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0. Introduction

One of the goals of enumerative geometry is to find the number of curves of a given irreducible n-
dimensional family in P? that satisfy n geometric conditions. This includes the numbers involving the
characteristic conditions, which require that the curve goes through a given point, intersects a given
line or is tangent to a given plane.

The 8-dimensional family of nodal cubics in P? is one of the varieties which has received more
attention from an enumerative geometric point of view. Its characteristic numbers (and many other
intersection numbers) were calculated first by Maillard (1871) and Zeuthen (1872) and later by
Schubert, who devoted to them a part (pp. 144-163) of his masterpiece (Schubert, 1879). Nevertheless,
Hilbert’s Fifteenth Problem (Hilbert, 1902) is asking for a justification and a verification of all
geometric numbers computed by the 19th century geometers. In this sense, some of these intersection
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numbers were verified, using different approaches, by Sacchiero (1984), Kleiman and Speiser (1988),
Aluffi (1991), Miret and Xamb6 (1991) and Ernstrom and Kennedy (1998).

Concerning the 11-dimensional family U,oq of nodal cubics in P?, the number of those that intersect
11 lines was computed in Kleiman et al. (1987), and in Hernandez et al. (2007) all the characteristic
numbers given by Schubert (1879) were verified. Besides, Pandharipande (1999) gave an algorithm
to compute the characteristic numbers of rational curves in P" introducing techniques of quantum
cohomology.

This paper continues the determination of the fundamental numbers of the variety of nodal cubics
in P begun in Hernandez et al. (2007). More precisely, we study and compute those fundamental
numbers involving the characteristic conditions and the condition that the node lies on a plane. These
conditions are denoted as follows:

- W, the plane determined by the nodal cubic goes through a point;
- v, the nodal cubic intersects a line;

- p, the nodal cubic is tangent to a given plane;

- b, the node lies on a plane.

We also consider the codimension 2 condition P that the nodal cubic goes through a point.

Thus, while in Hernandez et al. (2007) we focused on the numbers of the form u'v/p!'~=  in this
paper we aim at the geometrical and computational problems involved in the determination of all
the numbers of the form p/b'v¥p'1="==k We complete Schubert’s work not only because our tables
include all the numbers (Schubert computed a little less than half the numbers), but also because of a
deeper geometric and enumerative understanding of the two degenerations (¢ and ) involved.

We remark that the numbers we compute have ‘enumerative significance’ if the characteristic
of the ground field is 0. This is because the compactifications are chosen to make sure that the
intersection of the conditions for a given fundamental number has no points on the boundary (the
union of the degenerations), so that the degree of that intersection agrees with the definition of the
fundamental number in question. Here we invoke Kleiman’s transversality theorem (see Kleiman
(1974)) that guarantees that in characteristic O the intersection multiplicities are 1. The detailed
argument can be found in Miret and Xambé (1991), where it is also recalled that in characteristic
p > 0 the intersection multiplicities (for a given number) are equal (say q) and that g is a power of
p. In particular it follows that an intersection number has ‘enumerative significance’ (g = 1) if p does
not divide the intersection number.

The material is organized as follows. In Section 1 we construct a compactification Kyq of the variety
Unod of non-degenerate nodal cubics of P? via the projectivization of a suitable vector bundle. From this
we get that the Picard group Pic(Ky0q) is a rank 4 free group generated by the classes of the closures in
Khod Of the hypersurfaces of U,oq determined by the conditions w, v, b and p (that the nodal tangents
intersect a line). Then we show that the boundary K;,,q — Unoq consists of three irreducible components
of codimension 1.

In Section 2 we introduce some other conditions related to the distinguished elements of the nodal
cubics, and we construct new compactifications of the variety Uy,o4 taking successive blow-ups of Kq.
Finally, Section 3 is devoted to the study of the tangency condition p. We compute the intersection
numbers of the form p'bv*p!' === some of which were already found by Schubert (1879).

One aspect of this paper is the structure and functionality of the symbolic computations. They have
been carried out with the online system WiT (see Xamb6-Descamps (2008)) using the scripts collected
in Section 4.

1. The variety K04 of nodal cubics

Throughout this paper, P*> will denote the projective space associated to a 4-dimensional vector
space over an algebraically closed ground field k of characteristic 0, and the term variety will mean a
quasi-projective k-variety. Moreover, we will also write z to indicate the degree of a 0-cycle z, if the
underlying variety can be understood from the context.

Let U denote the rank 3 tautological bundle over the grassmannian variety I" of planes of P>
Therefore, the projective bundle P(U) is the nonsingular incidence variety defined by

P(U) = {(w,x) e I’ xP? | x € 7).
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Let IL be the tautological line subbundle of the rank 3 bundle Ulpy, over P(U) and let Q be the
tautological quotient bundle. Then the projective bundle F = P(S2Q*) parameterizes triples (r, X, u)
such that u is a pair of lines (possibly coincident) contained in the plane 7z and both passing through
the point x.

We will denote by & the hyperplane class of the projective bundle F. The pullback to F of the
hyperplane class ¢;(Opq) (1)) under the natural projection F — P(U) will be denoted by b and the
pullback to FF of the hyperplane class ¢; (9(1)) under the natural projection F — I" will be denoted
by wu, so that u is the class of the hypersurface of F consisting of the triples (rr, x, u) such that the
plane 7 goes through a given point and b coincides with the class of the hypersurface of F consisting
of the triples (77, x, u) such that the point x is on a given plane. Moreover, we will denote by p the class
of the hypersurface of F consisting of the triples (i, x, u) such that u intersects a given line.

Lemma 1.1. Let E be a vector bundle over a nonsingular variety X and let H be a subbundle of E such that
the quotient E/H is a line bundle. Then P(H) is a divisor of P(E) and

[P(H)] =& + 7" c1(E/H)
in Pic (P(E)), where & is the hyperplane class of P(E) and & : P(E) — X is the natural projection.
Proof. See Fulton (1984), ex. 3.2.17, or llori et al. (1974). O

In the next Lemma we determine the relation between the classes & and p.

Lemma 1.2. In Pic(F) the following relation holds:

§=p—2u.
Proof. Let r be a line in P3 and let

H. ={(w,x,u) e F: unr # @},

so that p = [H;] € Pic(F). Over the open set U, = {(7,x) € P(U) : x ¢ r} € P(U) there exists a
monomorphism of vector bundles

t: LU, — Q*|U;,
with the property that ¢(v) vanishes at x and at r N7, for any (7, X) € U; and v € L, . Therefore, if
1:L|U; ® Q*|U, — S2Q*|U; is the morphism induced by ¢, it turns out

P({(L|U; ® Q*|U)) = H;.
Consequently, if we take V, = 7 ~!(U,), where 7 : F — P(U) is the natural projection, by Lemma 1.1
we have

pIVr = €IV, + %, (S°Q°/L ® Q).
Thus, by using the expression of ¢;(S*Q*), we have

a1(S’Q" /L ® Q) = a1 (S*Q*) — 1(Q") — 2¢1(L) = 2(u — b) +2b = 2y,

from which we obtain that p|V; = €|V, + 2u|V;. Finally, since F — V, has codimension 2, the claimed
relation (of divisor classes) follows. O

Proposition 1.1. The intersection ring A*(F) is isomorphic to the quotient of the polynomial ring Z[ i,
b, p] by the ideal

(u*, b* — ub® + u?b — 12, p* = 3(u + b)p* + 23> + 2ub + 3b*)p — 8> — Bub?).
In particular, the group Pic(F) is a rank 3 free group generated by ., b and p.
Proof. The ring A*(F) is (Fulton, 1984, ex. 8.3.4) isomorphic to

A*PU)IEN Y 7 a(S°QHE,
where 7 : S?Q* — P(U) is the natural projection. From the formula of the total Chern class of S?Q*
we have

D TGSPQNE T =8+ 3(u — bR + (67 — Bub + 6b7) + (4> — 8u’b + Bub” — 4b°).
By substituting & for the expression p — 2u given in Lemma 1.2, we obtain the third relation of the
ideal. The remaining relations come from the intersection ring A*(P(U)). O
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We define E,oq as the subbundle of S3U* |z whose fiber over (7, X, up) € Fis the linear subspace
of forms ¢ € S3U* defined over 7 that have multiplicity at least 2 at x, and for which u, is a pair
of tangents (possibly coincident) at x,. In fact, given a point (7, xp, u,) € F and taking projective
coordinates xg, X1, X2, X3 so that 7 = {x3 = 0}, x, = [1,0,0,0] and u, = {x1(b1x; + bax;) = 0},
b1, b, € k, we can express the elements ¢ of the fiber of E,qq over (i, xp, up) as follows:

@ = doXoX1(b1x1 + byxy) + 01X? + 02X%X2 + aaxl><§ + 114X§, (1)

where g; fori = 0, ..., 4 are in k. Thus, Eq is a rank 5 subbundle of S3U*|.
In the next proposition we give a resolution of the vector bundle E,,q over . To do this, we consider
the natural inclusion map i : Q* — U*, the product map « : Q* ® Oz(—1) — S3Q*|r, and the maps

h:U*® Op(—1) — S°U*|r and j:S3Q*|p — S*U*|r
whose images are clearly contained in Epoq.
Proposition 1.2. The sequence

0 —> Q* ® Op(—1) = (U* ® Op(—1)) @ S Q[ —2> Epog —> 0,
i®1
—K

where o = ( ) and 8 = h + j, is an exact sequence of vector bundles over F.

