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Abstract

In this note we obtain, phrased in present day geometric and computational frameworks, the
characteristic numbers of the family U,oq9 of non-degenerate nodal plane cubics in IP3, first obtained by
Schubert in his Kalkiil der abzdhlenden Geometrie. The main geometric contribution is a detailed study
of a variety X;,q, which is a compactification of the family U, q, including the boundary components
(degenerations) and a generalization to IP3 of a formula of Zeuthen for nodal cubics in P2. The computations
have been carried out with the WIRIS boost WIT.
© 2006 Elsevier Ltd. All rights reserved.
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0. Introduction

Given an irreducible n-dimensional family of plane curves in P2, we are interested in the
number of curves in the family that satisfy n conditions and, in particular, in its characteristic
numbers, namely, the number of curves that go through i given points, intersect k given lines
and are tangent to n — 2i — k given planes. Concerning the family of nodal cubics in P?,
the characteristic numbers (and many other intersection numbers) were calculated by Maillard
(1871), Zeuthen (1872) and Schubert (1879), and were verified, in different ways, by Sacchiero
(1984), Kleiman and Speiser (1988), Aluffi (1991) and Miret and Xamb6 (1991).
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In this paper we study the characteristic numbers of the variety of nodal plane cubics in
3 given by Schubert. We first construct a compactification Xyoq of the variety Uyog of non-
degenerate nodal plane cubics of P2 by means of the projectivization of a suitable vector bundle.
From this we get that the Picard group Pic(Xpoq) is a rank 3 free group generated by the classes
W, b and v of the closures in Xyoq of the hypersurfaces of Upog determined, respectively, by the
conditions:

— W, that the plane determined by the nodal cubic go through a point;
— b, that the node be on a plane and
— v, that the nodal cubic intersect a line.

We show that the boundary Xpog — Upod consists of two irreducible components of
codimension 1 and we prove a formula which expresses the condition

— p, that the nodal cubic be tangent to a plane,

in terms of the two degenerations and the condition . This formula is a generalization to P3
of a degeneration relation given by Zeuthen (1872) for nodal cubics in the projective plane.
We compute, on the basis of the intersection theory of X,,q and using WIT (see Xambd
(2002-2006)), the intersection numbers of the form p/vkpl1—i—* given by Schubert (1879). In
particular, we get the number v'! of plane nodal cubics that intersect 11 lines which was used
(and verified) by Kleiman et al. (1987). Finally, the computation of the characteristic numbers
Pivkp1=2i=k of the family of nodal plane cubics in P* follows from the incidence formula
P = vu — 3u?, where P is the condition that the nodal cubic goes through a given point.

1. The variety X,q of nodal plane cubics

In the sequel, P3 will denote the projective space associated to a 4-dimensional vector space
over an algebraically closed ground field k of characteristic 0, and the term variety will be used
to mean a quasi-projective k-variety.

Let U denote the rank 3 tautological bundle over the Grassmann variety I" of planes of P3.
Therefore, the projective bundle P(U) is a non singular variety defined by P(U) = {(m, x) €
I' x P3| x € }. Let L be the tautological line subbundle of the rank 3 bundle U|py) over P(U)
and let Q be the tautological quotient bundle. We will denote by a the hyperplane class of P(U)
and by u the pullback to P(U) of ¢; (O (1)) under the natural projection P(U) — I

We define Eoq as the subbundle of S3U*|]p(U) whose fiber over (i, x) € P(U) is the linear
subspace of forms ¢ € S3U* defined over 7 that have multiplicity at least 2 at x. In fact, given
a point (77, x) € P(U) and taking projective coordinates xg, x1, X2, x3 so that 7 = {x3 = 0} and
x =[1, 0,0, 0], we can express the elements ¢ of the fiber of E,q over (i, x) as follows:

¢ = b1xox12 + boxox1xy + ngoxg + a1x13 + azx%xg + agxlxg + a4x§, (D)

where b; and a; are in k. Thus, Epoq is a rank 7 subbundle of S3U* IpU)-

In the next proposition we give a free resolution of the vector bundle Eq over P(U). To do
this, we consider the natural inclusion map i : Q* — U*, the product map « : Q* ® S>Q* —
$3Q*, and the maps

h:U*® S*Q* — SPU*|py and j: $3Q* — S*U*|pw,

whose images are clearly contained in [Eqq.
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Proposition 1.1. The sequence

0 — Q* ® $2Q* - (U* ® S2Q") @ S3Q* 25 Epos —> O, @)

i®l

where o = (7 K) and B = h + j, is an exact sequence of vector bundles over P(U).

