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Abstract

In this note we obtain, phrased in present day geometric and computational frameworks, the
characteristic numbers of the family Unod of non-degenerate nodal plane cubics in P3, first obtained by
Schubert in his Kalkül der abzählenden Geometrie. The main geometric contribution is a detailed study
of a variety Xnod, which is a compactification of the family Unod, including the boundary components
(degenerations) and a generalization to P3 of a formula of Zeuthen for nodal cubics in P2. The computations
have been carried out with the WIRIS boost WIT.
c© 2006 Elsevier Ltd. All rights reserved.
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0. Introduction

Given an irreducible n-dimensional family of plane curves in P3, we are interested in the
number of curves in the family that satisfy n conditions and, in particular, in its characteristic
numbers, namely, the number of curves that go through i given points, intersect k given lines
and are tangent to n − 2i − k given planes. Concerning the family of nodal cubics in P2,
the characteristic numbers (and many other intersection numbers) were calculated by Maillard
(1871), Zeuthen (1872) and Schubert (1879), and were verified, in different ways, by Sacchiero
(1984), Kleiman and Speiser (1988), Aluffi (1991) and Miret and Xambó (1991).
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In this paper we study the characteristic numbers of the variety of nodal plane cubics in
P3 given by Schubert. We first construct a compactification Xnod of the variety Unod of non-
degenerate nodal plane cubics of P3 by means of the projectivization of a suitable vector bundle.
From this we get that the Picard group Pic(Xnod) is a rank 3 free group generated by the classes
µ, b and ν of the closures in Xnod of the hypersurfaces of Unod determined, respectively, by the
conditions:

– µ, that the plane determined by the nodal cubic go through a point;
– b, that the node be on a plane and
– ν, that the nodal cubic intersect a line.

We show that the boundary Xnod − Unod consists of two irreducible components of
codimension 1 and we prove a formula which expresses the condition

– ρ, that the nodal cubic be tangent to a plane,

in terms of the two degenerations and the condition µ. This formula is a generalization to P3

of a degeneration relation given by Zeuthen (1872) for nodal cubics in the projective plane.
We compute, on the basis of the intersection theory of Xnod and using WIT (see Xambó
(2002–2006)), the intersection numbers of the form µiνkρ11−i−k given by Schubert (1879). In
particular, we get the number ν11 of plane nodal cubics that intersect 11 lines which was used
(and verified) by Kleiman et al. (1987). Finally, the computation of the characteristic numbers
P iνkρ11−2i−k of the family of nodal plane cubics in P3 follows from the incidence formula
P = νµ− 3µ2, where P is the condition that the nodal cubic goes through a given point.

1. The variety Xnod of nodal plane cubics

In the sequel, P3 will denote the projective space associated to a 4-dimensional vector space
over an algebraically closed ground field k of characteristic 0, and the term variety will be used
to mean a quasi-projective k-variety.

Let U denote the rank 3 tautological bundle over the Grassmann variety Γ of planes of P3.
Therefore, the projective bundle P(U) is a non singular variety defined by P(U) = {(π, x) ∈

Γ × P3
| x ∈ π}. Let L be the tautological line subbundle of the rank 3 bundle U|P(U) over P(U)

and let Q be the tautological quotient bundle. We will denote by a the hyperplane class of P(U)
and by µ the pullback to P(U) of c1(OΓ (1)) under the natural projection P(U) → Γ .

We define Enod as the subbundle of S3U∗
|P(U) whose fiber over (π, x) ∈ P(U) is the linear

subspace of forms ϕ ∈ S3U∗ defined over π that have multiplicity at least 2 at x . In fact, given
a point (π, x) ∈ P(U) and taking projective coordinates x0, x1, x2, x3 so that π = {x3 = 0} and
x = [1, 0, 0, 0], we can express the elements ϕ of the fiber of Enod over (π, x) as follows:

ϕ = b1x0x2
1 + b2x0x1x2 + b3x0x2

2 + a1x3
1 + a2x2

1 x2 + a3x1x2
2 + a4x3

2 , (1)

where bi and ai are in k. Thus, Enod is a rank 7 subbundle of S3U∗
|P(U).

