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a b s t r a c t

In this paper we obtain some fundamental numbers of the family
Unod of non-degenerate nodal cubics in P3 involving, in addition to
the characteristic conditions, other fundamental conditions, as for
example that the node lies on a plane. Some of these numberswere
first obtained by Schubert in his Kalkül der abzählenden Geometrie.
In our approach we construct several compactifications of Unod,
which can be obtained as a sequence of blow-ups of a suitable
projective bundle Knod. We also provide geometric interpretations
of the degenerations that appear as exceptional divisors. The
computations have been carried out with theWit system.
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0. Introduction

One of the goals of enumerative geometry is to find the number of curves of a given irreducible n-
dimensional family in P3 that satisfy n geometric conditions. This includes the numbers involving the
characteristic conditions, which require that the curve goes through a given point, intersects a given
line or is tangent to a given plane.
The 8-dimensional family of nodal cubics in P2 is one of the varieties which has received more

attention from an enumerative geometric point of view. Its characteristic numbers (and many other
intersection numbers) were calculated first by Maillard (1871) and Zeuthen (1872) and later by
Schubert,whodevoted to themapart (pp. 144–163) of hismasterpiece (Schubert, 1879). Nevertheless,
Hilbert’s Fifteenth Problem (Hilbert, 1902) is asking for a justification and a verification of all
geometric numbers computed by the 19th century geometers. In this sense, some of these intersection
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numbers were verified, using different approaches, by Sacchiero (1984), Kleiman and Speiser (1988),
Aluffi (1991), Miret and Xambó (1991) and Ernström and Kennedy (1998).
Concerning the 11-dimensional familyUnod of nodal cubics inP3, the number of those that intersect

11 lines was computed in Kleiman et al. (1987), and in Hernández et al. (2007) all the characteristic
numbers given by Schubert (1879) were verified. Besides, Pandharipande (1999) gave an algorithm
to compute the characteristic numbers of rational curves in Pr introducing techniques of quantum
cohomology.
This paper continues the determination of the fundamental numbers of the variety of nodal cubics

in P3 begun in Hernández et al. (2007). More precisely, we study and compute those fundamental
numbers involving the characteristic conditions and the condition that the node lies on a plane. These
conditions are denoted as follows:

- µ, the plane determined by the nodal cubic goes through a point;
- ν, the nodal cubic intersects a line;
- ρ, the nodal cubic is tangent to a given plane;
- b, the node lies on a plane.

We also consider the codimension 2 condition P that the nodal cubic goes through a point.
Thus, while in Hernández et al. (2007) we focused on the numbers of the form µiν jρ11−i−j, in this

paper we aim at the geometrical and computational problems involved in the determination of all
the numbers of the form µibjνkρ11−i−j−k. We complete Schubert’s work not only because our tables
include all the numbers (Schubert computed a little less than half the numbers), but also because of a
deeper geometric and enumerative understanding of the two degenerations (ε and ϑ) involved.
We remark that the numbers we compute have ‘enumerative significance’ if the characteristic

of the ground field is 0. This is because the compactifications are chosen to make sure that the
intersection of the conditions for a given fundamental number has no points on the boundary (the
union of the degenerations), so that the degree of that intersection agrees with the definition of the
fundamental number in question. Here we invoke Kleiman’s transversality theorem (see Kleiman
(1974)) that guarantees that in characteristic 0 the intersection multiplicities are 1. The detailed
argument can be found in Miret and Xambó (1991), where it is also recalled that in characteristic
p > 0 the intersection multiplicities (for a given number) are equal (say q) and that q is a power of
p. In particular it follows that an intersection number has ‘enumerative significance’ (q = 1) if p does
not divide the intersection number.
Thematerial is organized as follows. In Section 1we construct a compactificationKnod of the variety

Unod of non-degenerate nodal cubics ofP3 via the projectivization of a suitable vector bundle. From this
we get that the Picard group Pic(Knod) is a rank 4 free group generated by the classes of the closures in
Knod of the hypersurfaces of Unod determined by the conditions µ, ν, b and p (that the nodal tangents
intersect a line). Thenwe show that the boundary Knod−Unod consists of three irreducible components
of codimension 1.
In Section 2we introduce some other conditions related to the distinguished elements of the nodal

cubics, andwe construct new compactifications of the varietyUnod taking successive blow-ups of Knod.
Finally, Section 3 is devoted to the study of the tangency condition ρ. We compute the intersection
numbers of the form µibjνkρ11−i−j−k, some of which were already found by Schubert (1879).
One aspect of this paper is the structure and functionality of the symbolic computations. They have

been carried outwith the online systemWit (see Xambó-Descamps (2008)) using the scripts collected
in Section 4.

1. The variety Knod of nodal cubics

Throughout this paper, P3 will denote the projective space associated to a 4-dimensional vector
space over an algebraically closed ground field k of characteristic 0, and the term varietywill mean a
quasi-projective k-variety. Moreover, we will also write z to indicate the degree of a 0-cycle z, if the
underlying variety can be understood from the context.
Let U denote the rank 3 tautological bundle over the grassmannian variety Γ of planes of P3.

Therefore, the projective bundle P(U) is the nonsingular incidence variety defined by
P(U) = {(π, x) ∈ Γ × P3 | x ∈ π}.
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Let L be the tautological line subbundle of the rank 3 bundle U|P(U) over P(U) and let Q be the
tautological quotient bundle. Then the projective bundle F = P(S2Q∗) parameterizes triples (π, x, u)
such that u is a pair of lines (possibly coincident) contained in the plane π and both passing through
the point x.
We will denote by ξ the hyperplane class of the projective bundle F. The pullback to F of the

hyperplane class c1(OP(U)(1)) under the natural projection F → P(U) will be denoted by b and the
pullback to F of the hyperplane class c1 (OΓ (1)) under the natural projection F→ Γ will be denoted
by µ, so that µ is the class of the hypersurface of F consisting of the triples (π, x, u) such that the
plane π goes through a given point and b coincides with the class of the hypersurface of F consisting
of the triples (π, x, u) such that the point x is on a given plane. Moreover, wewill denote by p the class
of the hypersurface of F consisting of the triples (π, x, u) such that u intersects a given line.
Lemma 1.1. Let E be a vector bundle over a nonsingular variety X and let H be a subbundle of E such that
the quotient E/H is a line bundle. Then P(H) is a divisor of P(E) and

[P(H)] = ξ + π∗c1(E/H)
in Pic (P(E)), where ξ is the hyperplane class of P(E) and π : P(E)→ X is the natural projection.
Proof. See Fulton (1984), ex. 3.2.17, or Ilori et al. (1974). �

In the next Lemma we determine the relation between the classes ξ and p.
Lemma 1.2. In Pic(F) the following relation holds:

ξ = p− 2µ.
Proof. Let r be a line in P3 and let

Hr = {(π, x, u) ∈ F : u ∩ r 6= ∅},
so that p = [Hr ] ∈ Pic(F). Over the open set Ur = {(π, x) ∈ P(U) : x /∈ r} ⊆ P(U) there exists a
monomorphism of vector bundles

ι : L|Ur → Q∗|Ur
with the property that ι(v) vanishes at x and at r ∩ π , for any (π, x) ∈ Ur and v ∈ L(π,x). Therefore, if
ι : L|Ur ⊗ Q∗|Ur → S2Q∗|Ur is the morphism induced by ι, it turns out

P
(
ι(L|Ur ⊗ Q∗|Ur)

)
= Hr .

Consequently, if we take Vr = π−1(Ur), where π : F→ P(U) is the natural projection, by Lemma 1.1
we have

p|Vr = ξ |Vr + π∗c1
(
S2Q∗/L⊗ Q∗

)
.

Thus, by using the expression of c1
(
S2Q∗

)
, we have

c1
(
S2Q∗/L⊗ Q∗

)
= c1(S2Q∗)− c1(Q∗)− 2c1(L) = 2(µ− b)+ 2b = 2µ,

from which we obtain that p|Vr = ξ |Vr + 2µ|Vr . Finally, since F− Vr has codimension 2, the claimed
relation (of divisor classes) follows. �

Proposition 1.1. The intersection ring A∗(F) is isomorphic to the quotient of the polynomial ring Z[µ,
b, p] by the ideal

〈µ4, b3 − µb2 + µ2b− µ3, p3 − 3(µ+ b)p2 + 2(3µ2 + 2µb+ 3b2)p− 8µ3 − 8µb2〉.
In particular, the group Pic(F) is a rank 3 free group generated by µ, b and p.
Proof. The ring A∗(F) is (Fulton, 1984, ex. 8.3.4) isomorphic to

A∗(P(U))[ξ ]/
∑

π∗ci(S2Q∗)ξ 3−i,

where π : S2Q∗ → P(U) is the natural projection. From the formula of the total Chern class of S2Q∗
we have∑

π∗ci(S2Q∗)ξ 3−i = ξ 3 + 3(µ− b)ξ 2 + (6µ2 − 8µb+ 6b2)ξ + (4µ3 − 8µ2b+ 8µb2 − 4b3).

