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Introduction.

This work deals on the one hand with understanding the contenis of
Halphen's contribution to the subject of enumerative theory of conics, and
on the other with extending his theory to conditions of any codimension. The
reader Interested In the history of this subject may profit from the beautiful

paper of Kleiman [K.2].

In the enumerative theory of conics there have been basically three
approaches, namely those associated to De Jonquiéres, to Chasles, and to
Halphen (see the works of these authors referred to in the references, as well
as [K.2] and the references therein). Conceptually the first two are similar
in that they correspond to computations performed in the Chow ring of 1P5
and of the variety of complete conics, respectively. Unfortunately the numbers
obtained with these aproaches need not have enumerative significance, even
if the data i1n the problem under consideration are In general position. A
famous example of this failure is the answer given by De Jonquiéres theory
to the problem of finding the number of conics that are tangent to five given
conics in general position. Similarly, Halphen gave examples of this unsatis-
factory situation, needless to say a Iittle more involved, for the theory of

Chasles (see [H.3.], §15, or the example 14.8 In this memoir).

On the other hand, the starting point in Halphen's theory is the distin-
tion between proper and improper solutions (see %6/ to an enumerative problem
and his goal is to count the number of proper solutions. The numbers produced
with this theory have always enumerative significance in the sense that Iif
the data of the (reduced) conditions involved are In general position, then
such numbers always are the number of distinct proper solutions of the
problem. In addition, 1t turns out that all nondegenerate solutions are proper
solutions and, if the data of the conditions are In general position, then,
conversely, all proper solutions are non-degenerate, so that for (reduced)
conditions with data in general position Halphen's theory gives the number

of non-degenerate solutions.

In relation to this last point we should say that recently De Concini
and Procesi [D-P] have taken the number of non-degenerate solutions, in the
general setting of symmetric spaces, as the corner stone for an abstract enume-

rative theory.



The present work 1is the result of a project begun about two years ago
by the first author with the idea of understanding Halphen's results and of
providing modern proofs for them. This took about one year and the output
was roughly the contents of §§ 1-14. Halphen considered two kinds of enume-
rative problems, namely, (1) to find the number of conics In a one-dimensional
system that properly satisfy a given first order condition, and (2) to find
the number of conics properly satisfying five independent conditions. These
problems are solved by what we call Halphen's first and second formula, which

are the contents of Theorem 9.2 and 14.6.

Although the basic ideas of this first part are due to Halphen, the pre-
sentation and many of the proofs are new. This is especially so for the defini-
tion of lIocal characteristic numbers of first order conditions and the proof

of Halphen's first formula.

After this first part had taken shape we became interested in finding
analogues to these 1deas for «conditions of any codimension. The joint
work in this- direction has been developed in the last twelve months and the
results are the contents of 5815-23. In spite of the fact that the results of
the first part can be obtained again from results of the second, we have
nevertheless maintained the two parts in order to offer, Iin the first, a
rather elementary and updated version of Halphen's work on the subject, and,

in the second, a general treatment for conditions of any codimension.

Finally we give a brief description of the contents of 58 15-23. Section
15 is devoted to recall the structure of the Chow ring of the variey W of
complete conics and to list a number of cycles and relations among them which

are needed later on.

Sections 16, 17 and 18 are more general than the rest and are devoted
to prove a generalization of the classical formula of Noether about the Intersec-
tion of plane curves (see theorem 16.6) and to use it for a generalization

of Halphen's first formula (see theorem 18.5).

Sections 19 and 20 are devoted to the construction of certain conditions
(cycles), to the definition of strict equivalence of conditions and the groups
Hal * (W), and to prove that the strict equivalence classes of those cycles
provide a free Z-basis for Hal'(W). The main tool here is a particularization
of Halphen's generalized formula (18.5) to the case of conics and a numerical
criterion for strict equivalence proved with the resulting formula (20.2 and
theorem 20.4).



In section 21 the graded group Hal® (W)} is given a structure of graded
commutative ring with unit, the enumerative significance of which is explained
in theorem Z21.7., This ring 1is the abstract ring of De Concini and Procesi
In the case of conics. The product in Hal' (W) is made explicit in section 22
by showing how to compute the products of any fwo terms of the basis construc-

ted before. In section 23 we work out two examples.

E. Casas Alvero S. Xambhé Descamps



List of notations and conventions

Z ring of integers

Q field of rational numbers

R field of real numbers

€ field of complex numbers

R* group of units of the ring R

Pn n-dimensional projective space over C

i)n dual space of Pn’ or projective hyperplane space

ordx(f) least exponent of the non-zero terms of the (broken) power series f
O{X,Z local ring of the irreducible subvariety Z of an algebraic variety X
If Z=Y<cX, Y defines an ideal in (7X,Z that we shall call "ideal of Y
in OX,Z”'

Sing (X) the singular set of an algebraic variety X

D~D* divisors D and D' are linearly equivalent

a(K), X° the result of transforming K by an element ¢ of a group acting

on a set of objects where K belongs.

Given cycles K and K' on a smooth algebraic variety X, and a component
Z of |KInIKY, where |K| means the support of K, if dim(Z) = dim{K)+
+dim(K')-dim(X), then Z  will be called a proper component of the inter-
section KN K' and the intersection multiplicity of K and K' at Z will
be denoted by iZ(K-K'). The wvariety X  will be clear from the context.
If K and K' meet properly, i.e., all components of KnNK' are proper,
then K-K' will denote their intersection cycle, i.e., ZiZ(K-K')'Z, the

summation extended over all components of the intersection.

Given a =zero cycle K on X, and a subset V of X, #VK will
mean the sum of the multiplicities in K  of the points of V. Instead of

#XK we will also write X K or deg(X). If X is complete and a is a



Vil

rational class of O-cycles, JX o will denote the degree for any cycle repre-

senting a .

Suppose K and K' are such that dim(K)+dim(K') = dim(X) and
that K and XK' intersect properly. Then

f (K-K')
X

will also be denoted simply by (K-K'), or K-K' if no confusion should

arise, and will be called (total) intersection number of K and K'.

A" (X) will denote the intersection ring of X, graded by codimension.
The class of a cycle K in A" (X) will be denoted by [K].

If X and X' are smooth projective varieties and f: X— X' is
a morphism, f,: AT (X)) — A (X') and f*: A" (X')——=A" (X) will denote

the usual push-forward and pull-back maps associated to f.
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§1. Conics.

We shall reserve the term - conic to mean a curve of degree 2 in P2
(the projective plane over the field <€ of complex numbers). As a reference
for conics see [S-K]. Here we recall a few basic facts for convenience of
the reader. With respect to & projective system of coordinates E;O, E’l’ 52

of PZ’ a conic is given by an equation of the form

(1) Z a.. £, E. = O: i!j:O!liz’
1] 1] 1 ]

where aije C, a,.=a.

., and not all a.., vanish. The coefficients a.. deter—
ij il ij ij

mine the same conic as the coefficients bij if and only if there exists X & C¥*
such that bij = Aai].. In other words, the matrix A = (aij) is symmetric
and determined up tc a non-zero scalar factor by the conic; we will say that
A is the conic matrix . Therefore the set of conics is in a cne-tc-one
correspondence with the projective space ]PS associated to the vector space

of symmetric 3x3 matrices. The projective structure induced on the set of conics

via this correspondence is independent of the coordinate system.

A linear system of conics is a linear subspace of ]PS. A pencil of conics

is a l-dimensional linear system of conics.

A conic (1) is irreducible (or non-degenerate ) if and only if det(aij)fo.

An irreducible conic is smooth and rational {isomorphic to Pl)’ whereas
a degenerate conic {i.e., a conic such that det(aijiz()) is a pair of lines
(if rank (aij) = 2) or a double line  (if rank(aij) = 1). The equation
det(aij) = 0 defines a cubic hypersurface DC PS’ the hypersurface of dege-

nerate conics.

Let isz denote the dual of P2, so that ];E”2 is the projective plane of
v

lines of ]P2 Then the image V of P2 in P5 by the Veronese map,



which sends the line u: u & + u, &+ u,&, =0 to the double line u2:0,
o’o 1°1 272
is the Veronese surface in PS' As usual we will take (uo,ul,uz) as projec—

tive coordinates of u and will identify P2 to is’z.

We will set 51]. to denote the cofactor of a]‘j in the matrix (a,.).
Then Ei]_:O, 0<i,j<2, are equations for V  with its reduced structure
(see [S], Ch. I, 8§4). Moreover, Vv is equal to the singular set of D,

whereas D is the chord variety of V, as an elementary computation shows.

v

By & conic envelope we will understand a conic in ]PZ' The 5-dimen-
sional projective space of conic envelopes can be identified with i’5, the

dual of the ]P5 of conics, through the apolarity relation

(2) Z a.. a,.. =0

i ij Tij

between a conic and a conic envelope given by matrices (aij) and (aij)’
respectively. Thus each conic envelope can be identified with the 4-dimensional
linear system of those conics which are apolar to it. If for instance the conic
envelope is a pair of points P, Q, then the linear system of apolar conics
to this pair is the set of conics that harmonically divide PQ and if the

conic envelope is a double point P, then it is the system of conics that

go through P.

v v

By D we will denote the cubic hypersurface of P whose peoints are

5

degenerate conic envelopes, and by V  the Veronese surface of double points,

so that V is the singular set of D and D 1is the chord variety of V.

The dual of a non-degenerate conic is a non-degenerate envelope, and

conversely. This gives an isomorphism P.-D ——— P.-D. If A is the matrix

5 5
of a non-degenerate <conic, then the associated conic envelope has matrix

A—l, or, equivalently, the matrix A of cofactors of A.



§ 2. Complete conics

The traditional point of view in projective geometry has been to consider

v

2 and the plane of lines PZ simultaneously, and to

think each as the dual of the other. It is 1in this sense that the classical

the plane of points P

geometers, when thinking of a (non-degenerate) conic, really understood it
as a pair formed by the conic and its line envelope and regarded each of

these as an aspect of the conic.

In the non-degenerate case, the consideration of its conic evelope adds
no information to the given conic. It is only when dealing with degenerate
conics f{usually considered as limits of non-degenerate ones) that the simulta-
neous consideration of a point cenic and one of its envelopes contains more
information than the conic alone, as this does not determine uniquely the
envelope nor conversely. Conics, when considered in this double aspect as
locus of points and evelope of lines, are called, since Van der Waerden's

work [W], complete conics.

To give a precise definition, consider the duality isomorphism

a: P5-D L*f’s—ﬁ which transforms a conic locus into its conic envelope.
S5et W to denote the clousure in PSx 135 of the graph WO of a. Then
W is called the variety of complete conics. The elements of Wo are called
non-degenerate complete conics; the elements of W-WO are referred to as
degenerate complete conics. Let p: W— P5 be the restriction of the first
projection, and t: W—*]{’S the restriction of the second projection. Then
-1

-1 v v ~
P (]PS_D) =t (P5—D) = W and p: W ——P

o -D, t: WO—-~P5—D, S0

5
that 1in particular p and t are birrational isomorphisms. For a given
Ce W, we will say that p(C) is the conic locus of C and that t(C) is

the conic envelope of C.

Since o : PS—D —_— ]PS—D can be viewed as the map which transforms

a non-degenerate 3x3 symmetric matrix a:(aij) into the matrix 5=(Eij)



of cofactors of a, we see that « 1s actually regular on the open set

PS_V' In fact p: W — P5 can be identified with the blowing up of P5

along V. Dually, t: W _,]PS can be identified with the blowing up of
V (the Veronese surface of double points). In particular W is a smooth irre-

ducible projective variety.

5 as before, and aij the

dual coordinates of TPS' Then the points of W satisfy the equations got

eliminating , in the relation

Let us denote aij the coordinates of P

(1) {a. )(a..) = pl,

where i is the 3x3 identity matrix, or, in other words, the relations
obtained setting the non diagonal entries of (ai].)(ui].) equal to zero and
equating the three diagonal entries of the same matrix., In particular, for

the degenerate complete conics p =0, so that they satisfy the relation

(aij)(uij) = 0. These relations imply immediately the following statements:

2.1. If the conic locus of a complete conic is a pair of (distinct) lines, then
its conic envelope is the common point of the two lines, counted twice.
Dually, if the conic envelope of a complete conic is a pair of (distinct)
points, then 1its conic locus is the line joining the two points, counted

twice.

2.2. If the conic locus of a complete conic is a double line, then its conic
envelope is a pair of points {not necessarily distinct) on the line.
Dually, if the conic envelope of a complete conic is a double point,
then its conic locus is a pair of lines (not necessarily distinct) through

the point.
Conversely we have the following statements:

2.3. A pair consisting of a double line and a pair of points {possibly equal)



on it is a complete {(degenerate) conic.
Dually, a pair consisting of a pair of lines (possibly equal) and a

common point, counted twice, is a complete conic.

Proof

Let L be a line and P,Q € L. First assume that PZ£Q. In this
case consider a pencil of conics bitangent at P and Q. Then ({L,{P,Q1}}
belongs to the closure of the l-dimensional rational family of non-degenerate
conics in the pencil. If P=Q one uses a four point contact pencil with base

point P and fixed tangent L. U

Actually it turns out that the relations before are equations for the sub-

variety W of PSXE’5.

Now that we have described the degenerate complete conics we will fix

some notation. Consider the map p: W —— P_, which we know to be the blowing

53

up of ]P5 along the Veronese surface V of double lines. Thus we see that
the points of p—l(V), the exceptional variety, are the complete conics consist-

ing of a double line and a pair of points on it. We will set A = p_l(V).

In a similar way, A:= t_l(V) is the exceptional variety of the blowing up

1::W—>]P5 of P

up, A and A are irreducible and smooth. Clearly, p(A) = D and t{A) = D,

5 along V. By the general properties of the blowing

so that A and A are the strict transforms of D and D under the

blowing up maps p and f, respectively.

In the sequel we will set B tc denote the intersection of A and
A. As we will see, B is 1irreducible and smooth. Moreover, A and A
meet transversally along B. This allows to distinguish the following three

types of complete degenerate conics:



Type A: The conics in A-B, i.e., two distinct lines with their common point

counted twice.

e

Type The conics in A~B, i.e., a double line with two distinct points

on it, usually called foci of the degenerate conic.

Type B: The conics in B, i.e., a double line with a double point on it,

called the double focus of the complete conic.

Types A and A are dual of each other, while type B is seld-dual.

2.4. Definitions

Let  C=(c,¢) be a complete conic. Then we will say that C  goes
through a given peint P iff Pec; that € is tangent to a line u,
iff wue ¢&; that C cuts on the line u the two points P, Q iff unc =
= {P,Q1}; that C has tangents u, v from a given point P, iff
P*né = {u,vl, where P* is the pencil of lines going through P; that

C is apolar with a conic envelope <¢) iff ¢ and ¢ are apolar; and

that C 1is apolar with a conic locus ¢, iff & and ¢ are apolar.

Now let (aij) be the matrix of ¢ and (aij) the matrix of ¢.
Given a point X and a line u we will set {xo,xl,xz) and (uo,ul,uz)
to denote their coordinates. Then two points X, X' are said to be conjugate
with respect to C  iff Za..x.x'. = 0, or equivalently, iff the pair of points

17 1]
that ¢ cuts on the line X X' harmonically separates the pair X, X' (in

case X=X' this means that ¢ goes through X). The points which are
conjugate of any other point are said to be double points of C; they
are the points satisfying the relation (xo,x1 ,xz) (aij) = (0,0,0). The set

of double points is empty if C is non-degenerate, is reduced to the common
point of the two lines in case of conics of type A, and coincides with the

set of points on the (double) line for conics of type A or B.



Dually, two lines u,u’ are said to be conjugate with respect to C

iff Z aijuiuj‘ = 0. This is equivalent to assert that the pair of tangents
to € from the common point of u and u' harmonically separates the
pair u,u’ (if u=u', this simply means that u 1is tangent to C). A line

is said to be a double tangent if it is conjugate to any other line; they
satisfy the relation (uo’ul’uz)(aij) = 0. Thus the set of double tangents
is empty 1if the conic is non-degenerate, is reduced to the (double) line in

conics of type A, and is the pencil of lines through the double point in conics

of types A and B.

Let X be a point which is not a double point of C. Then the points
X’ which are conjugate to X lie on a line u given by the relations
(uo,ul,uz) = (xo,xl,xz)(aij). This line is called the polar line of X with
respect to C. Dually, if u is a line which is not a double tangent, then
the lines u' which are conjugate to u with respect tc C pass through
a fix point X given by the relations (xo,xl,xz} = (uc,ul,uz)(aﬁ}, This
point is called the pole of u with respect to C. For double points (resp.

lines) the notion of polar line (resp. pole) is not defined.

Let X be a point which is not a double point of C(, and let u

be a line which is not a double tangent of C. Let u' and X' Dbe the

polar line of X and the pole of u, respectively. Then from the relation
(1) in this § we get that p {x_,x;,x,) = (uo’ul’uZ)(aij) and o (u_,u;,u,) =
= (xo’xl’XZ}{aij)’ Therefore we see that if C 1is non-degenerate (i.e., p#0),

then the pole of wu' is X and the polar line of X' is wu, so that the
relation between pole and polar is one-to-one and symmetrical, But if C

is degenerate, then u' is a double tangent and X' a double peint for all

X and u as above.

A triangle is said to be self-polar with respect to C if the polar of

each vertex which is not a double point of C is equal to the opposite side, and

the pole of each line which is not a double tangent is equal to the opposite



vertex.

The set of conic loci for which a given triangle < is self-polar are the
points of a plane ST in ]P5. If the triangle is taken as a system of coordi-
nates, then the equations of the plane are simply aij = 0, i#j. It is easy
to see that the complete conics which admit t as a self-polar triangle are
the points of a smooth surface S:T in W which coincides with the blowing

up of S at the three points corresponding to the three sides of the triangle,

each counted twice.

The last observation can be used to show:

2.5. Lemma

v

The hypersurfaces A and A meet transversally along B.

Proof
Let C be an element of B, so that C «consists of a line u and
a point P, both counted twice. Choose any triangle 1 in P2 such that

u is a side of t and P a vertex. Let §T C W be the surface of
complete conics for which 1 is self-polar. Then it is enough to see that ANS.
and AI’WE:T meet transversally at C. But this is clear if one uses the

fact that p: SNT —5_ is the blowing up of S_ = at three points.

Remark
In the sequel, unless otherwise stated, the elements of W will be
referred to as conics, the elements of P5 as conic loci, and the elements

~

of P5 as conic envelopes.

§3. Systems of conics

By a (l-dimensional) system of conics we will understand a reduced
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~

curve T in W such that no component of T is contained in A or A. The
system is said to be irreducible (resp. rational) if I is irreducible (resp.

raticnal).

Let T be a system of conics. Then pil') and t{(T) are curves in
P5 and i35, respectively., We will say that p(r) 1is the system of conic
loci, and t(r) of conic envelopes, associated to T'. Notice that since

v

neither A nor A contain components of T, both p(r) and t(T) have
the same number of components as T. Furthermore, if T is irreducible

then p: r — p(r) and t: T —— t(r) are birrational morphisms.

3.1. Definition
The integers yu = deg p(r), v = deg t(r) will be called characteristic

numbers of r.

3.2. Proposition

Let T be a system of conics and let (u,v) be its pair of characte-
ristic numbers. Then ¥ is the number of conics in I that pass through
a generic point of IP2. Dually, v is the number of conics in T which are
tangent to a generic line of P2'

The conic loci that go through a point P form a hyperplane Hp in
PS’ so that if HP 2r then u is the number of conics in T going through P,
each counted with a suitable multiplicity. Therefore it will be enough to show
that if P is generic in P then H

2 P
set of hyperplanes Hp is the Veronese surface V C ]f’S, so that if follows

is not tangent to p(r'). Now the

that if all these HP are tangent to p(r) then there exists a component
r' of plr) such that for each point ¢ of T' there are . hyperplanes
HP tangent to r' at ¢. Thus, if ¢ is generic on I', the tangent
1

line T to r’ at ¢, which is a pencil of conics, is contained in =

hyperplanes of the form HP' This means that the vpencil T has infinitely
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many base points, which is only possible if all conics in T, in particular
c, are degenerate. But this implies that p(r} has a component whose points
are all degenerate conics. Since this contradicts the definition of system of

conics, the proof is complete. O

3.3. Remark

It is clear that u also coincides with the number of conics in ' that
harmonically divide a pair of generic points, or that are apolar with a generic
envelope, Dually, v is the number of conics in I whose tangents through
a generic point harmonically divide a pair of generic lines through that point.
In the case =1 (resp. v=1) the system is called a pencil of conics (resp.

a range of conics). Both are irreducible and rational.

By definition, in a system T of conics there are at most a finite
number of degenerate conics. According to the classical view which regards

(1)

degenerate conics as limits of non-degenerate ones , we define a degeneration

of T as a branch of T <centered at a degenerate conic. We will say that

a degeneration is of type A, A or B according to whether its center is res-

pectively of type A, A or B.

3.4. Definition

Let vy be a degeneration of a system r. Then the local characteristic
numbers of vy, or of r at vy, are the pair of non-negative integers (m,n)
defined as the intersection multiplicities of y with A and A, respectively.
We will also say that m is the order of y and n the class of «.
A branch of T whose center is a non-degenerate conic will be assigned order
and class both equal to 0. It is clear that a degeneration is of type A

w

iff m=0 and n>0; of type A iff m>0 and n=0; and of type B iff

(1) "Il peut se trouver des figures qui ne scient pas des coniques, mais des limites de coniques"
{[H1), p.6).
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m>0 and n >0.

3.5. Remark

M : - (r.A) and N : = (Tr.A) are, respectively, the sum of the orders

and classes of all degenerations of T .

§4. Equations of the degeneration hypersurfaces

Let (Po’Pl’PZ;Q) be a projective system of coordinates and let U,

denote the open set in W of conics which are not tangent to u P P

RSl

It is clear that a conic is in U2 iff %59 £ 0, so that we will also write

U, = D(azz). Now any complete conic satisfies the relations (1) of §2 which

imply the relations a22aij = o‘ija22’ so that for conics in U2
- Gij -
ij “a,, %22
LAY

)

Since 513.:0 are equations for A, it turns out that for any form F of degree
2 in the aij the rational function 522/}7 is a local equation for A in the

open set UzﬁD(F). On the other hand vanishes on iu : = W-U

2 2’
1t follows that the di-

A22

the hypersurface of conics which are tangent to Uy-

visor of zeroes of 522 has A and T‘u as its components, both counted
v 2

once. Lu counts once because in a neighbourhood of a non-degenerate conic
2

can be used, instead of o,,, as a local equation of L _. The hyper-
22 22 U,
surfaces A and W—U2 have as intersection the variety of double lines with

a

one of its foci on uz.