Proof. It is similar to the one given in Proposition 1.1 of Hernandez et al. (2007). O
Let K04 be the projective bundle P(E,qq) over F. Then Kjoq is a non-singular variety of dimension
dim(Kpoq) = dim(F) + rk(Epoq) — 1 = 11

whose points are pairs (f, (7w, Xp, Up)) € P(S3U*) x 1 F such that the cubic f is contained in the plane
7, has a point of multiplicity at least 2 at x, and has uj, as a pair of tangents (possibly coincident) at
xp. The generic points are those such that f is a non-degenerate cubic with a node at x; and nodal
tangents u,.

Notice that the variety K,,q can be obtained as a blow up of the variety X4, introduced in
Hernandez et al. (2007), along the subvariety consisting of pairs (f, (7, xp)) € Xnoq Whose nodal cubic
f degenerates into three concurrent lines in 7 meeting at x5, so that its exceptional divisor is the
variety Kyip given in Section 1.1.

Indeed, Xnoq is the projective bundle P(E; ), where E; , is the subbundle of S3IU|H»(U) whose fiber
over (7, x,) € P(U) is the linear subspace of forms ¢ € S3U defined over & that have multiplicity
al least 2 at x,,. Then, the natural projection K,oq — Xpoq is isomorphic to the blow-up of X;oq along
P(53Q*). It can be deduced from Proposition 4.1 in Hernandez and Miret (2003), where the description
of the blow-up of a projective bundle P(E) along a projective subbundle P(FF) is given in terms of the
quotient vector bundle E/F.

We will continue denoting by b and p the pullbacks to Pic(Kpoq) of the classes b and p in Pic(F)
under the natural projection K,,q — F. Since this projection is flat, b and p are the classes of the
hypersurfaces of Ky, whose points (f, (7, xp, Up)) satisfy that x, is on a given plane and that u,
intersects a given line, respectively. Furthermore, by Lemma 1.1, the relation

{=v—-3u
holds in Pic(Ky0q), Where ¢ is the hyperplane class of K,oq and v the class of the hypersurface of K;q
whose points (f, (7, Xp, u,)) satisfy that f intersects a given line.
Proposition 1.3. The intersection ring A*(Kyoq) is isomorphic to the quotient of the polynomial ring
Z[u, b, p, v] by the ideal
(u*, b — ub® 4+ pu?b — 1,
P’ = 3(u +b)p® +2(3u* + 2b + 3b*)p — 84> — 8ub?,
V3 — (7 + 5b + p)v* + 27u? + 22ub + 6up + 15b% + 6bp)v>
— (571> + 49u%b + 21up + 47ub? + 22ubp + 15b° + 21b*p)v?
+(48°b + 36°p + 54u%b? + 48%bp + 24ub® + 48ub®p + 36b3p)v
—18u3b? — 36u3bp + 18u2b® — 54%b%p — 36ub°p).
In particular, the Picard group Pic(K,oq) is a rank 4 free group generated by w, b, p and v.
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Proof. Since ¢ = v — 3, the intersection ring A* (Kpoq) is isomorphic to

A* B[]/ Y 7 Ci(Enog ® Or(=3)° 7,

1429

where 7 : Epoq — F is the natural projection (see Fulton, 1984, ex. 8.3.4). Now, using Proposition 1.2,

the total Chern class of E,oq can be computed:
C(Enod) = ¢(L* ® Op(—1)) - c(S°Q").

From this and Lemma 2.27 in Xambé-Descamps (1996) the fourth claimed relation follows.
The remaining relations come from the intersection ring of F described in Proposition 1.1.

Thus we have, using the projection formula, that

/;MWW+H=fMW%+H@m®wem,
Knod F

O

where s;(Enoq ® Or(—3)) denotes the t-th Segre class of the vector bundle E,oq ® Or(—3), which
can be calculated from the resolution of Proposition 1.2.
This allows us to compute all the intersection numbers of K,,4 in the conditions w, b, p and v (see

the Eq. (2)). The Wir script for the computation of these numbers is included in the Section 4.1.

PL3 b2p2 v
M3bp3\)4
M3p4\)4
M3b2p\)5
/L3bp2V5
M3P3V5
/,L3b21)6
/L3pr6
//L3P2U6
u3bv7
M3PU7
M3V8

1 I
DO DU N — 000 — Ww

N

—

[ —

Wbt =

W2b2p3v

W2bptvt =

w2pSvt
W2b3pvd

W2b2p2y’S =

/’Lsz3‘)5
M2p4v5
//,Zb3v6
/J,szp\)e

W2bp?y® =

M2p3v6
M2b2v7
Mszv7
M2p2V7
MZbUS
szvs
MZVQ

I
_

= 6

[l
N =
o

= 1

= 398
= 100
= 304
=216

ub3piv
ub2ptv
Mbp5V4
up®v?
ub3p?vs
ub2p3v’
I/pr4\)5
up>v’
ub?pv®
szpz \)6
/pr3\)6
up*v®
ub3v’
ub*pv’
Mbp2V7
up*v’
ub?v®
wbpv®
up*v®
whv®
upv?
v1°

3
= 17
= 50
= 70
= 10
= 74
= 254
= 460
= 1
= 147
= 638
= 1482
= 12
= 154
= 974
= 2780
= 160
= 932
3324
= 872
= 2696
= 2040

p3pty
b2pS v
bpSv*
PV
b3p3vS
b2ptyS
bp>v>
55
b3p2 06
b2p3V6
bp*v®
pove
b3pv?
b2p?v?
bp3v7?
7
b*v8
b*pv®
bp?v8
pivt
b?v°
bpv?®
P20
ble
pu10

Vll

= 3
= 20
= 70
= 140
= 24
= 154
= 520
= 980
= 49
= 444
= 1770
= 4020
= 60
= 722
= 3584
= 9852
= 72
= 816
= 4956
15768

904
5072
18336
= 5040
= 15960
= 12960

1.1. Degenerations of Kyoq

Let Upnoq be the subvariety of Kn,q whose points are pairs (f, (77, Xp, Up)) € Knoq such that f is an
irreducible nodal cubic contained in the plane 7, with a node at x;, and uj, as a pair of nodal tangents.
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Fig. 1. A closed point of Kicusp, Kconsec and Kyip (degenerations y, x and 7).

In fact, Koq is a compactification of U,,q whose boundary Koq — Unog consists of the following three
codimension 1 irreducible components, called degenerations of first order of Ko (see Fig. 1):

- Kncusp = P(v;(Enoa)), where v, : P(Q*) — F is the Veronese map that assigns (1, X, ug) —
(, Xc, ug), parameterizes pairs (f, (i, X, ué)) € Kpoq such that f is a cuspidal cubic with cusp x,
and cuspidal tangent ug at x.

The cubics f of Kyeusp Over the fiber (i, x, ué), witht = {x3 = 0},x. = [1,0,0,0] and
ug = {x; = 0}, that is to say, where u, is a double line u?, correspond to the forms (1) which satisfy
b, = 0. Hence, the equation of f is given by

2 3 2 2 3
QpXoX + a1X3 + arX X2 + as3X1X, + agXy; = 0.

— Keonsec Parameterizes pairs (f, (7, Xp, Up)) € Knoq such thatf is a cubic consisting of a line u,» which
goes through x; and a conic f’ tangent to a line u, at x,, where u, = uy - up.