By substituting ξ for the expression p − 2µ given in Lemma 1.2, we obtain the third relation of the
ideal. The remaining relations come from the intersection ring A∗(P(U)). �
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We define Enod as the subbundle of S3U∗|F whose fiber over (π, xb, up) ∈ F is the linear subspace
of forms ϕ ∈ S3U∗ defined over π that have multiplicity at least 2 at xb and for which up is a pair
of tangents (possibly coincident) at xb. In fact, given a point (π, xb, up) ∈ F and taking projective
coordinates x0, x1, x2, x3 so that π = {x3 = 0}, xb = [1, 0, 0, 0] and up = {x1(b1x1 + b2x2) = 0},
b1, b2 ∈ k, we can express the elements ϕ of the fiber of Enod over (π, xb, up) as follows:

ϕ = a0x0x1(b1x1 + b2x2)+ a1x31 + a2x
2
1x2 + a3x1x

2
2 + a4x

3
2, (1)

where ai for i = 0, . . . , 4 are in k. Thus, Enod is a rank 5 subbundle of S3U∗|F.
In the next propositionwe give a resolution of the vector bundleEnod overF. To do this, we consider

the natural inclusion map i : Q∗ → U∗, the product map κ : Q∗ ⊗ OF(−1)→ S3Q∗|F, and the maps
h : U∗ ⊗ OF(−1)→ S3U∗|F and j : S3Q∗|F → S3U∗|F

whose images are clearly contained in Enod.
Proposition 1.2. The sequence

0 −→ Q∗ ⊗ OF(−1)
α
−→ (U∗ ⊗ OF(−1))⊕ S3Q∗|F

β
−→ Enod −→ 0,

where α =
(i⊗1
−κ

)
and β = h+ j, is an exact sequence of vector bundles over F.

Proof. It is similar to the one given in Proposition 1.1 of Hernández et al. (2007). �

Let Knod be the projective bundle P(Enod) over F. Then Knod is a non-singular variety of dimension
dim(Knod) = dim(F)+ rk(Enod)− 1 = 11

whose points are pairs (f , (π, xb, up)) ∈ P(S3U∗)×Γ F such that the cubic f is contained in the plane
π , has a point of multiplicity at least 2 at xb and has up as a pair of tangents (possibly coincident) at
xb. The generic points are those such that f is a non-degenerate cubic with a node at xb and nodal
tangents up.
Notice that the variety Knod can be obtained as a blow up of the variety Xnod, introduced in

Hernández et al. (2007), along the subvariety consisting of pairs (f , (π, xb)) ∈ Xnod whose nodal cubic
f degenerates into three concurrent lines in π meeting at xb, so that its exceptional divisor is the
variety Ktrip given in Section 1.1.
Indeed, Xnod is the projective bundle P(E′nod), where E′nod is the subbundle of S

3U|P(U) whose fiber
over (π, xb) ∈ P(U) is the linear subspace of forms ϕ ∈ S3U defined over π that have multiplicity
al least 2 at xb. Then, the natural projection Knod → Xnod is isomorphic to the blow-up of Xnod along
P(S3Q∗). It can be deduced fromProposition 4.1 inHernández andMiret (2003), where the description
of the blow-up of a projective bundle P(E) along a projective subbundle P(F) is given in terms of the
quotient vector bundle E/F.
We will continue denoting by b and p the pullbacks to Pic(Knod) of the classes b and p in Pic(F)

under the natural projection Knod → F. Since this projection is flat, b and p are the classes of the
hypersurfaces of Knod whose points (f , (π, xb, up)) satisfy that xb is on a given plane and that up
intersects a given line, respectively. Furthermore, by Lemma 1.1, the relation

ζ = ν − 3µ
holds in Pic(Knod), where ζ is the hyperplane class of Knod and ν the class of the hypersurface of Knod
whose points (f , (π, xb, up)) satisfy that f intersects a given line.
Proposition 1.3. The intersection ring A∗(Knod) is isomorphic to the quotient of the polynomial ring
Z[µ, b, p, ν] by the ideal

〈µ4, b3 − µb2 + µ2b− µ3,
p3 − 3(µ+ b)p2 + 2(3µ2 + 2µb+ 3b2)p− 8µ3 − 8µb2,
ν5 − (7µ+ 5b+ p)ν4 + (27µ2 + 22µb+ 6µp+ 15b2 + 6bp)ν3

−(57µ3 + 49µ2b+ 21µ2p+ 47µb2 + 22µbp+ 15b3 + 21b2p)ν2

+(48µ3b+ 36µ3p+ 54µ2b2 + 48µ2bp+ 24µb3 + 48µb2p+ 36b3p)ν
−18µ3b2 − 36µ3bp+ 18µ2b3 − 54µ2b2p− 36µb3p〉.

In particular, the Picard group Pic(Knod) is a rank 4 free group generated by µ, b, p and ν .
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Proof. Since ζ = ν − 3µ, the intersection ring A∗(Knod) is isomorphic to

A∗(F)[ν]/
∑

π̄∗ci(Enod ⊗ OΓ (−3))ν5−i,

where π̄ : Enod → F is the natural projection (see Fulton, 1984, ex. 8.3.4). Now, using Proposition 1.2,
the total Chern class of Enod can be computed:

c(Enod) = c(L∗ ⊗ OF(−1)) · c(S3Q∗).

From this and Lemma 2.27 in Xambó-Descamps (1996) the fourth claimed relation follows.
The remaining relations come from the intersection ring of F described in Proposition 1.1. �

Thus we have, using the projection formula, that∫
Knod

µibjphν11−i−j−h =
∫

F
µibjphs7−i−j−h(Enod ⊗ OΓ (−3)),

where st(Enod ⊗ OΓ (−3)) denotes the t-th Segre class of the vector bundle Enod ⊗ OΓ (−3), which
can be calculated from the resolution of Proposition 1.2.
This allows us to compute all the intersection numbers of Knod in the conditions µ, b, p and ν (see

the Eq. (2)). TheWit script for the computation of these numbers is included in the Section 4.1.

µ3b2p2ν4 = 1 µ2b3p2ν4 = 1 µb3p3ν4 = 3 b3p4ν4 = 3
µ3bp3ν4 = 3 µ2b2p3ν4 = 6 µb2p4ν4 = 17 b2p5ν4 = 20
µ3p4ν4 = 3 µ2bp4ν4 = 17 µbp5ν4 = 50 bp6ν4 = 70
µ3b2pν5 = 1 µ2p5ν4 = 20 µp6ν4 = 70 p7ν4 = 140
µ3bp2ν5 = 8 µ2b3pν5 = 1 µb3p2ν5 = 10 b3p3ν5 = 24
µ3p3ν5 = 18 µ2b2p2ν5 = 18 µb2p3ν5 = 74 b2p4ν5 = 154
µ3b2ν6 = 1 µ2bp3ν5 = 68 µbp4ν5 = 254 bp5ν5 = 520
µ3bpν6 = 7 µ2p4ν5 = 126 µp5ν5 = 460 p6ν5 = 980
µ3p2ν6 = 25 µ2b3ν6 = 1 µb3pν6 = 11 b3p2ν6 = 49
µ3bν7 = 6 µ2b2pν6 = 18 µb2p2ν6 = 147 b2p3ν6 = 444
µ3pν7 = 18 µ2bp2ν6 = 123 µbp3ν6 = 638 bp4ν6 = 1770
µ3ν8 = 12 µ2p3ν6 = 316 µp4ν6 = 1482 p5ν6 = 4020

µ2b2ν7 = 18 µb3ν7 = 12 b3pν7 = 60
µ2bpν7 = 112 µb2pν7 = 154 b2p2ν7 = 722
µ2p2ν7 = 398 µbp2ν7 = 974 bp3ν7 = 3584
µ2bν8 = 100 µp3ν7 = 2780 p4ν7 = 9852
µ2pν8 = 304 µb2ν8 = 160 b3ν8 = 72
µ2ν9 = 216 µbpν8 = 932 b2pν8 = 816

µp2ν8 = 3324 bp2ν8 = 4956
µbν9 = 872 p3ν8 = 15768
µpν9 = 2696 b2ν9 = 904
µν10 = 2040 bpν9 = 5072

p2ν9 = 18336
bν10 = 5040
pν10 = 15960
ν11 = 12960

(2)

1.1. Degenerations of Knod

Let Unod be the subvariety of Knod whose points are pairs (f , (π, xb, up)) ∈ Knod such that f is an
irreducible nodal cubic contained in the plane π , with a node at xb and up as a pair of nodal tangents.
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Fig. 1. A closed point of Kncusp , Kconsec and Ktrip (degenerations γ , χ and τ ).