Suppese now that u is a line and that Po’Pl’QZ are three distinct
points on  u. Let C be a conic not going through Po and let Z,Z2'

be the points at which C meets wu. Define the function
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vy 12
Y = Y(C) : = [(Po’Pl’QZ’Z) - (PO,Pl,Qz,Z )17,

where (a,b,c,d) means the cross ratio of a,b,c,d. Then one has:

4.1. Proposition

Y s rational function on W  which is regular on the open set

v

of conics not going through PO. Moreover, it is a local equation of A

in a neighbourhood of any conic not through PO and not tangent to u.

Proof
We may choose a projective system of coordinates whose first points are

Po and Pl and such that Q2 is the projection of the unit point @ on

u from the third point PZ' Then the coordinates (Zo’zl’ZZ) of the points

in which C meets wu are those satisfying the relations

x; = 0.

x2=0, a x_ 4+ 2a .x x 1

+ a
Q0 0 ol7071

11

To say that <€ does not go through PO is equivalent to say that aoo;é().

This implies that xlyéO and so t = xo/x1 satisfies the guadratic equation

a t2+2a t + a
00 ol

is clear that

= 0. If t.,t

11 1 are the roots of this equation, then it

2

2
-Za a
_ 2 2 B ol 11 _ - 2
Y(C) = (t-t,)7 = (t;+t,) —4tt, = (—a—— ) -4 = b ay /Al
co 00
which is a rational function on W. The second statement of the proposition

is a direct consequence of this expression of Y and the considerations at

the beginning of this s§s. O

Dually, let P be a point in ]P2 and pick three distinct lines U sUysu
through P. Given a conic C not tangent to Uy let v,v' be the
tangents to C drawn from P. Define the function

X = X(C) : = [(uo,ul,u,v) - (uo,ul,u,v')]2
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Then one has

4.1, Proposition

X is a rational function on W  which is regular on the open set of
conics which are not tangent to u .  Moreover, X is a local equation of
A in a neighbourhocod of any conic which 1is not tangent to U, and does

not go through P. 0O

4.2. Remarks

(a) From the expression of Y obtained in the proof of proposition 4.1 it
follows that its divisor of poles on W is twice the hypersurface of conics
through PO, whereas its divisor of zeroes has two components, each counted
once — A and the hypersurface of conics tangent te wu. The points of indeter-

minacy of Y are double lines which pass through PO and conics which

are tangent to u at PO. Dually, the polar divisor of X is twice the
hypersurface of conics tangent to U and its divisor of zeroces has two
components, each counted once — A and the hypersurface of conics going
through P. The points where X is indeterminate are the conics which are

tangent to u, at P and the pairs of lines with its double point at P.

(b) From propostions 4.1 and 4.1° it turns out that X,Y are local equations

of B in a neighbourhood of any conic which does not go through P or

Po and is not tangent to u or u- In particular, and for the sake of
simplicity, in the sequel we take P:PO and u=u_, in which case X,Y
are local equations of A and A, respectively, in the neighbourhood of

any conic which does not go through P and is not tangent to u.

{(c} Given P and u a change in the points of u wused to define Y,
or in the lines through P used to define X, only changes Y, or X, into

AY, or uX, where A(or u) is a non-zero scalar. O
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We end this section stating a direct corollary of propositions 4.1 and

4.17.

4.3. Corollary

Let C = C(s) be a parametrization of a degeneration v of a system
of conics I . Let (m,n) be the pair of characteristic numbers of y. Assume
that C(0) is not tangent to the line u and does not go through the point

P used to define X and Y. Then

m = ordS Y{C(s)), n = ordSX(C(s))- u

§5. Conditions imposed on conics

An effective codimension 1 cycle of W shall be called a condition of order
i (imposed on conics). In this section we will deal with conditions of order
1, i.e., effective divisors of W, which for simplicity will be called conditions,
The first step will be to define local and global characteristic numbers for

such conditions.

Let wus start recalling the structure of the group Pic(W). Since
p: W — PS is the blowing up of }PS along the Vercnese surface V and
A= p_l(V), p*: Pic(PS) —— Pic(W) 1is a monomorphism, Z-[A] is infinite

cyclic, and

Pic{W) = p*Pic(P.) e Z-[A] ,

5

where [X] denotes the class in  Pic(W) of a divisor X ([ Har], Ch. II,
Ex. 8.5). Now Pic (]PS) is infinite cyclic generated by a hyperplane, hence
p*Pic(PS) is infinite cyclic generated by the class L of the inverse image
of a hyperplane. In the sequel, unless some confusion could arise, instead

of denoting [X] the class of a divisor X we will write X for short. Some-
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times it will be enough to comment whether a statement is to be considered
as a cycle relation or a relation between cycle classes. In any event, X~Y
will denote that X and Y are linearly equivalent, or, if Y 1is a class

already, that X is in the class Y.

The same argument applied to 1: W——+]P5 shows that Pic{W} is

as well a free abelian group with generators 1L and A, where L is the

class of the inverse image under t of a hyperplane of 1[35.

5.1. Proposition

In Pic (W) the following relations hold:

o2
¢

A ~ 2L-L, 2L-L .

‘From this relations it follows that Pic(W} 1is free abelian on the generators

L and L.

Proof

Since the hypersurface D c ]P5 of degenerate conic loci has degree
3, p*(D) ~ 3L. On the other hand, since the strict transform of D under
p is A and since Sing(D) = V, it turns out that p*D = A + 2A (this
may also be directly verified). Thus A + 2A ~ 3L. Dually, 2A + A ~ 3L.

From these the stated relations are easily deduced. O

5.2. Definition
Given a condition K, if K ~ alL+ Bi, a,pe Z, then the integers

a,8 will be called global characteristic numbers of K.

5.3. Proposition
Let K be an irreducible hypersurface of W and assume K~aoL+gL.

Then if K#A (resp. K#A), deg p,(K) = a+28 (resp. deg t (K) = 2a+8).
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Proof

In fact p,(L) is the class of a hyperplane in ]P5 and p*(i) =
= p,(2L-A) = 2p,(L). O

5.4. Examples of conditions

(a) Conditions K~ L have global characteristic numbers (1,0). They will
be called point-linear conditions. Among them we have the condition Lp
of going through a point P, the condition of harmonically dividing a pair

of points, or the condition of being apolar with a fixed envelope.

(a) Conditions K~ L have global characteristic numbers (0,1). They will
be called tangentially linear . Among them we have the condition T‘u of being

tangent to a line u.

(b} A is the condition ™"toc have a double point as envelope component’;

its global characteristic numbers are (-1,2).

(b) Dually, A is the condition "to have a double line as locus component";

its global characteristic numbers are {(2,-1).

5.5. Theorem (Chasles' formula)

Let T be a system of conics and K a condition satisfied by finitely
many conics of T . Let (w,v) and (a,8) be the global characteristic
pairs of I and K, respectively. Then if we count each conic of T sa-
tisfying K with its intersection multiplicity, the number N of such conics

is given by the formula

Proof

By definition N = [r]-[K] and [K] = aL+BL, so that N= o([I] -L) +



g((r]-L). But [r}]‘L = deg pir) =y and [r]'L = deg t{r) =v. O

5.6. Corollary (Halphen)
Let M {resp. N} be the sum of the orders (resp. classes) of the degene-

rations of r. Then

M= 2u-v and N

2v—u
Hence

3u = 2M+N and 3v = 2N+M .

Proof
It is enough to observe that M= (r+A), N = (r*A) and apply Chasles'

formula. 0O

5.7. Examples

{a) Let T be the system of conics passing through four points in general
linear position. Then u=1 because T 1is a pencil of conics. It is also clear
that M=0. Therefore v=2 and N=3, so that there are two conics in T
that are tangent to a line and three degenerate conics consisting each of a

pair of lines.

(a) Dually, for the range of conics I  tangent to four lines in general

linear position one obtains that w=2, v=1, M=3, and N=0.

(b) Let T be a pencil of bitangent conics. Then T has global charac-
teristic numbers (1,1). Therefore M=N=1, so that T Thas a single degener-

ation of type A and a single degeneration of type A.

(c) Consider the system of conics passing through three given non-colinear
points and which are tangent to a given general line. Then u=2 by example

(a). Moreover, since there are no degenerations of type A, M=0 so that
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v=4 and N=6.

(¢) Dually, the system of conics tangent to three non-concurrent lines and
going through a general point has the following characteristic numbers: u =4,

v=2, M=6 and N=0.

§6. Action of the projective group and proper solutions
of an enumarative problem
Let G be the group of linear projective transformations of PZ’ G =
PGL{P,). The group G acts on i’z and G—% PGL(]I’Z) under this action.

The elements of G will be called homographies.

Since homographies transform conics in conics, G acts likewise on
PS, ]vPS, and ]P5x IVPS. Under this last action G leaves invariant W, and
so G also acts on the variety of complete conics. As is well known, the
orbits of G under its action on W are as follows:

WO = W-(AUI\), the open set of non-degenerate conics;

A-B, the locally closed set of degenerate conics of type A;

A-B, the locally closed set of degenerate conics of type A; and

B, the closed set of degenerate conics of type B.

The action of G on W is essential for the distinction, according to
Halphen's point of view, of proper socluticns of an enumerative problem from
improper ones. Actually, such a distinction and the consideration of only
proper solutions in the computations are distinguishing features of Halphen's
theory as compared with those preceeding it. Later on we will analyze more
closely the differences between the theories of De Jonquigres, Chasles, and

Halphen, as well as the discordancies between their formulae.
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6.1. Definition (Halphen)

Let K Dbe a condition and C a conic. We will say that C properly
satisfies K iff €  satisfies K and there exists ¢ € G such that C
does not satisfy o(K). Equivalently, C properly satisfies K iff C €][K]|

and not all peints in the orbit of C wunder G satisfy K.

This definition calls for some comments. First of all notice that enumera-
tive problems of conics are formulated in the frame of projective geometry
(possibly using metric relations) and that they naturally undergo the action
of G. This said, it is worthwhile to reflect on what the nature of conditions
imposed to conics is. So far we have accepted to call (simple) conditions the
hypersurfaces (or, more generally, the divisors) of W, without delving into
the question of whether or not a relation of the form C€&D really expresses
a fact of a projective nature that may occur or not to C. From a purely
projective point of view, to impose a condition to a conic means to force the
conic to satisfy certain projectively invariant relation between the conic and
some given configuration (the datum of the condition) in ]PQ' With respect
to a projective system of coordinates, the verification of this relation will
be translated by the vanishing of one or more (simultaneous)} invariants of

the conic and the datum.

Now the point is that any condition in the former sense (i.e., a hyper-
surface of W) may be considered in this way. In fact a system of bihomo-
geneous equations Fr(ai].,ai..,) = 0 can be understood as the expression
of an invariant relation between a conic and the configuration of the elements
of the system of projective coordinates. This relation may be intrinsically

phrased in terms of cross ratios between elements of the conic and of the pro-

jective system of coordinates.

This understanding of conditions leads to the following view of the action

of G on them. Let K be the condition which a conic C satisfies iff
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cartain projectively invariant relation R(C,F) between C and a datum
F is verified. The projective invariance of R means that R(C,F) is true
iff R{a(C),o(F)} is true for any ¢ € G, and so o(K) is the condition
obtained impossing that a conic is in the relation R to o(F}, the transfor-

med datum.

We summarize this digression in three remarks.

6.2. Remarks

(a) The belonging of a conic C to a hypersurface K of W 1is a relation
which is equivalent to a projectively invariant relation R(C,F) between the
conic and a certain configuration F in the plane (which may be the coor-

dinate system).

(b) If K is interpreted in this way, then o(K) is the condition given
by demanding that a comic C' be in the relation R to the cenfiguration

o(F).

(c} The conics which improperly satisfy a condition K described by R(C,F)
are the conics for which R(C,c(F)) holds for all o€ G, i.e., for "any

position of the datum'.

At this point one may ask for the existence of absolute conditions, i.e.,
conditions whose datum 1is empty. Clearly, these must be invariant hyper-
surfaces under G, so that, by the description of the orbits of G on W,

we have:

6.3. Proposition

The only irreducible absolute (first order) conditions are A and A. O
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6.4. Definition
A condition K will be said to be degeneration free iff neither A nor

A are components of K.

This definition 1is relevant insofar as we are not interested here in
enumerating how many degenerate conics a system has. For these conditions

the improper solutions have a very simple characterization:

6.5. Proposition (Halphen)

A conic C improperly satisfies a degeneration free condition K iff

Ce€B and K 2B.

Proof
If K is degeneration free, the only orbit under G that may be

contained in K is B, so that from the last part of 6.1 the proof follows. O

Henceforth, and unless otherwise stated, we will deal only with degenera-

tion free conditions.

We end this section with a description of an example ¢f Halphen which
this author used [H.1l] to reject Chasles' formulation. We will maintain his
using of metric (euclidian) terminoclogy, more expressive than the usual pro-

jective phrasing that instead could be given.

6.6. Example

Let P be a point and u a line in the plane. Given a conic C,
let Y = Y(C) be the square of the length of the segment that C «cuts on
u, and X = X(C) the square of the tangent of the angle between the
tangents to € drawn from P. Consider the condition K defined by the

relation Y = X. Then BCK and so Chasles' formula does not give the
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number of proper solutions of K in a given system r if the latter has

degenerations of type B.

§ 7. Genericity of the data of conditions

In enumerative geometry problems one cannot hope for precise results,
and still having reasonably simple solutions, unless one disregards a multitude
of particular cases whose description is too cumbersome. This is usually done
by assuming an hypothesis of generality for the data of the conditions. Often

this generality of the data is handled by means of the following theorem.

7.1. Theorem {(Kleiman, [K.1})
Let U be an irreducible quasi-projective algebraic variety over €
and assume that an algebraic group G acts transitively on U. Let VI’VZ

be two equidimensional subvarieties of U. Then

(a) There exists a non-empty open set G' of G such that o(Vl)ﬁ Vv,
is either empty or has pure dimension dim V1 + dim V2 - dim U for

all o€ G', and

(b) If V1 and V are smooth, then G' <can be choosen in such a way

2

that G(Vl)ﬂ V2 is smooth.

7.2. Corollary {(Halphen [H.1], §24)

Let T be a system of conics and K a condition. For ¢ generic
in G, the conics in T  which properly satisfy o(K) are non-degenerate,
finite in number, and if K is reduced each appears with multiplicity 1 in

the intersection ¢ (K)NT.
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Proof

Since the first two assertions are satisfied for K iff they are satisfied

for Kred’ we may assume that K  itself is reduced. Let U be one of

the orbits A-B, A-B, or B and set V, =KNU, V,=rnuU. If VA,
then by the theorem o(V,)0V, =@ for o€&G generic, which implies that
o(K)nr  does not contain conics in the orbit U. If V, = U then K2U
and this only can happen if U=B (since conditions are assumed to be degene-
ration free), in which case the conics of B improperly satisfy o(K) and
so T does not contain conics of B which properly satisfy «(K). Therefore

for o0e€G generic the proper solutions of o(K)NT are in WO, the orbit

of non-degenerate conics. This proves the first assertion.

Now take U = Wo’ V1 = KnU - Sing(K), v

theorem implies that for o¢e& G generic c(Vl) ny

5 = rnNnU - Sing(r). The

> is a non-singular O-dimen-

sional variety. This implies that o(K) n r is finite (for ove G generic).

To end the proof it is enough to show that o(K)nrnuU < o(V,)NV,, again
for o generic. But this is seen applying Kleiman's theorem to the pairs
(Sing(K)nU, r nU), (KnU, Sing(r)nUu), where it says that for s €G

generic Sing(a(K)Ar nlU = @ and o (K)n Sing(r)nU = @& and the claim

follows. [m]

§ 8. Local characters of a condition

Let K be a condition on conics. We are going to define '"local charac-

teristic numbers' of K. In case K 2B, these numbers are defined to be
zero. So assume K2B and set (= O’w gr the local ring of W along
B, and m = My p its maximal ideal. Let X,Y ©be the rational functions

of W defined in 54. Then m = (X,Y), by propositions 4.1 and 4.1% Let
fe (X,Y) be a local equation of K, i.e., {(f) is the ideal 1(K) of

K in G
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Let 5’ be the m-completion of . Then there exists a Cohen subfield
ko of (O such that kO 4’—-»5*/;;1 = 0/m = C(B), the field of rational functions

of B, and such that the inclusion k {X,Y] € & induces an isomorphism

ol

kO[X,Y] — §. Consequently we may write f as a formal power series

f= 2 b..xX'Y

N ij

i,j»1
with coefficients bije ko. Associated to this power series we may consider
the (Newton-Cramer) set (or diagram) of points Pij = (i,j)€ R® such that
bijfl-O. Since f is not divisible by X or Y (because K is degenera-
tion free), this set contains points on each coordinate axis. As usual, for
the Newton-Cramer set thus defined we may consider its convex envelope E

and the associated Newton-Cramer polygon. The sides of this polygon are the

maximal segments contained in the boundary of E+(]R+)2.
8.1. Definition
A pair of positive integers (p,q) is said to be a pair of local

characteristic numbers of K if p and q are coprime and there is a
side S in the Newton-Cramer polygon whose slope is -g/p. The multiplicity
of the pair (p,q) is defined as the positive integer r such that r+l
is the number of peoints on S that have integer coordinates. Symbollically
we are going to write ri{p,q) to denote that (p,q) 1is a pair of local

characteristic numbers of K with multiplicity r.

It is easy to check that the Newton-Cramer polygon of K, and hence
the local characteristic numbers, does not depend on the selection of the local
equation f for K, of the local equations X and Y for A and A,
nor of the Cohen field ko' In fact the local characteristic numbers of K
are related to the structure of the singularity of K along B. More informa-
tion on this aspect can be found in [C.1] or [C.2]. In any event, a

proof in a broader context is given in & 18.
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5§ 9. Halphen's first formula

9,1. Definition

Let I be a system and K a condition such that only finitely many

conics in T satisfy K. Given a conic C, set e = iC(K.F) and
e' = i (a(K).T), o €G generic. Then ' will be called improper inter-
section multiplicity of XK  and ' at C. For e' to be positive it is
necesary and sufficient that C is in o{K)NT for all o¢€G, that is

to say, that C be a point in T that improperly satisfies K, and hence,

by 6.5, that Ce€ B and KDB.

The difference e-e', which is non-negative, will be called proper inter-
section multiplicity of K and T at C. We will write p-(K.T)  to denote
it. Thus we have that pC(K.I‘) = iC(K.I‘) unless C€B and K2>B, in which
case 0< p.(K.T)<i

C(K.l"). However, even in this case, pC(K.T) may be

positive (see example 9.3).

The sum of all proper multiplicities will be denoted p(K.T), and the
sum of all improper multiplicities imp(K.T). Clearly p(K.T)+imp(K.T) =

= (K.T), the total intersection number.

The goal in this section is to give an expression of p(K.T) in terms
of the characteristic numbers of K and T. This is dene in the theorem

that follows,

9.2. Theorem (Halphen's first formula)

Let T be a system of conics and let (wu,v) be its glcbal characteris-

tic numbers, Yl peeen Yy its degenerations, and m, 0, the order and class
of i i=l,...,h. Let K ©be a condition with global characteristic numbers
(a,B) and local characteristic numbers r].(p:i ,q]. Y, j=l,...,h'. Assume that

only finitely many conics of T satisfy K (i.e., that K does not contain

any component of T ), Then
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p(K.I) = au+Bv — iZJ I min(miqj,nipj)

Remarks

(a) Given K and T there is, by 7.2, a non-empty open set G' C G such
that o(K)nNnrT is finite for any o€ G. Theorem 9.2 then applies to o(K)
and r, so all conics in o (K) n (r-B) are non-degenerate and, if K is
reduced, counted once in the intersection. Furthermore, by the definition of
improper intersection number the open set G' may be chosen in such a way
that pc(c(K).r) =0 for every CernB. It follows that p{o(K}.T) s
the number of distinct non-degenerate conics which satisfy  o(K), for any
o € G'y, 1i.e., the formula gives the number of distinct non-degenerate conics
in I which properly satisfy a reduced condition whose datum is generically

chosen.

(b} Chasles' formula gives the number of proper solutions either if T does
not have degenerations of type B or if B®# K. Otherwise it gives a number

greater than Halphen's.

Proof of 9.2.

By the definitions p(K. 1} = (K.r)-imp(K.r} = oap +8v-imp(K.r), the
latter by Chasles’ formula. Now since a branch y of T centered at C
contributes to  imp(K.rT) as iC(o(K).I‘), c€ G generic, it is enough to
prove that

ic(c(K). y) =2 r. min(mq.,np.),
] ] ] ]
where m and n are the order and class of y. This will be done by
actually computing ic(c)(K.c(y)) for ¢ € G generic, which is clearly equal

to iC(G(K).Y) for ¢ €G generic.

Using the notations explained in § 8, we see that the coefficients

N
bijeko c & in the power series expansion of f can be approximated, up
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to any preassigned order, by elements of . Thus, if we let s be an

integer such that s »(K.r) and s> i+j for any point (i,j) in the Newton-

Cramer polygon of f, then there exist elements bi'j € 0 such that
b!.-b,. € ms+1(§', so that
1] 1)
Y ouxv ot e m®éno n®tt
i,j 2
i+j<s
{we take bi'j =0 if bij =0). Since bij is invertible if it is non~-zero, it

turns out that bi'j is alsc invertible when bij;éO, and so the Newton-Cramer
polygon associated to Zbi'inYj coincides with the Newton-Cramer polygon of

f.
Let Bog B be a non-empty open set of B such that

(a} The functions X,Y,f, and bi'j are regular on Bo;

{(b) For each CEBO, X, Y, and f respectively generate, in UW,C , the
ideals of A, A, and K;:; and

(c) b{j is either identically zerc or everywhere non-zerc on Bo (this can
be accomplished because bi'j € ox  if bij £ 0).

In the computation of 1 (K.o(vy)}, o€G generic, the conic D = a(C}

a(C)
belongs to Bo' Let O’D = UW,D’ so that GD c¢ and mnN Ol')g my the

maximal ideal of O’D. Since X,Y,f, b'i].EO’D, we actually have that

2 brx'y o remptt,
i,j»1
i+j<s

and since iD(K.c(Y)} = ordc(Y)(f) < (K.r)Y< s, it turns out that

iD(K.c(Y)) = ord (f'}, where ' o= Z b'i.Xin .

ol ) i+j€s ]

Let t be a parameter for the branch o(y), and set £ = £(t) to
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denote the restriction of an element gEO’D to  al(v). Then X and Y
are power series in t of orders n and m, respectively. Hence we may

assume that
X =1t + ..., Y:ctm+...,
where ¢#0 and where ... stands for higher order terms.

