases. 

(a) p5/q5 >, p3/q3  . 

In  th i s  ca se  the  r a t i o  

of P~,, which equals p2/q2 

so t h a t  min (mq5 ,nPS)  _- mqs.  

of p r o p e r  s o l u t i o n s  is  g i v e n  by 

m/n of order to class for any degeneration 

or p3/q3 , will be not greater than ps/q5 , 

By Halphen's first formula 9.2 the number 

2q5~+ 2P5V - aP2q5 - a'p3q5 : (2P5+q5)v . 

Substituting 9 for the expression found above we get the claimed formula. 
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(b) p2/q2 ~ p5/q5 ~< p3/q3. 

In this case for the degenerations of r such that the ratio m/n 

e q u a l s  p2 /q2  we ge t  min(mq5 ,nPS)  = mqs,  wh i l e  for the  d e g e n e r a t i o n s  

such t h a t  m/n  = p3 /q3  we ge t  m in (mqs , n PS )  = nPS. Thus the  number  of 

so lu t ions  w i l l  be 

2q5~ + 2P5V - aP2q 5 - a'q3P5 • 

Substituting v,v,a and a' by the expresions found before we come up again 

with the claimed formula, up to reindexing. This completes the proof. [] 

14.7.  C o r o l l a r y  (of the  proof )  

Given four  c o n d i t i o n s  S , 1~< i~< ~, o r d e r e d  in such  a way  t h a t  
P i , q i  

p i / q i  is  n o n - d e c r e a s i n g  wi th  i ,  a s sume t h a t  the  d a t a  used  to de f ine  these  

c o n d i t i o n s  has  been  t a k e n  g e n e r i c a l l y  and  i n d e p e n d e n t l y  and  le t  r be the 

sys tem of con ic s  t hey  d e t e r m i n e  (cf .  1~.3) .  Then 

(a)  The g l o b a l  c h a r a c t e r i s t i c  numbers  ( v , v )  of r a r e  g i v e n  by the  fo rmulae  

= 8 (P l+2q l ) (p2+q2) (2p3+q3)  (2pg+qg) 

= 8 (P l+2q l  ) (P2+2q2) (p3+q3) (2pg+qg) 

(b) The ratio of order to class for any degeneration of r can only be 

p2/q2 or p3/q$. If p2/q2 < p3/q3 then the sum of the orders and the 

sum of classes for the degenerations whose ratio of order to class is 

p2/q2 are, respectively, aP2 and aq2, where 

a = 8(Pl+2ql) (2p3+q3) (2pg+qg) ; 

the analogous sums for the degenerations whose ratio of order to class 

is P$/q3 are a'P3 and a'q3, respectively, where 

a' = 8(Pl+2ql)(P2+2q2)(2pg+qg) 

If p2/q2 = p3/q3 then the sum of orders and the sum of classes for 

all degenerations are (a+a')P2 and (a+a')q2, where a and a' have 
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the same expression as above. [] 

We end this section with an example. 

14.8. Example (Halphen) 

Consider five conditions as described in example (K 2) of 11.3 defined 

with respect to five conics in general position. Halphen's second formula 

gives 1296 as the number of proper solutions, whereas Chasles' formula gives 

3264. This last number, however, does not have enumerative significance 

because all degenerate conics of type B are (improper) solutions. 

It may be appropriate to recall that 3264 is the number of conics that 

are tangent to five conics in general position, which of course is also the 

answer given by Halphen's second formula (actually Chasles' theory already 

gives this answer (only L's and L's are involved)) and that one of the moti- 

vations for Chasles' theory was to improve Steiner and De Jonqui~res' approach 

which gave 65 = 7776 as the number of conics tangent to five given conics 

in general position. 

§ 15. Cycles on W and on B 

In this section we define a number of cycles that are relevant for our 

purposes, study their classes in the corresponding Chow ring, and establish 

a number of relations among them. Most of the computations are straightforward 

and are left to the reader. In a few cases we sketch a proof. 

Given a point P in P2 

that go through P by Lp. 

by L. Given two points P,Q 

we have denoted the cycle on W of conics 

The class of this cycle in AI(w) is denoted 

the cycle on W of conics that harmonically 
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divide PQ also represents L and is denoted by Lp,Q. 

Dually, given a line u, Lu denotes the cycle on W of conics 

tangent to u, and L is the class of Lu" This class is also represented 

by i.u, v, conics whose tangents from the intersection point of u and 

v harmonically divide the pair u,v. 

We know that A ~ 21.-L, /~ 2L-L, 

Z-basis of AI(w). Given a divisor D 

denote this cycle by (a,~) and write K ~ (a,~). 

a n d  t h a t  in  f a c t  L, I. i s  a f ree  

on W, i f  K ~ aL+fif., we wi l l  

Since W is the blowing up of P5 along the Veronese surface V 

(see §2), from ([B], Ch.O; cf. also [F], 6.7 and Ex. 8.3.9) it follows that 

t he  Chow r i n g  A" (W) of W is  i s o m o r p h i c  to the  e v e n  cohomology r i n g  

LL ~2 H2"(W) a n d  t h a t  L 2, ~-- , i s  a f r ee  Z - b a s i s  of A2(W). Poincar f i  

d u a l i t y  on cohomology t e l l s  us  t h a t  Ai(w) a n d  

the  i n t e r s e c t i o n  n u m b e r  p r o d u c t .  We wi l l  deno te  by  

LL L2 t h a t  is  the  d u a l  b a s i s  of L 2, ~ , a n d  by  

A~(W) t h a t  is  the  d u a l  b a s i s  of L, L. 

If K is a codimension 2 cycle and 

A5-i(W) a r e  d u a l  u n d e r  

S ,T ,S  the  b a s i s  of A3(W) 

r a n d  r the  b a s i s  of 

K ~ aL 2 + b ( ~ ) +  ~L 2, t h e n  we 

wi l l  deno te  K by  ( a , b , f i )  a n d  wi l l  a l so  w r i t e  K ~ ( a , b , ~ ) .  For  c o d i m e n -  

s ion  3 c y c l e s  K, we wi l l  w r i t e  K ~ ( a , b , ~ )  T i f  K ~ aS+bT+~S. A s i m i l a r  

n o t a t i o n  wi l l  be  u s e d  for  c o d i m e n s i o n  ~ c y c l e s ,  so t h a t  K ~ ( a , ~ )  T means  

t h a t  K -  a r + ~ .  In  t h i s  way  the  i n t e r s e c t i o n  n u m b e r  of ( a , b , ~ )  a n d  

( c , d , ~ )  T is  ac+bd+fi6.  

On B we define the cycle ~p of double lines with double focus that 

pass through P and will set ~ to denote its class in AI(B). Dually, 

~u is the cycle on B of double lines with double focus lying on u, and 

its class in AI(B). 

From the  f a c t  t h a t  B is  a p r o j e c t i v e  l i ne  b u n d l e  ove r  the  Veronese  

s u r f a c e  V i t  fo l lows  t h a t  the  Chow r i n g  of B is i s o m o r p h i c  to the  even  
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cohomology  of B a n d  a l s o  t h a t  t he  c l a s s e s  z a n d  ~ form a f r ee  ~ - b a s i s  

of AI(B), while ~2 and ~2 form the basis of A2(W) that is dual of 

Ic and ~ by next relations. 

15.1 .  (1) g3= £3= 0 

(2) z2~ = Z~2 = i .  [] 

15.2 .  Let  j :  B 

( i )  j*L = 2 2  

(2) j*/ = 2 

W be the inclusion. Then 

Proof (cf. also 15.3.(2)) 

Consider the commuting diagram 

where i : V 

H is a hyperplane in P5' 

B 

V 

J , W 

P 

i 
' P5 

, p5 is the inclusion of V in P5 and P = P]B" 

j*L = j*p*H = p*(2i) 

2~. [] 

(~ the class of a line in P2 

Then if 

V 

,V) 

The rest of the section is a list of useful cycles and relations among 

them. 

C o d i m e n s i o n  1 cycles 

A ~ ( - 1 , 2 )  

,~ - (2,-1) 

pairs of lines 

double lines 
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S 
P,q 

(2q,2p) (defined in Ii.i) 

qA + (2p+q)L ~ pA + (p+2q)L. 

Codimension 2 cyc le s  

Ap = A . L p  ~ ( -1 , / , ,0 )  

Au =A'Lu - (0,a,-l) 

A - (0,-i,i) 
U 

Ap ~ (1,-1,0) 

j . B  ~ (-2, i0,-2) 

pairs of lines, one through P 

pairs of points, one on u 

pairs of lines with double point on 

double lines thorugh P 

15.3.  (1) A.Lp,Q = Ap + AQ 

(2) A.Lp = 2Ap 

(3) A.L = 2A 
U U 

(~) A.L = A + A 
U~V U V 

(5) A.Sp,q = qB + (gp+2q)A u ~ (-2q,gq-~p,gp) 

(6) A.Sp,qV = pB + (2p+gq)Ap ~ (gq, 8p-gq, -2p) . 

Codimension  3 cyc le s  

15.~. (1) L 3 ~ (1 ,1 ,~)  T 

(2) L2L ~ (2 ,2 ,~)  T 

(3) LL 2 ~ (~ ,2 ,2)  T 

(~) L 3 ~ (5 ,1 ,1 )  T . [] 

Bp = j . ( g e )  

B u = j . ( ~ u  ) 

double lines with double focus, 
the line through P 

double lines with double focus, 
the focus on line u 
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1 
1 5 . 5 .  (1)  Bp = ~ ( L p . B )  ~ ( 0 , 2 , ~ )  T,  

(2) Ap.A = Bp , Ap.A = Bp 

(3)  A .A = B , A . A  = B 
U U U U 

(4)  L p , Q .  B = Bp + BQ 

(5) L . B  = B + B [] 
UgV U V 

1 ( ~ u . B )  ~ ( 4 , 2 , 0 ) T  B u = 

F ~ (0,i,i) T 
P 

~ (i,i,0) T 
U 

Dp ~ (i,0,0) T 

5 ~ (0,0,I) T 
U 

double lines with one of its foci at P 

pairs of limes, one of them equal to u 

pairs of lines with double point at P 

double line u 2 with a pair of points 

(These relations can be seen applying previous relations and Kleiman's theorem 

in A or /~. For instance, that Dp ~ (a,0,O) T is obvious, and a is 1 

because LQ.A= AQ, which by Kleiman's theorem in A implies that Dp.L2=l). 

The first of next series of relations is justified below, the others are 

either similar or easier. 

(2 ,1 ,0)  T A u,P 

u,P ~ (0'I'2)T 

z ~ (i,i i) T 
P,u,v 

TP,Q,R (1 ,1 ,1 )  T 

pairs of lines, double point O E u 
harmonically dividing u and OP. 

double lines v going through P, 
foci harmonically dividing P and u.v 

clousure of the set of non-degenerate 
conics tangent to u at u.v and 
such that the polar line of P is 
v (here we assume Pc u, v general) 

clousure of the set of non-degenerate 
conics for which the triangle P,Q,R 
is self-polar. 

(For the cycle Zp,u, v, see 19.8.(b); here we are going to sketch the proof 

= of the first of these relations. Set-theoretically it is clear that A u Lp,Q 

= DQUAu, P. On the other hand, Au. Lp, Q ~ (3,i,0) T and DQ ~ (i,0,0) T, 

which implies that Au, P is either linearly equivalent to (l,l,l) T or to 

(2,1,0) T. But A L 2 u,P" is at least 2, as a direct geometric argument shows. 
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Therefore h ~ (2 1,0) T 
u,P 

n Lp are one each.) of A u , Q 

and the multiplicities of the two components 

Codimension  g cyc le s  

15.6 (1) L 4 - (1,2) T 

(2) L3L ~ (2,g) T 

(3) L2L 2 ~ (4,g) T 

(4) LL 3 ~ (g,2) T 

(5) L& ~ (2,1) T • [] 

15.7 r p ~ j.(~2) ~ (2,0)T 

ru ~ j.(2) ~ (0,2)T 

ru, Q ~J.(z~) ~ (2,2) T 

double lines with double focus at P 

2 u with a variable double focus on u 

double lines through Q having double 
focus on u 

(The first of these relations comes from the fact that ~2 is reduced, by 

Kleiman's theorem on B, and that set-theoretically coincides with rp. Then 

rp.L = j,(~2).L = ~2.j*L = 2~2.~ = 2.) 

15.8 r p , u ,  v ~ (1,0) T 

~u ,P ,Q - ( 0 ' I ) T  

pairs of lines with double point 
at P harmonically dividing u and 
v (u,v lines through P) 

2 
double lines u , with 2 points 
on it harmonically dividing P and 
Q. 

(the first of these is a pencil and the second a range). 

§16. M u l t i p l i c i t y  cyc le s  a n d  Noe the r ' s  fo rmula  

The main goal of this section is to establish a generalized version of 

Noether's classical formula according to which the total intersection number 
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of two curves on a non-singular surface is the sum of the product of their 

multiplicites at a given point and the total intersection number of their strict 

transforms under the blowing up of the surface at that point. This formula 

then allows to express the total intersection number of the two curves as 

the sum of the products of the multiplicities of the curves extended to all 

their intersection points, including the infinitely near ones. 

For our generalization the main ingredient, which we describe next is 

the notion of multiplicity cycle of a given cycle along a codimension two non- 

singular subvariety. 

16. I. Definition 

Let W be a non-singular variety, BcW a non-singular codimension 

two subvariety, and K an irreducible cycle on W such that K~ B. Under 

these h y p o t h e s i s  we d e f i n e  the  muftipTicfty cycTe K B of K a t  B as  

follows : 

s 

K B = i~=1.= ~ iZ i  , 

where Z 1 ..... Z s 

tion scheme K n B, 

in O'Zi,K.  

a t  B. 

are the irreducible excedentary components of the intersec- 

and where ~i is the multiplicity of the ideal of K n B 

The class [KB] in AI(B) will be called muftfp]fcity c]ass of K 

16.2. Remarks 

Since B has codimension two and K ~ B, the components of K n B 

are either 2-codimensional in B (proper components) or l-codimensional (exce- 

dentary components). By definition, K B = 0 if B and K intersect 

properly. 

On the other hand, the definition of multiplicity cycle can be extended 
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by linearity to any pure dimensional cycle none of whose components is con- 

tained in B. 

16.3. Example 

If W 

W, then 

where UB(K) 

is a smooth surface, B a point of W, and 

K B = UB(K)-B , 

i s  the m u l t i p l i c i t y  of B on K. 

The multiplicity cycle can also be described as follows. Let e:W 

be the blowing-up of W along B, E = e-l(B) 

g = e IE: E ~ B, a n d  l e t  i :  E * W, j :  B 

m a p s .  T h e n  we h a v e :  

K a c u r v e  on 

W 

the exceptional divisor, 

* W be the inclusion 

16.g.  Theorem 

I f  K i s  t h e  s t r i c t  t r a n s f o r m  of  K u n d e r  ~ t h e n  

K B = g . i * l ~  

P r o o f  

W i t h o u t  l o s s  of  g e n e r a l i t y  we m a y  a s s u m e  t h a t  K i s  i r r e d u c i b l e .  T h e n  

i s  t h e  b l o w i n g - u p  of  K a I o n g  i t s  s u b s c h e m e  K n B a n d  t h e  e x c e p t i o n a l  

d i v i s o r  of  t h i s  b l o w i n g - u p  i s  K N E  ( c f .  [ H a r ] ,  I I ,  7 . 1 5 ) .  Let  n :  K ' K 

be  t h e  r e s t r i c t i o n  of  e to K. T h e n  b e c a u s e  E i s  a d i v i s o r  on  W, 

[ t ( n  E]  = i*~(, so  t h a t  g , i * t (  = g , [ E n t ~ ]  = n , [ E n K ] .  

As b e f o r e ,  l e t  Z 1 , . . . , Z  s b e  t h e  e x c e d e n t a r y  c o m p o n e n t s  of  K A B .  