The cubics f of Keonsec 0ver the fiber (, x5, up), withm = {x3 = 0},x, = [1,0,0,0] and
up = {x1(b1X1 + bax;) = 0}, where u; = {b1x1 + byx, = 0} and uy = {x; = 0}, correspond to the
forms (1) which satisfy a4 = 0, that is to say, forms which have two nodes. Hence, the equation of
f is given by

3 2 2
aoXoX1(b1x1 + boXp) + aix] + ax7X; + asx1x; = 0.

- Kyip = P(S3Q*|r) parameterizes pairs (f, (7, Xp, up)) € Knog such that f is a cubic consisting of
three lines concurrent at x;. Notice that K, is a projective subbundle of Kpoq.

The cubics f of K, over the fiber (, xy, up), with w = {x3 = 0}, x, = [1,0,0,0] and

u, = {x1(b1x; 4+ byx;) = 0} correspond to the forms (1) which satisfy ay = 0, that is to say,
forms which have multiplicity three at x;,. Hence, the equation of f is given by

3 2 2 3
1X] + ax2X{Xy + a3X1X; + agx; = 0.

We will denote the classes in Pic(Kyoq) of the degenerations Kncysp, Kconsec and Kyip by ¥, x and 7,
respectively.

Proposition 1.4. In Pic(Ky0q) the following relations hold:

y = —2u — 2b + 2p,
X = —6u — 6b+ 3p + 2v,
T=—u+b—p+v.

Proof. To get the first expression notice that y = [7*D], where D is the image of the Veronese map
vy : P(Q*) — Fand 7 : Kyoq — Fis the natural projection. Then the expression of y turns out of the
relation [D] = —2u — 2b + 2p in Pic(FF). To obtain the second expression note that we can write x as
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a linear combination of the basis {u, b, p, v} of Pic(Kyoq), X = @oit + a1b + aap + a3v. Multiplying
this relation by x«3b%p?v3, and taking into account Proposition 1.3 and relations (2), we get that

o3 = / M3b2p2V3X — / M3b2(£ +Z/)2(v/ +e/)3 — 2/ H3b266/vr3 =2,
KﬂOd KCOI"ISEC KCOHSEC

where v/, ¢’ and ¢ are the conditions that the conic f’, the lines u, and u, intersect, respectively, a
given line. Now, multiplying by u3b*pv4, u3bpv°® and pu?b?p?*v* we obtain oy = 3, 0; = —6 and
ag = —6. In order to calculate the expression of T = P(S>Q*|r) notice that

IEnod
S3Q* |k
from which we obtain the third relation of the proposition. O

TZU—3M+C1( ):v—3M+cl((U*/Q*)®(9]F(—1)),

Notice that from the Proposition it is straightforward to obtain the relations

6b = —2u + 5y —2x + 4r,
3p =4u+4y — x + 217,
2v=4u+y +2rt.

2. More fundamental conditions

If we consider a nodal cubic given by an equation of the type (1), the analytical expressions of the
inflection points x,, the line u; which goes through them, and the triple of lines u, joining the node
with each of the inflection points are as follows:

us = {aopXo + axX1 + asx, = 0, x3 = 0},
3 3
u; = {ax] +asx; =0, x3 =0},

Xy = {(a20'Y/4 + a3:3/a1, aop' Y, 603/a1)}ic019)

where p is a primitive cube root of —1.

Notice that there exist nodal cubics such that some of these distinguished elements are not well
defined. The aim of this section is to construct a compactification of the variety of nodal cubics in P?
where all the elements u;,, us and x, are well defined.

2.1. The condition z

In this subsection we will construct first a new compactification K7, as the blow-up of K4 along
the projective subbundle P(U*|r ® Or(—1)) (consisting of those cubics of (1) with a; = a4 = 0), in
such a way that it parameterizes the family of nodal cubics that have a point of multiplicity at least
2 at xp, for which up, is a pair of tangents (possibly coincident) at x;, and where the triple of lines u,
joining x, with each of the inflection points is always well defined.

In order to construct this new variety we consider, as in Proposition 2.1 of Hernandez and Miret
(2003), the subbundle F = U ® Or(—1) of Eneq and the quotient bundle

G, = Enoa/F = SQ*/(Q* ® Or(—1)).

The generic point of the projective bundle G, = P(G,) is a tuple (i, Xp, Uy, U,) such that x; is a point
on the plane 7, up, is a pair of distinct lines which meet at x;, and u, is a triple of lines which meet at
xp, that satisfy the following relations of cross-ratios with respect to u,:

P(Uzy s Uzy, Ugy, Up) = 0, P=1,2, (3)

where p; is a primitive cube root of —1. Notice that when uj, is a double line, then two of the lines u,
coincide with up. Moreover, by Lemma 1.1, the relation

{=z—pu—2p+2b
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holds in Pic(G;), where ¢ is the hyperplane class of G, and z is the class of the hypersurface whose
points (7, Xy, Up, U,) satisfy that u, intersects a given line.

We will denote by Ef,; the subbundle of Enoqls, whose fiber (Ef,q), , over (Gz)r .y
(7w, xp, up) € T, consists of those f € (Ellod)(”b’up) such that k(f) € (u,), where k : Eyq — G,

is the canonical projection. Then, the sequence of vector bundles over G,
0 — U¥lg, ® Op(—Dl|g, > Eflod — Og,(—1) = 0, (4)

is exact and allows us to compute all the Chern and Segre classes of EZ ;.

Now, we consider KZ ; the projective bundle P(E ,), whose points are pairs (f, (7, Xp, U, U;)) in
P(S3U*) x - G, satisfying the following conditions: f is a cubic contained in the plane 7 and has a
point of multiplicity at least 2 at x,; uj, is a pair of tangents lines (possibly coincident) at x;; and u, as
a triple of lines through x, satisfying (3). Notice that when f is non-degenerate then x,, u, and u, are
its node, nodal tangents and lines joining the node with the inflections, respectively.

It turns out that KZ , is isomorphic to the blow-up of Kp,q along the projective subbundle P(U*|r ®
Or(—1)). Moreover, the exceptional divisor coincides with P(U*|g, ® Or(—1)|g,), whose points
(f, (7, xp, up, u,)) satisfy that f consists of three lines, two of them coinciding with the pair of tangents
up. We will denote the class in Pic(KZ ) of the exceptional divisor by v (see Fig. 2).

Hence, K7, is a compactification of Unoq Whose boundary K7 ; — Unoq consists of four codimension 1
irreducible components which correspond to y, x, T and . The description of the triple of lines u,
for each degeneration is as follows:

- ¥: One line of u, coincides with the line joining the cusp and the inflection of the cuspidal curve
and the two remaining lines coincide with the cuspidal tangent.

- x: The three lines of u, coincide with the line u, of the pair u, different from the tangent line to
the conic at x;.

- 7, ¥ The triple of lines u, satisfy the relations (3) with respect to the pair of lines u,. For the
degeneration t, there is an analogous dependence relation between the lines of u, and the triple
of lines through x, that determine the nodal cubic.

We will continue denoting by u, b, p and v the pullbacks to Pic(KZ ;) of the classes u, b, pand v in
Pic(Knoa) under the natural projection K% 4, — Knod. And we will denote by z the pullback to Pic(KZ ;)
of the class z in Pic(G;) under the natural projection KZ ; — G,. Thus, using the projection formula,

/ w'bp'z vk = / WP"Z 6 i jn—r(Bioq ® Or(=3)),

Kﬁod Gz
and taking into account the sequence (4), from which the Segre classes of EZ , are obtained, we can
compute all the intersection numbers of K , in the conditions u, b, p, z and v. The actual computations
have been done with the script included in 4.2. Here is a sample of the result:

w3izv’ =36 w?zv® = 600 wzv? = 5256  zv'® =30720
w3z2v% =63 w?z2v’ = 1026 uz?vd 8748 z21° = 49296
w3z3v® =69 u?z3v8 = 1206 uz3v’ = 10660 z%v® = 60816
w3zttt =45 w2zt =1002 uzt® = 9966  z%7 = 60428
w3253 =15 w?z’vt = 570  uz®v’ = 7150  z°v® = 48640
w2283 = 180  uzbv*= 3720  z%1° =31120
wz’vi = 1120 z7v* = 14840
2803 = 4200
Condition z was not considered by Schubert, so the numbers involving this condition do not appear

in Schubert (1879).

2.2. The condition s

Now, in order to add to each nodal cubic the line u; that goes through the three inflection points, we
construct a new variety blowing-up KZ_; along the subvariety P(Og, (—1)). Again, as in Proposition 2.1
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Fig. 3. A closed point of the exceptional divisor of K’ (degeneration t').

of Hernandez and Miret (2003), we consider the subbundle F, = Og,(—1) of EZ , and the quotient
bundle

Gy s = B2 4/F = U'lg, ® Op(—1]g,.