In fact, Knod is a compactification of Unod whose boundary Knod − Unod consists of the following three
codimension 1 irreducible components, called degenerations of first order of Knod (see Fig. 1):

– Kncusp = P(v∗2(Enod)), where v2 : P(Q∗) → F is the Veronese map that assigns (π, xc, uq) 7→
(π, xc, u2q), parameterizes pairs (f , (π, xc, u

2
q)) ∈ Knod such that f is a cuspidal cubic with cusp xc

and cuspidal tangent uq at xc .
The cubics f of Kncusp over the fiber (π, xc, u2q), with π = {x3 = 0}, xc = [1, 0, 0, 0] and

uq = {x1 = 0}, that is to say, where up is a double line u2q , correspond to the forms (1) which satisfy
b2 = 0. Hence, the equation of f is given by

a0x0x21 + a1x
3
1 + a2x

2
1x2 + a3x1x

2
2 + a4x

3
2 = 0.

– Kconsec parameterizes pairs (f , (π, xb, up)) ∈ Knod such that f is a cubic consisting of a line u`′ which
goes through xb and a conic f ′ tangent to a line u` at xb, where up = u` · u`′ .
The cubics f of Kconsec over the fiber (π, xb, up), with π = {x3 = 0}, xb = [1, 0, 0, 0] and

up = {x1(b1x1 + b2x2) = 0}, where u` = {b1x1 + b2x2 = 0} and u`′ = {x1 = 0}, correspond to the
forms (1) which satisfy a4 = 0, that is to say, forms which have two nodes. Hence, the equation of
f is given by

a0x0x1(b1x1 + b2x2)+ a1x31 + a2x
2
1x2 + a3x1x

2
2 = 0.

– Ktrip = P(S3Q∗|F) parameterizes pairs (f , (π, xb, up)) ∈ Knod such that f is a cubic consisting of
three lines concurrent at xb. Notice that Ktrip is a projective subbundle of Knod.
The cubics f of Ktrip over the fiber (π, xb, up), with π = {x3 = 0}, xb = [1, 0, 0, 0] and

up = {x1(b1x1 + b2x2) = 0} correspond to the forms (1) which satisfy a0 = 0, that is to say,
forms which have multiplicity three at xb. Hence, the equation of f is given by

a1x31 + a2x
2
1x2 + a3x1x

2
2 + a4x

3
2 = 0.

We will denote the classes in Pic(Knod) of the degenerations Kncusp, Kconsec and Ktrip by γ , χ and τ ,
respectively.

Proposition 1.4. In Pic(Knod) the following relations hold:

γ = −2µ− 2b+ 2p,
χ = −6µ− 6b+ 3p+ 2ν,
τ = −µ+ b− p+ ν.

Proof. To get the first expression notice that γ = [π∗D], where D is the image of the Veronese map
v2 : P(Q∗)→ F and π : Knod → F is the natural projection. Then the expression of γ turns out of the
relation [D] = −2µ− 2b+ 2p in Pic(F). To obtain the second expression note that we can write χ as
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a linear combination of the basis {µ, b, p, ν} of Pic(Knod), χ = α0µ + α1b + α2p + α3ν.Multiplying
this relation by µ3b2p2ν3, and taking into account Proposition 1.3 and relations (2), we get that

α3 =

∫
Knod

µ3b2p2ν3χ =
∫
Kconsec

µ3b2(`+ `′)2(ν ′ + `′)3 = 2
∫
Kconsec

µ3b2``′ν ′3 = 2,

where ν ′, `′ and ` are the conditions that the conic f ′, the lines u`′ and u` intersect, respectively, a
given line. Now, multiplying by µ3b2pν4, µ3bpν5 and µ2b2p2ν4 we obtain α2 = 3, α1 = −6 and
α0 = −6. In order to calculate the expression of τ = P(S3Q∗|F) notice that

τ = ν − 3µ+ c1

(
Enod
S3Q∗|F

)
= ν − 3µ+ c1

(
(U∗/Q∗)⊗ OF(−1)

)
,

from which we obtain the third relation of the proposition. �

Notice that from the Proposition it is straightforward to obtain the relations

6b = −2µ+ 5γ − 2χ + 4τ ,
3p = 4µ+ 4γ − χ + 2τ ,
2ν = 4µ+ γ + 2τ .

2. More fundamental conditions

If we consider a nodal cubic given by an equation of the type (1), the analytical expressions of the
inflection points xv , the line us which goes through them, and the triple of lines uz joining the node
with each of the inflection points are as follows:

us = {a0x0 + a2x1 + a3x2 = 0, x3 = 0},
uz = {a1x31 + a4x

3
2 = 0, x3 = 0},

xv =
{(
a2ρ i 3
√
a4 + a3 3

√
a1, a0ρ i 3

√
a4, a0 3

√
a1
)}
i∈{0,1,2} ,

where ρ is a primitive cube root of−1.
Notice that there exist nodal cubics such that some of these distinguished elements are not well

defined. The aim of this section is to construct a compactification of the variety of nodal cubics in P3
where all the elements uz , us and xv are well defined.

2.1. The condition z

In this subsection we will construct first a new compactification K znod as the blow-up of Knod along
the projective subbundle P(U∗|F ⊗ OF(−1)) (consisting of those cubics of (1) with a1 = a4 = 0), in
such a way that it parameterizes the family of nodal cubics that have a point of multiplicity at least
2 at xb, for which up is a pair of tangents (possibly coincident) at xb, and where the triple of lines uz
joining xb with each of the inflection points is always well defined.
In order to construct this new variety we consider, as in Proposition 2.1 of Hernández and Miret

(2003), the subbundle F = U∗F ⊗ OF(−1) of Enod and the quotient bundle

Gz = Enod/F = S3Q∗/(Q∗ ⊗ OF(−1)).

The generic point of the projective bundle Gz = P(Gz) is a tuple (π, xb, up, uz) such that xb is a point
on the plane π , up is a pair of distinct lines which meet at xb, and uz is a triple of lines which meet at
xb that satisfy the following relations of cross-ratios with respect to up:

ρ(uz1 , uz2 , uz3 , upi) = ρi, i = 1, 2, (3)

where ρi is a primitive cube root of−1. Notice that when up is a double line, then two of the lines uz
coincide with up. Moreover, by Lemma 1.1, the relation

ζ = z − µ− 2p+ 2b
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holds in Pic(Gz), where ζ is the hyperplane class of Gz and z is the class of the hypersurface whose
points (π, xb, up, uz) satisfy that uz intersects a given line.
We will denote by Eznod the subbundle of Enod|Gz whose fiber

(
Eznod

)
[uz ]
over (Gz)(π,xb,up),

(π, xb, up) ∈ F, consists of those f ∈ (Enod)(π,xb,up) such that k(f ) ∈ 〈uz〉, where k : Enod → Gz
is the canonical projection. Then, the sequence of vector bundles over Gz

0→ U∗|Gz ⊗ OF(−1)|Gz → Eznod → OGz (−1)→ 0, (4)

is exact and allows us to compute all the Chern and Segre classes of Eznod.
Now, we consider K znod the projective bundle P(Eznod), whose points are pairs (f , (π, xb, up, uz)) in

P(S3U∗) ×Γ Gz satisfying the following conditions: f is a cubic contained in the plane π and has a
point of multiplicity at least 2 at xb; up is a pair of tangents lines (possibly coincident) at xb; and uz as
a triple of lines through xb satisfying (3). Notice that when f is non-degenerate then xb, up and uz are
its node, nodal tangents and lines joining the node with the inflections, respectively.
It turns out that K znod is isomorphic to the blow-up of Knod along the projective subbundle P(U∗|F⊗

OF(−1)). Moreover, the exceptional divisor coincides with P(U∗|Gz ⊗ OF(−1)|Gz ), whose points
(f , (π, xb, up, uz)) satisfy that f consists of three lines, two of themcoincidingwith the pair of tangents
up. We will denote the class in Pic(K znod) of the exceptional divisor by ψ (see Fig. 2).
Hence,K znod is a compactification ofUnodwhose boundaryK

z
nod−Unod consists of four codimension 1

irreducible components which correspond to γ , χ , τ and ψ . The description of the triple of lines uz
for each degeneration is as follows:

– γ : One line of uz coincides with the line joining the cusp and the inflection of the cuspidal curve
and the two remaining lines coincide with the cuspidal tangent.

– χ : The three lines of uz coincide with the line u`′ of the pair up different from the tangent line to
the conic at xb.

– τ , ψ: The triple of lines uz satisfy the relations (3) with respect to the pair of lines up. For the
degeneration τ , there is an analogous dependence relation between the lines of uz and the triple
of lines through xb that determine the nodal cubic.

We will continue denoting by µ, b, p and ν the pullbacks to Pic(K znod) of the classes µ, b, p and ν in
Pic(Knod) under the natural projection K znod → Knod. And we will denote by z the pullback to Pic(K znod)
of the class z in Pic(Gz) under the natural projection K znod → Gz . Thus, using the projection formula,∫

K znod

µibjphzrνk =
∫

Gz
µibjphzr s6−i−j−h−r(Eznod ⊗ OΓ (−3)),

and taking into account the sequence (4), from which the Segre classes of Eznod are obtained, we can
compute all the intersection numbers ofK znod in the conditionsµ, b, p, z and ν. The actual computations
have been done with the script included in 4.2. Here is a sample of the result:

µ3zν7 = 36 µ2zν8 = 600 µzν9 = 5256 zν10 = 30720
µ3z2ν6 = 63 µ2z2ν7 = 1026 µz2ν8 = 8748 z2ν9 = 49296
µ3z3ν5 = 69 µ2z3ν6 = 1206 µz3ν7 = 10660 z3ν8 = 60816
µ3z4ν4 = 45 µ2z4ν5 = 1002 µz4ν6 = 9966 z4ν7 = 60428
µ3z5ν3 = 15 µ2z5ν4 = 570 µz5ν5 = 7150 z5ν6 = 48640

µ2z6ν3 = 180 µz6ν4 = 3720 z6ν5 = 31120
µz7ν3 = 1120 z7ν4 = 14840

z8ν3 = 4200

(5)

Condition z was not considered by Schubert, so the numbers involving this condition do not appear
in Schubert (1879).