We will set ¢ = c(oly)) if we need to stress that ¢ depends on

aly). Then the contribution in £ of a monomial b'iniYJ, b'ij,éO, is a

power series in t of the form

b'.(C) o P,
1]
Now our task will be first to compute % = min(ni+mj), for all 1i,j such
that bij # 0, and then show that the coefficient of tgd in f' 1is non-zero,
so that we will have iD(K.c:(y)) = ordtf' = 1.
For the computation of &, notice that we only need take into account
the points (i,]) on the Newton-Cramer polygon. We will assume that the

sides of this polygon are indexed successively starting with the side which
has a vertex (say (a,0)) on the X-axis. With this convention a point on the

i-th side of the polygon can be expressed as

(a,0) + rl(—pl,ql) Foee. + ri—l(—pirl’qi—l) + r(—pi,qi),
O<rg T This point thas integer coordinates when r itself is an integer. The

exponent of t corresponding to such a point is

' = (a - LBy = eee = rpi)n + (r‘lq1 o+ rqi)m =

= an + rl(—p1n+q1m) + ee. + T (—pi_ln+qi_1m)+r(—pin+qim).

i-1

Because of the way the sides of the polygon have been indexed we have that

the quotients qi/pi increase with i, so that there exists j such that:
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-

q/P; < n/m € gy /P
(we set j=0 if n/m¢q,/p,, and j=h' if /P, < n/m., Then we see that
417 ) 9h '/ Ph

< 0 for i<

-p;n + qm

> 0 for i>]

'

and hence 2 will be minimum only when i-1=j and r=0 if n/m <qj+1/pj+1

{i.e., the minimum is taken exactly at a vertex of the polygon), or when
i-1=j and for any r such that O<rg rj+1 if n/m = q‘j+1/pj+1 {i.e.,
the minimum 1is taken at all points that lie on the (j+l)-th side of the
polygon). In any case the minimum we are seeking is

1pl—...—l."jpj)n =

= (r1q1+...+rjqj)m + (rj+lpj+1+...+rh,-ph.)n =

=
1

= (r1q1+.._.+rjqj)m + (a-r

= Z r, min(mqi,npi) .

The proof of the theorem will be completed if we show that the coefficient

of t* in f is non-zerc. Notice that this is automatically true if
N . 2

n/m < qj+l/pj+l' If n/m = qj+1/pj+1’ then the coefficient of t* Thas the form

g(c), where g is a non-zero polynomial which only depends on vy, and not

on ¢. Since g  has only a finite number of roots, it will be enough to
show that there are elements 1€ G leaving D fixed and such that c¢(1o(y))
is not a root of g. This will be done by seeing that c(to(y)) takes infini-

tely many values as a function of <, 1 leaving D fixed.

Indeed, let P and u be the point and the line used to define X
and Y (see 8§4). Let v be the homology with center at P, axis the
line v such that v2 is the point component of D, and modulus ze€ C*.
Then it is clear that (D) = D. Since T leaves invariant the Ilines
through P, Xotr = X. However, Yot = zY, as one sees considering the

restriction of t to u. Thus, for such a 1, c(to(y)) = zcloly}). O
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9.3. Example
We construct a condition K, a system T and a conic C such that

CeB, K>B, and pC(K.I‘)zl.

Let Po’Pl’PQ’ U be a projective system of coordinates. Let U'=(1,1,0)

and Qt:(l,O,t), t#0. Now let I be the pencil of conics

C:i a(XP2X.X.) + X
Q 1

2
2 2

and let K be the condition defined by

Here Y,X are defined as follows:
Y = Y(C) = [(P.,P_,Q.,R)=(P.,P ,Q .R')IZ |
- B 2ot 2’’’

where R,R' are the points where C intersects the line PoPZ’ and

X = X(C) = [(ul,uo,u‘,v)-(ul,llc,,ll',V')]2 ,

where v,v' are the tangents to C drawn from P2 and u1=P2PO, quPzPl,

and u'=P2U'.

The system T has the conic X;‘:O, with Pl as a double focus,
as a degeneration of type B. Let C denote this conic. Since Y(Ck) = Z.A/tz
and X(CA) = 43 as one easily computes, then iC(K.l“) is the multiplicity

in X of the polynomial

At" A(4x+t4—t2).

For t= t1, this multiplicty is 1, while for t=*1 it is equal to 2. Since

clearly all the conditions Kt are in the same orbit we see that for t=%f1

imp(K..T) = 1 and pC(Kt.F) = 1. 0O
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§ 10. Computation of characteristic numbers

In this section we establish a method for determining the (local and
global) characteristic numbers of a condition. This is done by intersecting
the condition with a suitable surface and by relating the characteristic

numbers to numerical characters of the intersection curve.

10.1. Lemma

Given a condition K, there exists a non-empty open set BOEB such
that if § is an irreducible surface cutting B transversally at CEBO
then the restrictions X and Y of X and Y to S, respectively, form
a system of parameters for S in a neighbourhood of <. Furthermore, if
SE K then the Newton-Cramer polygon of the curve KnS  with respect to

the parameters X,Y coincides with the Newton-Cramer polygon of K.

Proof

With the same notations as in the proof of 9.2, given Ceg Bo there

exists b'ij EO’C such that the Newton-Cramer polygon of

> bx'Y
itjes M
coincides with the Newton-Cramer polygon of K. Moreover,
_ B s+1
fF- 2 biXY € mp
1+}<s8
and bi'j;fo if bij;éO. Now the transversality condition implies that X,Y ge-

nerate the maximal ideal ﬁc of 0’5 c and so we have

|
i
|
>
—
!
m
3!
[2]
+
s

i+j<s

where for an element he O’C, h denctes its restriction to S. From this re-

lation the last part of the statement follows immediately. O
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10.2. Corollary
The local characieristic numbers of degeneration free conditions are

additive.

Proof

Lemma 10.1 allows us to deal with locally plane curves instead of condi-
tions (not necessarily reduced). Now for locally plane curves it is well known
(cf. [Wal]) that the negative slopes of the sides of the Newton-Cramer polygon
are the first exponents in the Puiseux series of the branches of the curve
and that the sum of the orders of the branches corresponding to a given side
is the number of integral points on that side decreased by 1 from what the

additivity for curves is clear.

To describe the particular surface S which will be used, fix a triangle

T in ]P2 and set X5 ui, i=0,1,2, to denote its vertexes and sides, respec-

tively, with uy the side opposite x;. Let S=ST be the surface in W of
all conics for which T is a self-polar triangle. If we take T as a projec-

tive system of coordinates then the conics C=lc,c') of § are precisely

T

those for which the matrices of ¢ and c¢' are diagonal.

Let us denote by L12i the point conic consisting of the line u, counted

twice and by xi2 the envelope consisting of the pencil of lines through Xy

counted twice. Then p{S;) is a plane in IP5 and  p: Sp—— p(ST) is

the blowing up of p(ST) at the points ug, u2 and u%. Similarly, t(ST)

1!
is a plane in ]I’S and t: Sy — t(ST) is the blowing up of t(ST

points xg, x?, and xg. Equivalently, ST is the graph of the quadratic

) at the

Cremona transformation p(ST) — t(ST) whose fundamental triangles are

2 2 2 2.2 2

(uo,ul,uz) in p(ST) and (xo,xl,xz) in t(ST).

The intersection STﬁA consists of the three mutually disjoint pencils

H;, 1=0,1,2, defined as follows: H, is the pencil of pairs of lines that

have X, as a double point and harmonically divide the pair of lines (uj,uj.)
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going through X Each of these pencils has multiplicity one in the intersec-
tion — notice that ©p(A) = D and p(ST) are respectively a cubic hyper-

surface and a plane in P

5-

v v

Dually, the intersection STOA consists of three disjoint ranges Hi’

i=0,1,2, where the conics in Hi have uiz as point component and two
points on uy harmenically dividing the two vertexes of T on u; as line

component. The multiplicity of ﬁi in STﬂA is one.

.

Each pencil Hi meets precisely two I:Ij’s, and conversely, each Hi
meets two H].'s. In fact if (i,j,k) is a permutation of (1,2,3), then
l-ii intersects Hj and ﬁk but not éi’ and Iv%i intersects Hj and H
but not Hi' 1f for i#] we let Ci] denote the conic (uiz,sz), then

FiiﬂHJ. = {Cij }- From this it follows that STﬁ B consists of the six conics
Cij and each of them has multiplicity one in this intersection.

Let K be a reduced {degeneration free) condition. Let {o,B) and
ri{p;>q;), i=l,...,s, denote the global and local characteristic numbers of

K, respectively. Given a triangle T = {xo,xl,xz} in ]P2 we will as before

denote by U Uysly the sides of T, with the convention that xie u, .
(2o

We choose such a triangle T in such a way that the conics C.. :

1]
belong to the open set BO of lemma 10.1 and that S,nK 1is a reduced
2

be the triangle of PS whose vertexes are ui,ul,uzz, S0

curve. Let T
that the plane that 7 determines consists of the point conics which have

T as a self-polar triangle, i.e., T=p(ST). With these notations we have:

10.3. Theorem
The conic lecus componenets of the conics in ST that satisfy K form

a curve K' in the plane of 7 which has the following properties:

(a) deg K' = q+28
(b) The vertexes of 7 are points of multiplicity & on K'; and

(¢) Given a vertex of 7 and a side concurring in it, for each branch
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¥ of K' with center at the vertex and tangent to the given side there exist
a unique i such that ordy = tp., class v = qu., % a positive integer.
Moreover, Zz:ri, where the sum ranges over all such branches with

fixed 1.

Proof
Let S = STC W be the surface of conics which have T as a self-polar

triangle and set K = KNS. We will analyze the behaviour of K in the

neighbourhood of Col' If X and Y denote the restrictions of X and

Y to S (notations of lemma 10.1), then X 1is a local equation of ﬁl

and Y of H,, Doth at C, - By lemma 10.1, for each branch y of

K at Col there exists a unique i, 1<i<s, such that the parametric

equations of y are of the form

1P, _ Sz,qi
X = x» 'fa), 7= 'gh, £(0) £ 0, g(0) £ 0 .

Moreover, Z!L: r., where the sum ranges to all such branches Yy with

i fixed. On the other hand, by Chasles' theorem 5.5 the intersection number

of K with Hl and ﬁo are, respectively, o and 8. Now K' = p(K),
p(ﬁo) = uz, and since D is, locally at ucz), the blowing up of ug,
we see that K' has multiplicity 8 at ug. Furthermore, the correspondence
Yy —— y=p(¥) establishes a bijection between the branches v of K at
C,; and the branches of K' at ug which are tangent to p(H;), one
of the sides of 7 going through ug (the other side is p(Hz)). Now if
Y is the branch given by the equations above, then vy 1is a branch of order
#p, and its intersection multiplicity with p(Hl) is L(pi+qi), so that its
class is SLqi. Moreover, the order of K' is o +28, because
K' = p(K)np(S;) is a plane section of p(K). The ‘proof of the theorem

is complete if we take into account that the same analysis that we have

L i4. O

applied to C works for any Ci]

ol
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10.4. Corollary
If K 1is a degeneration free condition with global characteristic numbers

(@,8) and local characteristic numbers ri(pi,qi), i=l,...,s, then
o > ZZriqi, B > 2Zripi'

Proof

By 10.2 we may assume that K 1is irreducible. With the same notaticns
as in the theorem, notice that the intersection number of p(Hl) with K’

is a+2g8, and hence

a+28 > i

But by the theorem both summands are = 8 +2riqi. The second inequality

can be seen either by duality or else by noticing that since g is the multi-

plicity of K' at the vertex it cannot be greater than the sum of the orders
cof the branches of K' centered at ucz). O

§11. Examples

11.1. (The conditions $S )
P:sq

Let X and Y be functions defined as at the end of §4, say by
means of a line u and a point P, P eu., For any non-zero polynomial
Q(X,Y), the relation Q(X,Y) = 0 determines a hypersurface in the open
set of conics that do not pass through P and are not tangent to u. We

will set K to denote the clousure of such. a hypersurface.

Q

To get some intuitive feeling for this type of hypersurfaces recall that
in Euclidean terms the function X 1is the square of the lenghth of the segment
cut out on u by a ceonic and that Y is the square of the tangent of the

angle between the tangents to a conic drawn from P.
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The local characteristic numbers of K can be obtained directly from

Q

the Newton-Cramer polygon of Q, inasmuch as Q{(X,Y) 1is a local equation

of KQ at the generic point of B.

In particular, set Sp,q toc denote the condition KQ obtained taking
Q(X,Y) = )\Xp_yq" where ©p,q are coprime positive integers and * is a non-
zero complex number. Then it is clear that S , has a single pair of local
characteristic numbers, namely (p,q). Moreover, its global characteristic

numbers are given by w=2q, B8 =2p. This can be seen directly using the
description of X and Y in 8 4, or by means of the method described

in §10.

In fact if Po’Pl’PZ’ Q is a projective system of coordinates and
UgslUpsly, v is the dual system, let Q2 be the projection of Q on u,
from Pz, and let Vo be the line constructed as Q2 but dually, using

Po and u {see figure},

Then if we use u, and the points Po’Pl’ and Q2 to define Y we get

- 2
Y(C) = 4 6122/.300

(see the proof of 4.3). 1If we define X dually, with respect to P slysuy, v

then
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2

X(C) = 4 &OO/QZZ

From these expressions it is easy to see that the hypersurface Sp

defined by means of X and Y 1is given by the bihomogeneous equation

=q 2p 2q-p
Aa22a22 " 450%00

I

This shows that Sp q lies in the linear pencil generated by the (linearly

b

equivalent) divisors q[v\+(2p+q)Lu and  pA+(p+2q)L In particular the
2

p
o
global characteristic numbers of § are (2q,2p).

P4
11.2. Proposition

The conditions
5 s
a » 2 Z £:q;, B 2 2 Z P,
i=1 i=1

are necessary and sufficient in order that it exists a degeneration free condi-
tion whose global and local characteristic numbers are, respectively, (a,B)

and r,(p;;q,), i=l,...,s.

Proof
The conditions are necessary by corollary 10.4. To see that they are

sufficient, let

s 5 s
K = r.S + (0-2) r.q)L + @-22 r.q)L
i=1 Py =1 ' =1 't
Then K is effective and degeneration free, and by corcllary 10.2 its global

and local characteristic numbers are, respectively, (o,B) and ri(pi,qi),

i=l,...,s. (]
We proceed with the examples.

11.3. (Conditions expressing a relation to a fixed conic)

Let C and C' ©be conics with matrices ({a..),(a..)) and ((b..),(B..)),
1] 1] 1] 1]
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respectively. As usual we will denote by &, ©, @', and at the funda-

{
mental invariants of C and C', so that

det(A(a;;) + (b)) = A2 s 032 4 @ anl 4 A,

J

)

In the special case that (aij) is a diagonal matrix, say ciiag(ao,al,a2

(so that the triangle of reference T 1is self-polar with respect to C),

& = aoalaz

0 = booalaZ + bllaan + b22a0a1

(*)

@'= + a.B + a,8

35 Poo 11 25822
A'= det(b..)
ij

These expressions are useful because if K is the condition that a conic

C satisfies a relation to a fix conic (' expressed as a polynomial relation
(%) Q(4,8,8',8") =0

between the fundamental invariants of the pair c,Cc, then the equation

of the curve p(KnNS.) 1is obtained substituting 4,0,0',4" in (**) for

T

the expressions (*).

Here are a few examples (cf. [S-K], Ch. VII1I, 3):

(Kl) The condition that a conic C is triangularly circumscribed to a conic

C' is expressed by the relation

V2

@'" - 44'0 = 0.

After performing the above substitution one gets a conic in the plane
p(ST) that does not go through the vertexes of T (notations as in

theorem 10.3). Therefore a=2, 8=0 and there are no local characteristic

numbers,
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} By duality the condition that a conic C is triangularly inscribed in
a conic C' will have =0, B=2, and no local characteristic numbers.

Notice however that such a condition is expressed by the relation

0% - e =0,

which, after performing the substitution (%}, vyields a gquartic curve
in p(ST). This quartic has an ordinary node at each vertex of 7
the tangents of which are distinct from the sides of 7  concurring
thereto. Thus we get indeed a=0, B=2, and that there are no local
characteristic numbers,

(K,) The condition that a conic C has a pair of common tangents with
c! whose intersection point is collinear with two points of CnNC!'

is expressed by the (self-dual) relation

3 3

AR+ A8 = 0 .

After substituting (*) in it one gets a sextic in p(ST) with an ordinary
node at each vertex whose tangents coincide with the sides of 7
concurring thereto. Therefore o=8=2 and (1,1) is the only pair of

local characteristic numbers.

11.4. (Tangency to a curve)
Let F be an irreducible curve in PZ' Given a point P€F and
a conic C  through P, we will say that C is tangent to F at P

if F and C Thave a common tangent at P. Let K =K be the set of

F

conics that are tangent to F.

Notice that if we had taken the tangency of C and F at P to
mean that ip(C.F) >1 then the set of conics tangent to F (in this weaker
sense) would be KF UK', where  K' is the set of conics going through

a singular point of F.
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Let g be the geometric genus of F, d 1its degree and d its class.
Let di’ l<igr, be the orders of the singular branches vy of F f{i.e.,

branches whose order is greater than one}. Fix a generic pencil L of conics

and consider the map

such that o (P) is the unique conic in L  going through P. Clearly

deg(o) = 2d and so, by Hurwitz's formula,
2g - 2 = -4d + deg (R} ,

where R is the ramification divisor of ¢. Now since L 1is generic, the
finitely many conics in L that are tangent to F have a single tangency.
It turns out that R is the sum of the points P on F for which there
is a conic of L which is tangent to F at P plus the singular branches
v, of F, the i-th such being counted with multiplicity di_l' Therefore

1

deg R = deg p(Kp) + > (di-1) = o + 28 +

(d.-1) ,
r=1 i=1 b

r r

where (a,B) are the global characteristic number of K Comparing with the

e

previous relation we get that

o+ 28 =2g -2+ 4d - 2(d-1) .
On the other hand
2¢ - 2 + 2d = d+Z(di—1),

as is seen by a similar argument with a generic pencil of lines instead of

L. Hence

@+ 28 = 2d + d
Dually,

20 + B8 d+2c§,
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and therefore az&, g=d. Since BiKF, there are no local characteristic

numbers.

§12. Strict equivalence of conditions

Let Z Dbe the group of divisors that do not have A or A as compo—
nents. The elements of Z  will be called degeneration free divisors of W.
The effective divisors in Z is what we have been calling degeneration free
conditions. The additive character of Halphen's formula 9.2 implies that it
is alsoc valid for degeneration free divisors if the notions of local and global

characteristic numbers are extended to Z by additivity.

12.1. Definition (Halphen [H2], §27)
Given Dl’DZEZ’ D1 is said to be strictly egquivalent to D2 iff for
any system of conics T the proper intersection numbers of T with D1

and D2 coincide whenever they are defined.

Halphen calls this relation "equivalence de conditions'. It is a numerical
equivalence, but relative to the number of proper solutions. As we will see in a
moment, this is a much stronger equivalence than the usual numerical equivalen

ce,

The quotient group of Z wunder the strict equivalence will be called
Halphen's group and denoted by Hal{w). The strict equivalence class of

a divisor De Z will be denoted by <Z»>.

12.2. Theorem
Two degeneration free divisors are strictly equivalent iff their global

and local characteristic numbers coincide.
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Proof
That the condition is sufficient is clear due to the extension of Halphen's
formula to degeneration free divisors. To see the necessity, it is enough to

consider the case of two degeneration free conditions K and K'. Let «,8,

and ri(pi,qi), 1< 1€ s, be the global and local characteristic numbers
of K, and a',8', and ri(p..q.), 1< j<s' the like characters for K'.
Assume that K and K' are strictly equivalent. We want to show that the

two sets of characteristic numbers are equal.

That the global characters coincide can be seen by taking for r a
pencil or a range of conics, cases in which Halphen's formula does not involve

local terms, and expressing that p(K.r) = p(K'.T).

Now it is easy to see that for any pair (m,n) of positive integers there
exists a system r of conics not contained in any component of K or K'

and such that it has a unique degeneration vy of type B whose order and
(*)

class are m and n, respectively The definition of strict equivalence

between K and K', together with the equality of the global characteristic

numbers of K and K', yield the equality

s s'
() Z ; min(mp,,nq,) - '. min ( mpJ nq Y,
i-1 i=1

which must be fullfilled for all pairs (m,n) of positive integers.

Without loss of generality we may assume that

pi/qi < P17/ and p&/qj' J+1/qj+l’ 1<i<s, 1<j<s'.

If we had that rp=r; and p/q, = p/q} for 1< i<inf(s,s') then (¥)

would imply immediately that s=s' and hence the two sets of characteristic

{*) Such a system is actually constructed in §19
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numbers would coincide. So assume that for some 1, 1< 1ic<inf(s,s"),

and ph/qh = p'h/qi1 for all h<1i, but that either

p;/q; # pi/q]

or else

pi/qi = pi/qi' and r. £ r

From this we will derive a contradiction and hence the theorem will be proved.

Let us first consider the assumption pi/qi # p'i/qi'. Again, without
loss of generality, we may assume that p./q, < pi/q'i. Now choose (m,n)
so that

(¥%*) p/q; < n/m < pi/q]

Then one has the following relations:

pjm = pj'm < an = qJ.'n for 1< dgi-1,
p;m < qn, p'im > q'in

pjm > an for i<jgs
pJ.‘m > qJ!n for i<js s

Combining these relations with (*) we obtain that

which contradicts the fact that there are infinitely many rational numbers

satisfying (**).

The assumption  p./q, = pi/q/, r;#c;, leads likewise to a contradic-
tion. This time choose {m,n} so that

pi/qi - p‘i/q;‘. < m/n < rnin(le/qu, pi'+1/q'l )

i+l
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A similar argument then shows that

EsvS U AR e VO B A

which gives a contradiction of the same sort as above.

12.3. Corollary
Hal(W) is a free abelian group for which the classes <L> <L>, and

<$S ) where (p,q) is any pair of positive coprime integers, are a free

p.q”
basis. Furthermore, a linear combination of distinct elements of such a basis
is the class of a degeneration free condition iff the coefficients of the combina-

tion are non-negative and not all zero.