Proof. From the definition of E,qq it follows that 8 is a surjective map and, since i ® 1 is
injective, we get that « is also injective. Moreover, from the definitions of @ and S it follows
that Ba = 0. Now, to complete the proof it is enough to see, since Ima < Ker 8, that
rank(Im «) = rank(Ker ). But this can be easily checked by simple computations. O

Let Xpoq be the projective bundle P(EEoq) over P(U). Then, Xpoq is a non singular variety of
dimension 11 whose points are pairs (f, (7, x)) € P(S3U*) x r P(U) such that the nodal cubic
f is contained in the plane 7 and has a node at x.

We will denote by b the pullback to Pic(Xpeq) of the class a in Pic(P(U)) under the natural
projection Xpoqg — [P(U). Since this projection is flat, b is the class of the hypersurfaces
of Xnoa Whose points (f, (;r, x)) satisfy that x is on a given plane. Furthermore, the relation
¢ = v —3p holds in Pic(Xy0q), where ¢ denotes the hyperplane class of X ;04 and v the class of
the hypersurface of X9 whose points ( f, (7, x)) satisfy that f intersects a given line.

Proposition 1.2. The intersection ring A*(Xnod) is isomorphic to the quotient of the polynomial
ring Z[ 1, b, v] by the ideal

(u* b — ub® + b — 1,07 — 6bv0 + 24b%0°).
In particular, Pic(Xpoq) is a rank 3 free group generated by i, b and v.
Proof. Since ¢ = v — 3pu, the intersection ring A*(Xnod)' is (see Fulton (1998), ex. 8.3.4)
isomorphic to A*(P(U)[v]/ Y. 7*¢;(Bnod ® Or(=3)v>~, where 7 : Epoa — P(U) is

the natural projection. Now, using Proposition 1.1 we get the result taking into account the
intersection ring of P(U). O

Thus, using the projection formula, we have
f p'p =l = / walss_ij(Enod ® Or(=3)), Q)
Xnod PO

where the 7-th Segre class s;(Epog ® Or(—3)) can be calculated from the resolution (2). This
allows us to compute all the intersection numbers of Xoq in the conditions 1, b and v. The result,
obtained with WIT (see Xambé (2002-2000)), is the following:

whd =12, put® =216, wv'® =2040, v'!' = 12960

wWh'! =6, pihd =100, ubv® =872, bv'0 =5040

Wb =1,  p2p*7 =18, wb*® =160, b*° =904
u2b3v6 =1, /Lb3v7 =12, 8 =72

“

We denote by p the class of the hypersurface of X;,,g whose points (f, (7, x)) satisfy that f is
tangent to a given plane. Notice that the dual f* of an irreducible nodal cubic is a quartic curve.
Furthermore, the indeterminacy locus of the map f +— f* is the 4-codimensional closed set of
Xnod consisting of points such that f degenerates to a double line and a simple line.
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2. Degenerations of X4

Let Unoq be the subvariety of Xpoq whose points are pairs (f, (7, x)) € Xnod such that f
is an irreducible nodal cubic contained in the plane m, with a node at x. In fact, Xpoq is a
compactification of Upog Whose boundary Xpoq — Unog consists of the following two codimension
1 irreducible components, called degenerations of first order of X04 (see Fig. 1).

® Xncusp, that parameterizes pairs (f, (7, x)) € Xpog such that f is a cuspidal cubic with cusp
at x.

o Xconsec parameterizes pairs (f, (7, x)) € Xpoq such that f is a cubic consisting of a conic f’
and a line / which intersects with the conic at two points, being x one of them.

We will denote the classes in Pic(Xy,0q) of the degenerations Xycysp and Xconsec by ¥ and yx,
respectively.

2.1. The variety Xpcusp

In Herndndez and Miret (2003) a compactification X¢usp of the variety of non-degenerate
cuspidal plane cubics in P? is introduced by means of the projectivization of a suitable vector
bundle constructed over the flag variety F = {(7, x, ) | x € u, u C m}. Actually, Xcysp is the
10-dimensional subvariety of ]P’(S3[U*|F) whose points are pairs (f, (7, x, u)) such that f is a
cuspidal cubic contained in the plane 7, that has a cusp at x and u as the cuspidal tangent at x.