Let  Zi j  be  t h e  c o m p o n e n t s  of  n - l ( z i ) .  S i n c e  Z i i s  e x c e d e n t a r y ,  a l l  

Zij have the same dimension as Zi, and since n is proper it follows 

([F], ~.3.6) that if gi is the multiplicity of the ideal of KnB in 
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OZi,K, and ~ . .  t he  m u l t i p l i c i t y  of t he  i d e a l  of E n ~[ in  
11 

ui =~deg(2ijlZi) utj 
J 

But since the ideal of Ec~K in the domain O'}..,ff~.~ 
ij 

in fact the coefficient of Z. in [E n K], so that 
I] 

Then we have 

~En K] = ~. ~ i j Z i j  . 
1,] 

g . i * t (  = n . [ E n  I ( ]  

= .~. "ij n*[zij] 
1,] 

= .~. Bij d e g ( Z i j / Z i ) ' Z i  
1,2 

Y. Ia i Z i 

K B • [ ]  

£Yiij,~, t h e n  

is principal, ~.. Ks 
t] 

Now we turn to Noether's generalized formula. With the same notations 

as before, recall that ([B], Ch. 0). 

Ar(v/) ~ ~ Ar(w) • Ar-I(B) 

under the map x' , (a ' .x , g.(h.i*x )), where he AI(E) is the class 

of the tautological line bundle GE(1). The inverse isomorphism is given 

by (x,y) I * ¢*x + i,g*y. Furthermore, for any eeA'(E), i*i,(e) = -h-e. 

16.5. P r o p o s i t i o n  

P r o o f  

Since 

o* [K ]  = [K] + i . g * [  KB] 
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~.(~*[K] - [f,]) = o , 

i t  fo l lows t h a t  t h e r e  e x i s t s  a c l a s s  k e A r - I ( B )  
0 

c*[K] - [I~] = i . g * ( k  o) 

Then,  in Ar-I(B), 

k o = k ° • 1B 

= ko.g.h 

= g.(g*ko'h) 

-g.(i*i.g*k o) 

= g . i * ( [ [ { ]  - ¢ * [ K ] )  

= g.i*[ K] 

=: [ K B] 

because g . ( i * ~ * K )  = g . ( g * j * K )  = 0 . 

such  t h a t  

(projection formula) 

16.6. Theorem ( N o e t h e r ' s  formula) 

With the same notations as before, let 

not c o n t a i n e d  in B. Let 

r+ r '  = dim W. Let K B 

K ' ,  r e s p e c t i v e l y .  Then i f  K 

r and 

and K' B 

and  K' 

;W K'K' = ~B KB'KB + ;~¢ [}(]'[}('] 

P roof 

Let k ° [KB] k' = ' o K6]" 

~W K'K' =f **[K].¢*[K'] 

Then 

K, K' be two irreducible cycles, 

r' be their codimensions and assume 

be the multiplicity cycles of K and 

intersect properly 

= ~ [ /  ( [K ]+  i . g * k o ) ' ( [ [ ( ' ] + i . g * k  o) 
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On the other hand, since 

= 

~.~.g*k ° = j.g.g*k ° 

c.i.g*k o" [K'] 

%(i.g*ko" ¢*{K'] ) 

(i.g*k o" e*[K'] ) 

(i.g*k o" 

= 0  , 

[K'] + i . g*ko ' i . g*k  o) , 

so that 

~ i.g*k o [K'] = ;~ i.g*ko'i*g*k o 

Similarly, 

Hence 

~ i .g*k o" [K] = -~ i g*k "i .g*k '  
' 0 ' 0 " 

~W K'K' = ~ [K]'[I(']- ~/ i.g*ko.i.g*k o 

But 

i.g*ko.i.g*k' ° = i.(g*ko.i*i.g*k')o 

= -i. (g*ko.g*ko.h) 

and consequently 

-~ i.g*ko'i.g*k'o = ~E g*(k .k')'h 
O O 

(ko'k o ) ' g . h  

k "k' 
0 0 

This completes the proof. [] 

16.7. Remark 

If the pairs (K,K') and (I(,K') intersect properly, then 
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and 

S~q[I~].[K'] = JlT/ = #E K.I~' + #~_EK.I~' 
F 

f~.~, 

= #E I<'l~' + #w_BK.K  ' 

W K.K' = #B K'K' + #W-B K.K' , 

so that in this case Noether's formula is equivalent to the relation 

#B K ' K '  = t ~  KB'KB + #E I~.K' [] 
,a13 

§ 17. I m p r o p e r  i n t e r s e c t i o n  n u m b e r s  

Given a degeneration free condition K we will say that a conic C 

properly satisfies K iff K intersects properly the orbit of C. For codi- 

mension one conditions this definition agrees with the definition given in 

6.1. (The philosophy behind this definition is that if K has codimension 

i, I-< i~< 4, and if K improperly intersects the orbit of C, then K 

behaves, as far as imposing "conditions" to C in enumerative problems 

goes, as a condition of codimension < i, so C cannot be counted to satisfy 

K qua condition of codimension i. ) 

If  C i m p r o p e r l y  s a t i s f i e s  a c o n d i t i o n  K, t h e n  C is  of t y p e  B, 

b e c a u s e  i f  K i s  d e g e n e r a t i o n  f r ee  i t  i n t e r s e c t s  p r o p e r l y  A-B a n d  A-B. 

Now given two conditions K and K' of codimension i and i' = 5-i, 

respectively, Kleiman ' s theorem, applied successively to Wo, A-B and 

A-B allows us to conclude that there exists a non-empty open set U of 

G s u c h  t h a t  for  o e U t he  c o n i c s  t h a t  p r o p e r l y  s a t i s f y  K a n d  o ( K ' )  

a r e  n o n - d e g e n e r a t e  a n d  f i n i t e  in  n u m b e r ,  a n d  i f  t he  c o n d i t i o n s  a r e  r e d u c e d  

each counts with multiplicity one in the intersection of K and ~ (K'). 

In this section we are interested in finding an explicit expression for this 
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number. To do that we begin with a definition. 

17. i. Definition 

The improper intersection number imp(K,K') of K and K' 

to be #BK.O(K'), where o • G is generic. Then the difference 

W K.K' - imp(K,K') 

will be called the proper intersection number of K and K' and will be 

denoted by p(K,K'). From this definition and Kleiman's theorem one sees 

immediately that p(K,K') = #W K.o(K'), for oe G generic, and that if 
O 

K and K' are reduced p(K,K') is the number of distinct conics properly 

satisfying K and o (K'). 

is defined 

In order to compute imp(K,K') we need to relate it to the intersection 

number of the multiplicity classes and some sort of intersection of their strict 

transforms under the blowing up of W along B. To this end we will first 

introduce a couple of auxiliary results. 

Let W be a smooth variety and G an algebraic group acting on 

W. Let A 1 and A 2 be two G-invariant irreducible non-singular closed hyper- 

surfaces of W. 

17 .2 .  D e f i n i t i o n  

We wi l l  s a y  t h a t  A 1 a n d  A 2 h a v e  go o d  c r o s s i n g  i f  t h e  f o l l o w i n g  c o n d i -  

t i o n s  h o l d  : 

(i) B = A In A 2 is an orbit of G (hence smooth); 

(ii) A 1 and A 2 meet transversally along B; and 

(iii) For each z e B, the group of linear automorphisms of NB/W(Z) induced 

by the isotropy group G z of z contains (and hence is equal to) 
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t he  s u b g r o u p  of GL(NB/w(Z) )  of t h o s e  a u t o m o r p h i s m s  t h a t  l e a v e  i n v a r i a n t  

t he  l - d i m e n s i o n a l  l i n e a r  s u b s p a c e s  NB/AI(Z)  a n d  NB/A2(Z) . 

Now l e t  a : V/ , W be  t he  b l o w i n g  up  of W a l o n g  B, E t he  

e x c e p t i o n a l  d i v i s o r ,  g :  E -, B t he  r e s t r i c t i o n  of e to E. For  i=1 ,2 ,  

l e t  A. be  t he  p r o p e r  t r a n s f o r m  of A.. With t h e s e  n o t a t i o n s  we h a v e :  
1 1 

17 .3 .  Lemma 

Ai a n d  E h a v e  good c r o s s i n g  w i th  r e s p e c t  to t h e  n a t u r a l  e x t e n s i o n  to 

of the action of G on W. Moreover, if B. : = A. n E, then 
1 I 

g [ B . :  Bi * B is a G-isomorphism (i=1,2). 
1 

Proof 

First we describe the action of G on W. Let o • G and set 

p (o): W ~ W 

to denote the action of o on W. Then 

: p(~)°~ : W ~W (J 

has the property that e21JB£Y ~ is invertible, where ~B is the sheaf of 

ideals of B in W. Hence there exists a unique morphism $(o): W , 

such that 

p(o)°~ = ~ ° ; ( o )  

(see [Har], Prop. 7.1~, Ch. II). The uniqueness implies immediately that 

0-: G ~ Aut(W) is a morphism of groups. Now we will see that the map 

~: G x W , V/ given by 

~(a,x) = $(o)(x) 

is a morphism. Indeed, the map 
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po(i x e): G x W ' W, 

where p : G × W + W is the map (o,x) ~ o(x), lifts to a morphism 

~:G×W , w  

again because of the universality of the blowing-up, and 

sees restricting both maps to {o} × V; for any o~G. 

p = ~" a s  one 

Now the action of G on the exceptional divisor E is given by pro]ec- 

tivizing the action of G on NB/W. More explicitly, if z e B, o • G, 

dzp(O): TzW , To(z)W 

induces a linear map 

8z(O) : NB/w(Z) ~ NB/w(OZ) 

and the restriction of 9(0) to E z : = g-l(z) maps E z to Eo(z) and 

this map coincides with the projectivization of 6z(O) if, as usual, one iden- 

tifies E z with P (NB/w(Z)) (see for instance [B-S], § 12). 

We know that E is invariant under G. The invariance of A. follows 
1 

immediately from the invariance of A i. Moreover, Ai is the blowing-up 

of A i along B c A i and the exceptional locus of this blowing-up is E n A i 

([ Hat], II, 7.15). Since B is a smooth hypersurface on Ai, it follows that 

;~i is smooth and that g: Bi , B is an isomorphism. (This isomorphism 

follows again from the local analysis explained below.) 

It remains to be seen that A. and E intersect transversally along 
i 

B i ,  a n d  t h a t  c o n d i t i o n  ( i i i )  i n  t h e  d e f i n i t i o n  of  g o o d  c r o s s i n g  i s  s a t i s f i e d  

for Ai and E at any point z'e B i. These assertions will be proved 

working with local equations for E and Ai in a neighbourhood of z'. 

W i t h o u t  l o s s  o f  g e n e r a l i t y  we m a y  a s s u m e  t h a t  i = l .  So p i c k  z '  E B 1 
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a n d  s e t  

w i t h  t h e  i s o t r o p y  g r o u p  G 
z 

is clear because g (or e ) 

of G leave invariant E 
z z 

z = g ( z ' ) .  T h e n  t h e  i s o t r o p y  g r o u p  Gz,  of  z '  e W c o i n c i d e s  

o f  z e W. I n  f a c t  t h e  i n c l u s i o n  G , c G 
z z 

i s  a G - m o r p h i s m ,  a n d  c o n v e r s e l y ,  t h e  d e m e n t s  

a n d  B1, so  t h a t  t h e y  m u s t  l e a v e  i n v a r i a n t  

E z n B  1 : {z'}. 

C o n s i d e r  now t h e  a c t i o n  o f  a n  e l e m e n t  e ~ G  z = G z ,  on  O' : = O@/ ,z , .  

Le t  O/: = % ,  z a n d  s e t  m '  a n d  m to  d e n o t e  t h e  m a x i m a l  i d e a l s  o f  

O' a n d  (7 r e s p e c t i v e l y .  Le t  u i e  m b e  a l o c a l  e q u a t i o n  o f  A i ,  so  t h a t  

U l , U  2 a r e  l o c a l  e q u a t i o n s  o f  B. T h e n  u*t : = g*u.1 e m '  a n d ,  a s  i s  w e l l  

k n o w n  f r o m  t h e  l o c a l  d e s c r i p t i o n  o f  t h e  b l o w i n g - u p ,  u ~  i s  a l o c a l  e q u a t i o n  

( a t  z ' )  o f  E a n d  t h e r e  e x i s t s  a n  e l e m e n t  v 1 e m '  s u t h  t h a t  

(*) v I 

which is a local equation of 

of a system of parameters for 

t o  E a t  z ' .  

A1 a n d  s u c h  t h a t  v 1 a n d  u ~  a r e  p a r t  

a t  z ' .  I n  p a r t i c u l a r  A1 i s  t r a n s v e r s a I  

t h a t  

Now by the assumption that A. 
1 

is invariant it follows, given ~ G z, 

0 (o)*u. = t . u ,  (mod m 2) , 

where ti~O. And from condition (iii) in the definition of good crossing it 

follows that when o varies in G z then tl,t 2 take over independently 

all non-zero values. This is so because dzUl, dzU 2 is a basis of N~/w(Z) 

and with respect to this basis the matrix of ~ (o)* is 

But now we will have 

~(o)*v I = tv I (mod m'2), t¢0 (invariance of AI ) 
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~(o)*u~ = t iu  ~, i=1,2,  

which together with the relation (*) imply that the matrix of ~(o)* with 

respect to the basis dz,V I, dz, U i of N~i/~i(z') is 

( t 2 / t  1 0 ) 

0 t 2 

And i t  is  c l e a r ,  when ~ v a r i e s  in G z, t h a t  t 2 / t  1, t 2 t a k e  o v e r  i n d e -  

pendently all non-zero values, from which the good crossing of A1 and 

E follows. [] 

17.4. Def i n i t i on  

Let W be a smooth variety and G an algebraic group acting on W. 

We will say that the action of G on W is good if there exist G-invariant 

smooth hypersurfaces AI,...,A k of W with the following properties: 

(a) For all i~j, A. and A. have good crossing or A.n A. = ~. We will 
i ] i ] 

set  B.. = A. n A., so t h a t  B.. is a cod imens ion  two o r b i t  of G, i f  
1j ~ J U 

non-empty. 

(b) The orbits of G are the sets W -U A i, A i -U Bij for i=l ..... k, and 
i j 

B.. for  a l l  i~j such  t h a t  B.. ~ (~, so t h a t  in p a r t i c u l a r  any  two of l] I} 

these sets are disjoint. 

Now we have the following corollary of lemma 17.3: 

17.5. Corollary 

Assume G has good action on W. Let B = U B.. and ~: I~ ~ W 
i] 

be the blowing-up of W along B. Then the natural action of G on 

is a good action. 
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Proof 

Let  A. be  t h e  s t r i c t  t r a h s f o r m  of  A. u n d e r  E a n d  i f  B..  ~ (~ l e t  
I i i ]  

E. .  = a - I ( B . . ) ,  so  t h a t  t h e  u n i o n  E of  s u c h  E. .  i s  t h e  e x c e p t i o n a l  d i v i -  
i ]  i ]  i ]  

sor of ~. Then the hypersurfaces AI ..... Ak' and the Eij for Bij ~ (~ 

are smooth, G-invariant and satisfy conditions (a) and (b). In fact (a) is 

a direct consequence of 17.3 and (b) follows immediately from the fact that 
~ ~ 

E . . - A , - A  i s  a n  o r b i t  o f  G. 
13 I ] 

Now let K and K' be degeneration-free cycles of codimension r 

and n-r, where n = dim(W), and assume again that G has a good action 

on W. Let B be the union of codimension two orbits, e : W ' W the 

blowing-up of B and B the union of codimension two orbits on W. Then we 

have the following: 

17.6. Theorem 

For a generic aeG, o(K) and K' intersect properly on W, o(~) 

a n d  K' i n t e r s e c t  p r o p e r l y  on  I7/, a n d  

where k 
O 

r e s p e c t i v e l y ,  

C 
#B o ( K ) ' K '  = JB k ° ' k ' °  + #I~ o ( I ( ) . K '  , 

t a n d  k ° a r e  t h e  m u l t i p l i c i t y  c l a s s e s  of  K a n d  K' a t  B, 

Proof 

The first two statements follow from Kleinan's theorem applied to the or- 

bits of G on W and W, respectively. The last follows readily from remark 

16.7. 



74 

§18.  G e n e r a l i z a t i o n  o f  H a l p h e n ' s  f o r m u l a  to  c o n d i t i o n s  of  h i g h e r  o r d e r  

The first thing to do, in order to generalize Halphen's formula to condi- 

tions of higher order, is to define local characteristic numbers for such condi- 

tions. 