Proof

First notice that given a pair of positive coprime integers {p,g) then the

conditions S introduced in 11.1 are strictly equivalent to each other.
In fact the characters of Sp q are independent of the choices made in their
definition. Similarly, L and L wuniquely define classes under the strict

equivalence, since they do not have local characteristic numbers and their

global characteristic numbers are (1,0} and (0,1}, respectively.

Next notice that given a degeneration free divisor D with characteris-

tic numbers «,8, ri(Pi’qi)’ l1<ig<s, then the divisor

D' = (a—EZriqi)L + (B—ZZripi)L + Zrispi’qi

has the same characteristic numbers as D, so that <D> = <D'> 1is a linear

combination with integer coefficients of <L >, <L >, and the < Sp q>.

If D is a condition, then by 11.2 these coefficients are non-negative

and not &all zero. Conversely, if they are non-negative and not all zero then

D 1is strictly equivalent to a condition. That <L>, <L> and the <Sp q>



45

are Z-linearly independent is clear enough.

12.4. Remark

The conditions L, i, and Sp,q are called elementary conditions by
Halphen. He proves ({H.2], theorem IV) that they generate Hal(W). This
fact turns out to he a fundamental one in [H.3]. However, it is not until
the end of [ H.3] that Halphen characterizes in intrinsic terms, for a condition
D, the coefficient of a given elementary condition in a linear combination

cf elementary conditions expressing D. This characterization actually implies

that the linear combination that expresses a given D 1is unique. O

§13. Systems of conics contained in Sp q

In this section we are interested in analyzing the possible degenerations

of a system of conics under the hypothesis that all of them satisfy an elemen-

tary condition.

To start with, let P be a peint and u a line in P2 such that Pe u.

Let be a condition defined as in 11.1 using P and u (here we

S
Psq

need not specify the other choices in the definition). Then we have:

13.1. Proposition
Let T be a system of conics such that T CS and let vy be a
degeneration of type B of T. Set (vz,Qz) to denote the center of vy, so that

v is a line and Q@ a point on it, and let m,n be the order and class

of ¥, respectively. With these notations,

(a) If m/n > p/q, then v goes through P;
{(b) If m/n < p/q, then Q lies on u;

(c) Therefore, if v does not go through P and Q does not lie on u then
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m/n = p/q .

Proof
In §4 we saw that

div.,(X) = A + L, - 2L

W P u
divw(Y) = A + Lu - 2Lp ,
where X, Y are the functions used to define Sp g’ divw(f) is the divisor
on W of the rational function f, and where LP and iu are, respecti-

vely, the hypersurface of conics which go through P and which are tangent

to u. Consequently,

ordY(X) = n + (Y.LP) - 2(y.Lu)

ord (Y) = m + (Y.‘Lu) - 2(y.Lp) ,

with the convention that, for a hypersurface H, (y.H) =« iff «y is con-

tained in H.

Since I CS , we have

Bsq
D ordy(X) =q ordy(Y)
and so
(*) pn - qm = (2p+q)(y.iu) - (p+2q)(y.LP)
Now if we assume that m/n < p/q, i.e., pn-gm > 0, then necessarily
(Y.iu)>0. But this means that the origin (VZ,QZ) of v is tangent to

u and hence that Q€ u. This proves (b). The proof of {a) is similar. O

The previous proposition can be somewhat extended to other conditions.

p by 50’1/2 and Lu

by 51/2’0. Actually we will think of 50,1/2 as defined by means of point

In order to explain this, ({(symbollically} denote L

P and an undetermined line (which we do not need to specify), and of 81/2 0

as defined by an undetermined point and the line u. With these conventions
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notice that proposition 13.1(a) is also true for 80,1/2 and 81/2’0. Indeed,

for S we have ©p=0, so that the hypothesis m/n > p/q in 13.1{a) is

0,1/2

always true, and obviously the thesis is also true; on the other hand the

hypothesis in 13.1(b) 1is never true, so that 13.1(b} is correct for 50 1/2
]

too. The case of works now by duality.

51/2,0

Proposition 13.1 is also true for the degenerations of r of types A
and 1‘5’1 In fact for the degeneration of type A we have that m=0, n#0 so that
the hypothesis of 13.1(a) cannot occur, whereas the hypothesis in 13.1(b)
is always true, and sc is the thesis, because (*), which is still correct for
v, 1implies that Y'f‘u> 0 and so the double point Q of the center of Y
lies on  u. The case of a degeneration of type A is dual. Sumarizing we

have:

13.2 The conclusions of 13.1 hold true in the following cases:

(a) For the condition L when considered as a SO 1/2 relative to

P

a point P and an unspecified line.
(b) For the condition f‘u when considered as a 51/2 o relative to
an unspecified point and to a line u.

(c) For degenerations Y of type A or A, and any S 1f y s

Psq’
of type A then Q is the double point of the center of y, while

if vy is of type A, then v is the double line of the center of

Y.

13.3. Remark

The reason for taking 1/2 in the symbolic representation of L  and

-

L as conditions of type and will be seen in next section.

50,1/2 51/2,0

Here let us only say that the global characteristic numbers of Sp q are

(2q,2p), and that this is again also true for these special cases.
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§14. Conics satisfying five independent conditions

In this section we will consider the problem of determining the number
of conics properly satisfying five conditions under the assumption that their
data are in independent general position. In other words, the problem we

want to solve is the determination of the number of conics properly satisfying

oiKi, 1<i<5, where Ki are conditions and where g = (01,..-,05) € G5
varies in a suitable open set of G5 {cf. Remark 7.3}.
14.1. Proposition

Given degeneration free reduced conditions Ki’ 1<1ig5, there exists

5

a non-empty open set U in G such that for any o= (ogs.-s 05) el
the conics properly satisfying o iKi’ 1< i< 5, (a) are non-degenerate and
isolated components of multiplicity one of the intersection 01}(1 NaaaD ocKes

hence finite in number, and (b) this number is independent of o€ U.

Proof.

Applying Kieiman's theorem (quoted as theorem 7.1) successively on

WO - W-(AUA), A-B, A-B, and B one obtains that there exists a non-empty
open set UEG5 such that if o = (01,...,05) € U and
IO’ = Gl(K_l)ﬁ . mGS(KS)

(1) 1 ﬂwo s a finite set and each point of this set has multiplicity one
in the intersection,
(i1) 1_n ((A-B) U (A-B)) = @, and

(iii) 100 B is either empty or at least one of the conditions contains B.

S0 we see that for ocelU

Io = (Ioﬂwo) U(IGOB).

Now the elements of 1ano are non-degenerate and hence properly satisfy
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the five conditions, whereas I;nB is either empty or consists of improper

solutions for at least one condition. This proves (a).

In order to prove (b), set Kio = Kiﬂwo and define

Z C K?x ...xKOxGS

5

as the closed subvariety defined by the relations

5 5

Let p: 2 —G be the restriction to Z of pr 5 Given o€ G’, the
G

closed set p_l(c) can be identified with 1 _OW_. Since for o€ U this

set is finite it follows (for instance using [S], Ch. 11, §5) that the cardi-

nal of this set is constant on some non-empty open set contained in u.

This completes the proof.

14.2. Remark
Proposition 14.1 can be extended at once to non-reduced degeneration

free conditions except for the multiplicity one property of part (a). 0O

14.3. Corollary

Given five reduced conditions X,,...,K

1’
5 such that for any ¢ = (o

there exists a non-empty open

5

set ve G )y e U the clousure of the

1,...,05
set of non-degenerate conics of ol(Kl) n,..nN O‘A(KA) is a (l-dimensional)
system of conics T and, moreover, the set of conics which properly satisfy

Gl(Kl),...,o (KS) is the set of conics in T which properly satisfy 05(K5).

Proof

Let f: GS = GAx G — G[‘ be the projection onto the first factor.
For simplicity we will write, for 0665, g = (0',05), so that o' = f(o).
Let U’ be a non-empty open set of GS satisfying 14.1. Since f is

Ul

dominant, using once more Kleiman's theorem there exists a non-empty open



set V< f(U') such that for any o' = (01,...,04) €V
rd = o (K)N..No,(K)NW
g 1°™1 vt FAANA o
is a reduced curve and hence the clousure of Fco, in W, which we will

denote by T_,, 1is a system of conics. Now take U = U'n f_l(V). We claim

that given o'€V there exists o €G such that (¢! ,05) €U and the
number of conics properly satisfying ci(Ki)’ i=1,...,5, agrees with the
number of conics in T  which properly satisfy US(KS). This claim follows
from the following two observations.

The first is that if a conic properly satisfies ci(Ki), I1€ig<5, for
o = (cl,...,ch) € U, then this conic obvicusly 1is on o and properly
satisfies 05(]( )+ The second is that given o' = (cl,...,cA)E V  there exists
a non-empty open set U of G such that for any oSEU" the conics
in T s properly satisfying 05(1(5) are non-degenerate {see 9.3.1), and
consequently these conics properly satisfy Gl(Kl)""’gé(Ké) as well. The
existence of the o in the claim follows because UN(g¢' x U") is non-empty.

Now by proposition 14.1, and for se U, the number n_ of conics
properly satisfying ci(Ki), i=1,...,5, 1is independent of ¢. On the other
hand, given c' €V, the number of conics in Lo properly satisfying
05(1(5) is independent of Ic by definition of proper intersection multiplicity

(see 9.1). Let n_. be this number. Then by the claim before we have that

no=n_ for any o¢€0U.

In order to end the proof, given o¢€U let So be the set of conics

properly satisfying ci(Ki) , i=1,...,5, and S(; be the set of conics in
Lo properly satisfying o S(KS) . Since SU S S, because S,< Wo and
Sc AW, =S NW,, the equality S, = S5; follows because n, = ng. D

Thus we observe that in the problem of determining the number of conics

properly satisfying five conditions, the result is a 5-linear function of the
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strict equivalence classes of the conditions. Therefore, by 12.3, the problem
is reduced to the computation of the number of conics properly satisfying

five elementary conditions.

In order to solve this problem it is convenient to prove first two auxi-

liary results. We recall that the elementary conditions are the 5p q’ {(p,q)
b

a pair of coprime positive integers, and also L and L, which are denoted

by 50’1/2 and 51/2,0, respectively.

14.4. Lemma

Let Sp q.’ i=1,...,4, be four elementary conditions ordered so that
i’

pl/qls pz/q2 < p3/q3$ pé/qé. Then there exists a non-empty open set
4

v in G such that for any g' = (01,...,0 ) eV the clousure of the

4

set of non-degenerate conics satisfying the four conmditions ch(Sp q) is a
i’
system of conics ;e in W such that the ratio of order to class of any

of its degenerations is either p2/q2 or p3/q3.

Procf

That there exists a non-empty open set V' in G4 such that the clou-
sure of the set of non-degenerate conics satisfying the four conditions
0. (S ) is a system of conies o is once again a direct consequence

toPp gy
of Kleiman's theorem.

Now given c'evV', let y Dbe a degeneration of L of order m
and class n. The set of o' €V' for which m/n< pz/q2 is a proper closed
subset of V', because in such a case, by proposition 13.1, the double focus
of the center of y  would belong to the three lines with respect to which
the conditions oi(Spi’qi), i=2,3,4, are defined. By duality, the set of
c' eV’ such that p3/q3 < m/n is also a proper closed subset of V'.

Finally, the set of ¢'€ V' such that pz/q2 < m/n < pz/q3 is a proper

closed subset of V', because, by proposition 13.1 again, in this case the
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double line of the center of vy . would pass through the two points with respect

to which a (S ) and a,(S ) are defined, so that the first two
17"pyhq 2 7Py,

lines and the line joining the last two points are concurrent. [

14.5. Lemma

In the same situation as in lemma 14.4, let wu,v be the global charac-
teristic numbers of Ppvw 0" €V'. Denote by ap,,adq, the sums of orders
and classes, respectively, of the degenerations of FG, for which the ratio
of order to class is pz/qz. Likewise, let a'pg, a'q3 be the analogous

sums for the degenerations whose ratio of order to class is /q.,. Then
g P3 q3

ap, + a’p3= 2u - v

aq2 + a'q3 = 2v - qu.

Proof
By lemma 14.4 the sum M of the orders of all degenrations of r
is equal to ap2+a'p3, and the sum N of the corresponding classes is

aq2+a'q3. But by 5.6 we know that M = 2p-v and N = 2v-u. O

Notice that 14.5 really allows to determine the sum of orders and the
sum of classes of the degenerations of each type. This is clear if pz/q2 #
# P /q3- But if 1:)2/q2 = pS/qS, there is only one type of degeneration,

so it suffices to determine a+a', which can be done using either equation.

14.6. Theorem (Halphen's second formula)
Given five elementary conditions Sp , 1<1«5, ordered in such

a way that pi/qi<pi+1/qi+1 for 1

n
—

n
Fal

there exists a non-empty open

|
—_
Q

set U in G5 such that for any o ,...,05)GU the number N of

1

conics properly satisfying the conditions Oi(sp q) is finite and given by
i’

the formula

N = 8(1:)1+2ql ) (p2+2q2) (p3+q3) (2p4+q4) (2p5+q5) .
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Proof
Let K, = Sp q." Then we can determine a non-empty open set U’
5 73

such that for any five conditions chosen among the K,, 1< i<5,

in G .
i

L and L, proposition 14.1 and corollary 14.3 apply. In particular for
sel’ there are only finitely many conics properly satisfying Ui(Ki)’
1¢i¢ 5, and the number N of such conics does not depend on o €U’.
Now 1in order to compute N we will proceed recursively on the number of
conditions L or L that appear among the five elementary conditions Ki'

If each of the five conditions is of type L or i., then there are no impro-

per solutions and the number N can take on the following wvalues:

As it is checked immediately these wvalues agree with the answer given by

the claimed formula.

Therefore we may assume that among the conditions Ki = Sp q there
i3

is at least one, say K5, which is neither of type L nor of type L (so
we do not assume so far that the ratios pi/qi are non-decreasing with
respect to 1i). Given ¢ €U"', let ro. be the system of conics determined
by the conditions ci(Ki), i<5, where ¢ €G% is the result of dropping
g in o. Now by recursion the claimed formula holds true for the condi-

tions Ki’ i<5, together with either or and for some

50,1/2 °1/2,0°

non-empty open set U that we can assume 1s contained in U'. Without
loss of generality we may assume that P{/q; € P,/q,€ p3/q3S 1:>4/q4 and
so for o €U the number wu of conics properly satisfying Ui(K.), i<h,

i
and ( 3 will be

55050, 1/2

u o= B(p+2q,)(py+a,) (2p4+a,) 2D+, )

and the number v of conics properly satisfying Oi(Ki}, i<5, and
( ) will be

°5851/2.0
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Y = 8(pl+2q1 ) (p2+2q2) (p3+q3) (2p4+q4)

But, by the last part of 14.3, n and v are the number of conics in
e c ,

T properly satisfying 05(UO’1/2) and 05(51/2’0), respectively, and

so (u,v} is the pair of global characteristic numbers of o Using 14.5

a straightforward computation shows that if

a = 8(p1+2q1)(2p3+q3) (2p4+q4)
and

a' = 8(p1+2q1)(p2+2q2)(2p3+q3)

then apz, aqz are the sums of the orders and classes, respectively, of the
degenerations of T, for which the ratio of order to class is pz/q2 and
a'ps, a'q3 are to analegous sums for p3/q3. In case pz/q2 = p3/q3,
then (a+a')p2, (a+a')q2 are the sums of orders and classes, respectively,

of all degenerations.

Now given c€U, and according to 14.3, the conics that properly
satisfy the five conditions Gi(Ki) are the conics in r.. that properly
satisfy 05(1{5), and so we may compute the number N of such conics using

Halphen's first formula 9.2. In principle we should consider five cases, accor—
ding to the position of pS/q5 with respect to the ratios pi/qi’ i <5,
However, by duality the number N must be unaffected by interchanging

the p's and q's, and so we only need consider the following two cases.

{a) pS/q5 > p3/q3.

In this case the ratio m/n  of order to class for any degeneration
of T, which equals p,/q, or PS/qS’ will be not greater than p5/q5,
so that min(mq5,np5) = mqc. By Halphen's first formula 9.2 the number

of proper solutions is given by

2q5u+ ZpSv - ap2q5 - a'quS = (2p5+q5) v o

Substituting v for the expression found above we get the claimed formula.
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(b) 1:»2/q2 < ps/q5 < pS/q3'

In this case for the degenerations of T such that the ratiec m/n
equals pz/q2 we get min(qu,nPS) = mqg, while for the degenerations
such that m/n = p3/q3 we get min(qu,nps) = npg. Thus the number of

solutions will be

2q5u + 2p5v = ap,qg - a'q3p5 .

Substituting u,v,a and a' by the expresions found before we come up again

with the claimed formula, up to reindexing. This completes the proof. O

14.7. Corollary (of the proof)

Given four conditions S g 1<i< 4, ordered in such a way that
pi/qi is non-decreasing with i, assume that the data used to define these
conditions has been taken generically and independently and let T be the

system of conics they determine (cf. 14.3). Then

(a) The global characteristic numbers (u,v) of T are given by the formulae
T 8(p1+2q1)(p2+q2)(2p3+q3)(2p4+q4)
v = 8(p1+2q1)(p2+2q2)(p3+q3)(2p4+q4)

(b} The ratio of order to class for any degeneration of T can only be
p2/q2 or p3/q3. If p2/q2 < ps/q:3 then the sum of the orders and the
sum of classes for the degenerations whose ratio of order to class is

P,/q, are, respectively, ap, and aqg,, where

a = 8(p1+2ql)(2p3+q3)(2pa+q4) ;
the analogous sums for the degenerations whose ratio of order to class
is p:,’/q3 are a'ps and a'qs, respectively, where

a' = 8(p1+2q1 )(p2+2q2 X 2p4+q4)

If pz/q:Z = p3/q3 then the sum of orders and the sum of classes for

all degenerations are (a+a') and (a+a')q,, where a and a' have
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the same expression as above. O

We end this section with an example.

14.8. Example (Halphen)

Consider five conditions as described in example (Kz) of 11.3 defined
with respect to five conics in general position. Halphen's second formula
gives 1296 as the number of proper solutions, whereas Chasles' formula gives
3264. This last number, however, does not have enumerative significance

because all degenerate conics of type B are (improper) solutions.

It may be appropriate to recall that 3264 is the number of conics that
are tangent to five conics in general position, which of course is also the
answer given by Halphen's second formula {actually Chasles' theory already
gives this answer (only L's and L's are involved)) and that one of the moti-
vations for Chasles' theory was to improve Steiner and De Jonquiéres' approach
which gave 6 - 7776  as the number of conics tangent to five given conics

in general position.

§15. Cycles on W and on B

In this section we define a number of cycles that are relevant for our
purposes, study their classes in the corresponding Chow ring, and establish
a number of relations among them. Most of the computations are straightforward

and are left to the reader. In a few cases we sketch a proof.

Given a point P in ]P2 we have denoted the cycle on W of conics

that go through P by LP' The class of this c¢ycle in Al(W) is denoted

by L. Given two points P,Q the cycle on W of conics that harmonically
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divide PQ also represents L and is denoted by LP Q°
Dually, given a line u, iu denotes the cycle on W  of conics
tangent to u, and L is the class of f‘u‘ This class is also represented

v

by conics whose tangents from the intersection point of u and

u,v’

v harmonically divide the pair u,v.

v

We know that A~ 2L-L, A~2L—i, and that in fact L, L 1is a free
Z-basis of Al(W). Given a divisor D on W, if K ~ al+al, we will

denote this cycle by (a,a) and write K ~ (a,a).

Since W is the blowing up of ]P5 along the Veronese surface V
{see §2), from ([B], Ch.0; cf. also [F}], 6.7 and Ex. 8.3.9) it follows that
the Chow ring AT (W) of W 1is isomorphic to the even cohomology ring
H2*(W)  and that L %ﬁ , 12

duality on cohomology tells us that Ai(W) and A5—i(W) are dual under

is a free Z-basis of A2(W). Poincaré

the intersection number product. We will denote by S,T,é the basis of AS(W)

that is the dual basis of L%, LI, iZ

A[*(W) that is the dual basis of L, i.

, L and by T and I the basis of

If K 1is a codimension 2 cycle and K ~ al? 4 b(%l-i) + 512, then we
will denote X by (a,b,a) and will also write K ~ (a,b,da). For codimen-
sion 3 cycles K, we will write K ~ (a,b,4)] 1if K ~ aS+bT+a$. A similar
notation will be used for codimension 4 cycles, so that K ~ (a,é)T means

that K ~ al+afl. In this way the intersection number of (a,b,&) and

(c,d,&)7 is  ac+bds+ag.

On B we define the cycle o of double lines with double focus that
pass through P and will set & 1o denote its class in Al(B). Dually,
E’u is the cycle on B of double lines with double focus lying on wu, and

£ its class in Al(B).

From the fact that B is a projective line bundle over the Veronese

surface V it fellows that the Chow ring of B is isomorphic to the even
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cohomology of B and also that the classes & and & form a free Z-basis

1 2

of A'(B), while & and 22 form the basis of AZ(W) that is dual of

g and & by next relations.

15.1. (1) 23 = i3 -0

(2) W23 i

]
=
=
Il
—
0O

15.2. Let j: B —— W Dbe the inclusion. Then

Proof (cf. also 15.3.(2))

Consider the commuting diagram

where 1i: V — P5 is the inclusion of V in PS and p = p|.. Then if

H is a hyperplane in P5,

\'

j*L = j*p*H = p*(2%) (% the class of a line in P2——~—+ V)

The rest of the section is a list of useful cycles and relations among

them.

Codimension 1 cycles

A ~ (-1,2) pairs of lines

A ~ (2,-1) double lines



S ~

2q,2
P.q (2q,2p)

59

(defined in 11.1)

~ qA + (2p+q)L ~ pA + (p+2q)L.

Codimension 2 cycles

e
1}

>t

ja’:B

15.3. (1)
(2}

(4)
(5)

B
I

> >
o<
v}

A.S
P:q

A.S
Psq

¢

!

= gB+ (4p+2q)13\Ul ~

(—1,4,0)
(0,4,-1)
(01_15]—)

(1,-1,0)

(-2,10,-2)

<

pairs of lines, one through P
pairs of points, one on u
pairs of lines with double point on

double lines thorugh P

(-2q,8q-4p,4p)

= pB + (2p+4q)?‘\P ~ (4q, 8p-4q, -2p) . o

Codimension 3 cycles

15.4. (1)

)T

o~ (1,14

L

2 T

L ~ (2,2,4)

Li?