Moreover, we denote by u and c the pullbacks to Pic(Xcysp) of the hyperplane classes
uw = c(Op(1)) and a = c1(Opw)(1)), respectively, under the natural projections, so that u
is the class of the hypersurface of Xcyusp such that 7 goes through a given point and ¢ coincides
with the class of the hypersurface of X¢usp such that x is on a given plane. In addition, let us
denote by v and p the classes of the hypersurfaces of Xcusp consisting of the pairs (f, (7, x, u))
such that f intersect a given line and, respectively, that f is tangent to a given plane.

In Miret et al. (2003) are verified and completed all the intersection numbers obtained by
Schubert about cuspidal plane cubics in terms of the characteristic conditions and those relative
to the singular triangle. In particular:

wd =24, 60, 114, 168, 168, 114, 60, 24

u?> =384, 864, 1488, 2022, 2016, 1524, 924, 468, 192

©w = 3216, 6528, 10200, 12708, 12144, 9156, 5688, 3090, 1488, 624
1 = 17760, 31968, 44304, 49008, 43104, 30960, 18888, 10284, 5088,

2304, 960
wic =12, 42, 96, 168, 186, 132, 72
wrc =176, 536, 1082, 1688, 1844, 1496, 956, 512 5)
ue = 1344, 3576, 6388, 8852, 9108, 7264, 4706, 2688, 1392
c = 6592, 14800, 22336, 25560, 22864, 16672, 10380, 5836, 3040, 1504

w32 =2, 8, 20, 38, 44, 32

w?c? = 32, 110, 240, 400, 452, 372, 240

wcr =248, 740, 1416, 2076, 2216, 1818, 1200, 696

2 = 1168, 2896, 4592, 5408, 4952, 3708, 2376, 1392, 768

where the numbers listed to the right of a given u’c/ correspond to the intersection numbers
el vk pl0=i=i=k fork =10 —i —j,...,0.



196 X. Herndndez et al. / Journal of Symbolic Computation 42 (2007) 192-202

Fig. 1. A closed point of Xpcusp and of Xconsec-

Now, we will see that there exists a birational map between the variety Xcysp and the
degeneration Xycusp Of Xpod. Notice that the dual of a (f, (7w, x)) € Xpcusp, Where f is a non-
degenerate cuspidal cubic, consists of the dual cuspidal cubic together with the cusp as a simple
focus.

Proposition 2.1. The map Yreusp : Xcusp —> Xnod that assigns (f, (7w, x)) to (f, (7w, x,u)) is
a birational map between Xcysp and Xpeusp S Xnod- Moreover, we have that l/fc*usp(,u) = U,
Gsp®) = ¢ Yoy ) = v and Y, () = p +c.

Proof. Since u is the tangent line of f at x (f a non-degenerate cuspidal cubic on 7 with cusp at
x), itis clear that v/cusp induced a birational map. On the other hand, the relation wékusp (p) = p+c
can be proved considering the commutative diagram:

I/fcusp

X cusp Xnod

((ﬂcusp D) Pnod

P(S°U) x  P(U) —— P(S*U)

where p is the natural projection, @nod and @cusp are the birational maps over Xpod and Xcysp that
assign f — f*, and « is the map that assigns ((f*, ), (7, x)) — (f* - x*, ), where x* is the
pencil of planes that go through x (the pencil focus). From this, we have that

wé‘usp(p) = w:usp¢:0d(clop(s4m)(])) = (@cusps P)*K*(CIOP(54U)(1))
= (@Pcusp> p)*(CIOP(S3U)(1), CIOP(U)(I)) =p+ec.

The remaining relations can be proved in a similar way. O

Now, from this proposition and from the intersection numbers (5) of X¢usp, We can compute
the intersection numbers of the degeneration Xycysp using:

/ w'bivkply =/ welvk(p + o).
Xnod

X cusp

Proposition 2.2. In A*(Xyo4) we have:

wdy = 24, 72, 200, 480, 960, 1424, 1512, 1200

u?y = 384, 1040, 2592, 5600, 10240, 14944, 17440, 16512, 12800

ny = 3216, 7872, 17600, 34112, 56320, 76896, 87152, 83520, 70032, 52320

1 17760, 38560, 75072, 124800, 173952, 203840, 204320, 179712, 142720,
105312, 75520

where the numbers listed to the right of a given u'y correspond to the intersection numbers

wkpl0=i=ky, fork =10—1i,...,0.
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These values agree with those on page 154 of Schubert (1879) (Tabelle von Zahlen y), except
for the number 14944 corresponding to M2v3 ,063/, which is given as 14744 there, a fact that
appears to be nothing but a misprint.