Since we need work not only on W but also on successive blowing-ups 

of it along codimension two subvarieties, we will start with a smooth variety 

W in which two smooth irreducible hypersurfaces A I, A 2 that intersect trans- 

versally along a (codimension two) smooth subvariety B are given. 

t h a t  

a t  

i n t e r s e c t i o n  B n K. 

COdKZ i 1 fo r  

Z i , so  t h a t  (Yi 

of O~ i corresponding to B n K 

qi in O~ i. Then the cycle 

In such a setting, let K be an irreducible subvariety of W such 

K ~ AI,A 2. We proceed to define local characteristic numbers for K 

B. To do this, let ZI,...,Z s be the excedentary components of the 

Since B has codimension two in W, we will have 

1< i ~< s .  Let  ~i  : = O~K,Zi'  t h e  l o c a l  r i n g  of  K a t  

is a 1-dimensional local domain. Let ~i be the ideal 

and set the multiplicity of ~i e~Y. ( q i ) '  
1 

s 

K B = ~ ~iZi 
i=l  

has been called multiplicity cycle of K at B (cf. § 16). 

Let ~i be the integral clousure of O~ i in the field C(K) of rational 

functions of K. Then ~'l has finitely many maximal ideals mtj, 1 < j < r i, 

and the local rings Rij = (~i)m.. are the discrete valuation rings of C(K) 

U 
that dominate ~. We will write v..: C(K)* + Z to denote the valua- 

i 13 

tion function corresponding to R.. For each i, let e l] xi'Yi C be such 

that (x i) and (yi) are the ideals defined by A 1 and A 2 in (Yi; in 

other words, x i and Yi are local equations (in K) for Aln K and A 2 n K 

at the generic point of Z i. Since B is the (complete) intersection of 

A 1 and A 2 we have that (~i = (xi'Yi)" 
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18. I .  De f in i t i ons  

Let P i j '  q i j  be the  p a i r s  of copr ime p o s i t i v e  i n t e g e r s  such  t h a t  

Pij/qij = vij(Yi)/vij(x i) • 

Then the pairs (Pij,qij), i ~ i~< s, i~< j~< r i, will be called local cha- 

racteristic pairs of K a t  B, r e l a t i v e  to A 1 and  A 2. The p a i r  ( P i j , q i j )  

w i l l  be s a i d  to c o r r e s p o n d  to v i j .  For a g i v e n  c h a r a c t e r i s t i c  p a i r  ( P t j , q i j )  

t he r e  e x i s t s  ( c l e a r l y )  a u n i q u e  p o s i t i v e  i n t e g e r  n . .  such t h a t  
U 

vij(xi) : nij Pij' vij(Yi) = nij qij 

Let d. be the degree of the residue field of R. over the residue field 
IJ 13 

of ~i " Then the cycle dijnijZ i will be called Rij-multiplicity cycle (or 

v..-multiplicityij cycle) of K at B, and the cycle Kp,q := ~. dijnijZi, where 

the sum is extended to all pairs i,j such that Pij = p' qij = q' will be 

called (p,q)-multiplicity cycle of K at B. Naturally, we set K = 0 if 
Pq 

(p,q) does not appear as a characteristic pair of K at B. 

18.2. Theorem 

K B = ~. min(p,q)Kpq , 

where the sum is extended to all pairs (p,q) of coprime positive integers. 

Proof  

We will see that Z i appears with the same multiplicity on both sides. 

On the left hand side this multiplicity is eo~(gi) , and by ([Z-S], vol II, 
i 

proof of Theorem 22 for d=l, p.29~) we have that for any general C-linear 

combination f of x i and Yi 

e (~ (~ i )  = l e n g t h  ( ~ i / f ~ i )  
l 

(cf. also [F], Example 4.3.5). This in turn is equal to Zdijvij(f) , 
J 
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a s  f o l l o w s  b y  I N ] ,  T h e o r e m s  6 a n d  8 ( c f .  a l s o  [ F ] ,  E x a m p l e  A . 3 . 1 ) .  S i n c e  

v i j ( f )  = n i l  m i n ( P i j , q i j ) ,  we h a v e  t h a t  

e ( z ( q i )  = ~ .  d . . n .  " ) • . 1] l j  m m ( P i j ' q i j  o 

t j 

The  t h e o r e m  i s  now a d i r e c t  c o n s e q u e n c e  of  t h i s  e q u a l i t y  a n d  t h e  d e f i n i t i o n  of  

K . [] 
P , q  

18.3. Remark 

if K is a purely dimensional cycle of W such that none of its compo- 

nents is contained in Ai, for i=1,2, then, by linearity, we can extend 

to K the definition of K B, of local characteristic pairs, and of the cycles 

Kp,q. With this extension Theorem 18.2 is still valid. 

The  s e c o n d  s t e p  t o w a r d  a g e n e r a l i z a t i o n  of  H a l p h e n ' s  f o r m u l a  i s  to 

u n d e r s t a n d  t h e  r e l a t i o n s h i p  b e t w e e n  t h e  l o c a l  c h a r a c t e r i s t i c  n u m b e r s  of  K 

a t  B a n d  t h o s e  of  t h e  s t r i c t  t r a n s f o r m  t( of  K on t h e  b l o w i n g - u p  

e: W , W of W along B at the subvarieties B i : = E n Ai, Ai 

the strict transform of A.. 
1 

1 8 . ~ .  P r o p o s i t i o n  

The  s e t  o f  l o c a l  c h a r a c t e r i s t i c  p a i r s  ( p l , q l )  o f  t( a t  B 1 ( r e l a t i v e  

to A1 a n d  E) i s  i n  o n e - t o - o n e  c o r r e s p o n d e n c e  w i t h  t h e  s e t  o f  l o c a l  c h a r a c -  

t e r i s t i c  p a i r s  ( p , q )  o f  K a t  B ( r e l a t i v e  t o  A 1 a n d  A 2) s u c h  t h a t  

q > p .  

The relationship between (pl,ql) and the corresponding pair (p,q) 

is given by Pl = p' ql = q-P and for all such (p,q) the relation 

holds. 

E,Kp,q_p = Kp,q 
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T h e r e  i s  a s i m i l a r  s t a t e m e n t  fo r  B 2: in t h i s  c a s e  a p a i r  
~ 

%Kp_q,q = Kp,q c o r r e s p o n d s  to  ( p - q , q )  a n d  

P r o o f  

S i n c e  e ( ~ ( n B 1  ) _c K n B  a n d  e J B l :  

component Z of K n B 1 is mapped by E 

(P,q), P > q, 

B 1 ~ B, a n  e x c e d e n t a r y  

to  a n  e x c e d e n t a r y  c o m p o n e n t  

Z of  K n B .  Let  O': = dYZ, K , &:  = (Y~,~,  so  t h a t  e * :  CY ~- * ~ i s  

a l o c a l  m o r p h i s m .  S i n c e  e * :  ¢ ( K )  ~ ~ C(t~),  we w i l l  i d e n t i f y  t h e s e  two f i e l d s  

a n d  in  t h i s  w a y  we s e e  t h a t  a n y  v a l u a t i o n  v of  ¢(t~) c e n t e r e d  a t  

i s  a l s o  a v a l u a t i o n  of  C(K) c e n t e r e d  a t  Z.  The  c h a r a c t e r i s t i c  p a i r  ( p , q )  

o f  v a t  Z i s  d e f i n e d  b y  t h e  r e l a t i o n s  v I x )  = n q ,  v ( y )  = n p ,  ( p , q )  = 1, 

w h e r e  x a n d  y a r e  t h e  e l e m e n t s  in  ~ c o r r e s p o n d i n g  to  g e n e r a t o r s  x , y  

of the ideals of A I and A 2 in O'Z, W. Now the ideals of A1 and E 

in £f~,~ are generated by x/y and y respectively, and hence the charac- 

teristic pair (pl,ql) of v at i is given by the relations v(~j) = n I Pl ' 

v(x/y) = nlql, (pl,ql) = i. It turns out that n I =n, p = Pl and q = pl+ql . 

In particular q > p. 

Conversely, if Z is an excedentary component of K n B and v is 

a v a l u a t i o n  of  C(K) c e n t e r e d  a t  O': = O'Z, K s u c h  t h a t  q > p ,  w h e r e  

( p , q )  i s  t h e  c h a r a c t e r i s t i c  p a i r  of  v a t  Z,  t h e n  Z , v  comes  f rom some 

Z , v  ( n e c e s s a r i l y  u n i q u e )  t h e  w a y  e x p l a i n e d  in  t h e  f i r s t  p a r a g r a p h .  I n  o r d e r  

to s ee  t h i s ,  l e t  U b e  a n  a f f i n e  o p e n  s e t  of  K s u c h  t h a t  U n Z ~ ~ ,  

I u ( A  I n  U) = ( x ) ,  I u ( A  2 n U )  = (~ ) ,  w h e r e  ~ , , j c A  : = C [ U ] .  T h e n  K c o n -  

t a i n s  a n  a f f i n e  o p e n  s e t  U' s u c h  t h a t  U ' n  B 1 ¢ ~ a n d  w i t h  C [ U ' ]  = A [ x / y ] .  

Let  R v be  t h e  v a l u a t i o n  r i n g  of  v .  T h e n  s i n c e  CY< Rv,  A-c Rv" The 

h y p o t h e s i s  q > p  i m p l i e s  t h a t  ~ / y  e m v ,  t h e  m a x i m a l  i d e a l  o f  R v .  T h u s  

is a prime ideal of 

is the closed set of 

: = m v n A [ ~ / , ) ]  

• [U ' ]  s u c h  t h a t  ( y , x / y ) _ ~  f t .  T h i s  i m p l i e s  t h a t  i f  

c o r r e s p o n d i n g  to ~ t h e n  Z c~U' c U' n B 1 a n d  so 
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Z c_ B1" S i n c e  c l e a r l y  e ( Z )  = Z, Z, v s a t i s f i e s  t h e  c l a i m e d  p r o p e r t i e s .  

To e n d  t h e  p r o o f  i t  i s  e n o u g h  to o b s e r v e  t h a t  t h e  p a i r  Z , v  c o n t r i b u t e s  

to  K p , q _ p  a s  d n Z ,  w h e r e  a = [ k ( R v ) :  k ( ~ ) ] ,  w h i l e  Z , v  c o n t r i b u t e s  

a s  d n Z ,  w h e r e  d = [ k ( R v ) :  k ( O ' ) ] .  But  s i n c e  e : Z ~ ' Z, d = d a n d  

so  t h e  f i r s t  c o n t r i b u t i o n  i s  d n Z ,  w h i c h  % m a p s  to  d n Z .  [] 

We a r e  now r e a d y  to  p r o v e  t h e  g e n e r a l i z a t i o n  of  H a l p h e n ' s  f o r m u l a  

a n n o u n c e d  b e f o r e .  We u s e  t h e  n o t a t i o n s  e x p l a i n e d  a f t e r  r e m a r k  18 .3 .  

18.5. Theorem (Halphen's formula for higher codimensions) 

Let K and K' be effective cycles of codimension i and i'=n-i, 

n = dim(W), such that no component of either of them is contained in A 1 or 

A 2. Then there exists a non-empty open set U of G such that o (K) and 

K' intersect properly on W for any o E U and 

= ' SB "K' #BO(K) .K' ~ min(pq ,qp') Kp,q p,,q, , 

where the sum is extended over all local characteristic pairs (p,q) and 

( p ' , q ' )  o f  K a n d  K ' ,  

P r o o f  

We m a y  a s s u m e  t h a t  

r e s p e c t i v e I y ,  a t  B. 

K a n d  K'  a r e  i r r e d u c i b l e  ( r e m a r k  1 8 . 3 ) .  U s i n g  

K l e i m a n ' s  t h e o r e m  o n e  s e e s  e a s i l y  t h a t  t h e r e  e x i s t s  a n o n - e m p t y  o p e n  s e t  

U of  G s u c h  t h a t  o ( K )  a n d  K' i n t e r s e c t  p r o p e r l y  on W, a n d  t h a t  

a ( K )  a n d  t ( '  i n t e r s e c t  p r o p e r l y  on  ~q, f o r  a n y  o e U. T h e n ,  b y  16 .7 ,  

#B ~(K)'K' I~ " = K B K B' + # E O ( K ) . K  ' , 
J ~  

w h e r e  K B a n d  K~ 

We m a y  a s s u m e  t h a t  f o r  

t i o n  p o i n t s  on 

a n d  a (K) n E ' ,  

a r e  t h e  m u l t i p l i c i t y  c y c l e s  of  K a n d  K' a t  B. 

e U  t h e  c y c l e s  o (K)  a n d  K'  h a v e  no  i n t e r s e c -  

Fo r  E '  : = E-B1-B 2 i s  a n  o r b i t  o f  G ( 1 7 . 5 )  

have codimension i and n-i in E', so that 

E-BI-B 2 • 

K' N E' 
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they do not intersect if o is generic in G. 

Therefore we may write 

(*) # B ° ( K ) ' K '  = ~B KB'KB + #BI° (K) ' }~ '  + #B2O(}().}<' 

We wi l l  p rove  the theorem u s i n g  th i s  r e l a t i o n  a n d  i n d u c t i o n  on the maximum 

v a l u e  m of the c h a r a c t e r i s t i c  number s  of K at  B. 

If m=0 then K n B does not have excedentary components and both 

members of the claimed formula are zero. So suppose m > 0. In the relation 

(*) above, let mi, i=1,2, be the maximum of the characteristic numbers 

of K at B i. Then, by 18.~, mi< m and hence by induction we may 

assume that 

#B. ° ( K ) ' K '  
1 

can be expressed by means of the formula to be established, for all o in some 

non-empty open set, which we can assume is U (shrinking the former U 

if necessary). So for o e U we have 

#BIO(K)'K ' = ~. min(pq',qp') ~B f~'~ ~ ' ' ~ '  
i 

where the sum is extended to all characteristic pairs (p,q) and (p',q') of 

and K', respectively, at B I. But by 18.& these characteristic pairs are 

of the form (p,q-p), (p',q'-p'), where (p,q), (p',q') are the characte- 

ristic p a i r s  of K a n d  K ' ,  r e s p e c t i v e l y ,  at  B with q > p, q '  > p ' .  

Therefore  

#BlO(I<)-K' = q>PE min(p(q'-p'),(q-p)p')~BII(P'q-P 

q'>p, 

• K '  , _ p ,  p ' , q  

z minpq qp  Kpq pq Z pp K K 
q>P q>P P ' q  p ' , q '  , 
q'>p' q,>p, 
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where the sums are extended to characteristic pairs (p,q), (p',q') of 

K and K', respectively, with the restrictions made explicit below the sum- 

mation signs. 

Similarly, 

#B2O(}{)'K' = E min(pq',qp')fB K q < p  P,q'K'p',q' - q<~p qq' ~B 
q,<p' q~p, 

Kp,q. Kp, ,q, 

by 18.2. 

On the other hand 

~B KB" KB' = E 
P,q 
p',q' 

min(p,q)-min(p',q') Kp,q Kp,,q, 

The claimed formula follows now easily by substituting the last three 

equalities in (*) and observing that min(p,q)min(p',q') is equal to pp' 

if q > p and q' > p ' ; to qq' if q < p and q' < p ' ; and to 

min(pq',qp') in all other cases. 

18.6. Remark 

It is easy to see that when i=l, i'=& and W is the variety of 

complete conics, then 18.5 gives Halphen's first formula. See also 20.2. 

§ 19. Examples of higher order conditions 

This section is devoted to the construction of certain cycles (in codi- 

mensions 2, 3 and &) and to compute their Chow classes and multiplicity 

cycles. The leading idea is to find, for each codimension, cycles with the 

simplest (non-trivial) local characters. 
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C o n s t r u c t i o n  of the  cod imens ion  2 c y c l e s  H 
P , q  

Let P,Q be two d i s t i n c t  po in t s  of P2 and  l e t  u be a l i n e  go ing  

t h r o u g h  P and  not t h r o u g h  Q. If  p , q  a r e  copr ime p o s i t i v e  i n t e g e r s  

t hen  we may use P and  u to de f ine  the  c o n d i t i o n  S (cf .  11.1; as  
P , q  

we e x p l a i n  t h e r e  in i t  is not  n e c e s s a r y  to spe c i fy  the  a d d i t i o n a l  two po in t s  

on u and  two l i ne s  t h r o u g h  P r e q u i r e d  to de f ine  S ). Let a l so  denote  
P , q  

by Lp,Q the  c o n d i t i o n  of h a r m o n i c a l l y  d i v i d i n g  PQ. Then the  i n t e r s e c t i o n  

Lp,QNSp,q has codimension two and contains Ap (double lines through 

P) as a component. 