13
Ju (2

ju (2

~ (42,207

~ (4,1,1)7

)

"

double lines with double focus,
the line through P

double lines with double focus,
the focus on line u
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15.5. (1) By = 3 (Lp.B) ~ (0,2,4)7, B, -+ (L_.B) ~ (42,000
(2) Ap.A =B, , Ap-A = Bp
(3) A.A-B_, A A=B_
(4) LP,Q B = BP + BQ
(5) Lu,v‘B =B, +B,. O
Fp ~ (O,l,l)T double lines with one of its foci at P
Iv-“u ~ (1,1,0)T pairs of lines, one of them equal to u
Dy ~ (1,0,0)T pairs of lines with double point at P
Eu ~ (O,O,I)T double line u’ with a pair of points

(These relations can be seen applying previous relations and Kleiman's theorem
in A or A. For instance, that DP ~ (a,O,O)T is obvious, and a is 1

because LQ.A = AQ’ which by Kleiman's theorem in A implies that DP.L2=1).

The first of next series of relations is justified below, the others are

either similar or easier.

hyp ™ (2,1,0)T pairs of lines, double point Ceu
’ harmonically dividing u and OP.
Eop ™~ (0,1,2)T double lines v going through P,
’ foci harmonicaily dividing P and u.v
EP uv (1,1,1)T clousure of the set of non-degenerate
T conics tangent to u at u.v and
such that the polar line of P is
v (here we assume Peu, v general)
Tp o,R ~ (l,l,l)T clousure of the set of non-degenerate
T conics for which the triangle P,Q,R
is self-polar.
{For the cycle ZP u.y! o see 19.8.(b}; here we are going to sketch the proof
1 ]
of the first of these relations. Set-theoretically it is clear that AuﬂLP Q=
1
T T
= U . . ~ ~
DQ Au,P Cn the other hand, Au LP,Q (3,1,0) and DQ (1,0,0),
which implies that Au p is either linearly equivalent to (1,1,1)T or to

(2,1,O)T. But A, 13,.L2 is at least 2, as a direct geometric argument shows.
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Therefore 1\Ll p ~ (2,1,0)T and the multiplicities of the two components

of Au N L are one each.)

P,Q

Codimension 4 cycles

15.6 (1) L4 ~ 1,07

(2) 13 ~ (2,07

(3) L2 ~ (4,07
(4) LL® ~ 7

3 14 ~ @0t .o

15.7 15 ~ j*(iz) ~ (2,0)T double lines with double focus at P
Ty~ ].*(RZ) ~ (O,Z)T u? with a variable double focus on u
I‘uQ’“j*(Ri) ~ (2,27 double lines through Q having double

’ focus on u

(The first of these relations comes from the fact that 5,2 is reduced, by

Kleiman's theorem on B, and that set-theoretically coincides with 'p- Then

ool = B0 = 370 = 282 - 2.)

15.8 1o o~ (l,O)T pairs of lines with double point

T at P  harmonically dividing u and
v (u,v lines through P)
Eu p,0 "~ (O,I)T double lines u2, with 2 points
Y on it harmonically dividing P and
Q.

(the first of these is a pencil and the second a range).

§16. Multiplicity cycles and Noether's formula

The main goal of this section is to establish a generalized version of

Noether's classical formula according to which the total intersection number
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§16. Multiplicity cycles and Noether's formula

The main goal of this section is to establish a generalized version of

Noether's classical formula according to which the total intersection number
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of two curves on a non-singular surface is the sum of the product of their
multiplicites at a given point and the total intersection number of their strict
transforms under the blowing up of the surface at that point. This formula
then allows to express the total intersection number of the two curves as
the sum of the products of the multiplicities of the curves extended to all

their intersection points, including the infinitely near ones.

For our generalization the main ingredient, which we describe next is
the notion of multiplicity cycle of a given cycle along a codimension two non-

singular subvariety.

16.1. Definition
Let W be a non-singular variety, B CW a non-singular codimension
two subvariety, and K an irreducible cycle on W such that K% B. Under

these hypothesis we define the multiplicity cycle K of K at B as

B

follows:

S
Kg = Z Wiy o
i=1

where Zl,...,Z5 are the irreducible excedentary components of the intersec-

tion scheme KN B, and where Wy s the multiplicity of the ideal of KnNB

in O’Z K The class [KB] in Al(B) will be called mulitiplicity class of X
i’

at B.

16.2. Remarks
Since B has codimension two and K¢ B, the components of KNB

are either 2-codimensional in B (proper components) or l-codimensional (exce-
dentary components). By definition, KB =0 if B and K intersect

properly.

On the other hand, the definition of multiplicity cycle can be extended
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by linearity to any pure dimensional cycle none of whose components is con-

tained in B.

16.3. Example
1f W is a smooth surface, B a point of W, and K a curve on

W, then

KB = uB(K)-B .

where wup(K) is the multiplicity of B on K.

The multiplicity cycle can alsc be described as follows. Let eiW — W

be the blowing-up of W along B, E = 6—1(13) the exceptional divisor,

g = € B E —B, and let i: E— W, j: B ™ W be the inclusion

maps. Then we have:

16.4. Theorem

If K 1is the strict transform of K wunder € then

KB = g*i*]{

Proof

Without loss of generality we may assume that K is irreducible. Then

K is the blowing-up of K along its subscheme KNB and the exceptional
divisor of this blowing-up is KNE (cf. [ Har), II, 7.15). Let n: K — K

be the restriction of € to K. Then because E is a divisor on W,

[KNE] = i*K, so that g,i*k = g, [EnK] = n [EnK .

As before, let Z ...,ZS be the excedentary components of KN B.

1!
Let Zij be the components of n_l(Zi). Since Zi is excedentary, all
Zij have the same dimension as Zi, and since n is proper it follows

(IF], 4.3.6) that if w; is the multiplicity of the ideal of KnB in
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0. and  u,. the multiplicity of the ideal of ENK in 05 ., then
ij’

uy =]Zdeg(zijlzi) .

But since the ideal of ENK in the domain (72 g 1is principal, M i is
N ~ ij’
in fact the coefficient of Zij in [ENK], sc that

FENnK] = Z pijzij
1,]
Then we have
g, i*K = n, [ENnK]
= 2> poon,lZ,]
i ij ij
= 2 u. deg(Z /212
i,3
- Z“i z1

Now we turn to Noether's generalized formula. With the same notations

as before, recall that (B], Ch. 0).

AT(H) —=— AT(W) o A"TN(B)
under the map x' — (e,x', g,(h.i*x')), where he AI(E) is the class
of the tautclogical line bundle G“E(l). The inverse iscmorphism is given
by (x,y) —— e*x + i,g*y. Furthermore, for any e€ A'(E), i*i,(e) = -h-e.

16.5. Proposition

e* (K] = [K] + i,8%* Ky

Proof

Since
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e,(ex[K] - [K) =0,
it follows that there exists a class k e Al 1(B such that
e*[K] - [K] = i,g*(k)

Then, in AT 1(B),

= g*(g*k ‘h) (projection formula)

because g, (i*e¢*K) = g, (g*j*K) = 0 .

16.6. Thecrem {Noether's formula)
With the same notations as before, let K, K' be two irreducible cycles,

not contained in B. Let r and r' be their codimensions and assume

r+r' = dim W. Let KB and K'B be the multiplicity cycles of K and
K*, respectively. Then if K and K’ intersect properly

Proof

Let k = K , k' = "K;)]. Then
o -'B

e f s
e

=

I+ i,g*k ) ([K'+ i,8%k))

~

ji + J.W[K]'i*g*ké + J‘W[K'] etk + J‘ﬁ feg*k ri,g%k]
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On the other hand, since e*i*g*ko = j"'fg*g*ko =0,
(.
0 = e*i*g"‘ko- [K']
LY
’.
= e*(i,,,g*ko- e¥[K'])
JW
/M
= | (i*g*ko's*[K'])
JW
~
= (i*g*ko'[K'] + i*g*ko'i*g*ké) ’
[ 4
so that
J;{T i*g*ko '[K'] = _j\‘;{ i:‘:g*ko. i)\_g*k.o )
Similarly,
JW i*g*ké'[ﬁ] = —j}q teg¥k tl,g¥ky .
Hence
J. K-K' =j~ [KJ]-[K") —J: i*g*ko'i*g*ké .
W W W
But
i*g*ko'i*g*ké = i*(g*ko-i*i*g*ké)
= —i*(g*ko-g*ké-h)
and consequently
j~ ~
- V. i.g%k i g*k' = g*(k_-k')-h
W * o ¥ S o o
ol

JB
ol
- koK
_;B
This completes the proof. O
16.7. Remark
If the pairs (K,K') and (K,K') intersect properly, then
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and

jw KeK' = #p KK+ #, o KK,

so that in this case Noether's formula is equivalent to the relation

#B K-K' = JB KB-KB + #E K.x' . O

§17. Improper intersection numbers

Given a degeneration free condition K we will say that a conic C
properly satisfies K iff K intersects properly the orbit of C. For codi-
mension one conditions this definition agrees with the definition given in
6.1. (The philosophy behind this definition is that if K has codimension
i, 1< i< 4, and if K improperly intersects the orbit of C, then X
behaves, as far as imposing "conditions" to C in enumerative problems
goes, as a condition of codimension < i, so C cannot be counted to satisfy

K qua condition of codimension i.)

If C improperly satisfies a condition K, then C is of type B,

because if K 1is degeneration free it intersects properly A-B and A-B.

Now given two conditions K and K' of codimension i and 1i' = 5-i,
respectively, Kleiman's theorem, applied successively to WO, A-B and
A-B  allows us to conclude that there exists a non-empty open set U  of
G such that for o€ U the conics that properly satisfy K and o(K')
are non-degenerate and finite in number, and if the conditions are reduced

each counts with multiplicity one in the intersection of K and <o (XK').

In this section we are interested in finding an explicit expression for this



67

and

jw KeK' = #p KK' + #, o KK,

so that in this case Noether's formula is equivalent to the relation

#B K-K' = JvB KB-KB + #E KX . 0O

817. lmproper intersection numbers

Given a degeneration free condition K we will say that a conic C
properly satisfies K iff K intersects properly the orbit of C. For codi-
mension one conditions this definition agrees with the definition given in
6.1. (The philosophy behind this definition is that if K has codimension
i, 1< i< 4, and if K improperly intersects the corbit of C, then X
behaves, as far as imposing "conditions" to C in enumerative problems
goes, as a condition of codimension < i, so C cannot be counted to satisfy

K qua condition of codimension i.)

If C improperly satisfies a condition K, then C is of type B,

because if K 1is degeneration free it intersects properly A-B and A-B.

Now given two conditions K and K' of codimension i and 1i' = 5-i,
respectively, Kleiman's theorem, applied successively to WO, A-B and
A-B  allows us to conclude that there exists a non-empty cpen set U of
G  such that for o€ U the conics that properly satisfy K and o(K')
are non-degenerate and finite in number, and if the conditions are reduced

each counts with multiplicity one in the intersecticn of K and o {(K').

In this section we are interested in finding an explicit expression for this



68

number. To do that we begin with a definition.

17.1. Definition
The improper intersection number imp(X,K') of K and K' is defined

to be #pKolK'), where o€G is generic. Then the difference

j K.K' - imp(K,K")
W

will be called the proper intersection number of K and K' and will be

denoted by p(K,K"). From this definition and Kleiman's thecrem one sees

immediately that p(K,K') = #w K.o(K'), for o€ G generic, and that if
o

K and K' are reduced p(K,K') 1is the number of distinct conics properly

satisfying K and o(K').

In order to compute imp(K,K') we need to relate it to the intersection
number of the multiplicity classes and some sort of intersection of their strict
transforms under the blowing up of W along B. To this end we will first

introduce a couple of auxiliary results.

Let W be a smooth variety and G an algebraic group acting on
W. Let A1 and A2 be two G-invariant irreducible non-singular closed hyper-

surfaces of W.

17.2. Definition
We will say that A1 and A2 have good crossing if the following condi-

tions hold:

{i) B = Alﬂ A2 is an orbit of G (hence smooth);

(ii) A1 and A2 meet transversally along B; and

{iii) For each z€ B, the group of linear automorphisms of NB/w(z) induced

by the isotropy group Gz of 'z contains (and hence is equal to)
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the subgroup of GL(NB/W(Z)) of those automorphisms that leave invariant

(z) and N
1

(z)

the 1-dimensional linear subspaces N

B/A B/A2

Now let e: W—— W be the blowing up of W along B, E the

exceptional divisor, g: E — B the restriction of £ to E. For i=1,2,

let Ai be the proper transform of Ai' With these notations we have:

17.3. Lemma

Ri and E have good crossing with respect to the natural extension to

W of the actien of G on W. Moreover, if Bi T o= AiﬂE, then

glg ¢+ B —— B is a G-isomorphism (i=1,2).
i

Proof

First we describe the action of G on W. Let o€G and set

p(c): W W
to denote the action of ¢ on W. Then
€ plo)ee W —— W

has the property that e;ljBOfv} is invertible, where ?B is the sheaf of
ideals of B in W. Hence there exists a unique morphism p{c): W— W

such that

(see [Har], Prop. 7.14, Ch. 11). The uniqueness implies immediately that

0: G—— Aut(W) is a morphism of groups. Now we will see that the map

~

W given by

f1 Gx W

plo,x) = plo)x)

is a morphism. Indeed, the map
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po(l xe): Gx W—— W,

where p: GxW —— W is the map (o,x}— o(x), lifts to a morphism
o't Gx W ————— W
again because of the universality of the blowing-up, and o' =@ as one

sees restricting both maps to {o} «x W for any cEG.

Now the action of G on the exceptional divisor E 1is given by prejec-

tivizing the action of G on N More explicitly, if z€B, 0¢€G,

B/W~
dzp(o): T, W TO(Z)W
induces a linear map
Gz(c): NB/w(z) NB/w(cz)
and the restriction of §(e¢) to E  : = g (z) maps E  to E (5 and

this map coincides with the projectivization of 62(0) if, as usual, one iden-

tifies Ez with P (N (z)) (see for instance [B-S}, §12).

B/W

We know that E is invariant under G. The invariance of Ai follows

~

immediately from the invariance of A~ Moreover, Ai is the blowing-up
of A, along BCAi and the exceptional locus of this blowing-up is E r\z{i

([ Har], 1I, 7.15). Since B 1is a smooth hypersurface on A, it follows that

Ai is smooth and that g: Bi ~——— B is an isomorphism. (This isomorphism

follows again from the local analysis explained below.)

It remains to be seen that Ri and E 1intersect transversally along

Bi’ and that condition (iii} in the definition of good crossing is satisfied

for Ai and E at any point z'€ B.. These assertions will be proved

working with local equations for E and Ai in a neighbourhood of z'.

Without loss of generality we may assume that i=1. So pick z' EBl
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and set z = g(z'). Then the isotropy group G,, of =z'eW coincides

with the isotropy group Gz of ze W, In fact the inclusion Gz' &G

z

is clear because g (or € ) 1is a G-morphism, and conversely, the elements

of GZ leave invariant EZ and B so that they must leave invariant

1’
n = '

EZ B1 {z'}.

Consider now the action of an element crEGZ = Gz' on (' : = O’W .
Let O: = Uw 2 and set m' and m to denote the maximal ideals of
0" and O respectively. Let u;€m be a local equation of Ai’ so that
u;,u, are local equations of B. Then u{" e g*ui € m' and, as is well
known from the local description of the blowing-up, u’i is a local equation
(at z') of E and there exists an element vlem' suth that
* * . *
(*) vy uf = ug
which is a local equation of Al and such that vy and u§ are part
of a system of parameters for W at z'. In particular Al is transversal

to E at z'.

Now by the assumption that Ai is invariant it follows, given o€ Gz’

that

2y,

* -
p (o) u; = tiu, (mod m

where ti;40. And from condition (iii) in the definition of good crossing it

follows that when g varies in Gz then tl,t

all non-zero values. This is so because dzul, dzu

2 take over independently

5 is a basis of Né*/w(z)

and with respect to this basis the matrix of p(o)* is

But now we will have

), t#0 (invariance of Al)
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5(0)*u‘i‘ = tiu’l.*, i=1,2,

which together with the relation (*) imply that the matrix of Jl(o)* with

. % o o )
respect to the basis d_,v,, d U3 of NBI/W(Z ) s
(tz/tl 0 )
0] t2
And it is clear, when s varies in Gz’ that tz/tl’ tz take over inde-

~

pendently all non-zero values, from which the good crossing of A1 and

E follows. O

17.4. Definition
Let W ©be a smooth variety and G an algebraic group acting on W,
We will say that the action of G on W is good if there exist G-invariant

smooth hypersurfaces Al""’Ak of W with the following properties:

(a) For all i#j, A, and Aj have good crossing or A, N Aj = @. We will
set Bij = AinAj’ so that Bij is a codimension two orbit of G, if
non-empty.

(b) The orbits of G are the sets W -U A, Ai -y Bij for i=1,...,k, and
i j

Bij for all i#j such that Bij # ¢, so that in particular any two of

these sets are disjoint.
Now we have the following corollary of lemma 17.3:

17.5. Corollary

Assume G has good action on W. Let B = UBij and e€: W—W

be the blowing-up of W along B. Then the natural action of G on

~

W 1is a good action.
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Proof

Let Ai be the strict trahsform of A, under e and if Bij £ 0 let
Eij = e—l(Bij), so that the union E of such Eij is the exceptional divi-
sor of €. Then the hypersurfaces Rl""’ﬁk’ and the Eij for Bij £ 0

are smooth, G-invariant and satisfy conditions (a) and (b). In fact (a) is
a direct consequence of 17.3 and (b) follows immediately from the fact that

E. -A.-A. is an orbit of G.
1] 1 )

Now let K and K be degeneration-free cycles of codimension r
and n-r, where n = dim(W), and assume again that G has a gocd action
on W. Let B be the union of codimension two orbits, e: W——+ W the

blowing-up of B and B the union of codimension two orbits on W. Then we

have the following:

17.6. Theorem
For a generic oceG, o(K) and K' intersect properly on W, o (K)

and K' intersect properly on W, and

#B o(K)-K' = JB kotkl o+ #E ofK)-K' ,

where ko and k(') are the multiplicity classes of K and KXK' at B,
respectively.
Proof

The first two statements follow from Kleinan's theorem applied to the or-
bits of G on W and W, respectively. The last follows readily from remark

16.7.
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§18. Generalization of Halphen's formula to conditions of higher order

The first thing to do, in order to generalize Halphen's formula to condi-
tions of higher order, is to define lecal characteristic numbers for such condi-

tions.

Since we need work not only on W but also on successive blowing-ups
of it along cecdimension two subvarieties, we will start with a smooth variety
W in which two smooth irreducible hypersurfaces Al’ A2 that intersect trans-

versally along a (codimension two) smooth subvariety B are given.

In such a setting, let X be an irreducible subvariety of W such
that K ¢ Al’AZ' We proceed to define lecal characteristic numbers for X

at B. Toe do this, let Z "Zs be the excedentary components of the

107

intersection BNK. Since B has codimension two in W, we will have

codKZi =1 for 1<1ic«s. Let (?i T o= gK,Zi’ the local ring of K at
Z:s so that C}‘i is a l-dimensional local domain. Let & be the ideal
of (?i corresponding to BnNnK and set uo= ey (qi), the multiplicity of

g; 1in O’i. Then the cycle

has been called multiplicity cycle of K at B (cf. §16).

Let 61 be the integral clousure of (.'71 in the field C€(K) of rational

functions of K. Then C?’i has finitely many maximal ideals mij’ l<jer,,
and the local rings Rij = (@)mi' are the discrete valuation rings of C(K)
that dominate (?1 We will write] Vij: C(K)* ———— Z to denote the valua-
tion function corresponding to Rij' For each i, Ilet XY, € O’i be such

that (x;} and (y;) are the ideals defined by A, and A, in O’i; in
other words, x, and y; are local equations (in K) for A1 NK and A2 NK
at the generic point of Zi. Since B is the {complete) intersection of

A1 and A2 we have that g; = (Xi’yi)'
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18.1. Definitions

Let p be the pairs of coprime positive integers such that

ij i

p../q.. = Vij(yi)/vij(xi)

ij" *ij

Then the pairs (pij,qL ), lgigs, lgig r will be called local cha-

1j
racteristic pairs of K at B, relative to A; and A,. The pair (pij’qij)

will be said to correspond to Vij' For a given characteristic pair (pij’qij)

there exists (clearly) a unique positive integer nij such that

Vgl = gy vy yy) = g gy
Let dij be the degree of the residue field of Rij over the residue field
of 01 . Then the cycle dijnijzi will be called Rij- multiplicity cycle (or
vij—multlphmty cycle) of K at B, and the cycle Kp,q:= Z dijnijzi’ where
the sum is extended to all pairs 1i,j such that pij = p, qij = gq, will be
called (p,q)-multiplicity cycle of X at B. Naturally, we set qu = 0 if

(p,q) does not appear as a characteristic pair of K at B.

18.2. Theorem

5

Ky = in(p,q)K
B mepqpq

where the sum is extended to all pairs (p,q) of coprime positive integers.

Proof

We will see that Zi appears with the same multiplicity on both sides.
On the left hand side this multiplicity is e&(qi), and by ([Z-S5], vol 11,
proof of Theorem 22 for d=1, p.294) we havelthat for any general C-linear

combination f of Xy and A

eO{(cgi) = length (G;/fC)

(ef. also LF], Example 4.3.5). This in turn is equal to Zdijvij(f)’
]
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as follows by [N], Theorems 6 and 8 (cf. also [F], Example A.3.1). Since

Vij(f) =y, min(pij,qij), we have that

eO?Z(@i) = ]Z dijnij min(pij,qij)

The theorem is now a direct consequence of this equality and the definition of

K . O
P:q

18.3. Remark

If K is a purely dimensional cycle of W such that none of its compo-

nents is contained in Ai’ for i=1,2, then, by linearity, we can extend
to K the definition of KB, of local characteristic pairs, and of the cycles
K . With this extension Theorem 18.2 is still valid.