Corollary 2.1. The following relation holds in Pic(Xpoq):
y = —4u + 2v.

Proof. From Proposition 1.2 we know that y = aju + azv + a3b, with o; € Z, holds in
Pic(Xq0d). By substituting this expression into the formulas y u3v>b? = 2, yu3v%h = 12 and
yu?vb? = 32 we obtain the desired formula. [

2.2. The variety Xconsec

In this section we introduce a birational model of the variety Xconsee € Xnod. To do this,
we consider the variety G = F xpq« F consisting of the points (7, x4, Xp, u;) such that
(, xq,u;) € F and (7, xp,u;) € F. The pullback to G of the classes u, £ of P(U*) will be
denoted by the same notations and similarly for @ and b of FF.

We will denote by Ecgnsec the rank 4 subbundle of S2[U*|G whose fiber over a point
(, x4, xp, u;) € G is the linear subspace of forms ¢ € S2U* that vanish at x, and x,. The

next statement provides a resolution of E.qpsec. We use the following notations:

— Q}, respectively Qj, for the pullback of Q* to G under the projection G — I which assigns
(jTa xa’ I/l[) tO (T[, xa’ -xhv I/l[), respectively (ij xa’ I/l[) tO (T[, xa’ -xhv I/l[),
— Og(—1), for the pullback to G of the tautological line subbundle of P(U*).

Lemma 2.1. The sequence

0— Og-2) = Og-1) ®Q; ® Q) — (U* ® Og(-1)) ® (Q; ® Q}) = Econsec = 0
is an exact sequence of vector bundles over G.
Proof. Similar to that given in Proposition 1.1. O

Thus, P(Econsec) is the 10-dimensional subvariety of ]P’(SZU*|G) whose points are pairs
(f’, (, x4, xp, uy)) such that f” is a conic contained in the plane 7 that goes through the points
X, and xp.

Furthermore, we denote by 1, a, b and £ the pullbacks to Pic(P(Ecopsec)) of the homonymous
classes of Pic(G) under the natural projections. In addition, let us denote by v’ the class of
the hypersurface of P(E¢onsec) consisting of the pairs (f/, (7, x4, Xp, u;)) such that the conic f’
intersect a given line.

Using again the projection formula, we have

/ Miajbkfh v/10—i—j—k—h = f Miajbkghﬂ—i—j—k—h (Econsec ® Op(—3)),
P(ECOHSEC) G
where s; (Econsec ® Or(—3)) can be calculated from the resolution given in Lemma 2.1. This

allows us to compute all the intersection numbers of P(Eonsec) in the conditions w, a b, £ and
V', In particular, we have:
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Fig. 2. A closed point of the component £ and E».

wWav® =2, platv® =16, paty’? =68, atv’® =184
wItvs =2, uP2e =16, weH'’ =68, 28 =184
wWatev*t =1, pla?e® =8,  ua*tv’® =34, a2 =92
wlal?v* =1, plal®>® =10, pat®>»® =50, at>»'® =160
WS =4, pve =32, YT =136
wradet =1, pddo? =6, oSt =18
w2are2vt =2, pad?ttv® =14, a*2v° =52
wral3vt =2, pat?v? =16, al3v® =68
wth® =4, 0 =32
uwattvt =1 a2 =6
wat3v* =2 23S =12
pat*v'* =2 ath’® =12

Finally, in order to compute intersection numbers involving the p condition, we will consider
@(Econsec), the closure of the graph in P(Econsec) XG IP’(S2[U|G) of the rational map ¢ :
P(Econsec) — ]P’(SzUhF) that assigns the conic of tangents to a given conic of rank > 2. Notice
that the points of P(Econsec) consist of triples (f/, f’*, (7, x4, Xp, u;)) where f* is the dual
conic of f’ over 7, so that v is undefined precisely at a closed set D of codimension 2 of
P(Econsec) Which has two irreducible components:

— Dy consisting of pairs (f’, (7, x4, Xp, u;)) such that f’ is a double line which coincides with
the line u;;

— D» consisting of pairs (f’, (7, X4, Xp, u;)) such that x, = x, and f’ is a double line that goes
through the point x,,.