In the next proposition we give a free resolution of the vector bundle Enod over P(U). To do
this, we consider the natural inclusion map i : Q∗

→ U∗, the product map κ : Q∗
⊗ S2Q∗

→

S3Q∗, and the maps

h : U∗
⊗ S2Q∗

→ S3U∗
|P(U) and j : S3Q∗

→ S3U∗
|P(U)

whose images are clearly contained in Enod.
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Proposition 1.1. The sequence

0 −→ Q∗
⊗ S2Q∗ α

−→ (U∗
⊗ S2Q∗)⊕ S3Q∗ β

−→ Enod −→ 0, (2)

where α =
(i⊗1

−κ

)
and β = h + j , is an exact sequence of vector bundles over P(U).

Proof. From the definition of Enod it follows that β is a surjective map and, since i ⊗ 1 is
injective, we get that α is also injective. Moreover, from the definitions of α and β it follows
that βα = 0. Now, to complete the proof it is enough to see, since Im α ⊆ Ker β, that
rank(Im α) = rank(Ker β). But this can be easily checked by simple computations. �

Let Xnod be the projective bundle P(Enod) over P(U). Then, Xnod is a non singular variety of
dimension 11 whose points are pairs ( f, (π, x)) ∈ P(S3U∗) ×Γ P(U) such that the nodal cubic
f is contained in the plane π and has a node at x .

We will denote by b the pullback to Pic(Xnod) of the class a in Pic(P(U)) under the natural
projection Xnod → P(U). Since this projection is flat, b is the class of the hypersurfaces
of Xnod whose points ( f, (π, x)) satisfy that x is on a given plane. Furthermore, the relation
ζ = ν − 3µ holds in Pic(Xnod), where ζ denotes the hyperplane class of Xnod and ν the class of
the hypersurface of Xnod whose points ( f, (π, x)) satisfy that f intersects a given line.

Proposition 1.2. The intersection ring A∗(Xnod) is isomorphic to the quotient of the polynomial
ring Z[µ, b, ν] by the ideal

〈µ4, b3
− µb2

+ µ2b − µ3, ν7
− 6bν6

+ 24b2ν5
〉.

In particular, Pic(Xnod) is a rank 3 free group generated by µ, b and ν.

Proof. Since ζ = ν − 3µ, the intersection ring A∗(Xnod) is (see Fulton (1998), ex. 8.3.4)
isomorphic to A∗(P(U))[ν]/

∑
π∗ci (Enod ⊗ OΓ (−3))ν5−i , where π : Enod → P(U) is

the natural projection. Now, using Proposition 1.1 we get the result taking into account the
intersection ring of P(U). �

Thus, using the projection formula, we have∫
Xnod

µi b jν11−i− j
=

∫
P(U)

µi a j s5−i− j (Enod ⊗OΓ (−3)), (3)

where the t-th Segre class st (Enod ⊗ OΓ (−3)) can be calculated from the resolution (2). This
allows us to compute all the intersection numbers of Xnod in the conditions µ, b and ν. The result,
obtained with WIT (see Xambó (2002–2006)), is the following:

µ3ν8
= 12, µ2ν9

= 216, µν10
= 2040, ν11

= 12960
µ3bν7

= 6, µ2bν8
= 100, µbν9

= 872, bν10
= 5040

µ3b2ν6
= 1, µ2b2ν7

= 18, µb2ν8
= 160, b2ν9

= 904
µ2b3ν6

= 1, µb3ν7
= 12, b3ν8

= 72

(4)

We denote by ρ the class of the hypersurface of Xnod whose points ( f, (π, x)) satisfy that f is
tangent to a given plane. Notice that the dual f ∗ of an irreducible nodal cubic is a quartic curve.
Furthermore, the indeterminacy locus of the map f 7→ f ∗ is the 4-codimensional closed set of
Xnod consisting of points such that f degenerates to a double line and a simple line.
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2. Degenerations of Xnod

Let Unod be the subvariety of Xnod whose points are pairs ( f, (π, x)) ∈ Xnod such that f
is an irreducible nodal cubic contained in the plane π , with a node at x . In fact, Xnod is a
compactification of Unod whose boundary Xnod−Unod consists of the following two codimension
1 irreducible components, called degenerations of first order of Xnod (see Fig. 1).