P:q

The second step toward a generalization of Halphen's formula is to

understand the relationship between the local characteristic numbers of K

at B and those of the strict transform K of K on the blowing-up

e: W——W of W along B at the subvarieties Bi : = E ﬂAi, Ai

the strict transform of Ai'

18.4. Proposition

The set of local characteristic pairs (pl,ql) of K at B1 {relative

~

to A1 and E) 1is in one-to-one correspondence with the set of local charac-

teristic pairs (p,q) of K at B (relative to A, and A)) such that

q>p-

The relationship between (pl’ql) and the corresponding pair (p,q)

is given by p, = p, q; = 9-p and for all such (p,q) the relation

bt
1
-~

*p,g-p Psq
holds.
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There is a similar statement for 82: in this case a pair (p.q), P> q,
corresponds to (p-q,q) and e,K = K
P P **p-q,q © "p.q
Proof
Since e (K ﬂBl) S KNB and elg Bl—“’—-r B, an excedentary
- - 1
component Z of K ﬂBl is mapped by e to an excedentary component
.o . - I~ . % 7
Z of KnB. Let o: = Oé,K , O: = OZ,K’ so that e*: O & is
a local morphism. Since e*: C(K) —=— C(K), we will identify these two fields
and in this way we see that any wvaluation v  of C(K) centered at Z

is also a valuation of C(K) «centered at Z. The characteristic pair {p,q)
of v at Z 1is defined by the relations vi{x)= nqg, v(y) = np, (p,q} =1,
where x and y are the elements in ¢ corresponding to generators x,y
of the ideals of A1 and A2 in O}Z,W' Now the ideals of Al and E

in (72 W are generated by x/y and y respectively, and hence the charac-

teristic pair (Pl’ql) of v at Z 1is given by the relations v(y) n; pyo»

It

vx/y) = nqqs  (pyrqq) = 1. It turns out that n;=n, p=p; and q=p;+q, .

In particular g >p.

Conversely, if Z is an excedentary component of KnB and v is

a valuation of C(K) <centered at 0. = G, x  such that q >p, where

(p,q) 1is the characteristic pair of v at Z, then Z,v comes from some

Z,v [necessarily unique) the way explained in the first paragraph. In order
to see this, let U be an affine open set of K such that UNZ # @,
L{A) N U) = (X), I,(A,NU) = (§), where X,5€A : = C[U]. Then K con-
tains an affine open set U' such that U'N B, # ¢ and with clu]l = Alx/y ).
Let RV be the wvaluation ring of wv. Then since <« Rv’ AERV. The
hypothesis q >p implies that X/y e m_, the maximal ideal of R _. Thus

pio=m, N Al x/y]

is a prime ideal of <C[U'] such that (y,x/y) < p. This implies that if Z

is the closed set of K corresponding to » then Znu' €N B1 and so
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ZgBl. Since clearly e(Z) = Z, 2, v satisfies the claimed properties.

To end the proof it is enough to observe that the pair Z,v contributes

~

to K as dnZ, where d = [k(R ): k(O)], while Z,v contributes
P.q-p v
as dnZ, where d = [k(RV): k(@) ]. But since e: Z ——= 7, d =d and

so the first contribution is dnZ, which €, maps to dnZ. O

We are now ready to prove the generalization of Halphen's formula

announced bhefore. We use the notations explained after remark 18.3.

18.5. Theorem (Halphen's formula for higher codimensions)

Let K and K' be effective cycles of codimension i and i'sn-i,
n = dim(W), such that no component of either of them is contained in Al or
A2. Then there exists a non-empty open set U of G such that o (K) and
K' intersect properly on W for any o¢e&U and

#Bc(K)'K' = Zmin(pq',qp') J‘B Kp,q' K_E')r’ql ;

where the sum 1is extended over all local characteristic pairs (p,q) and

(p'.q'") of K and K', respectively, at B.

Proof

We may assume that K and KXK' are irreducible {(remark 18.3). Using
Kleiman's theorem one sees easily that there exists a non-empty open set
U of G such that o(K) and K' intersect properly on W, and that

o(K) and K' intersect properly on W, for any o € U. Then, by 16.7,
#po(K) K" = L Ky Kp + #po(K) K",

where KB and Ké are the multiplicity cycles of K and KXK' at B.
We may assume that for o €U the cycles o(K) and K' have no intersec-
tion points on E-B,-B,. For E' : = E-B;-B, is an orbit of G (17.5)

and o (K)N E', K'NE' have codimension i and n-i in E', so that
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they do not intersect if o is generic in G,

Therefore we may write

(*) #go (K)+K' =J;3 Ky Kp + #Blo(K)-K' + #BZU(K)'K'

We will prove the theorem using this relation and induction on the maximum

value m of the characteristic numbers of K at B.

1f m=0 then KnB does not have excedentary compopents and both
members of the claimed formula are zero. So suppose m>0. In the relation

{*) above, let m;, i=1,2, be the maximum of the characteristic numbers

of K at Bi‘ Then, by 18.4, m, <m and hence by induction we may

assume that

#g o(K)-K'
1

can be expressed by means of the formula io be established, for all 6 in some

non-empty open set, which we can assume is U {shrinking the former U

if necessary). So for o€ U we have

#BIG(K).K‘ = Z min(f)a',(iﬁ') \‘.Bl Kﬁ’a

where the sum is extended to all characteristic pairs (p,q) and (p',q') of

K and R', respectively, at Bl' But by 18.4 these characteristic pairs are

of the form (p,q-p), (p'sq'-p'), where (p,q), (p',q') are the characte-

ristic pairs of K and K', respectively, at B with q>p, q'>p'.
Therefore

by o = 2~ min(p(q'-p'),(q-p)p’ )j. & _
B
1

] &op p,q-p P'>q'-P'
ql>pl

( )| ok K K'Y
Zmlnpqqu p,a p' prBp,qp,q

q>p q>p
q'>p’ QP
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where the sums are extended to characteristic pairs (p.q), (p',q") of

K and K', vrespectively, with the restrictions made explicit below the sum-

mation signs.

Similarly,
#B o(K)-K' = Z min(pq',qp')J K S Z qq' j Kp q'K'. .
2 q<p B P»q P »9g q<p B ' P »q
q<p! qk P’

On the other hand

K, K 1 = i ( ] )' i ( ly ') K .Krl 3 s
jB B B I;] minitp,q/-mintp ,qg jB P,q p',q
pl’ql

by 18.2.

The claimed formula follows now easily by substituting the last three
equalities in (¥) and observing that min(p,q)min(p',q') 1is equal to pp'
if q>p and q'>p'; to qq' if q<p and q'<p'; and to

min{pq',qp') in all other cases.

18.6. Remark

It is easy to see that when i=l, i'=4 and W is the variety of

complete conics, then 18.5 gives Halphen's first formula. See also 20.2.

§19. Examples of higher order conditions

This section is devoted to the construction of certain cycles {(in codi-
mensions 2, 3 and 4) and to compute their Chow classes and multiplicity

cycles. The leading idea 1is to find, for each codimension, cycles with the

simplest (non-trivial) local characters.
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Construction of the codimension 2 cycles Hp a

Let P,Q Dbe two distinct points of Pz and let u be a line going

through P and not through Q. If p,q are coprime positive integers

then we may use P and u to define the condition Sp q (cf. 11.1; as

we explain there in it is not necessary to specify the additional two points

on u and two lines through P required to define § ). Let also denote

’

by LP,Q the condition of harmonically dividing PQ. Then the intersection
Lp g0s has codimension two and contains A (double lines through
Q@ Tp.q P

P} as a component.

19.1. Lemma

The multiplicity of Z\“P in the intersection LP,QﬂSp,q is equal to

Proof

From the description of Sp q given at the end of 11.1 we know that
b

it belongs to the pencil defined by the (linearly equivalent) divisors
qA + (2p+q)f_.u and PA + (2q+p)Lyp. Let us compute the multiplicity of

AP in the intersection of these divisors with L

P,Q°

We have that

LP,Q'(qA+ (2p+q)Lu) = q LP,Q'A + (2p+q)LP,Q.Lu

= q(APﬂZ\ ) + (2p+qlL

Q P,o tu

(see §15 for the computation of the intersection products used here). Since

~

Lu does not contain AP’ it fellows that AP has multiplicity q in

LP’Q-(qA+(2p+q)iu).

Similarly,

LP,Q'(pA + (p+2q)LP) = pLP,Q'A + (];)+2q)LP’Q-L1:>



82

v

and A P,Q'LP = AP + L.,L , where v is

has multiplicity p+2q in Ly o' (pA+(p+2q)LP).

P is not contained in A, while L

the line PQ. Thus AP

Consequently the multiplicity of ‘Exp in is g (the least of

L -5
P,Q "p.q
the two just computed intersection numbers). d

-

Thus - qh is an effective cycle that does not contain AP as

L -S
P’Q Psq P

a component. This cycle will be dencted by Hp q°
b

19.2. Remark

Hp q is the clousure of the set of non-degenerate conics that harmoni-

cally divide PQ and satisfy Sp q' Indeed, since S NA = BuAu,

’ b

S mA:BuAP, BEL and A

Psq P,Q’
only degenerate component of

u ¢ LP,Q’ we see that AP is the

L, -5 .0
P,Q "p.q

19.3. Lemma

nNB = B, U ToY Eu , so that B is the only excedentary component

Bp.q Q" Tuo Q

of N B.

H
Psq

Proof

First notice that set-theoretically we have

(H. +qAg)nA =S NL_ NA
p.g P p.q  P,Q
= (BUAu)ﬂ LP,Q
= Bpu BQ V(A N LP,Q)
Now let us compute the intersection multiplicity of HP q + q[v&P and A
at BP:
iBP((Hp,q+qAP)'A) = iBP(Sp,q'(LP’Q'A))
= 1BP((qA+ (2p+a)l, ) (Lp oA))
(because Sp q is in the pencil defined by qA+(2p+q)iu and pA+(p+2q)LP
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and the latter contains A)

P BQ
(because A'(LP;Q'A) = LP,Q'B = BP + BQ and LP,Q'Lu.A does not contain
BP).
This implies that H 2 B,. Indeed, otherwise H NnA would con-
P:q P P.q
tain BP’ which would force the multiplicity of BP in (Hp’q+qAP)ﬂA
to be greater than q (clearly APHA contains BP)' Therefore
H NnNA = B.,uUu(A nL
p.q QY Ay "lp Q)

and consequently

P.q P,q
- B.U(A NL N A
QY p,g A
= BQU ruQuru 0
19.4. Theorem
2 LL
(2) Hp,q ~ ql” + (4p+q)=~

(b) For any pair of positive coprime integers p',q' we have that

0 if (O',ql) ?é (p’q)
H ) ' v =
P-q P »q

B, (~2in ANB)) if (p'.q') = (pyq) -

Q

Proof

(a) It is an immediate consequence of the definition of H

p,q°
(b) Since BQ is the only excedentary component of Hp,qﬁ B, let us consi-
der the local rings & and O of BQ in W and Hp,q’ respectively.
Let fer be a generator of the ideal defined by LP,Q and let x,y €0

be the generators of the ideals defined by A and A, respectively, induced

by the functions X,Y defined wusing u and P as in §4. Then Spq

defines an ideal in O generated by Axp—yq, A a non-zero scalar, and
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therefore the ideal of Hp q in & is (f,xxp—yq). It follows that

o/(f,axP-yd). But @' = @/(f) is a regular local ring of dimension 2 and

o

T =0"/(xx'P-y'9), where x',y' € ¢ are the classes of x,ye @ In par-
ticular (@ is a domain and so there is only one irreducible component K

of containing B.. Thus (@ = (YB K and any local characteristic

H
p’q Q Q

pair of HP q will come from K. But now taking the completion of

o
we see that there exists a unique valuation v of C(X) <centered at @
and that such valuation satisfies vi(x) =g, v(y) = p, d=1 (where d
is the degree of the residue field of Rv over the residue field of (). This

completes the proof. O

The dual construction of H leads to the construction of cycles that

2

will be denoted The (dual) role of the point Q@ not on u is

B
9.,P
played by a line v not through P. With these notations we have:

19.4. Theorem

< ) LL
(a) Hp,q ~ pL® + (p+4q)-2—

{(b) For any pair of positive coprime integers (p',q')

0 si {(p',q') # (p,q)

p.q P4 B, (~ i in aAl(B)) if (p',q')=(p,q). O

Construction of the codimension 3 cycles Gp q

Fix three non-collinear points P,Q,Q"' and let wv,v',w be the lines

PQ, PQ’, and QQ', respectively.

19.5. Lemma
The cycle AP is a component of multiplicity one 1in the intersection
of the cycles L and L

P,Q P,Q""
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Proof

It is easy to check that

Since

0~ G o
S——
ow]
s
!
/‘\
N~ O
—
=
as}

{
T
QO
~—
=
ES
o]

!
T
O =N
~—

actually we have

LP,Q.LP,Q'.A = BP + D

Now AP is clearly a component of Let m»1 Dbe its

L nL ‘e
P,Q “P,Q
multiplicity. Then since IV\P-A = BP’ we see that the multiplicity of BP

in LP,Q'LP,Q"A is at least m. Thus m=1. O

Set G = LP,Q.LP,Q' - AP' Then G is an et:fective cycle that does
not contain ‘E‘P as a component. Clearly G ~ % . As a conseguence

of the previous lemma and its proof we have:

+ 4, . O

19.6. The intersection G.A 1is proper and G.A = D WP

P
19.7. Remark
The intersection G.A is also proper, as L .L ' only has the
P,Q""P,Q

~

component AP in A. Thus we may say that G 1is determined by its inter-
section with the open set of non-degenerate conics. We will express this by say-
ing that G 1is the clousure of the family of non-degenerate conics for which

P,Q and P,Q' are conjugate pairs.

Now since on non-degenerate conics these conditions are equivalent to
'

being conjugate the pairs of lines W,V and w,v', we have also the

expression
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G = * . - A v
W,V W,V W
Moreover,
G.I\ = lv) + A a
w wP

19.8. Lemma
(a) G.LP = DP + AW,P
{(b) G.Lu = DP + I Pouw
{c) D 4+

G'LQ,Q’: - TP,Q,Q'

Proof

(a) By the definition of G, remark 19.7, and 19.6 we see that (set-theore-

tically)

and hence

But now

and so (a) follows.

(b) 1t is clear that D
component, of Gﬁiu. Let P

in GHLP. 1t is easy to see that

p 1s a component, and in fact the only degenerate

be the clousure of the non-degenierate conics

z Now since

= £ -
P,u,w

V (2) (1) a
G.L_ ~{ 1] Dy~ 0}, and b ~ | 8 ,
u 1 P 0 P,U.,W ¥

with a« >0 (as it is easy to see)

and that G.Lu =D, + I

P P,u,w

(c) From G + AP = LP,Q'LP,Q'

, it turns out that actually o = B =y = 1,

it follows that
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Gly e + D+ D v = Ly aelp miely
Q,Q v v P’Q P,Q Q.Q
TP,Q,Q' + Dv + DV,+ DW ,
and this completes the proof. O
19.9. Lemma
The irreducible cycles DP and ]\w p are the degenerate components

of the intersection Sp q.G and the corresponding multiplicities are  2p+q

and g, respectively.
Proof

It is similar to the proof of 19.1 and we will omit it. In the computa-

tions {a) and (b} of lemma 19.8 are used. O

Thus the coedimension 3 cycle

G : = G.S - (2p+q)DP -

i
Psq P.q P, p

e

is effective and has no degenerate component. The cycle is defined

q.P

using the dual construction of Gp q
’

19.10. Theorem

(a) Gp q {2p+q, 2p+q, 2p+2q)T.

(b} For any pair (p',q') of positive coprime integers,

0 if {p',q") # (p,q)

(G ) ) v =
p.q'p'sq ) )
I (~2

Y in AYB) if (p'.q') = (p.q)-

(a) ép q” (2p+2q, p+2q, p+2q)T.

(b) For any pair {p',q') of positive coprime integers
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0 if (p',q') # (p,q)

é ) 1 | =
P:9 P .9 .2 1
I'p (~ 2% in AZ(B)) if (p',q") = (p,q).
Proof
Formula (a) can be obtained (recalling that G~ L—zli , SP q”~ 2qL+2pi ,
DP~L2, and Ew p ~ 2L2 + % ) by a straightforward computation.

(b) Recall that G and A intersect properly and that G.A = DP + Aw P

(see 19.6). Thus A properly intersects G.A and hence

v

_ A - T 7
G.B = (G.A)*A = P+rw+rw,P’

Now fw is a component of Gp q n B, and so an excedentary component. In

’

fact it is enough to show that f‘w is contained in Gp q’ and this follows
easily from the definition of G and G . The cycles T and r ,

P:q P w,P
however, are not contained in Gp q {(lemma 19.11 below) and therefore
P, 1s the only excedentary component of Gp Q" B.

Since f'w has multiplicity one in the intersection of G and B, the

local ring O’f g Is regular (of dimension 2). If we take equations X,Y
w!

of B at the generic point of f‘w as in §4, then the restrictions x, y

of X,Y to G generate the maximal ideal of &% Now at the generic

G’
point of | the cycle G is cut out on G by § and hence the
w P-q p:Q
- : i g P_.4
local ring of I~ on Gp,q is of the form O’FW’G/(AX y*). Henceforth

the proof can be completed as in the proof of 19.4.(b}. T

19.11. Lemma

The cycles r and T are not contained in G .
P w,P P»q
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Proof
Since T is a t of G .L ‘s
in v s component o p,q°F0,0
G L. T r,
p.q Q.Q" T Plw T

where r is an effective cycle not containing fw

going to see that and 1 ~ (2p+q, 2p+2q)T-

o =P

compute G.S in two ways: on the one hand

p,q'LQ,Q'

= .+D .S
W

G. (TP,Q,Q

T .5
P,Q,Q""p,qg T P

S L
p.a 7Q,Q P.q
i\

w

and on the other

G.5 .L .
p,q "Q.Q

as a component.

In

we may write

We are

order to do that we

(by 19.8(a))
{(by 15.3(b))

=G L. ~, + (2p+q)Dy-L ~, + Qi L. -,
pra lQ,o * 2Pralprlg o+ ahy pilg g

b, + 1 + (2p+q)rp;v’v. + qrv,P,Q + qI‘V.’P’Q. .

Comparing both expressions we get =p and that
G Lo A P r
p,q "Q,0Q P w "
’\_ " . ~ e
o 2,0,Q' %p,q = T BTy ATy g 9Ty e
- ~ 2p+q) ~( 2p+q A -
Since Gp,q'LQ,Q' (4p+2q , one computes that T 2p+2q) . S50 T.A = 2p.
Moreover, the relation Sp,q‘Fw,Q,Q' = (2q,2p)- ? = 2p, together with (*),
imply that the 2p intersections of T with A actually lie on T‘w 0,0
? b
In particular
¥k b _ v _
(%) rm*v,P,Q =@ and ””v',P,Q‘ =@
Assume now that .= G . Then r,nL . = {(VZ,PZ),(V'Z,PZ)}
P™ "p,q P 7Q,Q
would be contained in G N . rur But this is absurd, because
pyq  Q.Q

by (**) it cannot be contained in T, and clearly

it

is not contained in
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—e

A similar argument shows that T is not contained in G In

w,P P,q’
. 2 2. .2 .2 o .
this case FW,PH LQ,Q' = {{(v7,Q7),(v'=,Q' ")} and this is not contained

in l“w, nor in r. 0O

Construction of the codimension four cycles I‘p q
’

Here we explain a procedure for constructing a Il-dimensional system

of conics havint (p,q) as its only pair of local characteristic numbers,

P,q coprime positive integers.

Let PO, Pl’ P2 be a triangle in ]P2 and let T = Tp PP, Then
o’ 172
we know that the image of the restriction of p: W —— P5 to T is the
' 2 2 2 .
plane T spanned by Uge Uy U, where Ugs ¥y, u, are the sides of
the triangle Po’ Pl, P2 and that p: T - T is the blowing up of

, . 2 2 2
T at the three points Ugs Uy Uy

The plane T can be easily described if we take Po’ Pl’ P2 as
coordinate triangle: if this is the case the point conics in T' are those
having a diagonal matrix diagfa

).  Moreover aray,a are projective

0’1783 2

coordinates on T' with respect to the triangle ug, uy, u

Now given a pair (p,q) of coprime positive integers, let 1’{3 q be the

curve in T' defined by the equation

This curve has a single branch at ug of multiplicity q whose tangent
is distinct from the sides of the triangle; it does not go through u12; and
it has a single branch at ug of multiplicity p and class .q whose
tangent coincides with the side a_=0. On the side a2=0 has p additional

points, other that ug.
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Define T as the strict transform of 1"{) under p: T —— T,

¥ 14
Thus T is the l-dimensional system of conics which is the clousure of
the non-degenerate conics that have PO, Pl’ P2 as a self-polar triangle

and satisfy the equation above.

From the standard properties of the blowing up one sees (cf. also §10)

that T q has just cne point on B, namely the point on the exceptional

line over u’; corresponding to the tangent a, = 0, (u%,Pcz)). Since the

intersection numbers of T with A and A at this point are p and

L]

q, respectively, we see that the multiplicity cycle of I‘p q at B is
( 2 52

u2,Po), and that it has a single characteristic pair, (p,q).

Finally T ~ (P as

A = , as one sees
P,q  pig A = pq

A=

L .
P.q 'piq

immediately from the description of r}') q given before.

>

(wult. q)

(p additional
points )

(wult. p, class q)
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§ 20. Strict equivalence of conditions

20.1. Definition

1,K2 of the same dimension d

we shall say that K, s strictly equivalent to K, iff for any condition

Given degeneration free conditions K

K of dimension 5-d the relation p(Kl-K) = p(Kz-K) holds. O

In this section we will prove that twoe conditions are strictly equivalent
iff they have the same global and local characters and then we will use this
fact to construct free Z-basis of Hali(W), for i=2,3,4. Given a condition
K, its class [K] in A'(W) will be called global character of K. lden-
tifying Altw)  with 25V, where r(0) = r(5) = 1, r(1) = r(4) = 2,
and r(2) = r(3) = 3, by means of the bases described in §15, the global
character of a codimension 1 condition is a vector with r(i) integer cocordi-
nates. On the other hand, if K is a condition of codimension i we shall
say that the pair (p,q) of coprime positive integers appears with multipli-
city sea(B) if & is the class of Ky 0 AYH(B).  1f we identify
Aj(B) with Zr'(j), where r'(0) = r'(3) = 1, and r'(1) = r'(2) = 2,
using the bases described in §15, then the multiplicity of (p,q) in
K is a wvecter with r'(i-1} coordinates, 1< i< 4. With these conventions,

the symbol B| p,q] will be called the local character of K correspond-

ing to the pair {p,q). The strict class of K will be dencted by <K>.

Halphen's formula for higher codimensions (theorem 18.5) can now be

rephrased, for the case of conics, as follows:

20.2. Let K,K' Dbe degeneration free conditions of dimensions i and 5-i,
respectively. Let o ,a' be their global characters and Bi[Pi’qi]’ l<ixgs,
8 "j{pa,q]! ]+ 1< j<s', their local characters. Then

p(K.K') = a.a' - 12] (Bi,g]!) min(piqﬁ,qipj)
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20.3. In view of the additive behaviour of this formula one can extend to
non-effective c¢ycles that do not have degenerate components the notions of
proper intersection, strict equivalence, and of global and local characters. With

such an extension the formula is still correct. 0O

20.4. Theorem

Let K and K' be conditions of the same codimension, say i. Then
K and K' are strictly equivalent iff they have the same global and local
characters.