Then, the projection map & : @(Econsec) — P(Econsec) s just the blow-up of P(Ecopsec) along
D. The geometric description of the two irreducible components of the exceptional divisor
E = h~1(D) is given below (see Fig. 2):

— Ej parameterizes triples (f', f"*, (7, X4, Xp, u;)) such that f’ is a double line which coincides
with u; and the dual conic f"* degenerates into two pencils whose foci lie on u;;

— E, parameterizes triples (f/, f'*, (&, x4, xp, u;)) such that x, = x,, f’ is a double line over
7 that goes through x, and the dual conic f"* consists of a pair of pencils whose foci lie on
this double line.

We will also write w, a, b, £ and V' to denote the pullbacks to PiC(@(IEconseC)) of their
homonymous classes in PiC(P(EE¢opsec)) under the blow-up A : @(Ecomec) — P(Econsec)-
Then, u, a, b, £ and V' are the classes of the hypersurfaces of @(ECOHSCC) whose points
(f’, f'*, (7, x4, xp, uy)) satisfy that = goes through a given point, x, is on a given plane, x;
is on a given plane, u; intersects a line and f’ intersects a line, respectively. Let p’ be the class of
the hypersurface of P(Econsec) Whose points (f/, f'*, (7, x4, Xp, u;)) satisfy that w N7’ € f*
for a given plane 7’ (that is, f is tangent to a given plane).
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Lemma 2.2. The following relation holds in Pic(P(Econsec)):
o =2V —2u —2¢e — 4de,.

Proof. Due to the properties of the blow-up, there exists a morphism E : @(Econsec) —
P(5%U|g) which makes the following diagram commutative:

P(Econsec)

1 N

¥
P(Econsec) — P(SZU|G) s

that is, E coincides, as a rational map, with ¥ o h. Thus, as we know that ¥ is univocally given
by sections of the invertible sheaf Op(E,,,...)(2) over P(Econsec), we can conclude, see Roberts
and Speiser (1984), that

J* (OP(SzU\[F)(l)) = h*(OP(Econscc) (2)) ® Oﬁ(Econsec)(_E).

Taking Chern classes, we get cl(w*((’)P(SzUm)(l))) = 1 (W (OPE ppee) () — (221 + 4e2).

Finally, we know c1(h*(Op &) (1)) = V' — 2u, and, by duality, ¢ (W*(OP(SzUhF)(I))) =
o' — 2u, so the formula follows. O

Now, in order to calculate the intersection numbers pu!a/bk ¢V o’ witht = 10 —i — j —
k — h — s, and since the intersection numbers !’/ b* ¢ °~1=J=k=h are easily calculated using
the resolution of Eopjc given in Lemma 2.1, we only need to compute numbers over @(]Econsec)
which involve any of the two components of the exceptional divisor, that is, numbers of the
form plalbkehys p0—imik=h=se; or plalbkehy's p®—i=i—k=h=sg) and then proceed down
recursively by induction on the order of the p condition.

Proposition 2.3. The map Veonsec : P(Econsec) —> Xnod that assigns (f' - uy, (7, xp)) to
(f', f™*, (, x4, xp, uy)) is a birational map between P(Econsec) and Xconsee S Xnod. Moreover,

we have that 1pczkonsec (w) = u, ::konsec (b) =0, 1//c*onsec(v) ="+ L and ]/jc*onsec (p) =p'+2a.

Proof. Notice that if we take a system of projective coordinates {xg, x1, x2, x3} of P3 such that
x =[1,0,0,0] and 7 = {x3 = 0} then df/dxo is the tangent cone of f at x over 7. From this it
is easy to see that Yconsec induces a birational isomorphism. On the other hand, all the relations
of the proposition can be proved in a similar way and so, as an illustration, we will only indicate
how to prove that ¥ ...(v) = V' + £. To establish this relation it is enough to consider the
commutative diagram:

g wCOI’ISCC
IPJ(IE:conscc) - X nod
(p2.p1) P3

P(S2U*) x p P(U*) —— P(S3U*)