The projective bundle G, ; = P(G, s) parameterizes tuples (7, xp, Uy, U, Us) such that x, is a point on
the plane 7, up, is a pair of lines in r which meet at x, u; is a triple of lines in w which meet at x;, that
satisfy the relations (3), and u; is a line on 7. Moreover, by Lemma 1.1, the relation

s=g—-p+vy (6)

holds in Pic(G; ), where g is the hyperplane class of G, s, s the class of the hypersurface whose points
(7, xp, Up, Uz, Us) satisfy that u, intersects a given line, and y is the class of the degeneration of G, s
whose points (77, Xp, Up, Uz, Us) satisfy that the pair of lines uj, is a double line which coincides with
two lines of u, and the remaining line of u, coincides with the line u.

We will denote by E;;, the vector subbundle of Ef 4 ¢, , whose fiber (Ef5,),,  over (Gzys) .- upoiz)”

(7w, Xp, Up, U;) € G5, consists of those f € (]EiOd)(n,xb.up,uz) such that k' (f) € (us), where k' : EZ , —
G, s is the canonical projection. From the definition, it follows that the sequence
0 — Og,(—Dlg,, = Eppg = Og,,(—1) = 0, (7)

is an exact sequence of vector bundles over G .

The projective bundle K=»*, = P(EZ>,) parameterizes pairs (f, (7, Xp, Up, Uz, Us)) INP(SU*) X 1 G
such that (f, (7, X, up, u;)) € KZ ,. Notice that when f is non-degenerate then xy, u,, u, and u;, are
their node, nodal tangents, lines joining the node with the inflections, and line through the inflection
points, respectively.

The variety K23, is isomorphic to the blow-up of K2, along the projective subbundle P(0g, (—1)).
Furthermore, the exceptional divisor coincides with P(Og,(—1)|g,,), whose points (f, (77, X, Uy,
U, us)) satisfy that f degenerates into three concurrent lines which coincide with u, (see Fig. 3). We
will denote the class in Pic(Krf('fd) of the exceptional divisor by 7’ (this degeneration was not considered
by Schubert (1879)).

The variety K2 is a compactification of Upeq Whose boundary KZ% — Unea consists of five
codimension 1 irreducible components which correspond to y, x, t, ¥ and t’. The description of

the line u; for each degeneration is as follows:

- y: us coincides with the line joining the cusp and the inflection of the cuspidal curve.
- X: us coincides with the tangent line to the conic at one of the intersection points with the pair of
nodal tangents different from xy,.
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- T: Uy is a line through x, determined by the dependence relations with the remaining lines that
form such a degeneration.

- ¥ ug coincides with one of the lines that constitute the nodal cubic, different from the nodal
tangents.

- 7’: us is anew line in the plane 7.

Once again, using the projection formula and denoting by g the pullback to K Z’fj of the hyperplane

no
class g of G, 5, we get:

f” w'bp"z'g'y =/ WPz g" s i jn—r (Eing ® Or(—3)).
n‘od Gz,s

zZ,S

Then, computing the Segre classes EZ*, from (7), we can calculate all the intersection numbers of I od

nod
in the conditions w, b, p, z, g and v. The script for this computation is included in 4.3.
Together with Miret et al. (2003), where the fundamental numbers of cuspidal cubics were
computed, and taking into account relation (6), all intersection numbers of K%, in the conditions u,

nod
b, p, z, s and v can be obtained in the following way:

/ wbiphz'stvk = / Whiphz'st=1 (g — pyvk + 2" / wibghz 1k,

Knoc nod Kncusp

where q is the condition on Kpesp that the cuspidal tangent intersects a given line. The WIT script for
the calculation of the numbers of Kpcysp is included in 4.4.

Now, from the intersection numbers of the varieties K2y and Kpcusp, We can compute the numbers
of nodal plane curves with the condition u, b, p, z, s and v. In order to obtain them we can use the Wit
script 4.5.

A sample of them is given below. In this case, we include those numbers involving the conditions
M, b,sand v.

wisv? =18  us® =296  usp? =2560 sv'® = 14760
w3bsv® =11 w?bsv? =164  ubsy® =1284  bsy’ = 6560
Wb = 2 uPh’s8 = 32 ub’sv’ = 254 bsvd = 1256 (8)
whdsvd = 2 ubdsb = 21 b*sv” = 108
w3s?v® =25 w?s?v’ =374  us*v® =2948  s*»? = 15280
w3bs?v® =20  u?bs>v® =263  ubs?v’ =1822  bs?v® = 8012
wh?s?vi = 4 uPh’s?v’ = 56 ub’s?v® = 391 b?s?v7 = 1642
wbis?vi= 4 ub3s?v’> = 36 b3s2v5 = 153
w?s*v® =50  us®y’ =712 $$¥  =5304
w?bs®v® =40  ubs®® =504  bs>v’ = 3316
wh?sPvt = 8 ub?*3® =108  b%*8 = 718
ub3s$vt= 8 B33 = 68
ust® =60 %7 =676
wbs*v® =40  bs*1® = 482
ub?s*vt = 8  b*s*® =104

Among these numbers, only two of them, p3sv” = 18 and u3s,v® = u3s?v% = 25, were given by
Schubert (see Schubert (1879), p. 160).

2.3. The condition v

We construct now another compactification of U,oq by considering the closure K ; of the graph
of the rational map that assigns the triplet of flexes x, to a given nodal cubic (f, (7, X, up, Uz, us)) of

Krfgjj. Notice that the generic points of this new variety K, consist of pairs (f, (, Xy, Uy, Uz, Us, X,))
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Fig. 4. An irreducible component of K% ; — K%, (degeneration ).

™

where x, is the triple of flexes of the nodal cubic f. The projection map h, : K, — K2 is just the
blow-up of K, along the subvariety of K%, where the triplet x, is not well-defined.

Notice as well that the tuples (i, x5, up, u,, us, X,,) belong to the closure G, of the graph of the
rational map that assigns to each (, x5, U, U, Us) € G, ; the triplet x,, of points intersecting the line
us with the triple of lines u,. Then, there exists a natural projection @ : K ; — G, that assigns to
each (f, (, xp, up, Uz, Us, X)) € Ky 4 the tuple (7w, xp, Uy, Uz, Us, Xy) € G,

In Fig. 4 above we show one of the irreducible components of the exceptional divisor of K} ;, called
degeneration @ by Schubert. This degeneration can be obtained by means of a homolography process
(see Fulton (1984, p. 190), Kleiman (1984, p. 17), and Kleiman (1986, p. 53)). As we can see, there
exist dependence relations among the distinguished elements of this degeneration, otherwise the
dimension of this variety would be greater than 10. More precisely, there exists a relation among the
five points on the double line, in the sense that given four of them, the fifth point is determined.

Moreover, the description of the triplet of flexes x, for the remaining degenerations of Klf;fd is as
follows:

- y: Two points of the triplet x,, coincide with the inflection point of the cuspidal cubic, whereas the
third one coincides with the cusp.

x : The three points of the triplet x, coincide with the point x,, which is the intersection point, other
than the node xj, of the conic f” and the line u,.

7: The three points of the triplet x, coincide with the point where the three lines of the nodal cubic
meet.

Y, T’: The points of the triplet x, are the intersection points of the line u; with the triple of lines u,.

Now, we express the condition v in Pic(X,0q) in terms of s and the degenerations y and y. This
formula, which we justify below was given by Schubert (1879, p. 150).

Proposition 2.1. The following relation holds in Pic(Xpoq):

3,3 1 o
V= —S§ — —X.
2> TV T

Proof. Consider the projective bundle F, which parameterizes triples (m, us, x,), where us is a
line contained on 7 and x, is a triple of points over us. It is easy to see that its degeneration Dj ,,
consisting of triples (i, us, X,) such that two of the three points in x, coincide, satisfy the relation
4v = 6s + [Ds,] in Pic(Fs ). Hence, in Pic(Xg0q) the following holds: there exist integers g and o4
such that 4v = 6s 4 oy + a4 x. Multiplying this relation by 13b?p?s?v and 1 3bps?v® we get ag = 3
ando; =2. O

In particular, using formula (9) or its equivalent expression v = —?u — %b + %s + 4v, and taking
enough of the numbers given in (2) and (8), we obtain the following intersection numbers:

wi’ =66, wu® = 1068, uwov®  =9072, wl® =51120
w3bvn® =39, wlbn’ = 574, ubvv® = 4424, bn® = 22104
wihrn® = 7, wbhrn® = 111, ub?vv’ = 868, b*vv® = 4192

whn® = 7, ubdv® = 72, b*vv® = 360

Only the numbers involving 113 were given by Schubert (1879). The Wit script for computing these
numbers is given in 4.6.
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Fig. 5. An irreducible component of K noq — K4 (degeneration ).