19.1. Lemma 

The multiplicity of 

q. 

Ap in the intersection Lp,Q NSp,q is equal to 

Proof 

From the description of S given at the end of ii.i we know that 
P,q 

it belongs to the pencil defined by the ( linearly equivalent ) divisors 

qA + (2p+q)L u and pA + (2q+p)Lp. Let us compute the multiplicity of 

Ap in the intersection of these divisors with Lp,Q. 

We have that 

Lp ,Q- (qA + (2p+q)L u) = q Lp,Q.A + (2p+q)Lp ,Q.L  u 

= q(Ap+AQ) + (2p+q)Lp,Q'L u 

(see § 15 for the computation of the intersection products used here). Since 

Lu does not contain Ap, it follows that Ap has multiplicity q in 

Lp ,Q. (qlt+(2p+q)Lu). 

S i m i l a r l y ,  

L p , Q . ( p A  + (p+2q)Lp)  = p L p , Q . k  + ( p + 2 q ) L p , Q . L p  
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1 Lpf~v, where v is and /~p is not contained in A, while Lp,Q.Lp = /kp + -~ 

the line PQ. Thus /~p has multiplicity p+2q in Lp,Q.(pA+(p+2q)Lp). 

Consequently the multiplicity of Ap in Lp,Q-Sp,q is q (the least of 

the two just computed intersection numbers). [] 

Thus Lp,Q'Sp,q  q/~p is an effective cycle tha t  does not contain Ap as 

a component. This cycle will be denoted by H 
P,q 

19.2. Remark 

H is the clousure of the set of non-degenerate conics that harmoni- 
P,q 

cally divide PQ and satisfy Sp,q. Indeed, since 5p,qnA = BUAu, 

Sp,qn/% = BUAp, B~Lp,Q, and A u ~ Lp,Q, we see that Ap is the 

only degenerate component of Lp,Q-Sp,q.  [] 

19 .3 .  Lemma 

n B = BQU u ru Hp,q ruQ , 

of H n B. 
P,q 

so that BQ is the only excedentary component 

Proof 

First  notice tha t  se t - theore t i ca l ly  we have 

(Hp,q+qAp)n A = S p , q ~  L p , Q n A  

(B UAu)n Lp,Q 

Bp u BQ u(A u n  Lp,Q) . 

Now let us compute the intersect ion mult ipl ic i ty  of 

at Bp: 

v 

Hp,q + qAp and 

(because S 
P,q 

• ((Hp, )'A) = ' (Lp,Q'A)) :Bp q+qAp :Bp(Sp,q" 

= 1Bp" ( (q~+ (2p+q)Lu) ' (Lp,Q'A))  

is in the penci l  defined by qA+(2p+q)L u and pA+(p+2q)Lp 
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and the latter contains A) 

: q i B p ( A ' ( L p , Q ' A ) )  = q 

(because A.(Lp;Q.A) = Lp,Q.B = Bp + BQ and Lp,Q.Lu'A does not contain 

Bp). 

This implies that Hp,q ~ Bp. Indeed, otherwise Hp,qOA would con- 

tain Bp, which would force the multiplicity of Bp in (Hp,q+qAp) n A 

to be greater than q (clearly Ap A A contains Bp). Therefore 

n k = BQ u(A n L p  Hp,q u ,Q) 

and consequently 

H 
P,q 

nB = H n A n ~  
P,q 

= n Lp n /~) BQ u (A u ,Q 

BQ u ruQ u r u [] 

19.4 .  Theorem 

(a) Hp,q ~ qL 2 + ( g p + q ) ~  

(b) For a n y  p a i r  of p o s i t i v e  coprime i n t e g e r s  p ' , q '  we have  t ha t  

0 if (o',q') ~ (p,q) 

(Hp,q)p,,q, = 

BQ (~ in AI(B)) if (p',q') = (p,q) 

Proof 

(a) It is an immediate consequence of the definition of H 
P,q 

(b) Since BQ is the only excedentary component of Hp,q n B, let us consi- 

der the local rings O" and ~ of BQ in W and Hp,q, respectively. 

Let fEO" be a generator of the ideal defined by Lp,Q and let x,y E£Y 

be the generators of the ideals defined by A and A, respectively, induced 

by the functions X,Y defined using u and P as in §~. Then S 
P,q 

defines an ideal in O" generated by xxP-y q, x a non-zero scalar, and 
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therefore the ideal of H in (~ is (f,~xP-y q). It follows that 
P,q 

= £Y/(f,~xP-yq). But O' = (F/(f) is a regular local ring of dimension 2 and 

(~ = (Y'/(~x'P-y'q), where x',y' ~ O' are the classes of x,ye (Y. In par- 

ticular (~ is a domain and so there is only one irreducible component K 

of Hp,q containing BQ. Thus ~ = (FBQ,K and any local characteristic 

pair of H will come from K. But now taking the completion of ~F 
P,q 

we see that there exists a unique valuation v of C(K) centered at 

and that such valuation satisfies v(x) = q, v(y) = p, d=l (where d 

is the degree of the residue field of R over the residue field of (~). This 
v 

completes the proof. [] 

The dual construction of H leads to the construction of cycles that 
P,q 

will be denoted Hq,p. The (dual) role of the point Q not on u is 

played by a line v not through P. With these notations we have: 

19.&~ Theorem 
v 

(a) ~p,q ~ p~2 + (p+4q)~ 

(b) For any pair of positive coprime integers (p',q') 

0 si (p',q') ~ (p,q) 

(~Ip,q)p, q, = B (~ ~ in AI(B)) if 
V 

(p',q')=(p,q). [] 

Construction of the codimension 3 cycles G 
P,q 

Fix three non-collinear points P,Q,Q' 

PQ, PQ', and QQ', respectively. 

and let v,v',w be the lines 

19.5. Lemma 

The cycle Ap 

of the cycles Lp,Q 

is a component of multiplicity one in the intersection 

and Lp,Q,. 
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Proof 

Since 

It is easy to check that 

Lp,Q n Lp,Q, 

L p , Q ' L p , Q , - A  ~ , 

actually we have 

nA = BpO Dp u Awp . 

(2) 
Bp , Dp , A wP 0 

Lp,Q-Lp,Q,'A = Bp + Dp + Awp 

Now Ap is c l e a r l y  a component  of Lp,Q• Lp ,Q, .  Let m >1 be i t s  

m u l t i p l i c i t y .  Then s ince  Ap.A = Bp, we see t ha t  the m u l t i p l i c i t y  of Bp 

in  Lp,Q. L p , Q , . A  is  a t  l e a s t  m. Thus  m=l.  U1 

Set G = L p , Q ' L p , Q ,  - Ap. Then G 

not contain Ap as a component. Clearly 

of the previous lemma and its proof we have: 

is an effective cycle that does 

LL 
G ~ --2- " As a consequence 

19.6. The intersection G.A is proper and G.A = Dp + Awp . [] 

19.7. Remark 

The intersection G.A is also proper, as Lp,Q.Lp,Q, only has the 

component Ap in A. Thus we may say that G is determined by its inter- 

section with the open set of non-degenerate conics. We will express this by say- 

ing that G is the clousure of the family of non-degenerate conics for which 

P,Q and P,Q' are conjugate pairs. 

Now since on non-degenerate conics these conditions are equivalent to 

being conjugate the pairs of lines w,v and w,v', we have also the 

expression 
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Moreover, 

19.8. Lemma 

(a) G.Lp = Dp + Aw, P 

(b) G.L u = Dp + z P,u,w 

(c) G.LQ,Q, Dw + = Tp ,Q,Q,  

Proof  

(a)  By the  definition of G, 

t i c a l l y )  

and hence 

But now 

G " Lp ~ 1 
2 

and  so (a)  fo l lows .  

G=L -L - a  
W,V W,V' W 

G . i  = 5 w + AwP • [] 

remark 19.7, and 19.6 we see that (set-theore- 

nL G = L p , Q n  L p , Q , n  [ w , v  w , v '  

v 

G n L p  = DpU Aw, P 

w ,  Dp ~ 0 and  A 
0 

(b) It is clear that Dp is a component, and in fact the only degenerate 

component ,  of G n L u .  Let Z be the c l o u s u r e  of the n o n - d e g e n e r a t e  con ics  

in  G • L p .  I t  i s  e a s y  to see t h a t  E = Z p , u ,  w. Now s ince  

G.~ u , Dp , and  z 

with a >0 (as it is easy to see), it turns out that actually 

and that G.L u = Dp + Zp,u, w 

a = B = y = l ,  

(c) From G + Ap = L p , Q . L p , Q ,  i t  fo l lows t h a t  
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G.LQ,Q, + I) v + f)v '  

and  t h i s  comple tes  the  p r o o f .  

L p , Q . L p , Q ,  .LQ,Q, 

Tp,Q,Q,  + [)v + f)v' + f)w 

19.9.  Lemma 

The i r r e d u c i b l e  c y c l e s  

of the i n t e r s e c t i o n  S .G 
P , q  

and  q, r e s p e c t i v e l y .  

Dp and Aw, P are the degenerate components 

and the corresponding multiplicities are 2p+q 

Proof  

I t  is  s i m i l a r  to the  p roof  of 19.1 and  we w i l l  omit i t .  In the  c o m p u t a -  

t ions  (a)  a n d  (b)  of lemma 19.8 a r e  u s e d .  [] 

Thus the codimension 3 cycle 

: = G.S - (2p+q)Dp Gp,q P,q - q/~w,P 

is effective and has no degenerate component. The cycle 
q,P 

using the dual construction of G 
P,q 

is defined 

19.10. Theorem 

(a O ~ (2p+q, 2p+q, 2p+2q) T. 
P,q 

(b For any pair (p',q' of positive coprime integers, 

0 if (p',q') ~ (p,q) 

( G p , q ) p  ,q ,  = 

rw (~z2 in AI(B)) i f  ( p ' , q ' )  = ( p , q ) .  

(~ ~ (2p+2q, p+2q, p+2q) T. 
P,q 

(b) For any pair (p',q') of positive coprime integers 
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( G p , q ) p ' , q '  

0 if (p',q') ~ (p,q) 

rp (~ ~2 in AI(B)) if (p',q') = (p,q). 

Proof  

Formula  (a) can  be o b t a i n e d  ( r e c a l l i n g  t h a t  G~ LL 5 2qL+2pL 
2 ' p , q  

Dp ~ L  2, and  Aw,P ~ 2L2+  ~ -  ) by  a s t r a i g h t f o r w a r d  c o m p u t a t i o n .  

(b) Recall that G and A intersect properly and that G.A = Dp + ^w,P 

(see 19.6)• Thus A properly intersects G.A and hence 

G.B = (G.A)'A = r + ~ + r 
P w w,P ' 

as Dp.A = rp , A w,p.A = rw+ Fw,p. In particular 

n B _c GnB = r u r ur Gp,q P w w,P 

Now r is a component of G n B, and so an excedentary component. In 
w p,q 

fact it is enough to show that rw is contained in Gp,q, and this follows 

easily from the definition of G and Gp,q The cycles r and r 
• P w,P' 

however, are not contained in G (lemma 19.11 below) and therefore 
P,q 

is the only excedentary component of G n B. 
w p,q 

Since r has multiplicity one in the intersection of G and B, the 
w 

local ring O'~w,G is regular (of dimension 2). If we take equations X,Y 

of B at the generic point of ~ as in §g, then the restrictions x, y 
w 

of X,Y to G g e n e r a t e  the  m a x ima l  i d e a l  of O'~ ,G" Now at  the  g e n e r i c  
w 

po in t  of f" the  cyc l e  G is  cut  out  on G by S and  hence the w p , q  p , q  

local ring of rw on Gp,q is of the form ~Y~w,G/(XxP-yq). Henceforth 

the proof  can  be comple t ed  as  in the p roof  of 19.Z~.(b). Kt 

19.11. Lemma 

The cycles rp and rw, P are not contained in Gp,q 
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Proof 

Since rw is  a component  of Gp ,q .  LQ,Q,,  we may wr i t e  

Gp,q. LQ.Q, = 0fw + r , 

where r is  an  e f fec t ive  cyc le  not  c o n t a i n i n g  w 

go ing  to see t h a t  ~ =p a n d  r ~ (2p+q, 2p+2q) T. 

compute G .Sp ,q .  LQ,Q, in  two ways :  on the one h a n d  

as a component. We are 

In order to do that we 

v 

G.Sp ,q .LQ,Q,  = (Tp,Q,Q,+Dw).Sp ,  q 

= T p , Q , Q , . S p , q  + Prw 

and  on the o ther  

(by  19.8(a)) 

(by  15.3(b)  ) 

G.Sp,q. LQ,Q, = Gp q, .L~,~,v4 M + (2p+q)Dp-LQ,Q, + qXw,p'LQ, Q, 

+ @ v , P , Q  + q r v ' , P , Q '  pr w + r + ( 2 p + q ) r p ; v ,  v,  

Compar ing  both e x p r e s s i o n s  we get  p=p and  tha t  

Gp,q .LQ,Q,  = Prw + r 

(*) T p , Q , Q , . S p , q  = r + ( 2 p + q ) r p , v ,  v ,  + q r v , p , Q  + q r v ' , P , Q '  

,( ~p+2qj'2p+q ~ \[ 2p+q Since Gp ,q .  LQ,Q, - one computes t h a t  r - 2p+2q} " So r .A = 2p. 
/ 

Moreover,  the  r e l a t i o n  Sp,q.}w,Q, Q, = ( 2 q , 2 p ) ' ( 0 )  = 2p,  t oge the r  w i t h  (* ) ,  

imply  t h a t  the  2p i n t e r s e c t i o n s  of r with A a c t u a l l y  l i e  on w , q , q ' "  

In particular 

(**) r n r v , p ,  Q = ~ and  r n r v ' , P , Q '  = ~ 

= { ( v 2 , p 2 ) , ( v ' 2 , p 2 ) }  Assume now t h a t  rp  c - Gp ,q .  Then r p  n LQ,Q, 

n LQ,Q = r u }  But t h i s  is  a b s u r d  because  would be c o n t a i n e d  in  Gp ,q  , w" 

by  (**) St c a n n o t  be c o n t a i n e d  in  r , a n d  c l e a r l y  i t  is  not  c o n t a i n e d  in  
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° 
W 

A s i m i l a r  a r g u m e n t  shows t h a t  r w , p  is  not  c o n t a i n e d  in  G p , q .  In 

t h i s  c a s e  r w , p n  LQ,Q, = {(v2,Q2),(v'2,Q'2)} a n d  t h i s  is  not  c o n t a i n e d  

in  ~ no r  in  r .  [] 
W ~ 

C o n s t r u c t i o n  of t he  c o d i m e n s i o n  fou r  c y c l e s  r 
P , q  

Here we e x p l a i n  a p r o c e d u r e  for  c o n s t r u c t i n g  a 1 - d i m e n s i o n a l  s y s t em 

of c o n i c s  h a v i n t  ( p , q )  as  i t s  o n l y  p a i r  of l o c a l  c h a r a c t e r i s t i c  n u m b e r s ,  

p , q  cop r ime  p o s i t i v e  i n t e g e r s .  

Let Po' PI' P2 be a triangle in P2 

we know that the image of the restriction of 

2 2 2 
plane T' spanned by u o, u], u2, where 

the triangle Po'  P I '  P2 a n d  t h a t  p:  T 

2 2 
T' a t  the  t h r e e  p o i n t s  u 2, u l ,  u 2 . 

a n d  le t  T = TPo,P1 ,P2"  Then 

p: W * P5 to T is  the  

u o, u 1, u 2 a r e  the  s i d e s  of 

• T' i s  the  b l o w i n g  up of 

The p l a n e  T' c a n  be e a s i l y  d e s c r i b e d  i f  we t a k e  Po '  P I '  P2 as  

c o o r d i n a t e  t r i a n g l e :  i f  t h i s  is  the  c a s e  the  p o i n t  c o n i c s  in  T' a r e  t h o s e  

h a v i n g  a d i a g o n a l  m a t r i x  d i a g ( a o , a l , a 2 ) .  Moreover  a o , a l , a  2 a r e  p r o j e c t i v e  

2 2 2 
c o o r d i n a t e s  on T' w i th  r e s p e c t  to the  t r i a n g l e  Uo, u 1, u 2 . 