where p;, p» and ps are the natural projections and ¢ is the map that assigns (f', u;, 7) >
(f’ - uy, ). From this, we have that
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:onsec(v) = Il/ékonsecp§(cl OP(S3U*)(1)) = (p2, Pl)*q*(cl OIP’(SZIU*)(I))
= (p2, p1)*(€10p g2+ (D), c10pw+ (1) ="+ ¢,

as claimed. O

Therefore,

/ WbIvkp!y = ﬁ Wb ' + 0k’ +2a)',
Xnod IED(Ecensec)

and so we have the following table.
Proposition 2.4. In A*(Xpod) we have:

wx = 42, 114, 260, 480, 588, 422, 144, 0

wrx = 672, 1652, 3424, 5840, 7264, 6452, 3952, 1344, 0

uwx = 5640, 12568, 23632, 36864, 44040, 39820, 26968, 13452, 4224, 0

X 31320, 62160, 103328, 141792, 153984, 130960, 86560, 44088,
16072, 3984, 0

where the numbers listed to the right of a given 'y correspond to the intersection numbers

wokpl0=i=ky fork =10—1i,...,0.
Corollary 2.2. The following relation holds in Pic(Xyod):
X =3u —3b+ 5v.

Proof. We obtain the expression of x in terms of the basis {1, b, v} of Pic(Xp04) using table (4),
the table in Proposition 2.4, and proceeding as in Corollary 2.1. O

3. Characteristic numbers of X,oq

In this section we express the condition p € Pic(Xy0q), that the nodal cubic (f, (7, x)) is
tangent to a given plane, in terms of the u condition and the degenerations y and x. The formula
we obtain generalizes to P2 Zeuthen’s degeneration formula 3p = y + 2 for nodal curves in P2
(see Zeuthen (1872)).

Proposition 3.1. The following relation holds in Pic(Xpeq):
3p=4p+y +2x.

Proof. From Proposition 1.2 and Corollaries 2.1 and 2.2 we know that there exist rational
numbers s; such that p = sou + s1y + sz2x holds in Pic(Xpeq). Taking into account the

degeneration formula of Zeuthen verified by Kleiman and Speiser (1988) we know that s; = %
and s = % In order to determine sy we compute the intersection number %v” pb in two different

ways. First, we have /L3U7p = %/ﬁ\ﬂy + %,u3v7x = 36. Now, from Corollary 2.1, we get

v’ p = 2u3bv%p + Lu2hvopy = 2.22 4+ 1. 568 = 328. Finally, by substituting the
4

expression of p in the relation w2bv’ p = 328, we obtain so = 3. O
This proposition implies that the intersection numbers u/ v%p!'==* in X, 4 can be obtained
as pivkpll—i—k — %(,u’ vk pl0=i=k 4 + 9 + 2x)), because the unique degenerations of the

1-dimensional systems ! v¥ p!9~1=* are the ones consisting of a cuspidal cubic or a degenerated
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conic with a secant line. Thus, from Propositions 2.2 and 2.4, we are now able to compute all the
non-zero intersection numbers of the form ' vEp! =% in X, 0q.

Proposition 3.2. In A*(X0q) we have:
w? = 12, 36, 100, 240, 480, 712, 756, 600, 400

u? = 216, 592, 1496, 3280, 6080, 8896, 10232, 9456, 7200, 4800
n = 2040, 5120, 11792, 23616, 40320, 56240, 64040, 60672, 49416,
35760, 23840
1 = 12960, 29520, 61120, 109632, 167616, 214400, 230240, 211200, 170192,

124176, 85440, 56960

where the numbers listed to the right of a given u' correspond to the intersection numbers
uvkpI=i=k fork =11 —1i,...,0.

Finally, from the formula P = uv—3 w? given by Schubert (see Hernandez and Miret (2003)),
where P is the class of the subvariety of X,q consisting of pairs (f, (7, x)) such that f goes
through a given point, and from the table of Proposition 3.2, we get the characteristic numbers
of nodal plane cubics in P3 that involve the P condition. Our results confirm the characteristic
numbers listed on page 159 of Schubert (1879).

Theorem 3.1. The following results hold in A*(Xy0q):

P2 = 144, 376, 896, 1840, 3200, 4624, 5696, 5856
P = 1392, 3344, 7304, 13776, 22080, 29552, 33344, 32304, 27816, 21360

where the numbers listed to the right of a given P! correspond to the characteristic numbers
P’vk,olllefk,fork =11-2i,...,0.
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