3. The condition p

We denote by p the class of the hypersurface of the variety K., whose points (f, (7, Xp, up, u;, Us,
X,)) satisfy that f is tangent to a given plane. In this section we will consider the tangential structure
of the figures of K, in order to introduce p and we will compute the fundamental numbers involving
conditions u, b, v and p.

Recall that the dual curve f* of an irreducible nodal cubic f on 7 is a quartic curve on the dual
plane 7* with three cusps and a bitangent. Furthermore, the map f + f* is a rational map whose
indeterminacy locus is the 2-codimensional closed set of K, consisting of points (f, (7, X5, Up,
Uz, Us, X,)) such that f degenerates and contains a double line.

In order to compute intersection numbers involving the p condition, we consider the closure K04
of the graph of the rational map K® , — P(S%U|, ) that assigns the quartic curve f* of tangents of f,

. nod
that is,
Knoa = {(f, f*, (7w, Xp, Up, Uz, Us, %,) | f and f* dual to each other}.

The variety Koq is a compactification of k +a Where the dual nodal cubic is always well defined.
Given a degenerate nodal cubic, we say that a point P is a focus (of multiplicity m) of f if f* contains
the pencil of lines through P over 7 as a component (of multiplicity m). With this convention, the

description of the dual structure for the degenerations y, x, ¥, ¢, t and 7’ is as follows:

y: The dual cuspidal cubic together with the cusp as a simple focus.

x : The dual conic and the point x, as a double focus, where x, is the intersection point, other than
the node xj, of the conic f” and the line u,.

- 1: Two double foci corresponding to the intersection points of each pair of lines different from x;.
¥ : The intersection point of the double line with the simple line as a double focus and two other
simple foci on the double line.

- 7, v’: The point where the three lines meet as a focus of multiplicity 4.

On the other hand, the projection map h, : Kpoqa — I od 1S just the blow-up of K ; along a
subvariety D, of codimension 2. The geometric description of one of the irreducible components of
the exceptional divisor h;l(Dp), whose class in Pic(Kqoq) we call € as denoted by Schubert, is given
below (see Fig. 5).

To compute the intersection numbers with conditions u, v, p and b the unique degenerations of the
1-dimensional systems p/v/ p"b* are y, x, © and . We will study the geometry of the degenerations
¥ and ¢ first. Before giving the intersection numbers over ¢ and &, we need to know the number of
triples of flexes that can be present on a given degeneration of these types. These numbers were called
by Schubert Stammzahlen (Schubert, 1879).

Lemma 3.1. (i) Given a degenerate nodal cubic of type © on K o4, the three flexes over its double line are
completely determined by the node, the double focus and the two simple foci.

(ii) Given a degenerate nodal cubic of type € on K4, there are exactly 12 different possible positions for
the triples of flexes over its triple line once the node and the four simple foci are fixed.

Proof. The degenerations ¢ and ¢ can be obtained by means of a homolography process (see Fulton
(1984, p. 190), Kleiman (1984, p. 17), Kleiman (1986, p. 53)) which consists of projecting a non-
degenerate nodal cubic C from a point P to a line L. Since the proof of the claim is quite similar in
both cases, we will focus on the degeneration . Taking the plane = with equation x, = 0, and the
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node x;, together with the intersection points of the pair of nodal tangents with the line us as the
reference triangle, the equation of C has the form

XoX1%; = ax3 + fx. (10)
Besides, we choose the line L on 7t as x; = X, the point P = (a, b, 1) and the four foci P; = (t;, 1, 1),
i = 1,2,3,4, so that s;(t1, to, t3,t4) = 0,1 = 1,2, 3, and s4(tq, to, t3, t4) = t, where s; is the
elementary i-th symmetric function. We know that the tangential structure of a nodal cubic of (10) is
given by the equation

vl — dougud — 4Bugu3 + 18afuiuuy; — 270 f2uf = 0,
where (ug, u1, Uy, us) are the dual coordinates of (xg, X1, X2, X3). Now, given a point X = (x, 1, 1) on
L, the line PX is tangent to C if

(x — a)?(xb — a)® — 4a(x — a)® — 4B(xb — a)® + 18af(x — a)(xb — a) — 27a°B> = 0. (11)
Since the lines PP, PP, PP3 and PP, are to be tangent to C, Eq. (11) above will have t;,i = 1, 2, 3, 4, as
roots. Writing the coefficients of (11) in terms of the symmetric functions of the roots, we get

fi(a, b, a, B) = —2ab(1 + b) — 4a — 4b°B =0,

fo(a, b, a, B) = a*>(1 + 4b + b?) + 12ac + 12ab*B + 18baf = 0,

fs(a, b, , B) = —2a>(1 + b) — 12a%a — 12a’*bB — 18a(1 + b)af =0,

fa(a, b, o, B) = a* + 4a’a + 4a®B + 18a’af — 27 % — th? = 0.
Since a # 0, from 3a?f; 4+ a(1 + b)f, + bf; = 0 it follows that

(14 b)> —6b(1+b) =0.
Hence b takes exactly three different values. On the other hand, equating « = —b38 — %ab(l + b)
from f; = 0, the equations f, = 0 and f; = 0 become

1822 +3(3(1 4+ b) — 4(1 — b))z + (1 — 2b — 5b%) = 0,

18(1 + b)z? + (11b%> +18b — 3)z + b(1 + b)(b — 2) =0,

where z = szﬁ Eliminating the quadratic term in the system above, clearly z remains a function of b
alone, and therefore there are three possible values for z as well, each of them corresponding to one
value of b. Now, if one substitutes « = —b*8 — 1ab(1 + b) and B = % into equation f, = 0, a*
becomes a rational expression which depends only on b and z. Hence, t%ere are 12 possible values
for a and also for & and g. Finally, taking into account the three cube roots of % the projection of the

inflection points of C from P to the line L gives us a triplet of points of the type

o o o
(555
p p B
Because of the number of possible values for a, b, @ and 8 obtained above, it follows that there are 12
possible positions for such a triplet of flexes. O

Here we list all numbers with the conditions w, v, p and b over the degenerations ¢ and ¢:
Proposition 3.1. In A*(K,,q) we have:

w3b® =0, 0, 24, 126, 219, 150, 0

w?b® =0, 0, 240, 1104, 1986, 2060, 1200, 0

uby =0, 0, 1240, 4980, 8710, 9400, 6550, 2940, 0

b® =0, 0, 3360, 10080, 14920, 13920, 8300, 2940, 0, 0
w3b?9 =0, 0, 6, 33, 48, 0

w?b?9 =0, 0, 64, 306, 514, 420, 0

ub*9 =0, 0, 340, 1410, 2384, 2330, 1200, 0

b?® =0, 0, 880, 2640, 3684, 2980, 1200, 0, 0

ub’9 =0, 0, 40, 180, 295, 270, 0

p*® =0, 0, 100, 306, 398, 270, 0, 0

where the numbers listed to the right of a given Wb correspond to the intersection numbers
wibvkpl0=i=iky fork =10 —i—j,...,0.
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Proof. According to Lemma 3.1(i), the points of ¥ can be seen as tuples (i, u, Uy, X4, Xp, X4), Where
uy is a double line and uy is a simple line on 7 meeting u, at x4, X;, is the node which is on uy and x4
is a pair of points on u, corresponding to the two simple foci. Therefore we can parameterize these
tuples as a projective bundle over the variety of flags P(Q*) consisting of triples (;r, x4, u;). O

Proposition 3.2. [n A* (K nod) We have:

w’be =0, 0, 0, 0, 12.9, 12.30, 12.45

w?be =0, 0, 0, 0, 12.54, 12.180, 12.330, 12.420

ube =0, 0, 0, 0, 12.162, 12.540, 12.990, 12.1260, 12.1330
w3b?e =0, 0, 0, 0, 12.3, 12.10

w?b?e =0, 0, 0, 0, 12.18, 12.60, 12.110

ub’s =0, 0, 0, 0, 12.54, 12.180, 12.330, 12.420

ub’s =0, 0, 0, 0, 12.9, 12.30, 12.65

where the numbers listed to the right of a given u'be correspond to the intersection numbers
wibvkp0=i-i=kg fork =10—i—j,...,0.