Now given a pair (p,q) of coprime positive integers, let 

curve in T' defined by the equation 

r ' be  t he  
P , q  

r' : a p(a +a ) q = a p+q 
p,q o 1 2 

This  c u r v e  h a s  a s i n g l e  b r a n c h  at  u 2 of m u l t i p l i c i t y  q whose  t a n g e n t  
0 

i s  d i s t i n c t  from the  s i d e s  of the  t r i a n g l e ;  i t  does  not  go t h r o u g h  u2; a n d  

a s i n g l e  b r a n c h  a t  u~ of m u l t i p l i c i t y  p a n d  c l a s s  q whose  i t  h a s  

t a n g e n t  c o i n c i d e s  w i th  the  s ide  ao=O. On the  s ide  a2=O h a s  p a d d i t i o n a l  

2 p o i n t s ,  o t h e r  t h a t  u . 
0 
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Define r as the strict transform of r' under p: T , T'. 
P,q P,q 

Thus r is the l-dimensional system of conics which is the clousure of 
P,q 

the non-degenerate conics that have Po' PI' P2 as a self-polar triangle 

and satisfy the equation above• 

From the standard properties of the blowing up one sees (cf. also ~i0) 

that r has just one point on B, namely the point on the exceptional 
P,q 

= 2 2 
line over u 2 corresponding to the tangent a ° 0, (u2,Po). Since the 

intersection numbers of r with A and A at this point are p and 
P,q 

q, respectively, we see that the multiplicity cycle of r at B is 
P,q 

2 2 
(u2,Po), and that it has a single characteristic pair, (p,q). 

(P+q) as r Finally F P,q P+q , 

immediately from the description of r' 
P,q 

• A "A = p+q, p,q = rp,q 

given before. 

a s  o n e  s e e s  

(p additional ~ / 

H ------- ao . 0 (sult. p, class q) 
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§ 20. S t r i c t  e q u i v a l e n c e  of c o n d i t i o n s  

20 .1 .  D e f i n i t i o n  

Given degeneration free conditions K I,K 2 of the same dimension d 

we shall say that K 1 is strict]y equivalent to K 2 iff for any condition 

K of dimension 5-d the relation P(KI.K) = P(K2.K) holds. [] 

In this section we will prove that two conditions are strictly equivalent 

iff they have the same global and local characters and then we will use this 

fact to construct free Z-basis of Hali(W), for i=2,3,4. Given a condition 

K, its class [K] in A'(W) will be called g]oba] character of K. Iden- 

tifying Ai(w) with Z r(i), where r(O) r(5) = i, r(1) = r($) = 2, 

and r(2) = r(3) = 3, by means of the bases described in §15, the global 

character of a codimension i condition is a vector with r(i) integer coordi- 

nates. On the other hand, if K is a condition of codimension i we shall 

say that the pair (p,q) of coprime positive integers appears with multipli- 

city ~ E Ai-I(B) if B is the class of K in Ai-I(B). If we identify 
P,q 

AJ(B) with Z r'(j), where r'(O) r'(3) = i, and r'(1) = r'(2) = 2, 

u s i n g  the  b a s e s  d e s c r i b e d  in  § 15, t h e n  the  mult ip]ic i ty  of ( p , q )  in  

K is  a v e c t o r  w i t h  r ' ( i - 1 )  c o o r d i n a t e s ,  1~< i~< 4. With t h e s e  c o n v e n t i o n s ,  

t h e  symbol  B[ p , q ]  w i l l  be c a l l e d  t he  local character of K c o r r e s p o n d -  

i n g  to t h e  p a i r  ( p , q ) .  The s t r i c t  c l a s s  of K wi l l  be  d e n o t e d  by  < K > .  

H a l p h e n ' s  f o r m u l a  for  h i g h e r  c o d i m e n s i o n s  ( t h e o r e m  18.5)  c a n  now be  

r e p h r a s e d ,  for  t he  c a s e  of c o n i c s ,  as  fo l lows :  

20.2. Let K,K' be degeneration free conditions of dimensions i 

respectively. Let ~ ,~' be their global characters and Bi[pi,qi] , 

Bj[Pj,qj], i~< j~< s', their local characters. Then 

p(K.K') = ~.~' - ~ .  ( 8 i . 8  i )  m i n ( p i q i , q i p i )  [] 
1,j  

and 5-i, 

i~< ics, 
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20.3 .  In view of the additive behaviour of this formula one can extend to 

non-effective cycles that do not have degenerate components the notions of 

proper intersection, strict equivalence, and of global and local characters. With 

such an extension the formula is still correct. [] 

20.4. Theorem 

Let K 

K and K' 

characters. 

and K' be conditions of the same codimension, say i. Then 

are strictly equivalent iff they have the same global and local 

Before p r o v i n g  th i s  r e s u l t  we wi l l  use i t  to c o n s t r u c t  ba se s  for 

Halt(W), i=2,3,4. 

Since the strict equivalence is clearly compatible with addition, the 

strict equivalence classes of degeneration free cycles of codimension i form 

an abelian group under addition. This group will be denoted by Halt(w), 

so that Hall(w) is the group Hal(W) studied in §12. The strict class 

of a condition K will be denoted by < K>. Notice that Hal°(W) is infinite 

cyclic generated by < W > and that HalS(w) is infinite cyclic generated 

by < C >, where C is any point of W. 

With the notations of § 12, and fixing a point P, 

all other points and lines needed to define the cycles 

r we have the following: 
P,q 

a line u, and 

Hp,q, Gp,q, and 

20.5. The estrict equivalence classes of the cycles 

L~ Lp'Lu ~2 H fi 
' 2 ' u ' p,q ' p,q 

where (p,q) runs through all pairs of coprime positive integers, form a free 
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basis of HaI2(W). Moreover, given a condition K if we let (a,b,K) e Z 3 be 

its global character and 8p,q [p,q] its local characters, 8p,q= (8 lp,q,82p,q)E 

c Z 2 , then 

<K> = (a- z qSp,q)<L2> + (b - z(48 ,q+ ,q)p - z(81 +4B 2 )q)< > + 
,~ P,q 

+ (~ ~ 2 )<~2> + Z81 <H > + ~ 82 <H >. 
- pSp,q P,q P,q p,q p,q 

20.6. Let S, T and S be the basis of A3(W) that is dual of the basis 

L 2 LL L2 , ~ , of A2(W). Then the s t r i c t  c l a s s e s  of 

S, T, S, Gp ,q ,  Gp ,q  , 

where  ( p , q )  r u n s  t h r o u g h  a l l  p a i r s  of copr ime p o s i t i v e  i n t e g e r s ,  form a 

free basis of HaI3(W). Furthermore, given a codimension 3 condition K 

if we let (a,b,~) e Z 3 denote its global character and 8p,q[p,q] its local 

characters, Bp,q = (Sp,q,l B 2,q) ~ Z 2, then 

< K> = ( a  - ~ ( 2 p + q ) 8 1  - ~ ( 2 p + 2 q ) 8 2  q ) <  S > 
P , q  P, 

+ (b - ~ (2p+q)B 1 _ ~ (p+2q)8~ o )< T > 
P,q P ,q 

+ (~ - E(2p+2q)Bl,q- E(p+2q)8 2p,q)< S> 

+ Z 8 1 <G > + z 8 2 <G >. 
P,q P,q P,q P,q 

20.7 .  Let r , }  be the  b a s i s  of At(W) t h a t  is  d u a l  of the  b a s i s  L, ]. of 

A I ( w ) .  Then the  s t r i c t  c l a s s e s  of 

r f 
P,q 

where (p,q) runs over all pairs of coprime positive integers, form a free 

basis of HaI4(W). Moreover, if K is a codimension g condition, and we let 

Bp,q[ , e Z, its local charac- (a,~) be its global character and p,q] 8p,q 
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t e r s ,  t h e n  

< K  > = (a  - ~ ( p + q ) B p , q ) < r > +  (~ - ~ ( p + q ) S p , q ) < r >  + ;~ B p , q  < r p , q > .  

Proofs  

In the  t h r e e  c a s e s  the  e x p r e s s i o n  on the  r i g h t  h a n d  s ide  h a s  the  same 

characters as K, as a straightforward computation shows. Therefore the 

claimed equalities are valid by 20.4. So the system of conditions in each 

of the three cases is a system of generators of the corresponding Hali(W). 

Now, using 20.4, it is easy to check that these generators are linearly inde- 

pendent over Z. [] 

Proof  of 20 .4 .  

Tha t  t he  c o n d i t i o n s  a r e  s u f f i c i e n t  is  an  i n m e d i a t e  c o n s e q u e n c e  of 

H a l p h e n ' s  g e n e r a l i z e d  fo rmu la  20.2 .  

To see t h a t  the  c o n d i t i o n s  a r e  n e c e s s a r y ,  a s s u me  K a n d  K' a r e  

s t r i c t l y  e q u i v a l e n t .  I n t e r s e c t  f i r s t  K a n d  K' w i th  the  c y c l e s  L 5 - i ,  L4- iL,  

.... ~5-i. Since these cycles do not have local characteristics, the intersec- 

tion numbers are the same (they coincide with the proper intersection numbers) 

and we deduce easily that K and K' have the same global characters. 

We want to see that they also have the same local characters. 

Let ( p l , q l ) ,  . . . .  ( p ~ , q ~ )  be a n y  se t  of p a i r s  of copr ime  p o s i t i v e  i n t e -  

g e r s  t h a t  c o n t a i n s  a l l  p a i r s  of l oca l  c h a r a c t e r i s t i c  n u m b e r s  of K a n d  K ' .  

For i.< j < ~, let Bj denote the multiplicity of (pj,qj) in K if i=l 

or 4, and either the first or the second component of the multiplicity of 

(pj,qj) in K 

see t h a t  B j= ~i" 

i n c r e a s e s  w i th  j .  

if i=2 or 3. Define B] similarly for K'. We want to 

Without loss of generality we may assume that pj/qj 

In o r d e r  to do t h a t ,  s e t ,  for  1 ~ j~<  ~ ,  K. = S i f  1=1; K = 
J Pj,qj ] 
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= H or H if i=2 and according to whether we are looking at 
Pj '  qj P j '  qj 

the first or second component of the multiplicity; K = G or 
] P j, qj Pj' qj 

if i=3 and according to whether we are looking at the first or second compo- 

nent  of the mu l t i p l i c i t y ;  and  K = r 
J P j ,q j  

~j := p(K,Kj) ,  then by 20.2 we get  tha t  

if i=4. In a l l  ca ses ,  if we set 

J 
~. = ( ~  B h + J h=l Ph)qJ ~, g h qh)Pj  • 

h=j+l 

From this expression it is immediate to deduce that 

and 

g 

qj ~+i - q j+ l" j  = (qjPj+l  - Pjqj+l  )( ~ 
h=j+l 

B h qh ) 

J 
P j+I~ j  - P j~ j+I  = (q jP j+ l  - P j q j+ l  )( h~__l Sh Ph ) " 

So if we set, for 14 j < Ic, 

and  

then 

and 

Aj = qjPj+l  - P jq j+ l '  A' = qj ~j+l-qj+l~j ,  ~'! j J = Pj+l~j-Pj~j+l 

' ,  = 

oj BIp 1 + . . .  + Bjpj 

whereas 

(**) t 

P~-I = B~q~ and o~ = Blp I • 

(*) °j'-i - Pi = Bjqj and Pi' - OJ '-I = ~JPJ 

t = = 

oj ajlAj , o i' a'.'/~.j J 

I = 

Pj ~j+lqj+l + ... + B~q~ 

It turns out that for I< j < ~-i 
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Since  t he  n u m b e r s  03 a n d  0j o n l y  d e p e n d  on t h e  s e q u e n c e  ~1 . . . .  ' ~  ' 

t h e s e  e x p r e s s i o n s  show t h a t  t h e  m u l t i p l i c i t e s  B o n l y  d e p e n d  on t h e  s e q u e n c e  
] 

..... ~. But since K and K' are strictly equivalent, p(K,Kj) = ~I 1 

= p(K',Kj) and so the above expressions (*) and (**) show that Sj = Si 

for all j. This completes the proof of 20.~. [] 

In next section we need the fact that the K's used in the proof above 
J 

have some sort of universality that we explain presently. 

20.8. Proposition 

Given a class ~ e Ai(w), there exist effective cycles K I ..... Kt of 

codimension 5-i, depending only on ~, such that the local characters of 

a n y  e f f e c t i v e  c y c l e  K r e p r e s e n t i n g  ~ c a n  be  c o m p u t e d  from th e  se t  of 

i n t e g e r s  ~j = p ( K , K j ) ,  1~ j <  ~. (The a c t u a l  e x p r e s s i o n s  a r e  a s  (*)  a n d  

(**)  in  the  p r e c e d i n g  p r o o f . )  

P roof  

By the  p r o p o s i t i o n  20.10 be low,  the  l o c a l  c h a r a c t e r s  of a n  e f f e c t i v e  

K representing ~ have an upper bound that only depends on ~ . Then 

i f  ( p l , q l ) , . . . , ( p ~ , q )  i s  t he  se t  of a l l  p a i r s  of c o p r i m e  p o s i t i v e  i n t e g e r s  

s a t i s f y i n g  t h i s  b o u n d ,  a n y  e f f e c t i v e  cyc l e  K r e p r e s e n t i n g  ~ o n l y  w i l l  

h a v e  c h a r a c t e r i s t i c  p a i r s  b e l o n g i n g  to t h i s  se t  a n d  so t he  c y c l e s  K. c o n s -  
l 

t r u c t e d  as  in  t he  p r o o f  of 20.~ o n l y  d e p e n d  on ~ . From t h i s  t h e  p r o o f  of 

t he  p r o p o s i t i o n  fo l lows  r e a d i l y .  [] 

The rest of the section is devoted to prove proposition 20.10. We will 

first prove a lemma. 

20.9. Lemma 

Let K be an effective degeneration free cycle on W, Z and exceden- 

t a r y  c o m p o n e n t  of K n B, a n d  ( p , q )  a l o c a l  c h a r a c t e r i s t i c  p a i r  of K a t  
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M-A be a cycle such that dim(M)+dim(K) = 5 and the intersec- 

is proper (i.e., O-dimensional). Then for any C~ M •Z we 

ic(C~.(M).K) > q , 

where a : A ' W is the inclusion map. 

Similarly, if M'-C ~ is such that the intersection K nM' 

and dim(M') = 5-dim(M), then for any C' e M'R Z we have that 

where ~ : /~ 

Proof 

iC,(~,(M').K) > p , 

W is the inclusion map. 

is proper 

Since the intersections Mn ~*K and e.(M) n K are proper on A 

and W, respectively, by the projection formula we have that 

a . ( M . c ~ * K )  = a . M . K  

Now Z is a component of a*K whose multiplicity in ~*K is ~ = iz(A.K), 

and so from the equality above we see that 

iC(a,M.K) = ic(M.~*K) 

>~ ic(M.B K) 

>~ ~ , 

and so it is enough to see that ~ >q. But by the definition of local charac- 

teristic numbers there exists a discrete valuation v of £rK,Z such that 

v(x) = rq, r >~i, where x is a generator of the ideal of A in G,Z" 

On the other hand ~ is the order of x in (FK,Z, because A is a 

smooth hypersurface, and so ~ >i rq, for instance by IF], A.3.1. So ~ >lq. 

The last statement is proved similarly. [] 
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20.10. Proposition. 