• Xncusp, that parameterizes pairs ( f, (π, x)) ∈ Xnod such that f is a cuspidal cubic with cusp
at x .

• Xconsec parameterizes pairs ( f, (π, x)) ∈ Xnod such that f is a cubic consisting of a conic f ′

and a line l which intersects with the conic at two points, being x one of them.

We will denote the classes in Pic(Xnod) of the degenerations Xncusp and Xconsec by γ and χ ,
respectively.

2.1. The variety Xncusp

In Hernández and Miret (2003) a compactification Xcusp of the variety of non-degenerate
cuspidal plane cubics in P3 is introduced by means of the projectivization of a suitable vector
bundle constructed over the flag variety F = {(π, x, u) | x ∈ u, u ⊂ π}. Actually, Xcusp is the
10-dimensional subvariety of P(S3U∗

|F) whose points are pairs ( f, (π, x, u)) such that f is a
cuspidal cubic contained in the plane π , that has a cusp at x and u as the cuspidal tangent at x .

Moreover, we denote by µ and c the pullbacks to Pic(Xcusp) of the hyperplane classes
µ = c1(OΓ (1)) and a = c1(OP(U)(1)), respectively, under the natural projections, so that µ
is the class of the hypersurface of Xcusp such that π goes through a given point and c coincides
with the class of the hypersurface of Xcusp such that x is on a given plane. In addition, let us
denote by ν and ρ the classes of the hypersurfaces of Xcusp consisting of the pairs ( f, (π, x, u))
such that f intersect a given line and, respectively, that f is tangent to a given plane.

In Miret et al. (2003) are verified and completed all the intersection numbers obtained by
Schubert about cuspidal plane cubics in terms of the characteristic conditions and those relative
to the singular triangle. In particular:

µ3
= 24, 60, 114, 168, 168, 114, 60, 24

µ2
= 384, 864, 1488, 2022, 2016, 1524, 924, 468, 192

µ = 3216, 6528, 10200, 12708, 12144, 9156, 5688, 3090, 1488, 624
1 = 17760, 31968, 44304, 49008, 43104, 30960, 18888, 10284, 5088,

2304, 960
µ3c = 12, 42, 96, 168, 186, 132, 72
µ2c = 176, 536, 1082, 1688, 1844, 1496, 956, 512
µc = 1344, 3576, 6388, 8852, 9108, 7264, 4706, 2688, 1392
c = 6592, 14800, 22336, 25560, 22864, 16672, 10380, 5836, 3040, 1504
µ3c2

= 2, 8, 20, 38, 44, 32
µ2c2

= 32, 110, 240, 400, 452, 372, 240
µc2

= 248, 740, 1416, 2076, 2216, 1818, 1200, 696
c2

= 1168, 2896, 4592, 5408, 4952, 3708, 2376, 1392, 768

(5)

where the numbers listed to the right of a given µi c j correspond to the intersection numbers
µi c jνkρ10−i− j−k , for k = 10 − i − j, . . . , 0.
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Fig. 1. A closed point of Xncusp and of Xconsec.

Now, we will see that there exists a birational map between the variety Xcusp and the
degeneration Xncusp of Xnod. Notice that the dual of a ( f, (π, x)) ∈ Xncusp, where f is a non-
degenerate cuspidal cubic, consists of the dual cuspidal cubic together with the cusp as a simple
focus.

Proposition 2.1. The map ψcusp : Xcusp → Xnod that assigns ( f, (π, x)) to ( f, (π, x, u)) is
a birational map between Xcusp and Xncusp ⊆ Xnod. Moreover, we have that ψ∗

cusp(µ) = µ,
ψ∗

cusp(b) = c, ψ∗
cusp(ν) = ν and ψ∗

cusp(ρ) = ρ + c.