Proof. Similarly to degeneration © above, the points of £ can be seen as tuples (i, ug, X5, X4), where
u, is a triple line on 7, x; is the node which is on u, and x4 are four points on u, corresponding
to the four simple foci. Once again these tuples can be parameterized as a projective bundle over
the variety of flags P(Q*) consisting of triples (i, xp, u,). The intersection numbers we obtain using
this parameterization must be multiplied by 12, according to Lemma 3.1(ii), that is the number of
possibilities there are for the flexes x,. O

The numbers of the first row on the tables in Propositions 3.1 and 3.2 coincide with the ones
given by Schubert (1879) in Tabelle von sonstigen Ausartungszahlen in pp. 156-157. The WIT script
for computing the intersection numbers concerning ¢ and ¢ are included in 4.7 and 4.8, respectively.

With these results, we can generalize Zeuthen’s degeneration formula 3p = y + 2x given in
Zeuthen (1872) and later rewritten over P* in Hernandez et al. (2007), with the contribution of the
degenerations ¥ and ¢.

Proposition 3.3. In Pic(Kq) the following relation holds
B3p=4u+y+2x +49 +4e¢
modulo the remainder degenerations of K o4 different from y, x, 9 and e.

Proof. Zeuthen's degeneration formula was verified by Kleiman and Speiser (1988) and its
generalization to P?, 3p = 4u + y + 2, was given in Herndndez et al. (2007). Therefore, we know
that there exist integers n and m such that 3p = 4+ y + 2x +nv + me. In order to determine n and
m we can compute the intersection numbers u?bv®p? and u?bv*p? in two different ways. First, by
substituting the expression of p we have 3u?bv®p? = 4u3bv®p+u?bv8 py +2u2bv8 p x +nu?bvepv?.
From Table 5 and Proposition 2.1 in Hernandez et al. (2007) we get u?bv®py = 568 and from Table
6 and Proposition 2.3 in Hernandez et al. (2007) we get u?bv8px = 770. On the other hand, using
relation 6b = —2u + 5y — 2x + 4t given by the three relations at the end of Section 1, we obtain
w?bv®p? = 1052 and p3bv®p = 22. From this, and taking into account that u?bv®p = 240, it turns
out that n = 4. Proceeding in a similar way with the intersection number p?bv*p#, it follows that
m=4. O
Corollary 3.1. In Pic(K o) the following relation holds

0 =—6u+4v —2b— 29 —6¢
modulo the remainder degenerations of K ,oq different from y, x, ¢ and e.
Proof. On the variety X,oq described in Hernandez et al. (2007), the degeneration relation given in
Proposition 3.3 can be written as 3p = 4u + y + 2. Substituting the expressions y = —4u + 2v
and x = —9u — 3b + 5v given in Herndndez et al. (2007) we obtain p = —6u + 4v — 2b. Therefore
in our variety K4 this relation modulo other degenerations different from y, x, ¢ and & should be

expressed as p = —6u + 4v — 2b + rv¥ + se for certain integers r and s. Now in order to obtain the
values of r and s we can proceed as in the proof of Proposition 3.3 above. O
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From the intersection numbers given in Propositions 3.1 and 3.2 and using the formula in
Corollary 3.1 we can compute all intersection numbers of nodal cubics with conditions u, v, p and b:

Proposition 3.4. In A*(Koq) we have:

w® =12, 36, 100, 240, 480, 712, 756, 600, 400
u? =216, 592, 1496, 3280, 6080, 8896, 10232, 9456, 7200, 4800
u = 2040, 5120, 11792, 23616, 40320, 56240, 64040, 60672, 49416,
35760, 23840
1= 12960, 29520, 61120, 109632, 167616, 214400, 230240, 211200,
170192, 124176, 85440, 56960
w3b = 6, 22, 80, 240, 604, 1046, 1212, 1000
*u?b = 100, 328, 1052, 2800, 6272, 10540, 13468, 13512, 10800
*ub = 872, 2568, 7288, 17232, 34280, 53772, 67048, 68268, 59352, 45200
*b = 5040, 13120, 32048, 64608, 107072, 144960, 162760, 155288, 132048,
98352, 70880

w3b? = u?b® = 1, 4, 16, 52, 142, 256, 304
*u?h? = 18, 64, 224, 640, 1532, 2668, 3464, 3504
*ub? = 160, 508, 1564, 3944, 8316, 13560, 17368, 18024, 15824
“h? = 904, 2512, 6568, 13904, 23904, 33304, 38432, 36808, 28864, 25664
*ub’ = 12, 42, 144, 400, 928, 1622, 2252, 2504
*b3 =72, 216, 612, 1384, 2524, 3732, 4656, 5112, 5424

where the numbers listed to the right of a given wib (1 for 1°b°) correspond to the intersection numbers
wibvkp ===k fork =11—i—j,...,0.

The Wit script for computing these numbers is included in 4.9.

The rows marked with a * in Proposition 3.4 contain numbers not listed in Schubert (1879). Of the
remaining numbers, those in the first four rows, and the numbers with u, v, p and the 2-codimensional
condition P = v — 312 (that the nodal cubic goes through a point), were verified in Hernandez et al.
(2007). Notice also that our results verify the values given by Schubert (1879) in Tabelle I and II in
pages 157-160 involving u, v, p and b.

4. WIr scripts
In this Section we collect the WiT scripts used for the computations.
4.1. Intersection numbers on Kyoq
# PU is the incidence variety of point-plane in P3.
# It has dimension 5 and generating classes b and m.
PU=variety(5, {gcs=[b,m], monomial_values={m~3*b~2->1, m~2%b~3->1}1});
# Ud is tautological vector bundle on PU relative to the planes.
# Its chern vector is [m,m"2,m"3]

Ud=sheaf (3, [m,m~2,m"3],PU);

# Qd is the quotient of Ud by the line bundle corresponding to b.
Qd = Ud / o_(b,PU);

# EP is the second symmetric power of Qd
EP = symm(2,Qd);

# DP is the vector bundle EP "shifted" by the line bundle of -2m
DP = EP * o_(-2¥m,PU);
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# PP is a projective bundle of planes over PU

# It has dimension 7 and its generating classes are b, m and p
# the later corresponds to the tautological

# "hyperplane" class of the bundle

PP=variety(7, {gcs=[b,m,pl});

# The table of monomial values of PP is computed as follows:
PP (monomial_values)=
{ m~ixb~j*p~(7-i-j) -> integral (m~i*b~j*segre(5-i-j,DP),PU)
with (i,j) in (0..3,0..min(3,5-1i)) };

# Udp is the bundle Ud lifted to PP
Udp=sheaf (3, [m,m~2,m"3] ,PP) ;

# Qdp is the quotient of Udp by the line bundle of b on PP.
Qdp= Udp / o_(b,PP);

# Qgp is the quotient of Udp by Qdp
Qqp=Udp / Qdp;

# Enodp is Qqp twisted by 2m-p direct sum the third symmetric
# power of Qdp
Enodp=Qgp * o_(2*m-p,PP) + symm(3,Qdp);

# Dnodp is Enodp twisted by -3m
Dnodp= Enodp * o_(-3*m,PP);

# The table of monomial values of Knod, which is the table
# we were aiming at.
Knod (monomial _values)=
{ m~i*b~j*p~h*n~(11-i-j-h) ->
integral (m~i*b~j*p~h*segre(7-i-j-h,Dnodp) ,PP)
with (i,j,h) in (0..3,0..min(3,5-1),0..7-i-j) }

4.2. Intersection numbers on K% 4

# PP is a projective bundle of planes over PU
# It has dimension 7 and its generating classes are b, m and p

# Udl is the bundle Ud lifted to PP
Udl=sheaf (3, [m,m"2,m~3],PP);

# Qd1 is the quotient of Udl by the line bundle of b on PP.
Qdi= Udl / o_(b,PP);

# Equot is the quotient of the third symmetric power of Qdil
# by Qd1 twisted by 2m-p
Equot = symm(3, Qd1) / (Qdl * o_(2*m-p,PP));

# Dquot is Equot twisted by 2b-2p-m
Dquot= Equot * o_(2%b-2*p-m,PP);

# PZ is a projective bundle of planes over PP
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# It has dimension 8 and its generating classes are b, m, p and z
# (the later corresponds to the tautological "hyperplane" class)
PZ=variety(8, {gcs=[b,m,p,z]});