Given an effective codimension i degeneration free cycle K 

there exists an upper bound of the local characteristic numbers of 

depends only on the class [K] e Ai(w). 

on W 

K t h a t  

Proof 

For codimension 1 cycles it is a consequence of corollary 10.4, while 

for codimension ~ cycles it is a consequence of remark 3.5. So we only need 

consider the cases i=2 and i=3. In both cases there exists an effective cycle 

M on A, of codimension 5-i, whose restriction to B has positive intersection 

number with any effective cycle on B. In fact it clearly suffices to take 

for  M an  e f f e c t i v e  c y c l e  on A whose  r e s t r i c t i o n  to B is  ~+~ for  i=3 

a n d  ~2+~2 for  i=2. If  t h i s  is  the  c a s e ,  i f  Z is  an  e x c e d e n t a r y  compo-  

n e n t  of K n B ,  a n d  i f  ( p , q )  is  a p a i r  of l oca l  c h a r a c t e r i s t i c  n u m b e r s  

of K a t  Z, t h e n  for  ~ e G g e n e r i c  o (M) i n t e r s e c t s  Z p r o p e r l y  a n d  

by  c o n s t r u c t i o n  of M, o ( M ) ~  Z i s  n o n - e m p t y .  T h e r e f o r e ,  by lemma 20.9,  

q 4 (%(o(M)) .K)  , 

a n d  a e ( O ( M ) ) . K  o n l y  d e p e n d s  on the  g l o b a l  c h a r a c t e r  [K] 

p roo f  t h a t  p is  b o u n d e d  l i k e w i s e  is  done s i m i l a r l y ,  u s i n g  

A. [] 

of K. The 

i n s t e a d  of 

§ 21. E n u m e r a t i v e  r i n g  of W 

Let t t a l ' (W )  be the  d i r e c t  sum of the  g r o u p s  

l a s t  s e c t i o n .  Then we h a v e  a n o n - d e g e n e r a t e  p a i r i n g  

Hali(W) x Hal5 - i (w)  , 2 

i n d u c e d  by  the  p r o p e r  i n t e r s e c t i o n  p a i r i n g .  Now 

H a l i ( w )  

Hal5(W) ~ , Z 

defined in 

a n d  so 
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we can regard this pairing as a pairing 

Halt(W) × HalJ(w) 

defined for i+j = 5. 

The goal of this section is to define pairings 

Halt(W)× HalJ(w) ~ Hali+J(w) 

, HaI5(W) 

for all i,j that extend the pairing above. It turns out that Hal'(W), 

with the product that these pairings define, is a commutative graded ring 

with unit (theorem 21.6). The enumerative significance of this product is the 

contents of theorem 21.7. This ring will be called Halphen's ring (or strict in- 

tersection r i n g  , or  e n u m e r a t i v e  r i n g )  of W. T h i s  r i n g  c o i n c i d e s  w i t h  

t h a t  i n t r o d u c e d  by  De C o n c i n i  a n d  P r o c e s i  in  [DC-P]  for  t h e  c a s e  of n o n -  

d e g e n e r a t e  c o n i c s  a c t e d  u p o n  b y  PGL(3) .  

To start with, suppose that K and K' are irreducible cycles of 

codimensions i and j, respectively, such that their traces K ° and K' ° 

on W ° := W - A - A intersect properly on W o. Then we will set K n K' 

to denote the clousure in W of the intersection cycle Ko.K o. We need a 

few properties of this cycle that we explain in two lemmas. 

21 .1 .  Lemma 

Let K1, K2, K 3 

assume il+i2+i 3 = 5. 

of G such that 

for all o e U, o' e U' 

independent of o e U and 

be irreducible cycles of codimensions ii,i2,i3 and 

Then there exists non-empty open sets U and U' 

O O' 
p(K 1 ~ K 2, K 3) = p(K 1, K 2 a K 3) 

T h e r e f o r e  t he  common v a l u e  of t h e s e  e x p r e s s i o n s  

a' 6U' 

is 
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Proof 

Let U 1 be a non-empty open set of G 2 such that for (o,oi) • U 1 the 

o has finitely many points each counted with intersection K 1 N K 2 n K~Inw ° 

o °inw ° is independent of (o,oi)• U 1 multiplicity one, and so that #KIN K2NK 3 

(use an argument similar to the argument explained in the proof of 14.1). 

Let u: G 2 ;G be the projection onto the first factor. Let V c G be 

°n W ° is reduced and of codimension a non-empty open set such that Kln K 2 

il+i 2, and set U 2 : = U 1 N u-l(v). Then U 2 is non-empty and we claim 

t h a t  

o 
o onK~n w ) (*) p(K 1 ca K2, K3) = #(Kln K 2 o 

for all (o,o i) • U2" 

o In order to prove the claim, take any o • u(U2) , so that K 1 ca K 2 

is defined and reduced. Then by 17.1 there exists a non-empty open set 

Vo c G (depending on o) such that for any o 1 • V o 

o ° 1 
o n K 3 n Wo) p(K 1 r.~ K2 , K3) = #(KI e K 2 

o ° 1 
= #(K I n K 2 n K 3 nWo ) , 

o 
the last equality by definition of K 1 ~ K 2. Now U 2 n u-l(~) and {o} x V o 

are non-empty open sets in u-l(o) and so their intersection is non-empty. 

Moreover, the claim (*) holds for any (o,oi)• U2h{o} x VÙ. But since in 

(*) the left hand side is independent of oi, and so is the second for 

(o,o I) • U 2, the claim follows. 

Likewise there exists a non-empty open set Ui c G 2 such that for 

any (o ',o 'i ) • U 2 

(**) O' ~ O' 
p(K~i, K 2 ~ K 3) = #(K i n K 2 n K 3 ~ Wo) , 

and so that the common value is independent of (o',o')i • Ui. Now we observe 

that 
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for any 

exists 

accomplished taking any 

can clearly be done. 

o o o{ 
#(K 1 nK 2 nK31nWo) #(K 1 n K 2' n K 3 nWo) 

(O,Ol)eU 2, (o',o[)e Ui. To see this it is enough to show there 

(O,Ol)eU 2 and (o',o~) E U½ for which it is true. But this is 

(o,o I) e U 2 such that (o -II o, o I-I) e U2,' which 

To end the proof of the lemma, it is enough to take non-empty open 

sets U, U' of G that are contained in u(U 2) and in u(U~), respec- 

tively. [] 

2 1 . 2 .  L e m m a  

Le t  K 1, K 2 be  i r r e d u c i b l e  c y c l e s .  T h e n  t h e r e  e x i s t s  a n o n - e m p t y  o p e n  

a i s  d e f i n e d  fo r  a n y  o e U a n d  s e t  U of G s u c h  t h a t  t h e  c y c l e  K 1 ca K 2 

so that its strict equivalence class does not depend on o e U. Moreover, 

if V is the open set of G 2 of those (o',o") such that (o')-io" E U, 

(7 t a" 
then K1 a K2 is defined for any o',o")~ V and 

o' K2 o'' < K 1 ~ > 

where o = (o') -I o", 

= < KI~K 2 

(7 (7" 
so that < K 1 caK 2 > is independent of (a',a")eV. 

P r o o f  

Given a cycle K 3 with 

by 21.I, a non-empty open set UK$ of G 

independent of o ~ UK3. Taking for K 3 

see that there exists a non-empty open set 

o 
characters of K 1 ca K 2 are independent of 

cod(Kl)+Cod(K2)+cod(K 3) = 5 there exists, 

such that p(K 1 ca K2, K 3) is 

conditions of the form LiL j we 

U of G such that the global 

o. Now we use 20.4, 20.8 and 

21.1 again, to conclude that there exists a non-empty open set U' of G 

o 
such that the global and local characters of K 1 ~ K 2 are independent of 

o E U'. This proves the first assertion. 
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F o r  t h e  s e c o n d  a s s e r t i o n  n o t i c e  t h a t  

with o = (o ')-Ioo", 

o 
class is < K1 c~ K2> , 

KlO' ~ K2O" (K 1 ~ K2) o' 

' O" o n so that indeed K 1 K 
2 

which by the first part does not depend on 

is defined and its strict 

oeU. [] 

21.3. Remark 

For convenience of the proofs, lemmas 21.1 and 21.2 are stated for irre- 

ducible cycles, by they can be easily extended to arbitrary cycles. [] 

In order to define a product in 

maps 

zi(w) x zJ(w) P 

by the formula 

Hal'(W), we first define biadditive 

, Hali+J (W) 

p(KI,K 2) = < K 1 a K ° > 2 

where o e G is chosen generically. That this is well defined is the contents 

of the first assertion of lemma 21.2 (plus remark 21.$). 

Notice that if i+j = 5 then P(KI,K 2) coincides with the proper inter- 

section number. 

21.g. The map p is symmetrical, i.e., P(K2,K I) = P(KI,K 2) . 

Proof 

It is an immediate consequence of lemma 21.2. [] 

Next  s t e p  i s  to  s ee  t h a t  p f a c t o r s  t h r o u g h  s t r i c t  e q u i v a l e n c e .  
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K 1 and K~ are strictly equivalent cycles. Then 

P(K1,K 2) = p(K~,K 2) 

for any cycle K 2. 

Proof 

Let U-cG be a non-empty open set such that, for ~ eU, 

o >  
P(K1,K 2) = <K 1 n K 2 , 

(7 
Then we wan t  to see t h a t  K 1 m K 2 

o 
p(KI,K 2) = <K~ n K 2 >. 

o 
and  K~ n K 2 a re  s t r i c t l y  e q u i v a l e n t  

for o eU. In order to see this pick any cycle K 3 

5-ii-i2, where il,i 2 are the codimensions of K I, K 2, 

21.1 (and remark 21.3) there exists a non-empty open set 

that K 1 ca K 2, K~ ra K2, K 2 ra K 3 are defined and 

for any o ~ U' 

o 

p(K I ~ K 2, K 3) 
o 

p(K i ~ K 2, K 3) 

of codimension i 3 := 

respectively. By 

U' of G such 

~ K3), = p(K 1 , K 2 

o 

= p(K i, K 2 ~ K3), 

Now by definition of the strict equivalence we have that 

so that, for any ~ ~ U', 

But since < K I ~ K 2 

equality holds for o e U 

equivalent. [] 

, o ~ n K 3 )  , p(K 1 K 2 n K 3) = p(K{, K 2 

(J o 

p(K 1 a K 2, K 3) = p(K{ c~ K2, K3) 

and < K~ ~ K 2 > are constant for o~ U, this 

and therefore K 1 ra K 2 and K{ ca K 2 are strictly 

From 21.6 and 21.5 it follows that the value P(KI,K 2) only depends 
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on the strict equivalence class of K 1 and K2, so that there exists a unique 

biadditive map 

such that 

Hall(w) × HalJ(W) - - +  Hal1+3 (W) 

(<KI>,  <K2>) ~ P(K1,K 2) • 

The value of this map on the pair of classes (a,8) will be denoted by 

• 6 and will say that it is the Halphen product of a and 8 • When 

i+j = 5 this product is the proper intersection number of corresponding repre- 

sentatives of ~ and 6. 

21.6. Theorem 

Hal'(W), equipped with the Halphen product, is a commutative graded 

ring with unit. 

Proof 

The class of W is clearly a unit element for the Halphen product. 

The commutativity follows from 21.4. The only property that now needs to 

be checked is the associativity. 

The associativity will be proved by means of the following lemma: 

Given irreducible cycles K I,K 2,K 3 there exists a non-empty open 

(7 I ~. 
set U-CG 2 such that the intersection KI n K 2 n K n W ° is proper 

on W and the strict class 
O 

(7' (7" 
~=<KInK 2 n K 3 n W o >  

is  i n d e p e n d e n t  of ( ( 7 ' , a " )  p r o v i d e d  ((7 ' , (7")  6 U. 

F i r s t  l e t  us  show t h a t  t h i s  s t a t e m e n t  i m p l i e s  a s s o c i a t i v i t y .  In  o r d e r  

to p r o v e  t h i s  p r o p e r t y  i t  i s  e n o u g h  to see t h a t  i f  K1,K2,K 3 a r e  i r r e d u c i b l e  

c y c l e s  t h e n  

(<KI> .<K2>) .<K3>  = <KI> . (<K2> .<K3>)  
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To see  t h i s ,  le t  U be  a n  o p e n  se t  of G 2 a s  in  t h e  l emma a n d  le t  

7: G 2 ~G be  t h e  p r o j e c t i o n  o n t o  the  f i r s t  f a c t o r .  T a k e  V c ~ ( U ) ,  V 

a 
o p e n  a n d  n o n - e m p t y ,  a n d  s u c h  t h a t  K 1 ca K 2 is  d e f i n e d  fo r  o ~ V a n d  

its strict class is independent of o • V. For each a • V let V o be a 

non-empty open set of G such that a x Vo c U and in such a way that 

O" 
(K 1 ~ K2) ra K 3 is defined for any ~' • V ° and its strict class indepen- 

dent of a' • V o, 

By definition 

O' 
( < K I > . < K 2 > ) • < K 3  > = <(K 1 ca K~) Ca K3 > 

i 

provided o • V and a' • V o. Since (o, o') • U, < (K 1 ca K 2) ca K~ > = ~ , 

as it is easy to see by the associativity of the intersection product on W o. 

On the other hand there exists a non-empty open set V of G, and 

for each G E V a non-empty open set ~/ of G such that for all o 6 ~, 
o 

' 9 E o 

• > <KI>.(<K2 > <K3>) = <K 1 ca (K 2 ca K3) ~' 

and with (o',o'a) E U. Then since 

(7' (Jta 
< K 1 ca (K 2 ra K3)o'> = < K 1 n (K 2 o K 3 ) n Wo > 

we see  t h a t  

< KI>.(<K2>.<K3>) = ~ , 

and this proves the associativity. 

It remains to prove the lemma. In order to do that, let K 4 be any 

4 cod(Ki ) = 5. Let V c G 3 be a non-empty open set such cycle such that ~'i 

G q 2 4 3 that #(KIn 1 n n n Wo) = ~ (say) is finite and independent of 

o = (al,a2,a 5) e V. Now we choose a non-empty open set U' in G 2 such 

that 
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O ~ 0 t l  

(a) K 1 n K 2 n K 3 n w  ° is proper and reduced for (o ',o") • U', and 

(b)  U' i s  c o n t a i n e d  in  the  i m a g e  of V u n d e r  t h e  p r o j e c t i o n  of G 3 on to  

t h e  f i r s t  two f a c t o r s .  

With this, and arguing as in the proof of 21.1, one can easily see that 

O ' (J I' 

p(K In K 2 n K 3 n Wo ' K4 ] = g 

for (o',o")• U'. Finally the lemma follows from the fact that only finitely 

O' n o"#% W • many cycles K 4 are needed to determine the strict class of K 1 n K 2 K 3 o 

This ends the proof of the theorem. 

21.7. Theorem 

Given reduced degeneration free conditions 

~icod(Ki ) = 5, there exists a non-empty open set 

o = (o 2 , .... o r ) • U the conics properly satisfying 

K , i=l,...,r, with 

U _c G r-I such that for 

K I, o2(K 2) ..... or(K r) 

are non-degenerate, finite in number, and such that this number is constant 

and given by <KI>...<K >. 
r 

Proof 

That there exists a non-empty open set U' of G r-I such that for 

o= (o 2 ..... o r ) • U' the conics properly satisfying K l, o2(K 2) ..... Or(K r) 

are non-degenerate, finite in number, and counting with multiplicity one in 

the intersection of KI, o2(K 2) ..... Or(K r) is an easy consequence of 

Kleiman's theorem and the definition of conic properly satisfying a condition. 

Therefore for o • U' the set of conics properly satisfying KI, 

o2(K2) ..... or(K r) is equal to 

K 1 n o2(K2)n . . . n  or(K r) n W ° 

Let U be a non-empty open subset of U' such that the number 



108 

n of e l e men t s  of t h i s  se t  is  d o n s t a n t  for o 6 U. Now we wi l l  show t h a t  

n = <KI> . . . < K r > .  I n d e e d ,  by d e f i n i t i o n  of H a l p h e n ' s  p r o d u c t  

< K I > ' " < K r  > = [(K1 ca ° 2 ( K 2 ) ) " "  ] c~ Or(Kr) 

where 0 2 may be chosen in a non-empty open set V of G and in gene- 

ral for each choice of 0 2 .... ,oi_ 1 the o i may be chosen in a non-empty 

of G depending on 0 2 , Since we may open set Vo2 '''''°i-I ...,oi_ I. 

chose the open sets V and V in such a way that the 0-cycle 
0 2 , •.. ,oi_ I 

[(K 1 ca o2(K2))... ] ca Or(K r) 

i s  r e d u c e d ,  a n d  t h a t  t h i s  cyc l e  is  c l e a r l y  e q u a l  to 

K 1 n o2(K2) n . . . n  o (Kr)C~ Wo r 

we only need to show that there exists o= (a2,...,o r) 6 G r-I such that 

• This can be done choosing a in V 
o~ U and °ie Va2,...,oi_ 1 i a 2 .... ,oi_ 1 

} x G r-i in the i-th factor of and in the projection of U n {o 2} × ... × { Oi_l 

{0 2 } × ...x {oi_ I} x G r-i. 