Proof. Since u is the tangent line of f at x ( f a non-degenerate cuspidal cubic on π with cusp at
x), it is clear thatψcusp induced a birational map. On the other hand, the relationψ∗

cusp(ρ) = ρ+c
can be proved considering the commutative diagram:

Xcusp Xnod

P(S3U)×Γ P(U) P(S4U)

-
ψcusp

?

(ϕcusp,p)

?

ϕnod

-κ

where p is the natural projection, ϕnod and ϕcusp are the birational maps over Xnod and Xcusp that
assign f 7→ f ∗, and κ is the map that assigns (( f ∗, π), (π, x)) 7→ ( f ∗

· x∗, π), where x∗ is the
pencil of planes that go through x (the pencil focus). From this, we have that

ψ∗
cusp(ρ) = ψ∗

cuspϕ
∗

nod(c1OP(S4U)(1)) = (ϕcusp, p)∗κ∗(c1OP(S4U)(1))
= (ϕcusp, p)∗(c1OP(S3U)(1), c1OP(U)(1)) = ρ + c.

The remaining relations can be proved in a similar way. �

Now, from this proposition and from the intersection numbers (5) of Xcusp, we can compute
the intersection numbers of the degeneration Xncusp using:∫

Xnod

µi b jνkρtγ =

∫
Xcusp

µi c jνk(ρ + c)t .

Proposition 2.2. In A∗(Xnod) we have:

µ3γ = 24, 72, 200, 480, 960, 1424, 1512, 1200
µ2γ = 384, 1040, 2592, 5600, 10240, 14944, 17440, 16512, 12800
µγ = 3216, 7872, 17600, 34112, 56320, 76896, 87152, 83520, 70032, 52320
γ = 17760, 38560, 75072, 124800, 173952, 203840, 204320, 179712, 142720,

105312, 75520

where the numbers listed to the right of a given µiγ correspond to the intersection numbers
µiνkρ10−i−kγ , for k = 10 − i, . . . , 0.
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These values agree with those on page 154 of Schubert (1879) (Tabelle von Zahlen γ ), except
for the number 14944 corresponding to µ2ν3ρ6γ , which is given as 14744 there, a fact that
appears to be nothing but a misprint.

Corollary 2.1. The following relation holds in Pic(Xnod):

γ = −4µ+ 2ν.

Proof. From Proposition 1.2 we know that γ = α1µ + α2ν + α3b, with αi ∈ Z, holds in
Pic(Xnod). By substituting this expression into the formulas γµ3ν5b2

= 2, γµ3ν6b = 12 and
γµ2ν6b2

= 32 we obtain the desired formula. �

2.2. The variety Xconsec

In this section we introduce a birational model of the variety Xconsec ⊆ Xnod. To do this,
we consider the variety G = F ×P(U∗) F consisting of the points (π, xa, xb, ul) such that
(π, xa, ul) ∈ F and (π, xb, ul) ∈ F. The pullback to G of the classes µ, ` of P(U∗) will be
denoted by the same notations and similarly for a and b of F.

We will denote by Econsec the rank 4 subbundle of S2U∗
|G whose fiber over a point

(π, xa, xb, ul) ∈ G is the linear subspace of forms ϕ ∈ S2U∗ that vanish at xa and xb. The
next statement provides a resolution of Econsec. We use the following notations:

– Q∗
a , respectively Q∗

b, for the pullback of Q∗ to G under the projection G → F which assigns
(π, xa, ul) to (π, xa, xb, ul), respectively (π, xa, ul) to (π, xa, xb, ul);

– OG(−1), for the pullback to G of the tautological line subbundle of P(U∗).

Lemma 2.1. The sequence

0 → OG(−2) → OG(−1) ⊗ Q∗
a ⊗ Q∗

b → (U∗
⊗OG(−1))⊕ (Q∗

a ⊗ Q∗

b) → Econsec → 0

is an exact sequence of vector bundles over G.

Proof. Similar to that given in Proposition 1.1. �

Thus, P(Econsec) is the 10-dimensional subvariety of P(S2U∗
|G) whose points are pairs

( f ′, (π, xa, xb, ul)) such that f ′ is a conic contained in the plane π that goes through the points
xa and xb.