# The table of monomial values of PZ is computed as follows:
PZ(monomial_values)=
{ m~ixb~j*p~h*z~(8-i-j-h) ->
integral (m~i*b~j*p~h*segre(7-i-j-h,Dquot) ,PP)
with (i,j,h) in (0..3,0..min(3,5-i),0..(7-i-j))};

# Udz is the bundle Ud lifted to PZ
Udz=sheaf (3, [m,m~2,m"3],PZ);

# Enodz is Qqp twisted by 2m-p direct sum the third symmetric
# power of Qdp
Enodz=Udz * o_(2*m-p,PZ) + o_(m-z+2*p-2%b,PZ);

# Dnodz is Enodz twisted by -3m
Dnodz= Enodz * o_(-3*m,PZ);

# The table of monomial values of Knodz is computed as follows:
Knodz (monomial_values)=
{ m~i*b~j*p~h*z"k*n~(11-i-j-h-k) ->
integral (m~i*b~j*p~h*z k*segre(8-i-j-h-k,Enodz) ,PZ)
with (i,j,h,k) in (0..3,0..min(3,5-1),0..(7-1-3),0..(8-i-j-h)) };

#tabulate (Knodz (monomial_values),"Knodz.res");

4.3. Intersection numbers on Kz,
# PZ is a projective bundle of planes over PP
# It has dimension 8 and its generating classes are b, m, p and z

# Ud2 is the bundle Ud lifted to PZ
Ud2=sheaf (3, [m,m"~2,m"3],PZ);

# Eg is Ud2 twisted by 2m-p
Eg=Ud2 * o_(2*m-p,PZ);

# Egg is Eg twisted by -3m
Egg= Eg * o_(-3*m,PZ);

# Pg is a projective bundle of planes over PZ # It has dimension 10
and its generating classes are b, m, p, z and g # the later
corresponds to the tautological # "hyperplane" class of the bundle
Pg=variety (10, {gcs=[b,m,p,z,gl});

# The table of monomial values of Pg is computed as follows:
Pg(monomial_values)=
{ m~i*b~j*p~h*z k*g~(10-i-j-h-k) ->
integral (m~i*b~j*p~h*z"k*segre(8-i-j-h-k,Egg) ,PZ)
with (i,j,h,k) in (0..3,0..min(3,5-1),0..(7-1-j),0..(8-i-j-h)) };

# Enods is a direct sum of two line bundles
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Enods= o_(m-z+2%p-2%b,Pg) + o_(3*m-g,Pg);

# Dnods is Enods twisted by -3m
Dnods= Enods * o_(-3#m,Pg);

# Knods is a projective bundle of planes over Pg # It has dimension
11 and its generating classes are b, m, p, z, g and n # the later
corresponds to the tautological # "hyperplane" class of the bundle
Knods=variety (11, {gcs=[b,m,p,z,g,nl});

# The table of monomial values of Knods is computed as follows:
Knods (monomial_values)=
{ m~ixb~j*p~h*z"k*g r*n~(11-i-j-h-k-r) ->
integral (m~i*b~j*p~h*z k*g r*segre(10-i-j-h-k-r,Dnods) ,Pg)
with (i,j,h,k,r) in
(0..3,0..min(3,5-1),0..(7-1-j),0..(8-1-j-h),0..(10-i-j-h-k)) };

4.4. Intersection numbers on Kncysp

# PUc is the incidence variety of point-plane in P3.
# It has dimension 5 and generating classes ¢ and m
PUc=variety(5, {gcs=[c,m], monomial_values={m~3*c~2->1, m~2*c~3->13}});

# Udc is tautological vector bundle on PUc relative to the planes.
Udc=sheaf (3, [m,m"~2,m"3],PUc);

# Qdc is the quotient of Udc by the line bundle corresponding to c.
Qdc = Ud / o_(c,PUc);

# DQ is Qdc twisted by -m
DQ=Qdc*o_(-m,PUc) ;

# PQ is a projective bundle of planes over PUc
# It has dimension 6 and its generating classes are ¢, m and q
PQ=variety(6,{gcs=[c,m,ql});

PQ(monomial_values)={m~ixc~j*q~(6-i-j)->
integral(m~i*c~j*segre(5-i-j,DQ) ,PUc) with i,j in 0..3,0..min(3,5-1)};

# UdQ is the bundle Ud lifted to PQ
UdQ=sheaf (3, [m,m~2,m"~3],PQ) ;

# QdQ is the quotient of UdQ by the line bundle of b on PQ.
QdQ = UdQ / o_(c,PQ);

# EquotQ is the quotient of the third symmetric power of QdQ
# by QdQ twisted by 2m-2q
EquotQ = symm(3, QdQ) / (QdQ * o_(2*m-2%q,PQ));

# DquotQ is Equot twisted by 2b-2gq-m
DquotQ= EquotQ* o_(-m+2%c-2%q,PQ);

# PQZ is a projective bundle of planes over PQ
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# It has dimension 7 and its generating classes are c, m, q and z
PQZ=variety(7,{gcs=[c,m,q,z]});

PQZ (monomial_values)=
{m~i*c~j*q~h*z~(7-i-j-h)->
integral(m~i*c~j*q h*segre(6-i-j-h,DquotQ) ,PQ)
with i,j,h in 0..3,0..min(3,5-1),0..6-i-j};

# Ud2Q is the bundle Ud lifted to PQZ
Ud2Q=sheaf (3, [m,m"2,m"~3],PQZ) ;

# EgQ is Ud2Q twisted by 2m-2q
EgQ=Ud2Q * o_(2*m-2xq,PQZ);

# EggQ is Eg twisted by -3m
EggQ= EgQ * o_(-3*m,PQZ);

# PQg is a projective bundle of planes over PQZ
# It has dimension 9 and its generating classes are ¢, m, q, z and g
PQg=variety(9, {gcs=[c,m,q,z,g]l});

# The table of monomial values of PQg

PQg(monomial _values)={ m~i*c~j*q h*z"k*g~(9-i-j-h-k) ->

integral (m~i*c~j*q h*z k*segre(7-i-j-h-k,EggQ) ,PQZ)

with (i,j,h,k) in (0..3,0..min(3,5-1),0..(6-i-j),0..(7-i-j-h)) };

# Ecusp is a direct sum of two line bundles
Ecusp= o_(m-z+2*q-2*c,PQg) + o_(3*m-g,PQg);

# Dcusp is Ecusp twisted by -3m
Dcusp= Ecusp * o_(-3*m,PQg);

# Kcusp is a projective bundle of planes over PQg
# It has dimension 10 and its generating classes are ¢, m, q, Z, g and n
Kcusp=variety(10, {gcs=[c,m,q,z,g,nl});

# The table of monomial values of Kcusp
Kcusp (monomial_values)=
{ m~i*c~j*q h*z"k*g r*n~(10-i-j-h-k-r) ->
integral (m~i*c~j*q h*z k*g r*segre(9-i-j-h-k-r,Dcusp) ,PQg)
with (i,j,h,k,r) in
(0..3,0..min(3,5-1),0..(6-i-j),0..(7-i-j-h),0..(9-i-j-h-k)) };

4.5. Intersection numbers involving u, b, p, z, s and v

#Numbers involving a single s:
Ns1={m~i*b~j*p~h*z k*s*n~(10-i-j-h-k) ->
integral (m~ixb~j*p~h*z k*(g-p)*n~(10-i-j-h-k) ,Knods) +
(2~h)*integral (m~i*c~j*q~h*(z+2*q) “k*n~(10-i-j-h-k) ,Kcusp)
with (i,j,h,k) in (0..3,0..min(3,5-1),0..(7-1-3),0..(8-i-j-h))};

# Numbers involving s72:
Ns2={m~i*b~j*p~h*z k*s~2*n~(9-i-j-h-k) ->
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integral (m~i*b~j*p~h*z k*(g-p) ~2*n~(9-i-j-h-k) ,Knods) +

(2~h) *integral (m~i*c~j*q h*z*(z+2*q) “k*n~(9-i-j-h-k) ,Kcusp) +
(2°h) *integral (m~ixc~j*q~h*(z+2*q) "k*(g-2%q) *n~ (9-i-j-h-k) ,Kcusp)
with (i,j,h,k) in (0..3,0..min(3,5-1),0..(7-1-j),0..(8-i-j-h)) };