§ 22. Computat ion  of p r o d u c t s  in  Hal" (W) 

G r a n t e d  t h a t  we know how to e x p r e s s  the  s t r i c t  c l a s s  of a n y  d e g e n e r a -  

t ion  f ree  c o n d i t i o n  as  a l i n e a r  c o m b i n a t i o n  of the  f r ee  Z - b a s i s  of Hal ' (W)  

c o n s t r u c t e d  in §§ 12 a n d  20 (which  h e n c e f o r t h  wi l l  be c a l l e d  the  b a s i s  

a n d  i t s  e l emen t s  b a s i s  e l e m e n t s ) ,  the  e x p l i c i t  s o l u t i o n  to any  e n u m e r a t i v e  

p rob lem of con ic s  d e p e n d s  on the  a b i l i t y  to compute  the  H a l p h e n  p r o d u c t  of 

a n y  two e l eme n t s  of t h a t  b a s i s .  I n d e e d ,  by  theorem 21.7 the  n u mb e r  of c o n i c s  

p r o p e r l y  s a t i s f y i n g  g i v e n  c o n d i t i o n s  K 1 . . . . .  Kr, wi th  ~l~rc°d(Kt ) = 5 (where  
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the data of these conditions is in general position) is <KI>...<Kr>, and 

we will know how to evaluate this product once we know how to calculate 

the product of any two elements of the basis. 

The computations will consist in determining the global and local charac- 

ters of each product, inasmuch as this information is all we need to determine 

a strict class. 

We begin with two lemmas. We will let u 

on u, and S the condition defined using u 
P,q 

d e n o t e  a l i n e ,  P a p o i n t  

a n d  P a s  in  ( i i . i ) .  

22.1. Lemma (generalization of 13.1) 

Let K be a degeneration free cycle on W 

Z be an excedentary component of K nB and 

characteristic numbers of K at Z. Then 

(a) 

(b) 

(c) 

such that K c_ S . Let 
P,q 

(p',q') a pair of local 

If p'/q' > p/q, all conics in Z pass through P. 

If p'/q' < p/q, all conics in Z are tangent to u. 

Therefore p'/q' = p/q if not all conics in Z go through 

are all tangent to u. 

P nor 

P r o o f  

Without loss of generality we may assume that K is irreducible. We 

know that Sp,q lies in the pencil of divisors generated by qA + (2p+q)L u 

and pA + (p+2q)Lp (see Ii.I). Thus if K- c Sp,q, then all divisors inthe 

pencil other than S cut out on K the same divisor. This implies that 
P,q 

if x, y, f, g e 0": = ~K,Z are generators of the ideals of AnK, AnK, 

Lun K, and LpN K in O', respectively, then xPg p+2q and yqf2p+q 

generate the same ideal in 0% so that in particular 

p v(x) + (p+2q) v(g) = q v(y) + (2p+q) v(f) 

for any valuation of C(K) centered at 0". In particular this relation will 
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h o l d  t r u e  fo r  t h e  v a l u a t i o n  v t h a t  d e f i n e s  t h e  p a i r  ( p ' , q ' ) .  

t h r o u g h o u t  b y  q v ( x )  we g e t  t h a t  

Dividing 

p/q + v(g)(p+2q)/qv(x) = p'/q' + v(f)(2p+q)/qv(x). 

H e n c e ,  i f  p ' / q '  < p / q  t h e n  v ( f )  > 0,  

t h a t  a l l  c o n i c s  i n  Z a r e  t a n g e n t  to u .  

d i n g  t h r o u g h o u t  b y  p v ( f )  we d e d u c e  ( a ) .  

which means that ZC Lu ' i.e., 

This proves (b). Similarly, divi- 

[] 

2 2 . 2 .  L e m m a  

Le t  K be  a d e g e n e r a t i o n  f r e e  c y c l e  on  W w i t h o u t  l o c a l  c h a r a c t e r i s t i c  

n u m b e r s  ( i . e . ,  K N B i s  p r o p e r ) .  T h e n  t h e r e  e x i s t s  a n o n - e m p t y  o p e n  s e t  

U c - G  s u c h  t h a t  f o r  ~ • U 

o (K) n S = o(K) c~ S 
P,q P,q 

a n d  K = o (K)  ~ S h a s  ( p , q )  
a p , q  

Moreover, 

a s  i t s  o n l y  l o c a l  c h a r a c t e r i s t i c  p a i r .  

w h e r e  j : B 

(Ko)p, q = j*(o(K)) , 

, lq is the inclusion. 

Proof 

To prove the first assertion it is enough to see that there exists a non- 

empty open set Uc G such that o (K)N S does not have degenerate com- 
P,q 

ponents. And this is clear, because of the hypothesis on K, by Kleiman's 

theorem. 

Now we will see, possibly after shrinking U, that Ko has, for 

o E U, only (p,q) as a local characteristic pair. In fact o (K) n S n B = 
P,q 

=o (K) nB and if K had a local characteristic pair (p',q') ~ (p,q), 
(7 

then a component of o (K)N B would be contained either in Lu or in Lp 
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(lemma 22.1). But since for o generic this is impossible, because o(K) n B in 

tersects properly Lu n B and Lp n B (for o E G gener ic ) ,  the claimed 

shrinking of U is certainly possible. 

It remains  to compute (Ko)p,q .  From the def in i t ion  of this  cycle (18.1) 

it  follows that  Ko.A is equal  to q j . (K )p ,q  plus components not conta ined 

in B. But 

Ko.A = (o(K).Sp,q).A = o(K).(Sp,q.A) 

= o (K).(qB+(2p+q)A u) 

= q(j,j*(o(K))) + (2p+q)(o(K).A u) 

and so j,(l(o)p, q = j,j*(o(K)). Since 

(K) = j*(o(K)). 
o p,q 

j .  is in jec t ive ,  we conclude that  

The strategy for the computation of products will be first to show that 

Hal'(W) ® Q is generated, as a Q-algebra, by elements of codimension one, 

and then to show how to compute products of elements of the basis. The following 

obvious relations will be used throughout: 

22.3. <Li>.<L j> : <Li+j>, <Li>.<~j> : <LiLJ> <~i>.<~j> : <~i+j>. 

With a few s t r a igh t fo rward  computat ions,  from lemma 22.2 we get the 

following products  : 

22.~. (1) < S >.<L> has charac te r s  (2q,~p,0) and 2 ~ [ p , q ] .  
P ,q  

(2) < S >.<L> has characters (0,4q,2p) and 2~[p,q]. 
P,q 

(3) < S >.<L2> has characters (~p+2q,~p+2q,8p+8q) T and ~2[p,c~ . 
P,q 

(~) < S p , q > . < ~ >  has charac te r s  (~p+2q,2p+2q,2p+~q) T and 2(~2+~2)[p,q] 

(5) < S >.<~2> has characters (8p+8q,2p+4q,2p+~q) T and ~2[p,q]. 
P,q 

(6) < Sp, 4 .<L3> has characters (4p+2q,8p+gq) T ~  and O. 
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(7) <S >.<VqL ~> has characters (ap+8q,2p+4q) T and 0. 
P,q 

(8) <S >.<L2L> has characters (8p+4q,8p+8q) r and 8[p,q]. 
P,q 

(9) <S >.<LL 2> has characters (Sp+8q,&p+8q) T and 8[p,q]. 
P,q 

(i0) <S >.<L&> = 4p+2q 
P,q 

(ii) < S > .<LSL> : 8p+4q 
P,q 

(12) <S >.<L2L2> = 8p+8q 
P,q 

(13) <S >.<LL3> = 4p+Sq 
P , q  

(14) <S >.<L&> : 2p+4q [] 
P,q 

To compute the products of <S > with <S>, <T>, and <S> (nota- 
P,q 

tions of (20.6)) we only need check 

i s LL 2 
<S> :<~->-<~> 

L 3 m2~. 
<g> = <7- >- <-7- > 

< T> = <_5 L2[> + <~ it2> _< ~ e3> _< _3 [3> 
8 4 

and then compute the products using those equalities of 22.g that are pertinent. 

We get: 

22.5. (i) < S >.<S> 
P,q 

(2) < 5 >.< ~> 
P,q 

(3) < S >.<T> 
P,q 

has characters (2q,0) T and -2[p,q]. 

has characters (0,2p) T and -2[p,q] . 

T has characters (gp,dq) and IO[p,q]. [] 

Again by straightforward computations (using formulae (20.5)-(20.7)) 

the expression of the above products in terms of the basis turns out to be 

as follows. 

= >- (4p+2q)<~> 22.6. (I) < $p,q>.<L> 2<Hp,q 

(2) < Sp,q>.<[> = 2<H > - (2p+4q)<~ > 
P,q 
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(3) <Sp,cf>.<t2> = ~<Gp,q>+(4p+2q)<LL2-L 3> 

(4) <Sp,q>.<~2> = a<Gp,q>+(2p+&q)<L2L-L3> 

(5) <S >.<~2-~-> = 2<Gp,q> + 2<G > - (4p+4q)(<S>+<T>+<S>) 
P ,q  P ,q  

(6) <S >.<L2L>= 8<r > - 4q<r> 
P ,q  P ,q  

(7) <S >.<LL2>= 8<r > - &p<~> 
P ,q  P ,q  

(8) <Sp ,q> .<S>  = - 2 < r p , q > +  (2p+4q)<r> + (2p+2q)<}> 

(9) <S >.<S> = - 2 < r  >+ (2p+2q)<r> + (2p+&q)<~> 
P ,q  P ,q  

(10) <S >.<T> = lO<r > -  (6p+lOq)<r>-  (lOp+6q)<~> [] 
P ,q  P ,q  

In particular we observe that Hal'(W) ® Q is generated, as Q-alge- 

bra, by the basis elements of codimension I. In fact we have found 

expressions of the basis elements of codimension 2,3 and g as linear combina- 

tions with rational coefficients of products of codimension 1 basis elements. 

Thus our task is to find out the products of any two elements of the codi- 

> .<S > are  mension 1 b a s i s ,  and  of these only those of the form < S p , q  p ' , q '  

l e f t .  The r e su l t  of th is  p roduc t  is  the contents  of next  theorem. 

22.7. Theorem 

Assume p/q < p'/q'. Then the global characteristic numbers of 

<Sp,q>.<Sp,,q, > are (2(p+2q)q', 2(ap'q-pq'), 2p(2p'+q')}. Moreover, the 

m Sp, only  p a i r s  of loca l  c h a r a c t e r i s t i c  number of the cycle  K := Sp,q  ,q,  

a re  (p ,q )  and  ( p ' , q ' )  and  the co r re spond ing  m u l t i p l i c i t y  cyc les  a re  

and 

Kp,q = (&p '+2q ' )~  , K p , , q ,  = (2p+&q)~ if  p / q <  p ' / q '  

K = (4p+2q)~ + (2p+&q)~ 
P,q 

if p / q  = p ' / q '  

Proof  

The g loba l  c h a r a c t e r s  of K : = S 
P ,q  

f i r s t  c a l c u l a t i n g  the in t e r sec t ion  numbers of 

ra Sp, ,q,  

K with 

can be obtained by 

L 3, L2L, LL 2, and 



114 

~3. We have that 

L i k e w i s e  we g e t  

= .L 3 ) K.L 3 p(Sp,q, Sp, q, 

= ~(2p+q)(2p'+q') 

K . L2L  8 ( p + q ) ( 2 p ' + q ' )  , 

K . L L  2 8 ( p + 2 q ) ( p ' + q ' )  , 

K.L 3 ~(p+2q)(p'+2q'). 

and 

(by 21.1) 

(formula 20.2) . 

Now from these equalities the global characters of K, namely K.S, K.T, 

and K.S, can be obtained in a straightforward manner, which yields the 

claimed numbers. 

That only (p,q), (p',q') can be local characteristic pairs for K 

is a consequence of lemma 22.2. Indeed, for any other characteristic pair 

of K there would exist and excedentary component of K NB all of whose 

conics would go through two general points, or would go through a general 

point and be tangent to a general line, or would be tangent to two general 

lines, and so in all cases such a component would have dimension i, which 

contradicts it being excedentary. 

So next step is the computation of Kp,q and Kp,,q,. To do this 

we first compute A.K and A.K with a method similar to that used at the 

beginning of this proof. We get 

A.K = (16pp'+8pq'+2~p'q+12qq', 4pq'+Sp'q+12qq', 8pq'+16qq') T 

A.K = (16pp'+8pq', 12pp'+gpq'+8p'q, 12pp'+Spq'+24p'q+16qq') T 

At this point we use the fact, which is a direct consequence of the defi- 

n i t i o n  o f  t h e  c y c l e s  K ( s e e  1 8 . 1 ) ,  t h a t  
P , q  

(*) A.K = qj.Kp,q + q'j.Kp,,q, + R 

a n d  
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(**)  .~.K = p j . K p , q  + p ' ] . K p , , q .  + R , 

where R and R are effective cycles, each a sum of irreducible cycles 

not contained in B. 

A c t u a l l y  i t  t u r n s  ou t  t h a t  R = o DQ a n d  R = ; f ) v ,  w h e r e  Q is  the  

i n t e r s e c t i o n  of t he  l i n e s  u a n d  u '  a n d  v i s  t he  l i n e  j o i n i n g  P a n d  

P ' ,  w h e r e  P, P ' ,  u, u '  a r e  t he  p o i n t s  a n d  l i n e s  u s e d  in t he  d e f i n i t i o n  of S a n d  
P,q  

S p , , q ,  ( r eca I1  t h a t  DQ is  t h e  c y c l e  of p a i r s  of l i n e s  w i t h  i t s  d o u b l e  p o i n t  

a t  Q a n d  t h a t  I)v a r e  p a i r s  of p o i n t s  on v ) ,  a n d  w h e r e  p a n d  

a r e  p o s i t i v e  i n t e g e r s .  I n  f a c t  s i n c e  A n  S = B u A  (A t h e  c y c l e  of p , q  u u 

d o u b l e  l i n e s  w i t h  i t s  d o u b l e  p o i n t  on u ) ,  t he  c o m p o n e n t s  a p p e a r i n g  in  

n S p , , q  no t  c o n t a i n e d  in  B. But R mus t  be  c o m p o n e n t s  of A u , 

A ue Sp,,q, = BuU DQ, so indeed R is of the form o DQ, 0 a positive 

integer. The expression of R is seen with a similar argument. 

T h e r e f o r e  we see  t h a t  A . K -  pDQ a n d  A . K -  BR a r e  in  t h e  i m a g e  

of j . .  S ince  DQ ~ ( 1 , 0 , 0 )  T, I)v ~ ( 0 , 0 , 1 )  T, a n d  t h e  e l e m e n t s  ( a , b , c )  T 

in  t he  image  of j .  s a t i s f y  a+c = 2b,  we i n f e r  t h a t  

A.K - pDQ = (16p'q + 8qq', gpq'+8p'q+16qq', 8pq'+16qq') T 

A.K - °[)v = (16pp'+8pq', 12pp'+gpq'+8p'q, 8pp'+16p'q) T 

K 
P,q 

These expressions and the relations (*) and (**) allow us to solve for 

and Kp,,q,. If p/q < p'/q' we get, again in a straightforward 

m a n n e r ,  t h a t  

and 

a n d  h e n c e  

j . K p , q  = ( a p ' + 2 q ' ) ( ~ , 2 , 0 )  T 

j . K p , , q ,  = ( 2 p + d q ) ( O , 2 , g )  T , 

K = ( /4p '+2q')~,  
P , q  

K p , , q , =  (2p+4q) 
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I f  p / q  = p ' / q ' ,  t h e n  o n l y  K 
P , q  

t ed  from the  r e l a t i o n  

is  p r e s e n t  a n d  i t  h a s  to be c a l c u l a -  

which gives t h a t  

A.K - PDQ : qj.Kp,q , 

K = (&p+2q)~ + (2p+gq)~ 
P,q 

[] 

We may  a l s o  e x p r e s s  < S p , q > . < S  , p , q '  

20 .5 .  We ge t  

> in terms of the basis, using 

22.8. Corollary 

If p/q< p'/q' then 

<Sp,q>.<Sp, q,> = -6(p+2q)(2p'+q')<~> + (gp'+2q')<Hp,q> + (2p+gq)<Hp,,q, > 

If we express H and H p,q p',q' 

pression 

using 22.6, (i) and (2), we get the ex- 

>.<S < S p , q  p,  , q ,  > = -2(p+2q)(2p'+q')<% >+ (2p'+q'#<Sp,q>.<L>+ 

+ (p+2q) < Sp. q.><L > , 

which can be written as 

(<Sp,q>-(p+2q)<L>)(<Bp,,q,>- (2p'+q')<L>) = 0 . 