Furthermore, we denote by µ, a, b and ` the pullbacks to Pic(P(Econsec)) of the homonymous
classes of Pic(G) under the natural projections. In addition, let us denote by ν′ the class of
the hypersurface of P(Econsec) consisting of the pairs ( f ′, (π, xa, xb, ul)) such that the conic f ′

intersect a given line.
Using again the projection formula, we have∫

P(Econsec)

µi a j bk`hν′10−i− j−k−h
=

∫
G
µi a j bk`hs7−i− j−k−h(Econsec ⊗OΓ (−3)),

where st (Econsec ⊗ OΓ (−3)) can be calculated from the resolution given in Lemma 2.1. This
allows us to compute all the intersection numbers of P(Econsec) in the conditions µ, a b, ` and
ν′. In particular, we have:
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Fig. 2. A closed point of the component E1 and E2.

µ3a`ν′5
= 2, µ2a`ν′6

= 16, µa`ν′7
= 68, a`ν′8

= 184
µ3`2ν′5

= 2, µ2`2ν′6
= 16, µ`2ν′7

= 68, `2ν′8
= 184

µ3a2`ν′4
= 1, µ2a2`ν′5

= 8, µa2`ν′6
= 34, a2`ν′8

= 92
µ3a`2ν′4

= 1, µ2a`2ν′5
= 10, µa`2ν′6

= 50, a`2ν′8
= 160

µ2`3ν′5
= 4, µ`3ν′6

= 32, `3ν′7
= 136

µ2a3`ν′4
= 1, µa3`ν′5

= 6, a3`ν′6
= 18

µ2a2`2ν′4
= 2, µa2`2ν′5

= 14, a2`2ν′6
= 52

µ2a`3ν′4
= 2, µa`3ν′5

= 16, a`3ν′6
= 68

µ`4ν′5
= 4, `4ν′6

= 32
µa3`2ν′4

= 1 a3`2ν′5
= 6

µa2`3ν′4
= 2 a2`3ν′5

= 12
µa`4ν′4

= 2 a`4ν′5
= 12

Finally, in order to compute intersection numbers involving the ρ condition, we will consider
P(Econsec), the closure of the graph in P(Econsec) ×G P(S2U|G) of the rational map ψ :

P(Econsec) −→ P(S2U|F) that assigns the conic of tangents to a given conic of rank ≥ 2. Notice
that the points of P(Econsec) consist of triples ( f ′, f ′∗, (π, xa, xb, ul)) where f ′∗ is the dual
conic of f ′ over π , so that ψ is undefined precisely at a closed set D of codimension 2 of
P(Econsec) which has two irreducible components:

– D1 consisting of pairs ( f ′, (π, xa, xb, ul)) such that f ′ is a double line which coincides with
the line ul ;

– D2 consisting of pairs ( f ′, (π, xa, xb, ul)) such that xb = xa and f ′ is a double line that goes
through the point xa .

Then, the projection map h : P(Econsec) → P(Econsec) is just the blow-up of P(Econsec) along
D. The geometric description of the two irreducible components of the exceptional divisor
E = h−1(D) is given below (see Fig. 2):

– E1 parameterizes triples ( f ′, f ′∗, (π, xa, xb, ul)) such that f ′ is a double line which coincides
with ul and the dual conic f ′∗ degenerates into two pencils whose foci lie on ul ;

– E2 parameterizes triples ( f ′, f ′∗, (π, xa, xb, ul)) such that xb = xa , f ′ is a double line over
π that goes through xa and the dual conic f ′∗ consists of a pair of pencils whose foci lie on
this double line.

We will also write µ, a, b, ` and ν′ to denote the pullbacks to Pic(P(Econsec)) of their
homonymous classes in Pic(P(Econsec)) under the blow-up h : P(Econsec) → P(Econsec).
Then, µ, a, b, ` and ν′ are the classes of the hypersurfaces of P(Econsec) whose points
( f ′, f ′∗, (π, xa, xb, ul)) satisfy that π goes through a given point, xa is on a given plane, xb
is on a given plane, ul intersects a line and f ′ intersects a line, respectively. Let ρ′ be the class of
the hypersurface of P(Econsec) whose points ( f ′, f ′∗, (π, xa, xb, ul)) satisfy that π ∩ π ′

∈ f ′∗

for a given plane π ′ (that is, f ′ is tangent to a given plane).
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Lemma 2.2. The following relation holds in Pic(P(Econsec)):

ρ′
= 2ν′

− 2µ− 2ε1 − 4ε2.