Before proving this result we will use it to construct bases for

Hall(w), i=2,3,4.

Since the strict equivalence is clearly compatible with addition, -the
strict equivalence classes of degeneration free cycles of codimension 1 form
an abelian group under addition. This group will be denoted by Hali(W),
so that Hall(W) is the group Hal(W) studied in 812. The strict class
of a condition K will be denoted by <K> Notice that Hal®(W) is infinite
cyclic generated by < W > and that HalS(W) is infinite cyclic generated

by <C>» where C is any point of W.

With the notations of 512, and fixing a point P, a line u, and
all other points and lines needed to define the cycles Hp q’ Gp qQ’ and
T we have the following:

P.9q

20.5. The estrict equivalence classes of the cycles

ae]

c

W]
<

where (p,q) runs through all pairs of coprime positive integers, form a free
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basis of Halz(W). Moreover, given a condition K if we let (a,b,d) € Z° be
its global character and Bp,q [(p,q] its local characters, Bp,qz (Bll),q’ss,q)e
622, then
1 2 1 2 1 2 LL
<K> = (a- £ g8 )<L®> (b - z(48 8. Jp - (B +48 Jq) < 5> +
®p,q ¥ 2,9 "%,q’P p,q"¥p, ¢’V 2
~ 2 ¥ 2 1 2 y
(a - L pB )<L®> Ig. <H > + LB <H_ >,
* P’p.q %9 "pa” T " pig T lpag

20.6. Let S, T and $ ©be the basis of A3(W) that is dual of the basis
2 LL ;2 2

L 5 L of A®(W). Then the strict classes of

S, T, é, G ] C s

P:q P.q
where (p,q) runs through all pairs of coprime positive integers, form a
free basis of Hals(W). Furthermore, given a codimension 3 condition K
if we let (a,b,é)ez3 denote its global character and Bp q[p,q] its local
characters, B8 = (81 , 2 } € 22, then
P:q P9 P:9q

1 2
<K> = -z - = <5 >
(a (2p+q)sp,q (2p+2q)8p’q)

1 2
(b - z(2 B - % 2q)8 y< T >
+ {(Zp+q) .q (p+2q) p.q
+ {a - Z(2p+2q)Bl - Z(p+2q)|32 )< §>
P:q P-q
el <G >4 z8? <& >,
P:q P,q pP,q P-q
20.7. Let T ,f be the basis of A[‘(W) that is dual of the basis L, 1 of

Al(W). Then the strict classes of

where (p,q) runs over all pairs of coprime positive integers, form a free
basis of Hall‘(W). Moreover, if K is a codimension 4 condition, and we let

(a,d) be its global character and Bp q[p,q] , BP q € Z, its local charac-
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ters, then

<K > = -z 8 <T > 2 - L B <> I >.
K (a {p+q) p,q) + (a p+q) p,q) + I Bp,q < D.q

Proofs

In the three cases the expression on the right hand side has the same
characters as K, as a straightforward computation shows. Therefore the
claimed equalities are valid by 20.4. So the system of conditions in each
of the three cases is a system of generators of the corresponding Hali(W).
Now, using 20.4, it is easy to check that these generators are linearly inde-

pendent over Z. 0O

Proof of 20.4.

That the conditions are sufficient is an inmediate consequence of

Halphen's generalized formula 20.2.

To see that the conditions are necessary, assume K and K are

. . . . —1 -1
strictly equivalent. Intersect first K and K' with the cycles L5 L L4 L,
..,15—1. Since these cycles do not have local characteristics, the intersec-

tion numbers are the same (they coincide with the proper intersection numbers)
and we deduce easily that K and K'  have the same global characters.

We want to see that they also have the same local characters,

Let (p],ql),...,(pz,qz) be any set of pairs of coprime positive inte-
gers that contains all pairs of lecal characteristic numbers of K and K'.
For 1g¢j< o, let 8 denote the multiplicity of (pj,q].) in K if i=1
or 4, and either the first or the second component of the multiplicity of
(pj,qj) in K if i=2 or 3. Define e]Y similarly for K'. We want to

see that B};Bi' Without loss of generality we may assume that pJ./qj

increases with j.

In order to do that, set, for lejg o, K. =5 if i=1; K. =
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= HP q or ﬁp q if i=2 and according to whether we are looking at

17 177 ¥
the first or second component of the multiplicity; K. =G or G
] Pj ’ qj PJ- 'qj

if i=3 and according to whether we are locking at the first or second compo-

nent of the multiplicity; and Kj = Fp q if i=4. In all cases, if we set
I
"j 1= p(K,Kj), then by 20.2 we get that
j %
T, = ( B )q. + ( B )p.
] 1?21 h Ph’% h:%ﬂ h Th’P;
From this expression it is immediate to deduce that
L
M T = (4P T ijj+1)‘hZ Bh 9p)
=j+1
and

]
So if we set, for 1< j<4&,

A, = q.p. 1 — D.Q. ., A = qg. 1. .-q. Ly A = DL ~D. W,
i T YPia T PiSin iT YN 8 T PR

and

= Al/A, , o= A A,

5 T °1 7 5T
then

pj = Bj+1qj+1 + e + qug‘
and

oy = ByPy + -+« + ijj

it turns out that for 1< j< -1

(*) f .- pl = B.q. d Y oM = B.P.
-1 T Py T B39 an Py T P17 B8Py

whereas

* % ' — "o_

(**) o1 = B, 1, and e] = B8Py
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Since the numbers p]f and 03' only depend on the sequence LSERERTR A

these expressions show that the multiplicites Bj only depend on the sequence

LUEERERI Y But since K and K' are strictly equivalent, p(K,Kj) =
= p(K',K].) and so the above expressions (*) and (**) show that B]. = B].'

for all j. This completes the proof of 20.4. 0O

In next section we need the fact that the K].'s used in the proof above

have some sort of universality that we explain presently.

20.8. Proposition

K. of

Given a class A= Al(W), there exist effective cycles Kl""’ i

codimension 5-i, depending only on £, such that the local characters of
any effective cycle K representing & can be computed from the set of
integers o= p(K,K].), 1< j< &. (The actual expressions are as (¥*) and

(**) in the preceding proof.)

Proof

By the proposition 20.10 below, the local characters of an effective
K  representing ¢ have an upper bound that only depends on ¢ . Then
if (Pl’ql)""’(pz’qg) is the set of all pairs of coprime positive integers
satisfying this bound, any effective cycle K  representing g only will
have characteristic pairs belonging to this set and so the cycles Kj cons-
tructed as in the proof of 20.4 only depend on & . From this the proof of

the proposition follows readily. 0O

The rest of the section is devoted to prove proposition 20.10. We will

first prove a lemma.

20.9. Lemma
Let K Dbe an effective degeneration free cycle on W, Z and exceden-

tary component of K NB, and (p,q) a local characteristic pair of K at
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Z. Let McA be a cycle such that dim(M)+dim(K) = 5 and the intersec-

tion KnM is proper {i.e., O-dimensional). Then for any CEMNZ we

have that
in(e, (M).K) > q,
where «: A —— W is the inclusion map.
Similarly, if M's A is such that the intersection K nM’ is proper

and dim(M') = 5-dim(M), then for any C' € M'nZ we have that

e (8, (M).K) > p

where a: A —— W  is the inclusion map.

Proof

Since the intersections MnN oa*K and a,(M)NK are proper on A

and W, respectively, by the projection formula we have that

e, (M.a*K) = o M.K

Now Z 1is a component of o*K whose multiplicity in o*K 1is = iZ(A.K),

and so from the equality above we see that

obo MK i (M.a*K)

@]

%

i (M.pK)

@]

%
=

and sc it is encugh to see that u »g. But by the definition of local charac-

teristic numbers there exists a discrete valuation v of O'K 7 such that
’
vix) = rq, r2>»1, where x is a generator of the ideal of A in O(K 7
On the other hand U is the order of x in O’K 7 because A is a
3

smooth hypersurface, and so p »rq, for instance by [F], A.3.1. So u 2>q.

The last statement is proved similarly. O
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20.10. Proposition.
Given an effective codimension i  degeneration free cycle K on W
there exists an upper bound of the local characteristic numbers of K that

depends only on the class [K] € At(w).,

Proof

For codimension 1 cycles it is a consequence of corollary 10.4, while
for codimension 4 cycles it is a consequence of remark 3.5. So we only need
consider the cases i=2 and i=3. In both cases there exists an effective cycle
M on A, of codimension 5-i, whose restriction to B has positive intersection
number with any effective cycle on B, In fact it clearly suffices to take

v

for M an effective cycle on A whose restriction to B is 2+% for i=3
and 22+E2 for i=2. If this is the case, if Z is an excedentary compo-
nent of K NB, and if (p,q) is a pair of local characteristic numbers

of K at Z, then for o€ G generic o¢(M) intersects Z properly and

by construction of M, o{(M)N Z is non-empty. Therefere, by lemma 20.9,

q € leda(M)).K) ,

and o,(o(M)}).K only depends on the global character [K] of K. The
proof that p is bounded likewise is done similarly, using A instead of

A. O

§21. Enumerative ring of W

Let  Hal'(W} be the direct sum of the groups Hal'(W)  defined in

last section. Then we have a non-degenerate pairing

5-i

Hal'(W) » Hal’“l(w)

induced by the proper intersection pairing. Now HalS(W) —— Z and so
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we can regard this pairing as a pairing

Hal'(W) x Hall(W) —————+ Hal’(W)

defined for 1i+j = 5.
The goal of this section is to define pairings

Hal'(W)x Hall(W) ———— Ha1'*I(w)

for all  i,j that extend the pairing above. It turns out that Hal'(W),
with the product that these pairings define, is a commutative graded ring
with unit (theorem 21.6). The enumerative significance of this product is the
contents of theorem 21.7. This ring will be called Halphen's ring f{(or strict in-
tersection ring , or enumerative ring) of W. This ring coincides with
that introduced by De Concini and Procesi in [DC-P] for the case of non-

degenerate conics acted upon by PGL(3).

To start with, suppose that K and K' are irreducible cycles of
codimensions i and j, respectively, such that their traces KO and K;)
on Wo := W - A - A intersect properly on WO. Then we will set K n X'

to denote the clousure in W of the intersection cycle KO.KC". We need a

few properties of this cycle that we explain in two lemmas.

21.1. Lemma

Let Kl’ K2, K3 be irreducible cycles of codimensions 1isinsig and
assume 11+12+i3 = 5. Then there exists non-empty open sets U and U’
of G such that

(K, & KJ, K,) = p(K,, K 0 Ky,)
PR M By By = PRy By M A3
for all o €U, c' € U'. Therefore the common value of these expressions is

independent of c€lU and a'ey’.
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Proof

Let U be a non-empty open set of 62 such that for (0,0

1 )EU1 the

1

intersection KlﬂK;ﬂKi’lﬂwo has finitely many points, each counted with

multiplicity one, and so that #Klﬁ K;ﬂ K%lﬂwo is independent of (0,01)6 U,
(use an argument similar to the argument explained in the proof of 14.1).

Let u: G2 ——G be the projection onto the first factor. Let V ¢ G be

a noh-empty ocpen set such that K, N Kgﬂwo is reduced and of codimension

1

ij+i,, and set U, : = U 0 u (V). Then U, is non-empty and we claim
that

* o _ g 9

(*) p(Kym Koy Ko) = K N K 0K W)

for all (0,01) € U2.

In order to prove the claim, take any © Gu(Uz), so that K1 ] K;

is defined and reduced. Then by 17.1 there exists a non-empty open set

V. © G (depending on o) such that for any o, €V,

Q

g g1
p(Kl N K K,) #(K, o K ﬁKsﬁWO)

27 73 1

i

Na N

%
nK-NW) ;
Qo

#K, n K 3

1

)]

the last equality by definition of K, m K;. Now Uzﬂu_ (¢) and {o} x V

are non-empty open sets in u—l(c) and so their intersection is non-empty.

a

Moreover, the claim (*) holds for any (¢,0,)€ U,N{o} x V_. But since in

1 2

(*) the left hand side is independent of s and so is the second for

(0,01) € U2, the claim follows.

Likewise there exists a non-empty open set U, <€ G2 such that for

2
any (o',0 ‘1) € U2
" o1 ¢ _ o] c' A
(*%) p(K, % K, @ KS) = #K L N Ky N K NW )
and so that the common value is independent of (0‘,01) € Ué. Now we observe

that
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o!

[o 01 _ 1 KU'
#(KlﬂKzﬂKS ﬂwo) = #(Kl n 9 ﬂKSﬂWO)
for any (c,ol) € U2, (o' ,o'l) S Ué. To see this it is enough to show there
exists (c,cl) € U2 and (0',0'1) € Ué for which it is true. But this is
accomplished taking any (0,01) € U2 such that (o_llcr, c_ll) € Ué, which

can clearly be done,

To end the proof of the lemma, it is encugh to take non-empty open
sets U, U' of G that are contained in U(U.’Z) and in u(U’z), respec-—

tively. 0O

21.2. Lemma
Let Kl’ K2 be irreducible cycles. Then there exists a non-empty open

set U of G such that the cycle K1 o) Kg is defined for any o €U and

so that its strict equivalence class does not depend on o € U. Moreover,
if 'V is the open set of G? of those (o',0") such that (0')*10" € U,
then Kcl’ n K; is defined for any (¢',¢")€V and
<K1'n KZ"”> - <K1mK§>,
where o = (o')—l ¢", so that < K(; n K; > is independent of (o',a")€E V.
Proof
Given a cycle K3 with cod(K1)+cod(K2)+cod(K3) =5 there exists,
by 21.1, a non-empty open set UK of G such that p(Kl al K;, KB) is
3 e
independent of o € UK . Taking for K3 conditions of the form L'L} we
3

see that there exists a non-empty open set U of G such that the global
characters of Ky @ Kg are independent of o¢. Now we use 20.4, 20.8 and
21.1 again, to conclude that there exists a non-empty open set U' of G
such that the global and local characters of Kl Q K; are independent of

g €U'. This proves the first assertion.
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For the second assertion notice that

o o} g, c'
Kl 2 K2 = (Kl nl Kz) ;
with g = (c')_lo o', so that indeed K(i A K; is defined and its strict

class is <« Kl M K%>, which by the [first part does not depend on ceU. O

21.3. Remark
For convenience of the proofs, lemmas 21.1 and 21.2 are stated for irre-

ducible cycles, by they can be easily extended to arbitrary cycles. O

In order to define a product in Hal'(W), we first define biadditive

maps
zZhw < Zhow) B HalM W)
by the formula

g
p(Klus) = <K1 Q K2> y

where o € G is chosen generically. That this is well defined is the contents

of the first assertion of lemma 21.2 {plus remark 21.3).

Notice that if i+j = 5 then p(Kl,KZ) coincides with the proper inter-

section number.

21.4. The map p 1is symmetrical, i.e., p(KZ’Kl) = p(Kl,Kz) .

Proof

It is an immediate consequence of lemma 21.2. O

Next step is to see that p factors through strict equivalence.
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21.5. Lemma

Assume K1 and Ki are strictly equivalent cycles. Then

p(K,,K,) = p(Kj,K,)

2

for any cycle Kz.

Proof

Let U=G be a ncn-empty open set such that, for ¢ €U,

a , _ \ a
p(Kl,Kz) = <K1 M K2>, p(Kl,Kz) = <K1 o) K2 > .

Then we want to see that Kl A K; and King are strictly equivalent
for oel. In order to see this pick any cycle K3 of codimension 13 1=
5—11—12, where il,iz are the codimensions of Kl, K2’ respectively. By
21.1 (and remark 21.3) there exists a non-empty open set U' of G such
o , oj o .

that Kl Al KZ’ Kl A K2, K2 n K3 are defined and

(K, @ X>, K = plK,, K @ K,)

PRy W R Ryl = PR By 3’

1 m a —_ ] c "

p(K1 K2’ KS) = p(Kl, K.2 A KS)'
for any o¢ € U'. Now by definition ©f the strict equivalence we have that

(K,, K, @ K,) (K!, Ko ®K,)

p 1’ 2 * 3 = p L] 2 3 )
so that, for any oeU’',

(K, @ K, K,) = p(KI @ KJ, K)

P 1 21 3 = P 1 * s 3
But since < Kl 0] KZ > and < K'l Al K; > are constant for o U, this

equality holds for o&€U and therefore K, m K; and Ki M K; are strictly

equivalent. O

From 21.6 and 21.5 it follows that the value P(KI’KZ) only depends
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on the strict equivalence class of Kl and K2” so that there exists a unique

biadditive map

Hal'(w) x Hal)(W) ——— Hal'"(W)
such that
(<Kp, <Ky) — plK ,K,)
The wvalue of this map on the pair of classes (o,B) will be denoted by
a8 and will say that it is the Halphen product of ¢ and B8 . When
i+j = 5 this product is the proper intersection number of corresponding repre-

sentatives of & and 8.

21.6. Theorem
Hal" (W), equipped with the Halphen product, is a commutative graded

ring with unit.

Proof
The class of W is clearly a unit element for the Halphen product.
The commutativity follows from 21.4. The only property that now needs to

be checked is the associativity.
The associativity will be proved by means of the following lemma:

Given irreducible cycles KI’KZ’K there exists a non-empty open

3
set U EG2 such that the intersection K1 n Kg N K; N Wo is proper

on Wo and the strict class

g’ g
a:(KlﬂKz ﬂKs ﬂWo>

is independent of (o',¢") provided (o',0') € U.

First let wus show that this statement implies associativity. In order

to prove this property it is enough to see that if KI’KZ’K3 are irreducible

cycles then

(<K > <Kp>) <K > = <K > (<Ky> . <Ky>)

3



106

To see this, let U be an open set of G2 as in the lemma and let

m GE——G  be the projection onto the first factor. Take V < 7w(U), V

open and non-empty, and such that Kl A K; is defined for ¢ €V  and

its strict class is independent of o €V, For each o €V let V; be a

non-empty open set of G such that o xV_ & U and in such a way that

(Kl @ K;) @ Kg is defined for any o' € V, and its strict class indepen-

dent of o' € VO.

By definition

g G'
" M
A K2) K, >

(<K1>.<K2>),<K> = <(K 3

3 1

]
G>=(l

1 3 ’

as it is easy to see by the associativity of the intersection product on Wo.

provided o€V and s'e V.. Since {o,0')eEU, < (K

a
. a K A K

On the other hand there exists a non-empty open set V of G, and

for each ¢ € V a non-empty open set ‘?0 of G such that for all o €V,

< K1>,(< K2>.<K3>) = <K

and with (o',0'c) € U. Then since

g,a" g g'ao
< ] : > = < o} n w >
K (K, m KS) K, n (K, K4 ) o
we see that
<K.>.< =
<Kl>.( K2 . K3>) = a,
and this proves the associativity.
It remains to prove the lemma. In order to do that, let K be any

4
cycle such that Zf cod(Ki) = 5. Let V 63 be a non-empty open set such

that #(K1 n K;l N K;Z N Kc;?’ n Wo) =4 (say) 1is finite and independent of
2

g = (U1’02’03) € V. Now we choose a non-empty open set U' in G such

that
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{a) Klﬂch n K§ ﬁWO is proper and reduced for (¢',0") € U', and
(b) U' is contained in the image of V under the projection of G3 onto

the first two factors.

With this, and arguing as in the proof of 21.1, one can easily see that

p(K 0Ky NKS NW_, K,) = ¢

2 3 4

for (¢',0")€U'. Finally the lemma follows from the fact that only finitely

o,r 0”
i i o} N ) .
L are needed to determine the strict class of K1 K2 K3 WO

This ends the proof of the theorem,

many cycles K

21.7. Theorem

Given reduced degeneration free conditions K., i=1l,...,r, with

i
r-1

zllﬂcod(}(i) = 5, there exists a non-empty open set UsG such that for

)y ver, o (K )

o = (02""’01’) e U the conics properly satisfying Kin  o,(K KL

2

are non-degenerate, finite in number, and such that this number is constant

and given by < K1> s K>

Proof

r-1

That there exists a non-empty open set U’ of G such that for

o= (02,...,or) € U' the conics properly satisfying Ky 02(}(2), cees Ur(Kr)
are non-degenerate, finite in number, and counting with multiplicity one in
the intersection of Kl’ oZ(K.z), cee, or(l{r) is an easy consequence of
Kleiman's theorem and the definition of conic properly satisfying a condition.
Therefore for ¢ € U' the set of «conics properly satisfying Kl’

a,(K . 0 (KD is equal to

ols

Kl N UZ(Kz)n e N Or(Kr) N WO

Let u be a non-empty open subset of U’ such that the number
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n of elements of this set is constant for o € U, Now we will show that

n = <K1> <o <K > Indeed, by definition of Halphen's product

<K1>,..<Kr> = [(K1 a g (K)o ] 0 g (Kr) s

where o, may be chosen in a non-empty open set V of G and in gene-

ral for each choice of Upseves Ty the o, may be chosen in a non-empty
open set VO a of G depending on Gpseeerdi - Since we may
27Tl
chose the open sets V and Vo o in such a way that the O-cycle
A T

[ (K, 02(K2))... |l Ur(Kr)

is reduced, and that this cycle is clearly equal to

K.Nno (K. )nNn...0g {(K)NW R
r r (e}

1 272
we only need to show that there exists o = (02,...,or) € Gr_1 such that
cel and o, €V o This can be done choosing o, in V, o
2’ TTi-1 i 2 TTi-1
and in the projection of Un{o,} x...x{o, .} xG in the i-th factor of

2 i-1

fo,h % oox o, 3x GT

§22. Computation of products in Hal" (W)

Granted that we know how to express the sirict class of any degenera-
tion free condition as a linear combination of the free Z-basis of Hal (W)
constructed in 8§ 12 and 20 (which henceforth will be called the basis
and its elements basis elements), the explicit solution to any enumerative
problem of conics depends on the ability to compute the Halphen product of
any two elements of that basis. Indeed, by theorem 21.7 the number of conics

properly satisfying given conditions K <Ko, with Zicod(Ki) = 5 (where

170"
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properly satisfying given conditions Kl""’Kr’ with le?cod(Ki) = 5 (where
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the data of these conditions is in general position) is <Kl>"'< Kr>’ and
we will know how to evaluate this product once we know how to calculate

the product of any two elements of the basis.