2.2. The condition s

Now, in order to add to each nodal cubic the line us that goes through the three inflection points, we
construct a new variety blowing-up K znod along the subvarietyP(OGz (−1)). Again, as in Proposition 2.1
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Fig. 2. A closed point of the exceptional divisor of K znod (degeneration ψ).

Fig. 3. A closed point of the exceptional divisor of K z,snod (degeneration τ
′).

of Hernández and Miret (2003), we consider the subbundle Fz = OGz (−1) of E
z
nod and the quotient

bundle

Gz,s = Eznod/Fz = U∗|Gz ⊗ OF(−1)|Gz .

The projective bundleGz,s = P(Gz,s) parameterizes tuples (π, xb, up, uz, us) such that xb is a point on
the plane π , up is a pair of lines in π which meet at xb, uz is a triple of lines in π which meet at xb that
satisfy the relations (3), and us is a line on π . Moreover, by Lemma 1.1, the relation

s = g − p+ γ (6)

holds in Pic(Gz,s), where g is the hyperplane class ofGz,s, s the class of the hypersurface whose points
(π, xb, up, uz, us) satisfy that us intersects a given line, and γ is the class of the degeneration of Gz,s
whose points (π, xb, up, uz, us) satisfy that the pair of lines up is a double line which coincides with
two lines of uz and the remaining line of uz coincides with the line us.
Wewill denote byEz,snod the vector subbundle ofE

z
nod|Gz,s whose fiber

(
Ez,snod

)
[us]
over

(
Gz,s

)
(π,xb,up,uz )

,

(π, xb, up, uz) ∈ Gz,s, consists of those f ∈
(
Eznod

)
(π,xb,up,uz )

such that k′(f ) ∈ 〈us〉, where k′ : Eznod →
Gz,s is the canonical projection. From the definition, it follows that the sequence

0→ OGz (−1)|Gz,s → Ez,snod → OGz,s(−1)→ 0, (7)

is an exact sequence of vector bundles over Gz,s.
The projective bundleK z,snod = P(Ez,snod) parameterizes pairs (f , (π, xb, up, uz, us)) inP(S3U∗)×Γ Gz,s

such that (f , (π, xb, up, uz)) ∈ K znod. Notice that when f is non-degenerate then xb, up, uz and us are
their node, nodal tangents, lines joining the node with the inflections, and line through the inflection
points, respectively.
The variety K z,snod is isomorphic to the blow-up of K

z
nod along the projective subbundle P(OGz (−1)).

Furthermore, the exceptional divisor coincides with P(OGz (−1)|Gz,s), whose points (f , (π, xb, up,
uz, us)) satisfy that f degenerates into three concurrent lines which coincide with uz (see Fig. 3). We
will denote the class in Pic(K z,snod) of the exceptional divisor by τ

′ (this degenerationwas not considered
by Schubert (1879)).
The variety K z,snod is a compactification of Unod whose boundary K

z,s
nod − Unod consists of five

codimension 1 irreducible components which correspond to γ , χ , τ , ψ and τ ′. The description of
the line us for each degeneration is as follows:

– γ : us coincides with the line joining the cusp and the inflection of the cuspidal curve.
– χ : us coincides with the tangent line to the conic at one of the intersection points with the pair of
nodal tangents different from xb.
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– τ : us is a line through xb determined by the dependence relations with the remaining lines that
form such a degeneration.

– ψ: us coincides with one of the lines that constitute the nodal cubic, different from the nodal
tangents.

– τ ′: us is a new line in the plane π .

Once again, using the projection formula and denoting by g the pullback to K z,snod of the hyperplane
class g of Gz,s, we get:∫

K z,snod

µibjphzrg tνk =
∫

Gz,s
µibjphzrg ts6−i−j−h−r(E

z,s
nod ⊗ OΓ (−3)).

Then, computing the Segre classes Ez,snod from (7), we can calculate all the intersection numbers of K
z,s
nod

in the conditions µ, b, p, z, g and ν. The script for this computation is included in 4.3.
Together with Miret et al. (2003), where the fundamental numbers of cuspidal cubics were

computed, and taking into account relation (6), all intersection numbers of K z,snod in the conditions µ,
b, p, z, s and ν can be obtained in the following way:∫

K z,snod

µibjphzr stνk =
∫
K z,snod

µibjphzr st−1(g − p)νk + 2h
∫
Kncusp

µibjqhzr+t−1νk,

where q is the condition on Kncusp that the cuspidal tangent intersects a given line. TheWit script for
the calculation of the numbers of Kncusp is included in 4.4.
Now, from the intersection numbers of the varieties K z,snod and Kncusp, we can compute the numbers

of nodal plane curves with the conditionµ, b, p, z, s and ν. In order to obtain themwe can use theWit
script 4.5.
A sample of them is given below. In this case, we include those numbers involving the conditions

µ, b, s and ν.

µ3sν7 = 18 µ2sν8 = 296 µsν9 = 2560 sν10 = 14760
µ3bsν6 = 11 µ2bsν7 = 164 µbsν8 = 1284 bsν9 = 6560
µ3b2sν5 = 2 µ2b2sν6 = 32 µb2sν7 = 254 b2sν8 = 1256

µ2b3sν5 = 2 µb3sν6 = 21 b3sν7 = 108

(8)

µ3s2ν6 = 25 µ2s2ν7 = 374 µs2ν8 = 2948 s2ν9 = 15280
µ3bs2ν5 = 20 µ2bs2ν6 = 263 µbs2ν7 = 1822 bs2ν8 = 8012
µ3b2s2ν4 = 4 µ2b2s2ν5 = 56 µb2s2ν6 = 391 b2s2ν7 = 1642

µ2b3s2ν4 = 4 µb3s2ν5 = 36 b3s2ν6 = 153

µ2s3ν6 = 50 µs3ν7 = 712 s3ν8 = 5304
µ2bs3ν5 = 40 µbs3ν6 = 504 bs3ν7 = 3316
µ2b2s3ν4 = 8 µb2s3ν5 = 108 b2s3ν6 = 718

µb3s3ν4 = 8 b3s3ν5 = 68

µs4ν6 = 60 s4ν7 = 676
µbs4ν5 = 40 bs4ν6 = 482
µb2s4ν4 = 8 b2s4ν5 = 104

b3s4ν4 = 8.

Among these numbers, only two of them, µ3sν7 = 18 and µ3seν6 = µ3s2ν6 = 25, were given by
Schubert (see Schubert (1879), p. 160).

2.3. The condition v

We construct now another compactification of Unod by considering the closure K vnod of the graph
of the rational map that assigns the triplet of flexes xv to a given nodal cubic (f , (π, xb, up, uz, us)) of
K z,snod. Notice that the generic points of this new variety K

v
nod consist of pairs (f , (π, xb, up, uz, us, xv))
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Fig. 4. An irreducible component of K vnod − K
z,s
nod (degeneration ϑ).

where xv is the triple of flexes of the nodal cubic f . The projection map hv : K vnod → K z,snod is just the
blow-up of K z,snod along the subvariety of K

z,s
nod where the triplet xv is not well-defined.

Notice as well that the tuples (π, xb, up, uz, us, xv) belong to the closure Gv of the graph of the
rational map that assigns to each (π, xb, up, uz, us) ∈ Gz,s the triplet xv of points intersecting the line
us with the triple of lines uz . Then, there exists a natural projection π : K vnod → Gv that assigns to
each (f , (π, xb, up, uz, us, xv)) ∈ K vnod the tuple (π, xb, up, uz, us, xv) ∈ Gv .
In Fig. 4 abovewe show one of the irreducible components of the exceptional divisor of K vnod, called

degeneration ϑ by Schubert. This degeneration can be obtained by means of a homolography process
(see Fulton (1984, p. 190), Kleiman (1984, p. 17), and Kleiman (1986, p. 53)). As we can see, there
exist dependence relations among the distinguished elements of this degeneration, otherwise the
dimension of this variety would be greater than 10. More precisely, there exists a relation among the
five points on the double line, in the sense that given four of them, the fifth point is determined.
Moreover, the description of the triplet of flexes xv for the remaining degenerations of K

z,s
nod is as

follows:

– γ : Two points of the triplet xv coincide with the inflection point of the cuspidal cubic, whereas the
third one coincides with the cusp.