# Numbers involving s~3:

Ns3={m~i¥b~j*p~h*z k*s~3%n"~(8-i-j-h-k) ->
integral (m~i*b~j*p~h*z k*(g-p) ~3*n~(8-i-j-h-k) ,Knods) +
(2~h) *integral (m~i*c~j*q h*z~2* (z+2*q) “k*n~ (8-i-j-h-k) ,Kcusp) +
(2°h)*integral (m~ixc~j*q h*z* (z+2*q) “k* (g-2%q) *n~(8-i-j-h-k) ,Kcusp) +
(27h) *integral (m~i*c~j*q h* (z+2xq) “k* (g-2*q) ~2*n~ (8-i-j-h-k) ,Kcusp)
with (i,j,h,k) in (0..3,0..min(3,5-1i),0..(7-i-j),0..(8-1-j-h)) };

# Numbers involving s~4:

Ns4={m~ix*b~j*p~h*z"k*s~4*n~(7-i-j-h-k) ->
integral (m~i*b~j*p~h*z k*(g-p) “4*n~(7-i-j-h-k) ,Knods) +
(2"h)*integral (m~i*c~j*q h*z"~3%(z+2*q) “k*n~ (7-i-j-h-k) ,Kcusp) +
(2-h)*integral (m~ixc~j*q h*z~2* (z+2*q) “k*(g-2*q) *n~ (7-i-j-h-k) ,Kcusp) +
(2~h) *integral (m~i*c~j*q h*z*x (z+2*q) “k*(g-2%q) ~“2*n~(7-i-j-h-k) ,Kcusp) +
(2°h) *integral (m~ixc~j*q~h*(z+2*q) “k* (g-2%q) ~3*n~(7-i-j-h-k) ,Kcusp)
with (i,j,h,k) in (0..3,0..min(3,5-1),0..(7-1-3),0..(7-i-j-h)) };

4.6. Intersection numbers involving u, b, v and a single v

Nv={m~i*b~j*v*n~(10-i-j) ->
-(15/2)*integral (m~ (i+1) *b~j*n~(10-i-j) ,Knods)
-(3/2)* integral(m~i*b~(j+1)*n~(10-i-j),Knods)
+(3/2)*integral (m~i*b~j*s*n~(10-i-j) ,Knods)

+ 4xintegral (m~i*b~j*n~(11-i-j) ,Knods)
with (i,j) in (0..3,0..min(3,5-1i)) };

4.7. Intersection numbers on ¥

# Determination of number of cubics of degeneration \vartheta
# involving the conditions m,b,n,r

PU=variety(5, {gcs=[a,m], monomial_values={m~3*a~2->1, m~2%a~3->1}1});
Ud=sheaf (3, [m,m~2,m"3],PU);

Qd = Ud / o_(a,PU);

Qda = Qd * o_(-m,PU);

# Fa is a projective bundle of planes over PU

# It has dimension 6 and its generating classes are a, m and 1
Fa=variety(6, {gcs=[a,m,1]1});

# The table of monomial values of Fa is computed as follows:

Fa(monomial_values)=
{m~ixa~j*1~(6-i-j) ->
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integral (m~i*a~j*segre(5-i-j,Qda) ,PU)
with (i,j) in (0..3,0..min(3,5-1)) };

Udl=sheaf (3, [m,m"2,m"3],Fa);
Udd=dual (Ud1);
Qla= Udd / o_(1-m,Fa);
# Fab is a projective bundle of planes over Fa
# It has dimension 7 and its generating classes are a, b, m, 1
Fab=variety(7, {gcs=[a,b,m,11});
# The table of monomial values of Fab is computed as follows:
Fab(monomial_values)=
{m~i*a~j*1~h*b~(7-i-j-h) ->
integral (m~i*a~j*1~h*segre(6-i-j-h,Qla) ,Fa)
with (i,j,h) in (0..3,0..min(3,5-1),0..min(4,6-i-j)) }\trim;
Ud2=sheaf (3, [m,m~2,m~3] ,Fab) ;
Udd2=dual (Ud2) ;
Q1d=Udd2 / o_(1-m,Fab);
Qldd= symm(2,Qld);
# Fabd is a projective bundle of planes over Fab
# It has dimension 9 and its generating classes are a, b, m, 1 and d
Fabd=variety(9, {gcs=[a,b,m,1,d]});
Ud3=sheaf (3, [m,m"~2,m"3] ,Fabd) ;
Q1df=Ud3 / o_(a,Fabd);
Q1dff= Q1ldf *o_(-m,Fabd);
# DegTh is a projective bundle of planes over Fabd
# It has dimension 10 and its generating classes are a, b, m, 1, d and £
DegTh=variety (10, {gcs=[a,b,m,1,d,f]1});
# The table of monomial values of Fabdf, which is the table we were aiming at.
DegTh (monomial_values)=
{m~i*a~j*1~h*b~k*d~x*f~(10-i-j-h-k-x) ->
integral (m~i*a~j*1 h*b~k*d~x*segre(9-i-j-h-k-x,Q1dff) ,Fabd)
with (i,j,h,k,x) in
(0..3,0..min(3,5-1),0. .min(4,6-i-j),0..min(3,7-i-j-h),
0..min(6,9-i-j-h-k)) };

# Numbers involving condition r

NdegTh_r={ m~i*b~j*n~h*r~(10-i-j-h) ->
integral (m~i*b~j* (2*1+f) ~“h*(2*a+d) ~(10-i-j-h) ,DegTh)
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with (i,j,h) in (0..3,0..min(3,5-1),0..10-i-j ) };

4.8. Intersection numbers on &

# Determination of number of cubics of degeneration \varepsilon
# involving the conditions m,b,n,r

PU=variety(5,{gcs=[b,m], monomial_values={m~3*b~2->1,m~2%b~3->1}});
Ud=sheaf (3, [m,m~2,m"3],PU);

Qd = Ud / o_(b,PU);

Qdb = Qd * o_(-m,PU);

# Fb is a projective bundle of planes over PU
# It has dimension 6 and its generating classes are a, m and 1
Fb=variety(6, {gcs=[b,m,1]1});

# The table of monomial values of Fb is computed as follows:
Fb(monomial_values)=
{m~i*b~j*1~(6-i-j) ->
integral (m~i*b~j*segre(5-i-j,Qdb) ,PU)
with (i,j) in (0..3,0..min(3,5-1))};

Udl=sheaf (3, [m,m~2,m~3],Fb);
Udd=dual (Ud1) ;

Qlb= Udd / o_(1-m,Fb);
Qlbb=symm(4,Q1lb) ;

# DegEps is a projective bundle of planes over Fb
# It has dimension 10 and its generating classes are b, m, 1 and r
DegEps=variety (10, {gcs=[b,m,1,r1});

# The table of monomial values of DegEps is computed as follows:
DegEps (monomial_values)=
{ m~i*b~j*n~h*r~(10-i-j-h) ->
integral (m~i*b~j*(3*1) “h*segre(6-i-j-h,Qlbb) ,Fb)
with (i,j,h) in (0..3,0..min(3,5-i),0..min(4,6-i-3j)) };

4.9. Intersection numbers involving u, b, v and p
# Numbers of nodal cubics involving conditions m,b,n,r

Nri={m~ixb~j*n~(11-i-j-h)*r ->
-6xintegral (m~(i+1)*b~j*n~(11-i-j-h) ,Knods)
+ 4xintegral (m~i*b~j*n~(12-i-j-h) ,Knods)
- 2xintegral (m~i*b~(j+1)*n~(11-i-j-h) ,Knods)
- 2*integral(m~i*b~j*n~(11-i-j-h),NdegTh)
- 6xintegral (m~i*b~j*n~(11-i-j-h) ,NdegEps)
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with (h,i,j) in (1..11,0..min(3,11-h),0..min(3,5-i,11-h-1)) };
Nrx={Nri}

for h in 2..11 do
X={m~i*b~j*n~(11-i-j-h)*r~h ->

- 6*xintegral (m~ (i+1)*b~j*n~(11-i-j-h)*r~(h-1),Nr)

+ 4xintegral (m~i*b~j*n~(12-i-j-h)*r~(h-1),Nr)

- 2xintegral (m~i*b~(j+1)*n~(11-i-j-h)*r~(h-1),Nr)
2*xintegral (m~i*b~j*n~(11-i-j-h)*r~(h-1) ,DegTh)
- 6*xintegral (m~i*b~j*n~(11-i-j-h)*r~(h-1) ,DegEps)
with (i,j) in (0..min(3,11-h),0..min(3,5-i,11-h-1)) };

Nrx=Nrx|{X}
end;
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