22.9. Remark 

As an easy consequence of the product rules explained in this section, 

the calculation of loca] characteristic numbers of a given condition K can 

be reduced, intersecting K with cycles from among L&-i, L3-i~ ..... ~&-i 

(where i is the codimension of K, that we will assume ~ 3), to the compu- 

tation of the local characteristic numbers of a 1-dimensional system of conics, 
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as Halphen already did for the codimension 1 case ([H.3], §13). 

If K has codimension 1 and its local characters are 
v 

Bs[Ps,qs], then the local characters of LpLQLuK (where 

chosen generically) are exactly 88l[Pl,ql] ..... 88s[Ps,qs]. 

S l [ P l , q  I ] . . . . .  

P ,  Q, u a r e  

If K has codimension 2 and local characters (BI,8)[pl,ql ] .... , 

1 
(Bls,B2s)[ps,qs ] then LuLvK has local characters &B [pl,ql ] ..... L8 [ps,qs ] 

2 . ,~[ps,qs ] and LpLQK has local characters ~Bl[Pl,ql ] . . . .  

Finally, if K has codimension 3 and its local characters are 

(B~,B~)[pl,ql], "'" (Bls'B~)[Ps'qs] then Lu.K has local characters 

2Bll[Pl,ql ] ..... 2Bls[Ps,qs], while Lp.K has local characters 2S~[pl,ql] .... 

.... 2B~[ps,qs] • 

22. I0. Remark 

Using the table of products explained in this section, one can obtain 

again Halphen's second formula 14.6 by a rather long computation but not 

very difficult. 

§23.  F u r t h e r  e x a m p l e s  

Here we give an example of one-dimensional system and an example of 

third order condition. In both cases we compute their global and local cha- 

racters. First of all we state a lemma which will be useful in the sequel. 

23 .1 .  Lemma 

Let  f i ( x )  ~ C [ x  I / p ]  b e  f o r m a l  p o w e r  s e r i e s  of  o r d e r s  h i ,  i= l  . . . .  s ,  

h 
so that fi = Aix + .... Consider the system of homogenous linear equations 
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as Halphen already did for the codimension 1 case ([H.3], §13). 

If K has codimension 1 and its local characters are 
v 

Bs[Ps,qs], then the local characters of LpLQLuK (where 

chosen generically) are exactly 88l[Pl,ql] ..... 88s[Ps,qs]. 

S l [ P l , q  I ] . . . . .  

P ,  Q, u a r e  

If K has codimension 2 and local characters (BI,8)[pl,ql ] .... , 

1 
(Bls,B2s)[ps,qs ] then LuLvK has local characters &B [pl,ql ] ..... L8 [ps,qs ] 

2 . ,~[ps,qs ] and LpLQK has local characters ~Bl[Pl,ql ] . . . .  

Finally, if K has codimension 3 and its local characters are 

(B~,B~)[pl,ql], "'" (Bls'B~)[Ps'qs] then Lu.K has local characters 

2Bll[Pl,ql ] ..... 2Bls[Ps,qs], while Lp.K has local characters 2S~[pl,ql] .... 

.... 2B~[ps,qs] • 

22. I0. Remark 

Using the table of products explained in this section, one can obtain 

again Halphen's second formula 14.6 by a rather long computation but not 

very difficult. 

§23.  F u r t h e r  e x a m p l e s  

Here we give an example of one-dimensional system and an example of 

third order condition. In both cases we compute their global and local cha- 

racters. First of all we state a lemma which will be useful in the sequel. 

23 .1 .  Lemma 

Let  f i ( x )  ~ C [ x  I / p ]  b e  f o r m a l  p o w e r  s e r i e s  of  o r d e r s  h i ,  i= l  . . . .  s ,  

h 
so that fi = Aix + .... Consider the system of homogenous linear equations 
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Z~ aifi(x) = 0 

aif;(xl : 0 

Z~ at f(s-2)i 0 

in the unknowns al,...,a s. If all the orders 

system has rank s-i and its solution is given by 

1 

- £ .  

al : X(AI'"Ai'"As) j<j,~ (~j'-~j)x t 

j,j '/i 

w h e r e  xeC((xl/P)). 

are d i f f e r e n t ,  then the 

+ ... , 

P r o o f  

It is a well known result for p=l (see for instance [E-H], § i), 

the general case follows from this case after a change of variables. [] 

and 

23.2. Example (Halphen-Zeuthen, [H.I] ) 

Let & be an irreducible plane algebraic curve of degree 

it is well known there exists a non-constant rational transformation 

>- 3. As 

f : 

z ~ C 
z 

by taking, for a generic z • A C to be the (unique) conic such that 
z 

iz(•.C z) ~ 5. We define r as the image of a under f . This system 

will be called the system of forth order contact conics to 4. Next we will 

compute its local and global characters. For this we need a lemma. 

hemma 

The map f is a birrational transformation of A to r. 
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Proof 

We need only check that f is generically injective and this will be 

done by showing that z is the unique base point of the pencil of point 

conics obtained by taking the tangent line to the curve p(r ) at the point 

p(C z) in IP 5. To show this let z(t) = (x(t),y(t)) be an affine parametric 

expression of a branch 6 of ~ with z(O) = z. 

The conditions for a conic 

2 2 
allx + 2al2xY + a22Y + 2alo x + 2a2oY + aoo = 0 

to have a four order contact at the point z(t) are 

F(aij,t) := allx2(t)+2a12x(t)y(t)+a22y2(t)+2aloX(t)+2a2oY(t)+aoo 

and 

~hF ( a i j , t )  = 0 
~t h 

These equations allow us to determine power series 

l < h < £ .  

= 0 

aij = aij(t) 

which give a parametric representation of the branch y of F that corres- 

ponds to 6 under f. Notice that the line in ~5 spanned by the points 

(aij(0)) and (daij/dt(0)) is the tangent line to p(F) at p(Cz). 

On the other hand taking derivative with respect to t of the identity 

F(aij(t),t) = 0 

and using the fact that F is linear in the a.. we conclude that 
U 

de.. 

F( dt IJ , t) = 0 

Proceeding similarly with the identities 

~I F 
( a i j ( t ) , t )  = 0 

a t ]  
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for i = 1 , 2 , 3  we obtain t h e  relations 

i F d a i .  
( 4 ,  t ) = 0 
c t ~  

T h e s e  r e l a t i o n s ,  w h e n  e v a l u a t e d  a t  t=O, i m p l y  t h a t  t h e  c o n i c  w h o s e  c o e f f i -  

c i e n t s  a r e  d a i j / d t  (0)  h a s  a t h i r d  o r d e r  c o n t a c t  w i t h  ~ w h i c h  i n  t u r n  

i m p l y  t h a t  i t  h a s  a t h i r d  o r d e r  c o n t a c t  w i t h  C . [] 
z 

T h e  p r e v i o u s  l e m m a  t e l l s  u s  t h a t  t h e r e  i s  a b i j e c t i o n  b e t w e e n  b r a n c h e s  

o f  A a n d  r 

to take branches 

under f. 5o to study the degenerations of r it is enough 

of a and study the local characters of f (6). Let 

, p > O ,  A { O ,  y = A x I+p + ... 

be the Puiseux expansion of 

guish three cases. 

in suitable affine coordinates. We will distin- 

In this case lemma 23.1, applied to the system of equations obtained 

taking the relation 

2 a22y2(x allX + 2a12xy(x) + ) + 2aloX + 2a2oY(X) + aoo = 0 

and its first four derivatives with respect to x, yield expressions for the 

a. 's as broken power series in x, expressions that themselves allow us t] 

to compute the order with respect to x of suitable functions X,Y as defined 

in §4. The result is that ordx(X) = 2 and ordx(Y) = 2p. Now if p 

is the order of ~ and q its class, so that p = q/p, then f (6) has 

order 2q and class 2p. 

p = l  a n d  in  the  P u i s e u x  s e r i e s  of  ~ t h e r e  is  no f r a c t i o n a r y  e x p o n e n t  l e s s  t ha n  
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T h e r e  e x i s t  c o m p l e x  n u m b e r s  B,C s u c h  t h a t  

R = y - Ax 2 - Bxy  - Cy 2 

h a s  o r d e r  i n  x > ~. Now s e t t i n g  t h e  g e n e r a l  e q u a t i o n  of  a c o n i c  i n  t h e  fo rm 

( a l l + 2 a 2 o A )  x 2 + ( 2 a l 2 + 2 a 2 o B ) x y  + ( a22+2a2oC)y2  + 2 a l o x  + 2a2oR + aoo  = 0 

a n d  f o l l o w i n g  a s i m i l a r  p r o c e d u r e  a s  i n  t h e  p r e v i o u s  c a s e  o n e  o b t a i n s  t h a t  

t h e  c e n t e r  of f ( ~ )  i s  t h e  c o n i c  R=0, w h i c h  i s  n o n - d e g e n e r a t e ,  so t h a t  

i n  t h i s  c a s e  t h e r e  a r e  no  d e g e n e r a t i o n s .  

p= l  a n d  t h e r e  e x i s t s  a f r a c t i o n a r y  e x p o n e n t  

e 
sion of 6 such that 0 <~< 2 , where p 

2 + e  in the  P u i s e u x  e x p a n -  
P 

i s  the  o r d e r  o f  6 .  

There exists a complex number B such that 

R = y - Ax 2 - B x y  

has order in x equal to 2+ e, Taking now the equation of the conic as 
P 

in the previous case, lemma 23.1 allows us to determine a degeneration whose 

order and class are both equal to 2p-e. 

Once the local characters of r are known, the formulae obtained in 

(5.6) can be used to obtain the global characters of r. Summarizing we 

have: 

The system of conics that have a forth order contact with an irreducible 

plane curve has only the following degenerations: 

(a) 

(b) 

a degeneration with order 2q and class 2p for each branch of 

whose order is p and whose class in q, with p~q; 

a degeneration with order and class both equal to 2p-e for each 

branch of a with order and class equal to p and such that the 
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first characteristic exponent in the Puiseux expansion of the branch 

is of the form 2 + e with 0<--e < 2. 
P P 

On the other hand the global characteristic numbers (~,v) of r are given 

by the expressions 

2 
= j (P+2Q) + 2P '  - E, v = (2P+Q) + 2P '  - E, 

w h e r e  P a n d  Q a r e  t h e  s u m s  of t h e  i n t e g e r s  p a n d  q ,  r e s p e c t i v e l y ,  

of  t h e  b r a n c h e s  i n  ( a ) ,  a n d  P '  a n d  E t h e  sum of  t h e  i n t e g e r s  p a n d  

e of t h e  b r a n c h e s  i n  ( b ) .  [] 

23.3. Example 

As in the previous example, let a be an irreducible plane algebraic 

curve of degree >~ 3. Consider the algebraic correspondence T in A × W 

given by (z,C) • T ~ i (C,a)~> &. Let K denote the strict transform of 
z 

under the correspondence T. As it is easy to see, K is an (irreduci- 

ble) condition of order 3. Moreover, for z•a generic, the transform T(z) 

is a four-point contact pencil that contains the tangent to a at z counted 

twice with z as a double focus. So Kn B is excedentary. 

In order to compute the local characteristic numbers of K we apply 

the method explained in Remark 22.10. Thus we intersect K with Lp and 

Lu' where P and u are a generic point and a generic line, respectively. 

Let us consider the case K.Lp. If we set r = K.Lp, then an argument 

similar to that used in the lemma in example 22.3 shows that r is birratio- 

nally equivalent to A. Notice that to a generic z • A there corresponds 

the unique conic through P that has a third order contact with A at 

Z. So the branches of r are in one-to-one correspondence with the branches 

of A and, as in the previous example, we will study the degenerations 
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of r in terms of the corresponding branches 

distinguish two cases according to whether the tangent to 

P (case (a)) or does not go through P (case (b)). 

of A. We shall 

goes through 

Case (a) 

Since P is generic the order and class of ~ are both I, and so 

we may choose affine coordinates in which ~ has a Puiseux expansion of 

the form 

y = Ax 2 + .... A ~ 0, 

and P has projective coordinates (0,I,0) (point at infinity of the x-axis). 

The conics we are considering have therefore the form 

2 
2al2xY + a22Y + 2aloX + 2a2oY + aoo = 0 

and proceeding as in the previous example one finds a degeneration of r 

whose order and class are both equal to 2. Clearly the number of degenera- 

tions is the class of A. 

Case (b) 

I n  t h e  c a s e  c h o o s e  a f f i n e  c o o r d i n a t e s  in  s u c h  a w a y  t h a t  

Puiseux expansion of the form 

y = AxI+P+ .... p > O, A ~ 0, 

has a 

a n d  t h a t  

t h r o u g h  P 

P is the point at infinity of the y-axis. In this way the conics 

have the form 

2 
+ 2al2xY + 2alo x + 2a2oY .L ao ° = 0 . allX 

Now one distinguishes three cases, just as in the previous example, 

except that in the second and third cases instead of "fractionary exponent 
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less than 4" now we must use "fractionary exponent less than 3". In any 

of these cases the computations of the local characters are parallel to the 

corresponding cases in the previous example. Summarizing we have: 

The system r has only the following degenerations: 

(i) m degenerations of order and class both equal to 2, where m 

class of A. 

(2) a degeneration of order 0 and class 2p+q for each branch of 

order p and class q, with p~q. 

(3) a degeneration of order 0 and class 3p-3e for each branch of 

order and class are both equal to p 

exponent is 2 + e with 0 < e_ < 1. 
P P 

is the 

of  

A whose 

and whose first characteristic 

Then the global characteristic numbers 

expressions 

2P+Q 
= 2m + ~ - -  + P ' - E  

( ~ , v )  o f  r a r e  g i v e n  b y  t h e  

v = 2m + ~_~PP~2Q + 2 P '  - 2E 

where P and Q are the sums of tt~e integers p and q 

(2) and P' and E are the sums of the integers p and 

in (3). 

appearing in 

e appearing 

The characters of the intersection K.L u 

and are as follows: 

are determined by duality 

(i) n degenerations of order and class both equal to 2, where n is the 

order of iX. 

(2) a degeneration of order p+2q and class 0 for each branch of A 

of order p and class q with p~q. 

(3) a degeneration of order 3p-3e and class 0 for each branch of A of 

order and class both equal to p and whose first characteristic exponent 

is 2 + e with 0 <-e < i. 
P P 
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T h e n  t h e  g l o b a l  c h a r a c t e r i s t i c  n u m b e r s  ( p ' , u ' )  

expressions 

v' = 2n + ~  + P'-E , 

of K.L u a r e  g i v e n  b y  t h e  

2P+4Q 
p'= 2n + ~ ~ 2P'- 2E . 

,I 

A p p l y i n g  r e m a r k  22 .10  to K we c a n  now e a s i l y  d e t e r m i n e  t h e  l o c a l  

c h a r a c t e r s  of  K, w h i c h  t u r n  o u t  to be  a s i n g l e  c h a r a c t e r i s t i c  p a i r  ( i , 1 )  w i t h  

m u l t i p t i c i t y  ( r e , n ) .  

On t h e  o t h e r  h a n d  tile g l o b a l  c h a r a c t e r i s t i c  n u m b e r s  of  K a r e  

K.L 2 = ~,  K. (  1 LL) = v = u ' ,  K.L 2 = v ' .  
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