– χ : The three points of the triplet xv coincidewith the point xa, which is the intersection point, other
than the node xb, of the conic f ′ and the line u`′ .

– τ : The three points of the triplet xv coincide with the point where the three lines of the nodal cubic
meet.

– ψ , τ ′: The points of the triplet xv are the intersection points of the line us with the triple of lines uz .

Now, we express the condition v in Pic(Xnod) in terms of s and the degenerations γ and χ . This
formula, which we justify below was given by Schubert (1879, p. 150).

Proposition 2.1. The following relation holds in Pic(Xnod):

v =
3
2
s+
3
4
γ +

1
2
χ. (9)

Proof. Consider the projective bundle Fs,v which parameterizes triples (π, us, xv), where us is a
line contained on π and xv is a triple of points over us. It is easy to see that its degeneration Ds,v ,
consisting of triples (π, us, xv) such that two of the three points in xv coincide, satisfy the relation
4v = 6s + [Ds,v] in Pic(Fs,v). Hence, in Pic(Xnod) the following holds: there exist integers α0 and α1
such that 4v = 6s+ α0γ + α1χ . Multiplying this relation by µ3b2p2s2ν and µ3bps2ν3 we get α0 = 3
and α1 = 2. �

In particular, using formula (9) or its equivalent expression v = − 152 µ−
3
2b+

3
2 s+ 4ν, and taking

enough of the numbers given in (2) and (8), we obtain the following intersection numbers:

µ3vν7 = 66, µ2vν8 = 1068, µvν9 = 9072, vν10 = 51120
µ3bvν6 = 39, µ2bvν7 = 574, µbvν8 = 4424, bvν9 = 22104
µ3b2vν5 = 7, µ2b2vν6 = 111, µb2vν7 = 868, b2vν8 = 4192

µ2b3vν5 = 7, µb3vν6 = 72, b3vν8 = 360

Only the numbers involvingµ3 were given by Schubert (1879). TheWit script for computing these
numbers is given in 4.6.
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Fig. 5. An irreducible component of Knod − K vnod (degeneration ε).

3. The condition ρ

We denote by ρ the class of the hypersurface of the variety K vnod whose points (f , (π, xb, up, uz, us,
xv)) satisfy that f is tangent to a given plane. In this section we will consider the tangential structure
of the figures of K vnod in order to introduce ρ andwewill compute the fundamental numbers involving
conditions µ, b, ν and ρ.
Recall that the dual curve f ∗ of an irreducible nodal cubic f on π is a quartic curve on the dual

plane π∗ with three cusps and a bitangent. Furthermore, the map f 7→ f ∗ is a rational map whose
indeterminacy locus is the 2-codimensional closed set of K vnod consisting of points (f , (π, xb, up,
uz, us, xv)) such that f degenerates and contains a double line.
In order to compute intersection numbers involving the ρ condition, we consider the closure Knod

of the graph of the rational map K vnod → P(S4U|Gv ) that assigns the quartic curve f
∗ of tangents of f ,

that is,

Knod = {(f , f ∗, (π, xb, up, uz, us, xv) | f and f ∗ dual to each other}.

The variety Knod is a compactification of K vnod where the dual nodal cubic is always well defined.
Given a degenerate nodal cubic, we say that a point P is a focus (of multiplicitym) of f if f ∗ contains

the pencil of lines through P over π as a component (of multiplicity m). With this convention, the
description of the dual structure for the degenerations γ , χ , ψ , ϑ , τ and τ ′ is as follows:

– γ : The dual cuspidal cubic together with the cusp as a simple focus.
– χ : The dual conic and the point xa as a double focus, where xa is the intersection point, other than
the node xb, of the conic f ′ and the line u`′ .

– ψ: Two double foci corresponding to the intersection points of each pair of lines different from xb.
– ϑ: The intersection point of the double line with the simple line as a double focus and two other
simple foci on the double line.

– τ , τ ′: The point where the three lines meet as a focus of multiplicity 4.

On the other hand, the projection map hρ : Knod → K vnod is just the blow-up of K
v
nod along a

subvariety Dρ of codimension 2. The geometric description of one of the irreducible components of
the exceptional divisor h−1ρ (Dρ), whose class in Pic(Knod) we call ε as denoted by Schubert, is given
below (see Fig. 5).
To compute the intersection numberswith conditionsµ, ν,ρ and b the unique degenerations of the

1-dimensional systems µiν jρhbk are γ , χ , ϑ and ε. We will study the geometry of the degenerations
ϑ and ε first. Before giving the intersection numbers over ϑ and ε, we need to know the number of
triples of flexes that can be present on a given degeneration of these types. These numberswere called
by Schubert Stammzahlen (Schubert, 1879).

Lemma 3.1. (i) Given a degenerate nodal cubic of type ϑ on Knod, the three flexes over its double line are
completely determined by the node, the double focus and the two simple foci.

(ii) Given a degenerate nodal cubic of type ε on Knod, there are exactly 12 different possible positions for
the triples of flexes over its triple line once the node and the four simple foci are fixed.

Proof. The degenerations ϑ and ε can be obtained by means of a homolography process (see Fulton
(1984, p. 190), Kleiman (1984, p. 17), Kleiman (1986, p. 53)) which consists of projecting a non-
degenerate nodal cubic C from a point P to a line L. Since the proof of the claim is quite similar in
both cases, we will focus on the degeneration ε. Taking the plane π with equation x0 = 0, and the
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node xb together with the intersection points of the pair of nodal tangents with the line us as the
reference triangle, the equation of C has the form

x0x1x2 = αx31 + βx
3
2. (10)

Besides, we choose the line L on π as x1 = x2, the point P = (a, b, 1) and the four foci Pi = (ti, 1, 1),
i = 1, 2, 3, 4, so that si(t1, t2, t3, t4) = 0, i = 1, 2, 3, and s4(t1, t2, t3, t4) = t , where si is the
elementary i-th symmetric function. We know that the tangential structure of a nodal cubic of (10) is
given by the equation

u21u
2
2 − 4αu0u

3
1 − 4βu0u

3
2 + 18αβu

2
0u1u2 − 27α

2β2u40 = 0,
where (u0, u1, u2, u3) are the dual coordinates of (x0, x1, x2, x3). Now, given a point X = (x, 1, 1) on
L, the line PX is tangent to C if

(x− a)2(xb− a)2 − 4α(x− a)3 − 4β(xb− a)3 + 18αβ(x− a)(xb− a)− 27α2β2 = 0. (11)
Since the lines PP1, PP2, PP3 and PP4 are to be tangent to C , Eq. (11) above will have ti, i = 1, 2, 3, 4, as
roots. Writing the coefficients of (11) in terms of the symmetric functions of the roots, we get

f1(a, b, α, β) = −2ab(1+ b)− 4α − 4b3β = 0,
f2(a, b, α, β) = a2(1+ 4b+ b2)+ 12aα + 12ab2β + 18bαβ = 0,
f3(a, b, α, β) = −2a3(1+ b)− 12a2α − 12a2bβ − 18a(1+ b)αβ = 0,
f4(a, b, α, β) = a4 + 4a3α + 4a3β + 18a2αβ − 27α2β2 − tb2 = 0.

Since a 6= 0, from 3a2f1 + a(1+ b)f2 + bf3 = 0 it follows that
(1+ b)3 − 6b(1+ b) = 0.

Hence b takes exactly three different values. On the other hand, equating α = −b3β − 1
2ab(1 + b)

from f1 = 0, the equations f2 = 0 and f3 = 0 become
18z2 + 3(3(1+ b)− 4(1− b))z + (1− 2b− 5b2) = 0,
18(1+ b)z2 + (11b2 + 18b− 3)z + b(1+ b)(b− 2) = 0,

where z = b2β
a . Eliminating the quadratic term in the system above, clearly z remains a function of b

alone, and therefore there are three possible values for z as well, each of them corresponding to one
value of b. Now, if one substitutes α = −b3β − 1

2ab(1 + b) and β =
az
b2
into equation f4 = 0, a4

becomes a rational expression which depends only on b and z. Hence, there are 12 possible values
for a and also for α and β . Finally, taking into account the three cube roots of α

β
, the projection of the

inflection points of C from P to the line L gives us a triplet of points of the type(
a
(
3

√
α

β
− 1

)
, b 3
√
α

β
− 1, b 3

√
α

β
− 1

)
.