Proof. Due to the properties of the blow-up, there exists a morphism ψ : P(Econsec) →

P(S2U|G) which makes the following diagram commutative:

P(Econsec)

P(Econsec) P(S2U|G),
?

h

Q
Q

Q
Q

Qs

ψ

-ψ

that is, ψ coincides, as a rational map, with ψ ◦ h. Thus, as we know that ψ is univocally given
by sections of the invertible sheaf OP(Econsec)(2) over P(Econsec), we can conclude, see Roberts
and Speiser (1984), that

ψ
∗
(OP(S2U|F)(1)) = h∗(OP(Econsec)(2))⊗OP(Econsec)

(−E).

Taking Chern classes, we get c1(ψ
∗
(OP(S2U|G)(1))) = c1(h∗(OP(Econsec)(2))) − (2ε1 + 4ε2).

Finally, we know c1(h∗(OP(Econsec)(1))) = ν′
− 2µ, and, by duality, c1(ψ

∗
(OP(S2U|F)(1))) =

ρ′
− 2µ, so the formula follows. �

Now, in order to calculate the intersection numbers µi a j bk`hν′sρ′t with t = 10 − i − j −

k − h − s, and since the intersection numbers µi a j bk`hν′9−i− j−k−h are easily calculated using
the resolution of Econic given in Lemma 2.1, we only need to compute numbers over P(Econsec)

which involve any of the two components of the exceptional divisor, that is, numbers of the
form µi a j bk`hν′sρ′9−i− j−k−h−sε1 or µi a j bk`hν′sρ′9−i− j−k−h−sε2, and then proceed down
recursively by induction on the order of the ρ condition.

Proposition 2.3. The map ψconsec : P(Econsec) −→ Xnod that assigns ( f ′
· ul , (π, xb)) to

( f ′, f ′∗, (π, xa, xb, ul)) is a birational map between P(Econsec) and Xconsec ⊆ Xnod. Moreover,
we have that ψ∗

consec(µ) = µ, ψ∗
consec(b) = b, ψ∗

consec(ν) = ν′
+ ` and ψ∗

consec(ρ) = ρ′
+ 2a.

Proof. Notice that if we take a system of projective coordinates {x0, x1, x2, x3} of P3 such that
x = [1, 0, 0, 0] and π = {x3 = 0} then ∂ f/∂x0 is the tangent cone of f at x over π . From this it
is easy to see that ψconsec induces a birational isomorphism. On the other hand, all the relations
of the proposition can be proved in a similar way and so, as an illustration, we will only indicate
how to prove that ψ∗

consec(ν) = ν′
+ `. To establish this relation it is enough to consider the

commutative diagram:

P(Econsec) Xnod

P(S2U∗)×Γ P(U∗) P(S3U∗)

-ψconsec

?
(p2,p1)

?

p3

-q

where p1, p2 and p3 are the natural projections and q is the map that assigns ( f ′, ul , π) 7→

( f ′
· ul , π). From this, we have that
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ψ∗
consec(ν) = ψ∗

consec p∗

3(c1OP(S3U∗)(1)) = (p2, p1)
∗q∗(c1OP(S2U∗)(1))

= (p2, p1)
∗(c1OP(S2U∗)(1), c1OP(U∗)(1)) = ν′

+ `,

as claimed. �

Therefore,∫
Xnod

µi b jνkρtχ =

∫
P(Econsec)

µi b j (ν′
+ `)k(ρ′

+ 2a)t ,

and so we have the following table.