The computations will consist in determining the global and local charac-
ters of each product, inasmuch as this information is all we need to determine

a strict class.

We begin with two lemmas. We will let u denote a line, P a point

b

on u, and Spq the condition defined using u and P as in (11.1).

22.1. Lemma (generalization of 13.1)

Let K ©be a degeneration free cycle on W such that KE& Let

s .
Psq
Z be an excedentary component of KnNB and {(p',q") a pair of local
characteristic numbers of XK at Z. Then

(a) If p'/q' > p/q, all conics in Z pass through P.

(b} 1f p'/q' < p/q, all conics in Z are tangent to u.

(¢} Therefore p'/q' = p/q if not all conics in Z go through P nor

are all tangent to u.

Proof
Without loss of generality we may assume that K 1is irreducible. We

know that Sp q lies in the pencil of divisors generated by qA + (2p+q)iu

14

and pA + (p+2q)LP (see 11.1). Thus if Xg£5 , then all divisors in the
pencil other than Sp q cut out on K the same divisor. This implies that
if x, vy, f, g € O: = UK , are generators of the ideals of ANK, AN K,

iu n K, and Lp,NK in o, respectively, then xpgp+2q and yqf2p+q

generate the same ideal in (¥, so that in particular

p vix) + (p+2q) vig) = q vy} + (2p+q) v{f)

for any valuation of C(K) centered at . In particular this relation will
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hold true for the valuation v  that defines the pair (p',q'). Dividing

throughout by g v{(x) we get that
p/q + vigi(p+2q)/qvix) = p'/q' + v{(f}{(2p+q)/qvix).

Hence, if p'/q" < p/q then wv(f)>0, which means that Z<L , i.e.,
that all conics in Z are tangent to u. This proves {(b). Similarly, divi-

ding throughout by pv(f} we deduce (a). O

22.2. Lemma
Let K be a degeneration free cycle on W without local characteristic
numbers (i.e., KNB is proper). Then there exists a non-empty open set

U= G such that for o €U

o(K) N § = oK) m§
P:q P:q
and Kc = a(K) nm Sp q has (p,q) as its only local characteristic pair.
Moreover,
(Ko)p,q = j*(o (K)) ,
where j: B —— W is the inclusion.

Proof

To prove the first assertion it is enough tc see that there exists a non-

empty open set U< G such that o(K)nN Sp q does not have degenerate com-
y

ponents. And this 1is clear, because of the hypothesis on X, by Kleiman's

theorem.

Now we will see, possibly after shrinking U, that K, has, for

c €U, only (p,q) as a local characteristic pair. In fact o (K)N Sp qﬂ B =
1

=g (K)NB  and if Kc had a local characteristic pair (p',q') £ (p,q),

then a component of ¢(K)N B would be contained either in Lu or in Lp
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(lemma 22.1). But since for o generic this is impossible, because o(K)N B in
tersects properly VLu NB  and LP nB (for o€ G  generic), the claimed
shrinking of U 1is certainly possible,

It remains to compute (KO)p q From the definition of this cycle (18.1)}
it follows that KO.A is equal to qj*(Kc)p q plus components not contained

in B. But

K -A = (G(K)-Sp’q)-ﬁ = O(K).(Sp,q.

= o (K). (qB+(2p+q)Au)

A)

= glj,j*(a{K})) + (2p+q)(0(K).Au)

and so j*(KO )p q = joi*(@{K)). Since j, is injective, we conclude that

(Kc)p,q = j*(c(K)).

The strategy for the computation of products will be first to show that
Hal (W) ® Q@ is generated, as a Q-algebra, by elements of codimension one,
and then to show how to compute products of elements of the basis. The following

obvious relations will be used throughout:

22.3. <tbs <d> o s it <ids o «)s, <l <ids o <15,

With a few straightforward computations, from lemma 22.2 we get the

following products:

22.4. (1) < Sp,q>'<L> has characters (2q,4p,0) and 24[p,q].
(2) < Sp,q>'<i> has characters (0,4q,2p) and 2&[p,q].
(3) < Sp, >.<L%> has characters (4p+2q,4p+2q,8p+8q)T and 4%2[p,q] .
(4) < Sp,q>'<%> has characters (-4+p+2q,2p+2q,2p+4q)T and 2(E2+12)[p,q]

(5) < Sp q>.<L > has characters (8p+8q,2p+4q,2p+4q)T and Aiz[p,q].

(6) <5 q> <1 has characters (4p+2q:»,8p+l.q)T and 0.
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(7) <S5 ><1% has characters (£.p+8q,2p+4q)T and 0.

P.q

(8) <S , >.<L*L> has characters (8p+4q,8p+8q)T and 8[p,q].
(9) <Sp’q>.<Liz> has characters (8p+8q,4p+8q)T and 8[p.q].
{(10) <Sp,q>'<L4> = 4p+Zq

(11) <Sp,q>'<L3i> = 8p+iq

(12) <Sp,q>.<L2i2> = 8p+8q

{13) <Sp,q>.<Li3> = 4p+8q

(14) <sp’q>.<i4> - 2p+hq O

Te compute the products of <Sp q> with <S>, <T>, and <§> (nota-

tions of (20.6)) we only need check

¥ 3 v 2
<5> —<L7>-<%>
. 3 2+
<G > =<_L._>_<%>

and then compute the products using those equalities of 22.4 that are pertinent.

We get:

22.5. (1) < Sp e S$>  has characters (2q,0)T and -2[p,q].

(2) <5 >.< 8> has characters (0,2p)T and -2[p,q].
)T

{3) <58 >.<T> has characters (4p,4q and 10{p,qj. a

P.q

Again by straightforward computations (using formulae (20.5)-(20.7))
the expression of the above products in terms of the basis turns out to be

as follows.

22.6. (1) < Sp,q>'<L> = 2<Hp,q> - (4p+2q)<£’21l>

<L> = 2<H > - (2p+4q)<LTL >

(2) <58 >.
P.q P.q
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(3) <Sp,q'>‘<L2> A<Gp’q>+(4p+2q)<Li2—i3>

(4) <s >.<\I:?> - A<ép’q>+(2p+/+q)<L2f;L3>
Ll x <
(5) <Sp,q>'<7> = 2<Gp,q> + 2<Gp,q> - (4p+4q) (< 5>+ <T>+< 5 >)

(6) <SP > <L%L>= 8<1‘p Q> 4Lq<r>

b ’

(7) <Sp q>.<L\I’,2>= 8<rp,q> - Lp<I>
(8) <5

Y
A
w
v
I

-2<rp < (2p+4q)<r> + (2p+2q)<r»>

(9) <Sp’q>.<8> = —2<rp,q>+ (2p+2q)<r> + (2p+4q)<T>

(10) <SP q>.<T> ].0<I‘p’q>— (6p+10q)<r> - (10p+bql<F> O

’

In particular we observe that Hal (W) ® @ is generated, as Q-alge-
bra, by the basis elements of codimension 1. In fact we have found
expressions of the basis elements of codimension 2,3 and 4 as linear combina-
tions with rational coefficients of products of codimension 1 basis elements.

Thus our task is to find out the products of any two elements of the codi-

mension 1 basis, and of these only those of the form <Sp,q>'<sp',q' > are
left. The result of this product is the contents of next theorem.
22.7. Theorem

Assume p/q < p'/q'. Then the global characteristic numbers of
<Sp,q>'<sp',q‘> are {(2{(p+2q)q', 2{4p'g-pq'), 2p(2p'+q'}).  Moreover, the
only pairs of local characteristic number of the cycle K := S nSs ., .,

P:q P
are (p,q) and (p',q') and the corresponding multiplicity cycles are

'q

K = '+2¢')L , K., ., = (2 L if <p'/q'
p,q (4p'+2qg") b'.q (2p+4q) if p/q< p'/q

and

Ky o = (4p+2q)2 + (2p+4q)r  if p/q = p'/q’

Proof

The global characters of K : = S can be obtained by

5 8 Vo
p:q P ,q 5
first calculating the intersection numbers of K with L3, in, LL™, and
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‘f_‘3' We have that

3 3
K.LY = p(S sy S, ,.L (by 21.1)
PESp g7 %priqret Y
= 4(2p+q)(2p'+q') {formula 20.2) .

Likewise we get

K.LY - 8(p+q)(2p'+q’) ,

K.LL = 8(p+2q)(p'+q') , and

K.L3 - 4(pr2q)(pre2g) .
New from these equalities the global characters of K, namely K.S, K.T,
and K.S, can be obtained in a straightforward manner, which yields the

claimed numbers.

That only (p,q), (p',q') can be local characteristic pairs for K
is a consequence of lemma 22.2. Indeed, for any other characteristic pair
of K there would exist and excedentary component of K NB all of whose
conics would go through two general points, or would go through a general
point and be tangent to a general line, or would be tangent to two general
lines, and so in all cases such a component would have dimension 1, which

contradicts it being excedentary.

So next step is the computation of K and K To do this

P.9q p'.q"’
we first compute A.K and A.K with a method similar to that used at the

beginning of this proof. We get

A.K = (16pp'+8pq'+24p'q+l2qq’, 4pq'+8p'g+l2qq’, 8pq'+16qq_')T

A.K = (16pp’'+8pq’', 12pp'+4ipq'+8p'q, 12pp'+8pq‘+24p'q+16qq')T

At this point we use the fact, which is a direct consequence of the defi-

nition of the cycles KP q (see 18.1), that

13

(*) ALK = qj*Kp’q + q‘j*Kp,’q, + R

and
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+ R,

a0
=

* % i K LK, .
() PIsKy o * PR g

v

where R and R are effective cycles, each a sum of irreducible cycles

not contained in B.

Actually it turns out that R =pD and R = Ef)v, where Q is the

Q
intersection of the lines u and u' and v is the line joining P and
P', where P, P', u, u' are the points and lines used in the definition of Sp,qand
Sp',q‘ (recall that DQ is the cycle of pairs of lines with its docuble point
at Q and that lv)v are pairs of points on v}, and where o and ¢
are positive integers. In fact since Ansp,q = BUAu (Au the cycle of
double lines with its double point on u), the components appearing in
R must be components of Auﬁ ) g not c¢ontained 1in B. But
Auﬂ Sp',q' = BuU DQ’ so indeed R is of the form pDQ, p a positive

integer. The expression of R 1is seen with a similar argument.

Therefore we see that A.K - DDQ and A.K - $R are in the image
of j,.- Since DQ~(1,O,O)T, IVDV ~ (O,O,l)T, and the elements (a\,b,c)T

in the image of satisfy a+c = 2b, we infer that

Jx

AK - DDQ = (16p'q + 8qq', 4pq'+8p'q+lb6qq’, 8pq'+16qq')T
AK - b'lv)V = (16pp'+8pq', 12pp'+4pq'+8p'q, 8pp'+l6};>'c1)T

These expressions and the relations (*} and (**) allow us to solve for

K and K_, ,. If p/q < p'/q' we get, again in a straightforward
P,q P »q

manner, that

. T
K = "+2q' ,2,0
i p.q (4p'+2q' ) (4 )
and
i Ko, . o= (2p+aq)(0,2,07
TP sq
and hence
K - "+2q' )1
2. (4p'+2q")

K 1 = 2 &
5'hg (2p+4q)
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If p/q = p'/q', then only Kp q is present and it has to be calcula-

ted from the relation

A»K - DD = v.K 1
Q = Vlp,q
which gives that
K = (4p+2q)t + (2p+4qle . D
P.q p+4q p+4q
We may also express <85S ><S , ,> in terms of the basis, using
Ps9q P 59
20.5. We get
22.8. Corollary
If p/q< p'/q' then
<5 >.<5 , > = —6(p+2q)(2p'+q')<-]£> + (4p'+2q')<ﬁ > + (2p+4ql<H_, , >
Psq P g 2 P»q P »q

If we express lvip q and Hp' q' using 22.6, (1) and (2), we get the ex-

pression

v

_ ' v ,L_L ' 1
<Sp,q>'<sp',q'> = -2(p+2q)(2p'+q' )< 7 >+ (2p'+q )<Sp,q>'<L>+

{p+2g) <S_, ,»><L >,
+ (p+2q) p'.q

¥

which can be written as

(<Sp,q>~(p+2q)<L>)(<5p,’q,>— (2p'+q')<L>) = 0 .

22.9. Remark
As an easy consequence of the product rules explained in this section,
the calculation of local characteristic numbers of a given condition K can
. . . 4~1 3-ix ¥ 4-1
be reduced, intersecting K  with cycles from among L%, LY L,..., L

{where i is the codimension of K, that we will assume < 3), to the compu—

tation of the local characteristic numbers of a l-dimensional system of conics,
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as Halphen already did for the codimension 1 case ([H.3], §13).

If X has codimension 1 and its local characters are 81[ Py ,ql] e,
B [ps,qs] , then the local characters of LPLQLuK (where P, Q, u are
chosen generically) are exactly 8Bl[pl,ql],...,885[p5,q5] .

1f K has codimension 2 and local characters (Bi,Bf)[pl,ql],...,

1 2 oy 1 1
(BS,SS)[pS,qS] then L L K has local characters ABl[pl,qll ,...,Lss[ps,qs]
2 2
and LPLQK has local characters ABl[pl,ql} ,...,Aﬁs[ps,qs].
Finally, if K has codimension 3 and 1its local characters are
1 .2 1 .2 v
(81,81)[p1,q1], cens (BS,BS)[pS,qS] then L,-K has local characters

ZBi[pl,ql] ,...,2Bi[ps,qsl, while Lp.K has local characters 28§[p1,q1],...

2
. ZBs[ps,qSJ-

22.10. Remark
Using the table of products explained in this section, one can obtain
again Halphen's second formula: 14.6 by a rather long computation but not

very difficult.

§23. Further examples

Here we give an example of one-dimensional system and an example of
third order condition. In both cases we compute their global and local cha-

racters. First of all we state a lemma which will be useful in the sequel.

23.1. Lemma

Let fi(x) € Cl[xl/p]] be formal power series of orders L i=1,..,s,
[ R
so that fi_ = Aix '+ ... . Consider the system of homogenous linear equations
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1 7id

in the unknowns al,...,as. If all the orders li are different, then the

system has rank s-1 and its solution is given by

%
- i
a; = AMApLALLA) ﬂ (mj,-mj)x o,
3,34
where AEC((xl/p))-
Proof
It is a well known result for p=1 (see for instance [E-H], §1), and

the general case follows from this case after a change of variables. O

23.2. Example (Halphen-Zeuthen, [H.1])
Let & be an irreducible plane algebraic curve of degree 2 3. As

it is well known there exists a non-constant rational transformation

f: 4 — W

by taking, for a generic z€a4, CZ to be the (unique) conic such that
iz(A .Cz) 25. We define T as the image of A under f . This system
will be called the system of forth order contact conics to 4. Next we will

compute its local and global characters., For this we need a lemma.

Lemma

The map f is a birrational transformation of A to T,
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Proof

We need only check that f is generically injective and this will be
done by showing that z is the unique base point of the pencil of point
conics obtained by taking the tangent line to the curve p{T) at the point
p(CZ) in IPS. To show this let =z(t) = (x(t),y(t)) be an affine parametric

expression of a branch § of & with z{0) = z.

The conditions for a conic

2 2
ap X+ 2a12xy +oanyT o+ 2alox + 2a20y +a,, = 0
to have a four order contact at the point =z(t) are
Fla..,t) i= a,,x2(t)+2a x(t)y(t)+a y2(t)+2a x(t)+2a, y(t)+a = 0
ij’ ) 11 12 22 lo 20 00

and

h

B—F(a ,t) = 0, l1<hg 4

a1

These equations allow us to determine power series

aij = aij(t)

which give a parametric representation of the branch vy of T that corres-

ponds to & under f. Notice that the line in ]P5 spanned by the points

(aij(O)) and (dai}./dt(O)) is the tangent line to p(l') at p(CZ).

On the other hand taking derivative with respect to t of the identity

F(aij(t),t) =0

and using the fact that F is linear in the aij we conclude that

da..

F(—dTll,t)zo

Proceeding similarly with the identities
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for 1i=1,2,3 we obtain the relations

3 F i

e ( ’ t ) = O

ot dt
These relations, when evaluated at t=0, imply that the conic whose coeffi-
cients are daij/dt () has a third order contact with & which in turn

imply that it has a third order contact with c,- O

The previous lemma tells us that there is a bijection between branches

of A and T under f. So to study the degenerations of I itis enough
to take branches & of A and study the local characters of f(&). Let
1+p

y = A X 4+ e , g >0, A #£ 0,

be the Puiseux expansion of § in suitable affine coordinates. We will distin-

guish three cases.

p#l
In this case lemma 23.1, applied to the system of equations obtained

taking the relation

2 2
apx’ + 2a12xy(x) + 8y5Y (x) + 2a, % + 2a20y(x) tag = 0

and its first four derivatives with respect to x, vyield expressions for the
ai]. s as broken power series in  x, expressions that themselves allow us
to compute the order with respect to x of suitable functions X,Y as defined
in §4. The result is that ordx(X) = 2 and ordx(Y) = 2p. Now if p
is the order of & and q its class, so that o = g/p, then f(§) has

order 2q and class Z2p.

p=1 and in the Puiseux series of & there is no fractionary exponent less than

4.
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There exist complex numbers B,C such that

R:y—Ax2—Bxy—Cy2

has order in x >4, Now setting the general equation of a conic in the form

ta) +2a, A) x? 4 (2a;,+2a, Blxy + {a,,+2a, C)y2 + 2a, X + 2a

o 0 lo oR+ao =0

o]

2

and following a similar procedure as in the previous case one obtains that
the center of  f(5s) is the conic R=0, which 1is non-degenerate, so that

in this case there are no degenerations.

p=l and there exists a fractionary exponent 2+§ in the Puiseux expan-

sion of § such that O<—;—< 2, where p is the order of s,

There exists a complex number B such that

R:y—-AxZ—Bxy

has order in x equal to 2+%. Taking now the equation of the conic as
in the previous case, lemma 23.1 allows us to determine a degeneration whose

order and class are both equal to 2p-e.

Once the local characters of T are known, the formulae obtained in
(5.6) can be used to obtain the global characters of TI. Summarizing we

have:
The system of conics that have a forth order contact with an irreducible
plane curve has only the following degenerations:

(a) a degeneration with order 2q and class 2p for each branch of

4 whose order is p and whose class in q, with p#q;

(b) a degeneration with order and class both equal to  2p-e for each

branch of A with order and class equal teo p and such that the
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first characteristic exponent in the Puiseux expansion of the branch

is of the form 2 + with O<§< 2.

e
b
On the other hand the global characteristic numbers (u,v) of T are given

by the expressions

Bo= (P+2Q) + 2P' - E, v = Z(2P+Q) + 2P' - E,

[VIFN]
Wl ho

where P and Q are the sums of the integers p and q, respectively,
of the branches in (a}, and P*' and E the sum of the integers p and

e of the branches in (b). O

23.3. Example
As in the previous example, let 4 be an irreducible plane algebraic
curve of degree > 3. Consider the algebraic correspondence T in AxW

given by (z,C)ET <« 1 (C,a)s 4. Let K denote the strict transform of

Z(
& under the correspondence T. As it is easy to see, K 1is an (irreduci-
ble) condition of order 3. Moreover, for ze&4 generic, the transform T(z)

is a four-point contact pencil that contains the tangent to A at z <counted

twice with 2z as a double focus. So KnB is excedentary.

In order to compute the local characteristic numbers of K we apply

the method explained in Remark 22.10. Thus we intersect K with LP and

v
Lu’ where P and wu are a generic point and a generic line, respectively.

Let us consider the case K'LP' If we set I = K.LP, then an argument
similar te that used in the lemma in example 22.3 shows that T is birratio-
nally equivalent to A. Notice that to a generic =z €A there corresponds

the unique conic through P  that has a third order contact with 4 at

z. So the branches of T are in one-to-one correspondence with the branches

of A and, as in the previous example, we will study the degenerations
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¥ of r in terms of the corresponding branches § of 4. We shall
distinguish two cases according to whether the tangent to § goes through

P (case (a)) or does not go through P (case (b)).

Case (a)

Since P is generic the order and class of 8 are both 1, and so
we may choose affine coordinates in which ¢ has a Puiseux expansion of
the form

y = A2+ ..., A £0,

and P  has projective coordinates (0,1,0) (point at infinity of the x-axis}.

The conics we are considering have therefore the form

2
2a12xy + 8,y + 2alox + 2a20y +ag, = 0

and proceeding as in the previous example one finds a degeneration of T
whose order and class are both equal to 2. Clearly the number of degenera-

tions is the class of A.

Case (b)
In the case choose affine coordinates in such a way that 6 has a

Puiseux expansion of the form

vy = AxI*Ph ..., o5>0, AZO,

and that P is the point at infinity of the v-axis. In this way the conics

through P have the form

2
ap x4+ 2a12xy + 2alox + Qazoy tag = 0

Now c¢ne distinguishes three cases, just as in the previous example,

except that in the second and third cases instead of "fractionary exponent
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less than 4" now we must use "fractionary exponent less than 3". In any
of these cases the computations of the local characters are parallel to the

corresponding cases in the previous example. Summarizing we have:

The system T has only the following degenerations:

(1) m degenerations of order and class both equal to 2, where m is the
class of a.

(2} a degeneration of order 0 and class 2p+q for each branch of ) §
order p and class q, with p#q.

(3) a degeneration of order 0 and class 3p-3e for each branch of & whose

order and class are both equal to p and whose first characteristic

exponent is 2 + £ with c<&<1,
P p
Then the global characteristic numbers {n,v) of T are given by the
expressions
u=2m+2E;+Q+1F>'-E : \):2m+A—P—§29-+2P'—2E ,

where P and Q are the sums of the integers p and ¢ appearing in
(2) and P' and E are the sums of the integers p and e appearing

in (3).

The characters of the intersection K. are determined by duality

=<
c

and are as follows:

(1) n degenerations of order and class both equal to 2, where n is the
order of 4.

(2} a degeneration of order p+2q and class 0O for each branch of A
of order p and class q with p#q.

{3) a degeneration of order 3p-3¢ and class O for each branch of A of
order and class both equal to p and whose first characteristic exponent

is 2+ with 0<§<1.

= m
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v

Then the global characteristic numbers (p',v') of K.L are given by the
expressions
2
v'=2n+—P—§“—Q+P'—E, u':2n+M+ZP'—2E.

Applying remark 22.10 to K we can now easily determine the local
characters of K, which turn out to be a single characteristic pair {i,1) with

multiplicity (m,n).

On the other hand the global characteristic numbers of K are
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