Because of the number of possible values for a, b, α and β obtained above, it follows that there are 12
possible positions for such a triplet of flexes. �

Here we list all numbers with the conditions µ, ν, ρ and b over the degenerations ϑ and ε:
Proposition 3.1. In A∗(Knod) we have:

µ3bϑ = 0, 0, 24, 126, 219, 150, 0
µ2bϑ = 0, 0, 240, 1104, 1986, 2060, 1200, 0
µbϑ = 0, 0, 1240, 4980, 8710, 9400, 6550, 2940, 0
bϑ = 0, 0, 3360, 10080, 14920, 13920, 8300, 2940, 0, 0
µ3b2ϑ = 0, 0, 6, 33, 48, 0
µ2b2ϑ = 0, 0, 64, 306, 514, 420, 0
µb2ϑ = 0, 0, 340, 1410, 2384, 2330, 1200, 0
b2ϑ = 0, 0, 880, 2640, 3684, 2980, 1200, 0, 0
µb3ϑ = 0, 0, 40, 180, 295, 270, 0
b3ϑ = 0, 0, 100, 306, 398, 270, 0, 0

where the numbers listed to the right of a given µibjϑ correspond to the intersection numbers
µibjνkρ10−i−j−kϑ , for k = 10− i− j, . . . , 0.
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Proof. According to Lemma 3.1(i), the points of ϑ can be seen as tuples (π, u`, u`′ , xa, xb, xd), where
u` is a double line and u`′ is a simple line on π meeting u` at xa, xb is the node which is on u` and xd
is a pair of points on u` corresponding to the two simple foci. Therefore we can parameterize these
tuples as a projective bundle over the variety of flags P(Q∗) consisting of triples (π, xa, u`). �

Proposition 3.2. In A∗(Knod) we have:
µ3bε = 0, 0, 0, 0, 12.9, 12.30, 12.45
µ2bε = 0, 0, 0, 0, 12.54, 12.180, 12.330, 12.420
µbε = 0, 0, 0, 0, 12.162, 12.540, 12.990, 12.1260, 12.1330
µ3b2ε = 0, 0, 0, 0, 12.3, 12.10
µ2b2ε = 0, 0, 0, 0, 12.18, 12.60, 12.110
µb2ε = 0, 0, 0, 0, 12.54, 12.180, 12.330, 12.420
µb3ε = 0, 0, 0, 0, 12.9, 12.30, 12.65

where the numbers listed to the right of a given µibjε correspond to the intersection numbers
µibjνkρ10−i−j−kε, for k = 10− i− j, . . . , 0.
Proof. Similarly to degeneration ϑ above, the points of ε can be seen as tuples (π, u`, xb, xd), where
u` is a triple line on π , xb is the node which is on u` and xd are four points on u` corresponding
to the four simple foci. Once again these tuples can be parameterized as a projective bundle over
the variety of flags P(Q∗) consisting of triples (π, xb, u`). The intersection numbers we obtain using
this parameterization must be multiplied by 12, according to Lemma 3.1(ii), that is the number of
possibilities there are for the flexes xv . �

The numbers of the first row on the tables in Propositions 3.1 and 3.2 coincide with the ones
given by Schubert (1879) in Tabelle von sonstigen Ausartungszahlen in pp. 156–157. The Wit script
for computing the intersection numbers concerning ϑ and ε are included in 4.7 and 4.8, respectively.
With these results, we can generalize Zeuthen’s degeneration formula 3ρ = γ + 2χ given in

Zeuthen (1872) and later rewritten over P3 in Hernández et al. (2007), with the contribution of the
degenerations ϑ and ε.
Proposition 3.3. In Pic(Knod) the following relation holds

3ρ = 4µ+ γ + 2χ + 4ϑ + 4ε

modulo the remainder degenerations of Knod different from γ , χ, ϑ and ε.
Proof. Zeuthen’s degeneration formula was verified by Kleiman and Speiser (1988) and its
generalization to P3, 3ρ = 4µ + γ + 2χ , was given in Hernández et al. (2007). Therefore, we know
that there exist integers n andm such that 3ρ = 4µ+γ +2χ+nϑ+mε. In order to determine n and
m we can compute the intersection numbers µ2bν6ρ2 and µ2bν4ρ4 in two different ways. First, by
substituting the expression ofρwehave 3µ2bν6ρ2 = 4µ3bν6ρ+µ2bν6ργ+2µ2bν6ρχ+nµ2bν6ρϑ.
From Table 5 and Proposition 2.1 in Hernández et al. (2007) we get µ2bν6ργ = 568 and from Table
6 and Proposition 2.3 in Hernández et al. (2007) we get µ2bν6ρχ = 770. On the other hand, using
relation 6b = −2µ + 5γ − 2χ + 4τ given by the three relations at the end of Section 1, we obtain
µ2bν6ρ2 = 1052 andµ3bν6ρ = 22. From this, and taking into account thatµ2bν6ρϑ = 240, it turns
out that n = 4. Proceeding in a similar way with the intersection number µ2bν4ρ4, it follows that
m = 4. �

Corollary 3.1. In Pic(Knod) the following relation holds
ρ = −6µ+ 4ν − 2b− 2ϑ − 6ε

modulo the remainder degenerations of Knod different from γ , χ, ϑ and ε.
Proof. On the variety Xnod described in Hernández et al. (2007), the degeneration relation given in
Proposition 3.3 can be written as 3ρ = 4µ + γ + 2χ . Substituting the expressions γ = −4µ + 2ν
and χ = −9µ− 3b+ 5ν given in Hernández et al. (2007) we obtain ρ = −6µ+ 4ν − 2b. Therefore
in our variety Knod this relation modulo other degenerations different from γ , χ , ϑ and ε should be
expressed as ρ = −6µ+ 4ν − 2b+ rϑ + sε for certain integers r and s. Now in order to obtain the
values of r and swe can proceed as in the proof of Proposition 3.3 above. �
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From the intersection numbers given in Propositions 3.1 and 3.2 and using the formula in
Corollary 3.1 we can compute all intersection numbers of nodal cubics with conditions µ, ν, ρ and b:

Proposition 3.4. In A∗(Knod) we have:

µ3 = 12, 36, 100, 240, 480, 712, 756, 600, 400
µ2 = 216, 592, 1496, 3280, 6080, 8896, 10232, 9456, 7200, 4800
µ = 2040, 5120, 11792, 23616, 40320, 56240, 64040, 60672, 49416,

35760, 23840
1 = 12960, 29520, 61120, 109632, 167616, 214400, 230240, 211200,
170192, 124176, 85440, 56960

µ3b = 6, 22, 80, 240, 604, 1046, 1212, 1000
∗µ2b = 100, 328, 1052, 2800, 6272, 10540, 13468, 13512, 10800
∗µb = 872, 2568, 7288, 17232, 34280, 53772, 67048, 68268, 59352, 45200
∗b = 5040, 13120, 32048, 64608, 107072, 144960, 162760, 155288, 132048,

98352, 70880

µ3b2 = µ2b3 = 1, 4, 16, 52, 142, 256, 304
∗µ2b2 = 18, 64, 224, 640, 1532, 2668, 3464, 3504
∗µb2 = 160, 508, 1564, 3944, 8316, 13560, 17368, 18024, 15824
∗b2 = 904, 2512, 6568, 13904, 23904, 33304, 38432, 36808, 28864, 25664
∗µb3 = 12, 42, 144, 400, 928, 1622, 2252, 2504
∗b3 = 72, 216, 612, 1384, 2524, 3732, 4656, 5112, 5424

where the numbers listed to the right of a given µibj (1 for µ0b0) correspond to the intersection numbers
µibjνkρ11−i−j−k, for k = 11− i− j, . . . , 0.

TheWit script for computing these numbers is included in 4.9.
The rows marked with a * in Proposition 3.4 contain numbers not listed in Schubert (1879). Of the

remaining numbers, those in the first four rows, and thenumberswithµ, ν,ρ and the 2-codimensional
condition P = νµ−3µ2 (that the nodal cubic goes through a point), were verified in Hernández et al.
(2007). Notice also that our results verify the values given by Schubert (1879) in Tabelle I and II in
pages 157–160 involving µ, ν, ρ and b.

4. Wit scripts

In this Section we collect theWit scripts used for the computations.

4.1. Intersection numbers on Knod

# PU is the incidence variety of point-plane in P3.
# It has dimension 5 and generating classes b and m.
PU=variety(5, {gcs=[b,m], monomial_values={m^3*b^2->1, m^2*b^3->1}});

# Ud is tautological vector bundle on PU relative to the planes.
# Its chern vector is [m,m^2,m^3]
Ud=sheaf(3,[m,m^2,m^3],PU);

# Qd is the quotient of Ud by the line bundle corresponding to b.
Qd = Ud / o_(b,PU);

# EP is the second symmetric power of Qd
EP = symm(2,Qd);

# DP is the vector bundle EP "shifted" by the line bundle of -2m
DP = EP * o_(-2*m,PU);
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# PP is a projective bundle of planes over PU
# It has dimension 7 and its generating classes are b, m and p
# the later corresponds to the tautological
# "hyperplane" class of the bundle
PP=variety(7, {gcs=[b,m,p]});

# The table of monomial values of PP is computed as follows:
PP(monomial_values)=

{ m^i*b^j*p^(7-i-j) -> integral(m^i*b^j*segre(5-i-j,DP),PU)
with (i,j) in (0..3,0..min(3,5-i)) };