Proposition 2.4. In A∗(Xnod) we have:

µ3χ = 42, 114, 260, 480, 588, 422, 144, 0
µ2χ = 672, 1652, 3424, 5840, 7264, 6452, 3952, 1344, 0
µχ = 5640, 12568, 23632, 36864, 44040, 39820, 26968, 13452, 4224, 0
χ = 31320, 62160, 103328, 141792, 153984, 130960, 86560, 44088,

16072, 3984, 0

where the numbers listed to the right of a given µiχ correspond to the intersection numbers
µiνkρ10−i−kχ , for k = 10 − i, . . . , 0.

Corollary 2.2. The following relation holds in Pic(Xnod):

χ = 3µ− 3b + 5ν.

Proof. We obtain the expression of χ in terms of the basis {µ, b, ν} of Pic(Xnod) using table (4),
the table in Proposition 2.4, and proceeding as in Corollary 2.1. �

3. Characteristic numbers of Xnod

In this section we express the condition ρ ∈ Pic(Xnod), that the nodal cubic ( f, (π, x)) is
tangent to a given plane, in terms of the µ condition and the degenerations γ and χ . The formula
we obtain generalizes to P3 Zeuthen’s degeneration formula 3ρ = γ + 2χ for nodal curves in P2

(see Zeuthen (1872)).

Proposition 3.1. The following relation holds in Pic(Xnod):

3ρ = 4µ+ γ + 2χ.

Proof. From Proposition 1.2 and Corollaries 2.1 and 2.2 we know that there exist rational
numbers si such that ρ = s0µ + s1γ + s2χ holds in Pic(Xnod). Taking into account the
degeneration formula of Zeuthen verified by Kleiman and Speiser (1988) we know that s1 =

1
3

and s2 =
2
3 . In order to determine s0 we compute the intersection numberµ2ν7ρb in two different

ways. First, we have µ3ν7ρ =
1
3µ

3ν7γ +
2
3µ

3ν7χ = 36. Now, from Corollary 2.1, we get
µ2bν7ρ = 2µ3bν6ρ +

1
2µ

2bν6ργ = 2 · 22 +
1
2 · 568 = 328. Finally, by substituting the

expression of ρ in the relation µ2bν7ρ = 328, we obtain s0 =
4
3 . �

This proposition implies that the intersection numbers µiνkρ11−i−k in Xnod can be obtained
as µiνkρ11−i−k

=
1
3 (µ

iνkρ10−i−k(4µ + γ + 2χ)), because the unique degenerations of the
1-dimensional systems µiνkρ10−i−k are the ones consisting of a cuspidal cubic or a degenerated
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conic with a secant line. Thus, from Propositions 2.2 and 2.4, we are now able to compute all the
non-zero intersection numbers of the form µiνkρ11−i−k in Xnod.

Proposition 3.2. In A∗(Xnod) we have:

µ3
= 12, 36, 100, 240, 480, 712, 756, 600, 400

µ2
= 216, 592, 1496, 3280, 6080, 8896, 10232, 9456, 7200, 4800

µ = 2040, 5120, 11792, 23616, 40320, 56240, 64040, 60672, 49416,
35760, 23840

1 = 12960, 29520, 61120, 109632, 167616, 214400, 230240, 211200, 170192,
124176, 85440, 56960

where the numbers listed to the right of a given µi correspond to the intersection numbers
µiνkρ11−i−k , for k = 11 − i, . . . , 0.

Finally, from the formula P = µν−3µ2 given by Schubert (see Hernández and Miret (2003)),
where P is the class of the subvariety of Xnod consisting of pairs ( f, (π, x)) such that f goes
through a given point, and from the table of Proposition 3.2, we get the characteristic numbers
of nodal plane cubics in P3 that involve the P condition. Our results confirm the characteristic
numbers listed on page 159 of Schubert (1879).

Theorem 3.1. The following results hold in A∗(Xnod):

P2
= 144, 376, 896, 1840, 3200, 4624, 5696, 5856

P = 1392, 3344, 7304, 13776, 22080, 29552, 33344, 32304, 27816, 21360

where the numbers listed to the right of a given P i correspond to the characteristic numbers
P iνkρ11−2i−k , for k = 11 − 2i, . . . , 0.
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