# Udp is the bundle Ud lifted to PP
Udp=sheaf(3,[m,m^2,m^3],PP);

# Qdp is the quotient of Udp by the line bundle of b on PP.
Qdp= Udp / o_(b,PP);

# Qqp is the quotient of Udp by Qdp
Qqp=Udp / Qdp;

# Enodp is Qqp twisted by 2m-p direct sum the third symmetric
# power of Qdp
Enodp=Qqp * o_(2*m-p,PP) + symm(3,Qdp);

# Dnodp is Enodp twisted by -3m
Dnodp= Enodp * o_(-3*m,PP);

# The table of monomial values of Knod, which is the table
# we were aiming at.
Knod(monomial_values)=

{ m^i*b^j*p^h*n^(11-i-j-h) ->
integral(m^i*b^j*p^h*segre(7-i-j-h,Dnodp),PP)

with (i,j,h) in (0..3,0..min(3,5-i),0..7-i-j) }

4.2. Intersection numbers on K znod

# PP is a projective bundle of planes over PU
# It has dimension 7 and its generating classes are b, m and p

# Ud1 is the bundle Ud lifted to PP
Ud1=sheaf(3,[m,m^2,m^3],PP);

# Qd1 is the quotient of Ud1 by the line bundle of b on PP.
Qd1= Ud1 / o_(b,PP);

# Equot is the quotient of the third symmetric power of Qd1
# by Qd1 twisted by 2m-p
Equot = symm(3, Qd1) / (Qd1 * o_(2*m-p,PP));

# Dquot is Equot twisted by 2b-2p-m
Dquot= Equot * o_(2*b-2*p-m,PP);

# PZ is a projective bundle of planes over PP
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# It has dimension 8 and its generating classes are b, m, p and z
# (the later corresponds to the tautological "hyperplane" class)
PZ=variety(8, {gcs=[b,m,p,z]});

# The table of monomial values of PZ is computed as follows:
PZ(monomial_values)=

{ m^i*b^j*p^h*z^(8-i-j-h) ->
integral(m^i*b^j*p^h*segre(7-i-j-h,Dquot),PP)

with (i,j,h) in (0..3,0..min(3,5-i),0..(7-i-j))};

# Udz is the bundle Ud lifted to PZ
Udz=sheaf(3,[m,m^2,m^3],PZ);

# Enodz is Qqp twisted by 2m-p direct sum the third symmetric
# power of Qdp
Enodz=Udz * o_(2*m-p,PZ) + o_(m-z+2*p-2*b,PZ);

# Dnodz is Enodz twisted by -3m
Dnodz= Enodz * o_(-3*m,PZ);

# The table of monomial values of Knodz is computed as follows:
Knodz(monomial_values)=
{ m^i*b^j*p^h*z^k*n^(11-i-j-h-k) ->

integral(m^i*b^j*p^h*z^k*segre(8-i-j-h-k,Enodz),PZ)
with (i,j,h,k) in (0..3,0..min(3,5-i),0..(7-i-j),0..(8-i-j-h)) };

#tabulate(Knodz(monomial_values),"Knodz.res");

4.3. Intersection numbers on K z,snod

# PZ is a projective bundle of planes over PP
# It has dimension 8 and its generating classes are b, m, p and z

# Ud2 is the bundle Ud lifted to PZ
Ud2=sheaf(3,[m,m^2,m^3],PZ);

# Eg is Ud2 twisted by 2m-p
Eg=Ud2 * o_(2*m-p,PZ);

# Egg is Eg twisted by -3m
Egg= Eg * o_(-3*m,PZ);

# Pg is a projective bundle of planes over PZ # It has dimension 10
and its generating classes are b, m, p, z and g # the later
corresponds to the tautological # "hyperplane" class of the bundle
Pg=variety(10, {gcs=[b,m,p,z,g]});

# The table of monomial values of Pg is computed as follows:
Pg(monomial_values)=

{ m^i*b^j*p^h*z^k*g^(10-i-j-h-k) ->
integral(m^i*b^j*p^h*z^k*segre(8-i-j-h-k,Egg),PZ)

with (i,j,h,k) in (0..3,0..min(3,5-i),0..(7-i-j),0..(8-i-j-h)) };

# Enods is a direct sum of two line bundles
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Enods= o_(m-z+2*p-2*b,Pg) + o_(3*m-g,Pg);

# Dnods is Enods twisted by -3m
Dnods= Enods * o_(-3*m,Pg);

# Knods is a projective bundle of planes over Pg # It has dimension
11 and its generating classes are b, m, p, z, g and n # the later
corresponds to the tautological # "hyperplane" class of the bundle
Knods=variety(11, {gcs=[b,m,p,z,g,n]});

# The table of monomial values of Knods is computed as follows:
Knods(monomial_values)=

{ m^i*b^j*p^h*z^k*g^r*n^(11-i-j-h-k-r) ->
integral(m^i*b^j*p^h*z^k*g^r*segre(10-i-j-h-k-r,Dnods),Pg)

with (i,j,h,k,r) in
(0..3,0..min(3,5-i),0..(7-i-j),0..(8-i-j-h),0..(10-i-j-h-k)) };

4.4. Intersection numbers on Kncusp

# PUc is the incidence variety of point-plane in P3.
# It has dimension 5 and generating classes c and m
PUc=variety(5, {gcs=[c,m], monomial_values={m^3*c^2->1, m^2*c^3->1}});

# Udc is tautological vector bundle on PUc relative to the planes.
Udc=sheaf(3,[m,m^2,m^3],PUc);

# Qdc is the quotient of Udc by the line bundle corresponding to c.
Qdc = Ud / o_(c,PUc);

# DQ is Qdc twisted by -m
DQ=Qdc*o_(-m,PUc);

# PQ is a projective bundle of planes over PUc
# It has dimension 6 and its generating classes are c, m and q
PQ=variety(6,{gcs=[c,m,q]});

PQ(monomial_values)={m^i*c^j*q^(6-i-j)->
integral(m^i*c^j*segre(5-i-j,DQ),PUc) with i,j in 0..3,0..min(3,5-i)};

# UdQ is the bundle Ud lifted to PQ
UdQ=sheaf(3,[m,m^2,m^3],PQ);

# QdQ is the quotient of UdQ by the line bundle of b on PQ.
QdQ = UdQ / o_(c,PQ);

# EquotQ is the quotient of the third symmetric power of QdQ
# by QdQ twisted by 2m-2q
EquotQ = symm(3, QdQ) / (QdQ * o_(2*m-2*q,PQ));

# DquotQ is Equot twisted by 2b-2q-m
DquotQ= EquotQ* o_(-m+2*c-2*q,PQ);

# PQZ is a projective bundle of planes over PQ
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# It has dimension 7 and its generating classes are c, m, q and z
PQZ=variety(7,{gcs=[c,m,q,z]});

PQZ(monomial_values)=
{m^i*c^j*q^h*z^(7-i-j-h)->

integral(m^i*c^j*q^h*segre(6-i-j-h,DquotQ),PQ)
with i,j,h in 0..3,0..min(3,5-i),0..6-i-j};

# Ud2Q is the bundle Ud lifted to PQZ
Ud2Q=sheaf(3,[m,m^2,m^3],PQZ);

# EgQ is Ud2Q twisted by 2m-2q
EgQ=Ud2Q * o_(2*m-2*q,PQZ);

# EggQ is Eg twisted by -3m
EggQ= EgQ * o_(-3*m,PQZ);

# PQg is a projective bundle of planes over PQZ
# It has dimension 9 and its generating classes are c, m, q, z and g
PQg=variety(9, {gcs=[c,m,q,z,g]});

# The table of monomial values of PQg
PQg(monomial_values)={ m^i*c^j*q^h*z^k*g^(9-i-j-h-k) ->
integral(m^i*c^j*q^h*z^k*segre(7-i-j-h-k,EggQ),PQZ)
with (i,j,h,k) in (0..3,0..min(3,5-i),0..(6-i-j),0..(7-i-j-h)) };

# Ecusp is a direct sum of two line bundles
Ecusp= o_(m-z+2*q-2*c,PQg) + o_(3*m-g,PQg);

# Dcusp is Ecusp twisted by -3m
Dcusp= Ecusp * o_(-3*m,PQg);

# Kcusp is a projective bundle of planes over PQg
# It has dimension 10 and its generating classes are c, m, q, z, g and n
Kcusp=variety(10, {gcs=[c,m,q,z,g,n]});

# The table of monomial values of Kcusp
Kcusp(monomial_values)=

{ m^i*c^j*q^h*z^k*g^r*n^(10-i-j-h-k-r) ->
integral(m^i*c^j*q^h*z^k*g^r*segre(9-i-j-h-k-r,Dcusp),PQg)

with (i,j,h,k,r) in
(0..3,0..min(3,5-i),0..(6-i-j),0..(7-i-j-h),0..(9-i-j-h-k)) };

4.5. Intersection numbers involving µ, b, p, z, s and ν

#Numbers involving a single s:
Ns1={m^i*b^j*p^h*z^k*s*n^(10-i-j-h-k) ->

integral(m^i*b^j*p^h*z^k*(g-p)*n^(10-i-j-h-k),Knods) +
(2^h)*integral(m^i*c^j*q^h*(z+2*q)^k*n^(10-i-j-h-k),Kcusp)

with (i,j,h,k) in (0..3,0..min(3,5-i),0..(7-i-j),0..(8-i-j-h))};

# Numbers involving s^2:
Ns2={m^i*b^j*p^h*z^k*s^2*n^(9-i-j-h-k) ->
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integral(m^i*b^j*p^h*z^k*(g-p)^2*n^(9-i-j-h-k),Knods) +
(2^h)*integral(m^i*c^j*q^h*z*(z+2*q)^k*n^(9-i-j-h-k),Kcusp) +
(2^h)*integral(m^i*c^j*q^h*(z+2*q)^k*(g-2*q)*n^(9-i-j-h-k),Kcusp)
with (i,j,h,k) in (0..3,0..min(3,5-i),0..(7-i-j),0..(8-i-j-h)) };

# Numbers involving s^3:
Ns3={m^i*b^j*p^h*z^k*s^3*n^(8-i-j-h-k) ->

integral(m^i*b^j*p^h*z^k*(g-p)^3*n^(8-i-j-h-k),Knods) +
(2^h)*integral(m^i*c^j*q^h*z^2*(z+2*q)^k*n^(8-i-j-h-k),Kcusp) +
(2^h)*integral(m^i*c^j*q^h*z*(z+2*q)^k*(g-2*q)*n^(8-i-j-h-k),Kcusp) +
(2^h)*integral(m^i*c^j*q^h*(z+2*q)^k*(g-2*q)^2*n^(8-i-j-h-k),Kcusp)
with (i,j,h,k) in (0..3,0..min(3,5-i),0..(7-i-j),0..(8-i-j-h)) };

# Numbers involving s^4:
Ns4={m^i*b^j*p^h*z^k*s^4*n^(7-i-j-h-k) ->

integral(m^i*b^j*p^h*z^k*(g-p)^4*n^(7-i-j-h-k),Knods) +
(2^h)*integral(m^i*c^j*q^h*z^3*(z+2*q)^k*n^(7-i-j-h-k),Kcusp) +
(2^h)*integral(m^i*c^j*q^h*z^2*(z+2*q)^k*(g-2*q)*n^(7-i-j-h-k),Kcusp) +
(2^h)*integral(m^i*c^j*q^h*z*(z+2*q)^k*(g-2*q)^2*n^(7-i-j-h-k),Kcusp) +
(2^h)*integral(m^i*c^j*q^h*(z+2*q)^k*(g-2*q)^3*n^(7-i-j-h-k),Kcusp)
with (i,j,h,k) in (0..3,0..min(3,5-i),0..(7-i-j),0..(7-i-j-h)) };

4.6. Intersection numbers involving µ, b, ν and a single v

Nv={m^i*b^j*v*n^(10-i-j) ->
-(15/2)*integral(m^(i+1)*b^j*n^(10-i-j),Knods)
-(3/2)* integral(m^i*b^(j+1)*n^(10-i-j),Knods)
+(3/2)*integral(m^i*b^j*s*n^(10-i-j),Knods)
+ 4*integral(m^i*b^j*n^(11-i-j),Knods)

with (i,j) in (0..3,0..min(3,5-i)) };

4.7. Intersection numbers on ϑ

# Determination of number of cubics of degeneration \vartheta
# involving the conditions m,b,n,r

PU=variety(5, {gcs=[a,m], monomial_values={m^3*a^2->1, m^2*a^3->1}});

Ud=sheaf(3,[m,m^2,m^3],PU);

Qd = Ud / o_(a,PU);

Qda = Qd * o_(-m,PU);

# Fa is a projective bundle of planes over PU
# It has dimension 6 and its generating classes are a, m and l
Fa=variety(6, {gcs=[a,m,l]});

# The table of monomial values of Fa is computed as follows:
Fa(monomial_values)=

{m^i*a^j*l^(6-i-j) ->
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integral(m^i*a^j*segre(5-i-j,Qda),PU)
with (i,j) in (0..3,0..min(3,5-i)) };

Ud1=sheaf(3,[m,m^2,m^3],Fa);

Udd=dual(Ud1);

Qla= Udd / o_(l-m,Fa);

# Fab is a projective bundle of planes over Fa
# It has dimension 7 and its generating classes are a, b, m, l
Fab=variety(7, {gcs=[a,b,m,l]});

# The table of monomial values of Fab is computed as follows:
Fab(monomial_values)=

{m^i*a^j*l^h*b^(7-i-j-h) ->
integral(m^i*a^j*l^h*segre(6-i-j-h,Qla),Fa)
with (i,j,h) in (0..3,0..min(3,5-i),0..min(4,6-i-j)) }\trim;

Ud2=sheaf(3,[m,m^2,m^3],Fab);

Udd2=dual(Ud2);

Qld=Udd2 / o_(l-m,Fab);

Qldd= symm(2,Qld);

# Fabd is a projective bundle of planes over Fab
# It has dimension 9 and its generating classes are a, b, m, l and d
Fabd=variety(9, {gcs=[a,b,m,l,d]});

Ud3=sheaf(3,[m,m^2,m^3],Fabd);

Qldf=Ud3 / o_(a,Fabd);

Qldff= Qldf *o_(-m,Fabd);

# DegTh is a projective bundle of planes over Fabd
# It has dimension 10 and its generating classes are a, b, m, l, d and f
DegTh=variety(10, {gcs=[a,b,m,l,d,f]});

# The table of monomial values of Fabdf, which is the table we were aiming at.
DegTh(monomial_values)=

{m^i*a^j*l^h*b^k*d^x*f^(10-i-j-h-k-x) ->
integral(m^i*a^j*l^h*b^k*d^x*segre(9-i-j-h-k-x,Qldff),Fabd)
with (i,j,h,k,x) in
(0..3,0..min(3,5-i),0..min(4,6-i-j),0..min(3,7-i-j-h),

0..min(6,9-i-j-h-k)) };

# Numbers involving condition r

NdegTh_r={ m^i*b^j*n^h*r^(10-i-j-h) ->
integral(m^i*b^j*(2*l+f)^h*(2*a+d)^(10-i-j-h),DegTh)
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with (i,j,h) in (0..3,0..min(3,5-i),0..10-i-j ) };

4.8. Intersection numbers on ε

# Determination of number of cubics of degeneration \varepsilon
# involving the conditions m,b,n,r

PU=variety(5,{gcs=[b,m], monomial_values={m^3*b^2->1,m^2*b^3->1}});

Ud=sheaf(3,[m,m^2,m^3],PU);

Qd = Ud / o_(b,PU);

Qdb = Qd * o_(-m,PU);

# Fb is a projective bundle of planes over PU
# It has dimension 6 and its generating classes are a, m and l
Fb=variety(6, {gcs=[b,m,l]});

# The table of monomial values of Fb is computed as follows:
Fb(monomial_values)=

{m^i*b^j*l^(6-i-j) ->
integral(m^i*b^j*segre(5-i-j,Qdb),PU)

with (i,j) in (0..3,0..min(3,5-i))};

Ud1=sheaf(3,[m,m^2,m^3],Fb);

Udd=dual(Ud1);

Qlb= Udd / o_(l-m,Fb);

Qlbb=symm(4,Qlb);

# DegEps is a projective bundle of planes over Fb
# It has dimension 10 and its generating classes are b, m, l and r
DegEps=variety(10, {gcs=[b,m,l,r]});

# The table of monomial values of DegEps is computed as follows:
DegEps(monomial_values)=

{ m^i*b^j*n^h*r^(10-i-j-h) ->
integral(m^i*b^j*(3*l)^h*segre(6-i-j-h,Qlbb),Fb)

with (i,j,h) in (0..3,0..min(3,5-i),0..min(4,6-i-j)) };

4.9. Intersection numbers involving µ, b, ν and ρ

# Numbers of nodal cubics involving conditions m,b,n,r

Nr1={m^i*b^j*n^(11-i-j-h)*r ->
-6*integral(m^(i+1)*b^j*n^(11-i-j-h),Knods)
+ 4*integral(m^i*b^j*n^(12-i-j-h),Knods)
- 2*integral(m^i*b^(j+1)*n^(11-i-j-h),Knods)
- 2*integral(m^i*b^j*n^(11-i-j-h),NdegTh)
- 6*integral(m^i*b^j*n^(11-i-j-h),NdegEps)
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with (h,i,j) in (1..11,0..min(3,11-h),0..min(3,5-i,11-h-i)) };

Nrx={Nr1}

for h in 2..11 do
X={m^i*b^j*n^(11-i-j-h)*r^h ->

- 6*integral(m^(i+1)*b^j*n^(11-i-j-h)*r^(h-1),Nr)
+ 4*integral(m^i*b^j*n^(12-i-j-h)*r^(h-1),Nr)
- 2*integral(m^i*b^(j+1)*n^(11-i-j-h)*r^(h-1),Nr)
- 2*integral(m^i*b^j*n^(11-i-j-h)*r^(h-1),DegTh)
- 6*integral(m^i*b^j*n^(11-i-j-h)*r^(h-1),DegEps)
with (i,j) in (0..min(3,11-h),0..min(3,5-i,11-h-i)) };

Nrx=Nrx|{X}
end;
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